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Abstract001

Linguistic steganography involves embedding002
secret messages within seemingly innocuous003
texts to enable covert communication. Prov-004
able security, which is a long-standing goal005
and key motivation, has become adaptive to006
language-model-based steganography. Previ-007
ous provably secure approaches have achieved008
perfect imperceptibility, measured by zero Kull-009
back–Leibler (KL) divergence, but at the ex-010
pense of embedding capacity. In this paper, we011
attempt to directly use a classic entropy cod-012
ing method (range coding) to achieve secure013
steganography, and then propose an efficient014
and provably secure linguistic steganographic015
method with a rotation mechanism. Experi-016
ments across various language models show017
that our method achieves around 100% entropy018
utilization (embedding efficiency) for embed-019
ding capacity, outperforming the existing base-020
line methods. Moreover, it delivers high embed-021
ding speeds (up to 1554.66 bits/s on GPT-2).022

1 Introduction023

Linguistic steganography, as a promising field in024

safeguarding information, refers to the art of con-025

cealing messages within texts. With rapid advance-026

ments in large language models (LLM) (Brown027

et al., 2020; Achiam et al., 2023; Anthropic, 2024),028

LM-based steganography methods (Ziegler et al.,029

2019; Wu et al., 2024) have dominated in linguis-030

tic steganography, as leveraging LMs can create031

flexible text content, diverse genres, and consistent032

contexts, and LMs enable linguistic steganography033

to achieve high embedding capacity. Figure 1 il-034

lustrates how a sender (Alice) and a receiver (Bob)035

communicate using linguistic steganography.036

Intuitively, to prevent concealment from de-037

tection, steganographic content is expected to038

closely resemble normal content, leading to the con-039

cept of steganographic security. This notion was040

first formalized by Cachin (1998) using the Kull-041

back–Leibler (KL) divergence between the cover042
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Figure 1: A schematic diagram of linguistic steganog-
raphy, where PRNG refers to a pseudo-random number
generator for controlling randomness and reproducibil-
ity. Alice embeds the secret message into a stegano-
graphic text (stegotext), and Bob extracts the secret
message from the received stegotext.

distribution Pc and the steganographic distribution 043

Ps. However, incorporating steganographic algo- 044

rithms into the language model’s prediction and 045

sampling processes often introduces distributional 046

distortions. To address this challenge, recent work 047

has explored approaches aimed at achieving prov- 048

able security in steganography.1 049

However, existing provably secure methods have 050

notable limitations. ADG (Zhang et al., 2021) fails 051

to strictly preserve the original probability distribu- 052

tion by grouping candidate tokens at each genera- 053

tive step. Meteor (Kaptchuk et al., 2021), which 054

is based on arithmetic coding (AC) (Ziegler et al., 055

2019), inevitably distorts the original distribution 056

when encoding intervals. Although iMEC (de Witt 057

et al., 2023), Discop (Ding et al., 2023), and 058

SparSamp (Wang et al., 2025) maintain the orig- 059

inal probability distribution, the first two suffer 060

from limited embedding capacity and slow embed- 061

ding speeds. SparSamp, the current state-of-the-art 062

method, still falls short of achieving ideal embed- 063

1Related work is introduced in Appendix A in detail.
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ding capacity (i.e., 100% entropy utilization).064

Motivated by these limitations, we aim to design065

a steganographic method that satisfies three key066

properties: (i) preservation of the original probabil-067

ity distribution, (ii) full entropy utilization (embed-068

ding efficiency), and (iii) high embedding speed. In069

this paper, rather than introducing complex tech-070

niques, we turn our attention to a classic entropy071

coding method—range coding (RC; Martin, 1979).072

RC is closely related to arithmetic coding (AC) in073

the context of data compression, but with a key074

difference: it performs encoding using digits in any075

base, rather than restricting to bits.076

This property makes RC particularly well-suited077

for preserving the original probability distribution078

and achieving higher embedding speed. Specifi-079

cally, when all operations are carried out in dec-080

imal form without binary encoding, the original081

probability distribution at each generative step is082

merely rescaled to a new range, without any distor-083

tion in ratios. Furthermore, as an entropy coding084

method akin to AC, RC inherently allows RC-based085

steganography to fully utilize the entropy, thereby086

achieving ideal embedding capacity. The key con-087

tributions of this work are as follows:088

1) We begin by proposing a vanilla RC steganog-089

raphy, and analyze its security issues.090

2) To address these issues, we introduce Rota-091

tion Range Coding (RRC) steganography, which092

incorporates a rotation mechanism. This mecha-093

nism ensures zero KL divergence at each genera-094

tive step and prevents the reuse of randomness. It095

ensures provable security.096

3) We provide theoretical analysis and proofs097

showing that RRC steganography achieves zero098

KL divergence and approximately 100% entropy099

utilization for embedding capacity, both of which100

are empirically validated.101

4) Experimental results in various language mod-102

els demonstrate that RRC steganography consis-103

tently achieves the highest embedding efficiency104

(i.e., entropy utilization) and great embedding105

speed (up to 1554.66 bits/s in GPT-2) compared to106

all provably secure baseline methods. Experiments107

also show that our RRC steganography has strong108

scalability and anti-steganalysis capacity.109

2 Background and Preliminaries110

2.1 Language Model Basics111

A language model (LM) has a vocabulary V con-112

taining words or word fragments known as “to-113

kens.” Consider a sequence of LM-generated T 114

tokens {s(t)} ∈ VT . Entries with negative indices, 115

[s(−Np), . . . , s(−1)], represent a “prompt” of length 116

Np and [s(0), . . . , s(T−1)] are tokens generated by 117

an LM in response to the prompt. 118

An LM for the next token prediction at position 119

t, is a function fLM(·) whose input is a sequence 120

of known tokens [s(−Np), . . . , s(t−1)] which con- 121

sists of a prompt and the first t− 1 LM-generated 122

tokens. Then it outputs a logit vector, correspond- 123

ing to each token in V . These logits are then 124

converted into a discrete probability distribution 125

p(t) = (p
(t)
1 , . . . , p

(t)
|V|) over the vocabulary, by a 126

softmax operator (for example). The next token 127

is then sampled from p(t) using either standard 128

multinomial sampling, beam search, or so on. 129

2.2 LM-based Steganography 130

Alice (the sender) wants to communicate a se- 131

cret message ms ∼ U({0, 1}l) with Bob (the re- 132

ceiver) by embedding it in a natural-language text 133

ts (a stegotext). The uniform distribution is cho- 134

sen for ms without loss of generality: if ms has 135

additional structure it can be further compressed 136

to a uniformly distributed random variable (Han, 137

2005). Alice and Bob have agreed on an embed- 138

ding function Semb and an extracting function Sext 139

that perform steganography. Alice and Bob also 140

have access to the exact same language model, 141

Mo, which can be used during embedding and 142

extraction. These two functions are supposed to 143

be invertible. In other words, Semb(Mo,ms) = ts, 144

Sext(Mo, ts) = m′
s.2 145

2.3 Security of Steganography 146

Cachin (1998) first modeled steganographic secu- 147

rity from the perspective of information theory, 148

where given an object x, the security of a stegosys- 149

tem can be quantified by Kullback-Leibler diver- 150

gence between the cover distribution (the channel 151

distribution) Pc and the stego distribution Ps, 152

DKL(Pc||Ps) =
∑
x∈C

Pc(x) log
Pc(x)

Ps(x)
(1) 153

which typically measures how different the two 154

distributions are. When DKL(Pc||Ps) = 0, the 155

stegosystem is considered to be perfectly secure. 156

2In this work, we do not consider disambiguation meth-
ods (Nozaki and Murawaki, 2022; Yan et al., 2023; Qi et al.,
2025) that focus on maintaining ms = m′

s, since this work is
orthogonal to disambiguation.
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Benefiting from the explicit generative models157

that can predict probability distributions, the above158

definition of steganographic security can be mod-159

eled into another goal, that is, steganography is160

indistinguishable from the normal generation pro-161

cess, i.e., random sampling (Ding et al., 2023).162

2.4 Imperceptibility of LM-based163

Steganography164

Following the previous formulation (Dai and Cai,165

2019; Shen et al., 2020), statistical imperceptibility166

refers to the similarity between the true language167

model Mt in the monitored channel and Ms which168

is the language model Mo integrated with stegano-169

graphic algorithms. Specifically, the total variation170

distance (TVD) is used to measure statistical im-171

perceptibility. Consider the TVD between Mt and172

Ms, i.e. d(Mt,Ms), by triangle inequality:173

d(Mt,Ms) ≤ d(Mt,Mo), d(Mo,Ms) (2)174

As d(Mt,Mo) is a criterion to measure the orig-175

inal language model, which is limited by the re-176

search on language models. Thus, d(Mo,Ms) is177

the main focus of linguistic steganography.178

According to Pinsker’s inequality (Fedotov179

et al., 2003) and additivity of KL divergence,180

d(Mo,Ms) can be further decomposed in each181

step, that is:3182

d(Mo,Ms) ≤

√√√√ ln 2

2

∞∑
t=1

DKL(p(t)||p̂(t)) (3)183

where p(t) is the original probability distribution184

at tth step, and p̂(t) is transformed from p(t) via185

sampling and encoding. Hence, linguistic steganog-186

raphy could aim to minimize DKL(p
(t)||p̂(t)), in187

order to obtain relative near-imperceptibility.188

In summary, DKL(p
(t)||p̂(t)) = 0 (for189

each t) is a sufficient condition for achiev-190

ing near-imperceptible steganography. Besides,191

DKL(p
(t)||p̂(t)) = 0 (for each t) also implies in-192

distinguishability from random sampling, thereby193

satisfying the requirement for perfect security.194

3 Vanilla Range-Coding Steganography195

In this section, we tentatively start by describ-196

ing a simple “vanilla” version of range-coding197

(RC) steganography, which directly applies RC to198

steganography without any security consideration.199

3Some derivation is omitted here, as details are verified
in (Dai and Cai, 2019; Shen et al., 2020; Fedotov et al., 2003).
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Figure 2: An example of procedures for embedding
a 16-bit secret message into a text via the vanilla RC
steganography. The interval is iteratively narrowed until
it can uniquely represent the decimal value 20219.

Algorithm 1 Vanilla RC steganography (embed)
Input:
Context (initial historical tokens), C
Language model,M
Message length, l
Secret message, ms

Output:
Steganographic text, ts

1: ds ← bin2dec(ms); // Decimalize
2: [L,R)← [0, 2l); // Initialize interval
3: while round(L+R

2
) ̸= ds do

4: p(t) ←M(C); // Predict probs

5: c(t) ← 0||p(t).cumsum(); // Cumulate probs

6: c′(t) ← L+ (R− L)× c(t); // Rescale

7: Select tokeni so that ds ∈ [c′(t)[i− 1], c′(t)[i]);
8: [L,R)← [c′(t)[i− 1], c′(t)[i]);
9: C ← C||tokeni;

10: Detokenize C to ts;
11: return ts

3.1 Embedding & Extraction 200

Figure 2 briefly illustrates how vanilla RC steganog- 201

raphy embeds a message into a text. In range cod- 202

ing, all the information can be represented in deci- 203

mals and ranges (intervals). 204

Algorithm 1 outlines how the sender (Alice) em- 205

beds the secret message ms into the text ts using 206

vanilla RC steganography. Specifically, ms is first 207

decimalized to ds in Line 1, and all subsequent 208

procedures operate directly on ds rather than on a 209

bitstream. In Line 2, the initial interval is set to 210

[0, 2l), where l is the length of ms. During subse- 211

quent iterative processes (Lines 3–9), the interval is 212

progressively narrowed at each step. The iteration 213

ends when the midpoint of the interval is exactly 214

rounded to ds (which ensures uniqueness). 215

Algorithm 2 outlines how the receiver (Bob) ex- 216
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Algorithm 2 Vanilla RC steganography (extract)
Input:
Context (initial historical tokens), C
Language model,M
Message length, l
Steganographic text, ts

Output:
Secret message, ms

1: Tokenize ts to S;
2: [L,R)← [0, 2l); // Initialize interval
3: for t = 0, 1, ..., |S| − |C| − 1 do
4: p(t) ←M (S [: |C|+ t]); // Predict probs

5: c(t) ← 0||p(t).cumsum(); // Cumulate probs

6: c′(t) ← L+ (R− L)× c(t); // Rescale
7: Select tokeni so that tokeni = S [|C|+ t+ 1];
8: [L,R)← [c′(t)[i− 1], c′(t)[i]);
9: ds ← round(L+R

2
);

10: ms ← dec2bin(ds).zfill(l); // Binarize & Fill 0
11: return ms

tracts the secret message ms from the received text217

ts. The initial interval is narrowed according to218

each token received, and ds is the rounded value219

of the midpoint of the final interval. Finally, the220

extraction result ms is binarized from ds.221

3.2 Security Issues222

For vanilla RC steganography, there can be two223

security issues:224

1) Distortion on probability distribution. Taking225

the first generative step in Figure 2 as an example,226

the (softmax) probability of token1 (t = 0), p(0)1 , is227

0.65, and its interval is [0, 42598.4). Considering a228

random 16-bit secret message ms ∼ U({0, 1}16),229

so ds ∼ U({0, 1, ..., 216−1}) (ds is a discrete uni-230

form random variable). Then, the steganographic231

sampled probability for token1 (t = 0) is232

P (ds ∈ [0, 42598.4)) =
42599

65536
̸= 0.65 = p

(0)
1233

Thus, distortion on probability distribution occurs234

and zero KL divergence or perfect security can-235

not hold. Even though it could be mitigated when236

lengthening ms (l can be set greater than the tensor237

precision). However, similar to AC steganogra-238

phy, as the interval is narrowed iteratively, obvious239

distortion in small intervals is inevitable.240

2) Randomness reuse. According to Kaptchuk241

et al. (2021), reusing randomness in multiple sam-242

pling events could expose features and bias to detec-243

tors. Therefore, only using the bits of the message244

as the randomness or encrypting the message with245

a pseudorandom cipher, as in a public-key solu-246

Algorithm 3 Rotation RC steganography (embed)
Input:
Context (initial historical tokens), C
Pseudo-random number generator, PRNG
Language model,M
Symmetric key (seed), K
Message length, l
Secret message, ms

Output:
Steganographic text, ts

1: d
(−1)
s ← bin2dec(ms); // Decimalize

2: PRNG.set_seed(K);
3: [L(−1), R(−1))← [0, 2l); // Initialize interval
4: for t = 0, 1, ... do
5: p(t) ←M(C); // Predict probs

6: c(t) ← 0||p(t).cumsum(); // Cumulate probs

7: ∆(t−1) = R(t−1) − L(t−1)

8: c′(t) ← L(t−1) +∆(t−1) × c(t); // Rescale

9: o(t) ← U(0, 1).sample(PRNG(t));
10: d

(t)
s ← L(t−1) + (d

(t−1)
s − L(t−1) + o(t) ×

∆(t−1)) mod ∆(t−1); // Rotate

11: Select tokeni so that d(t)s ∈ [c′(t)[i− 1], c′(t)[i]);
12: [L(t), R(t))← [c′(t)[i− 1], c′(t)[i]);
13: C ← C||tokeni;
14: if L(t)+R(t)

2
− d

(t)
s ∈ (−0.5, 0.5] then

15: break
16: Detokenize C to ts;
17: return ts

tion, is insecure because multiple samplings will 247

be forced to reuse randomness. 248

4 Rotation Range-Coding Steganography 249

Considering the security issues discussed above, 250

we propose a rotation range-coding (RRC) stegano- 251

graphic method. Instead of directly using the con- 252

stant ds, our proposed rotation mechanism up- 253

dates d
(t−1)
s to d

(t)
s at each time step t (initial 254

ds = d
(−1)
s ), with the following objectives: 255

• To transform the discrete uniform random vari- 256

able ds to a continuous uniform random vari- 257

able d(t)s at each t, thereby preserving the orig- 258

inal probability distribution and ensuring zero 259

KL divergence. 260

• To introduce “fresh” randomness at each t, 261

thereby preventing the reuse of randomness. 262

4.1 Embedding of RRC Steganography 263

Algorithm 3 outlines the embedding procedures 264

of RRC steganography (there is a overlap of Al- 265

gorithm 1 and Algorithm 3). Inspired by other 266

provably secure methods, we employ a pseudo- 267

random number generator (PRNG) and a symmet- 268

ric key K to generate pseudo-random numbers 269
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Algorithm 4 Rotation RC steganography (extract)
Input:
Context (initial historical tokens), C
Pseudo-random number generator, PRNG
Language model,M
Symmetric key (seed), K
Message length, l
Steganographic text, ts

Output:
Secret message, ms

1: Tokenize ts to S;
2: PRNG.set_seed(K);
3: [L(−1), R(−1))← [0, 2l); // Initialize interval
4: tend ← |S| − |C| − 1
5: for t = 0, 1, ..., tend do
6: p(t) ←M (S [: |C|+ t]); // Predict probs

7: c(t) ← 0||p(t).cumsum(); // Cumulate probs

8: ∆(t−1) ← R(t−1) − L(t−1)

9: c′(t) ← L(t−1) +∆(t−1) × c(t); // Rescale
10: Select tokeni so that tokeni = S [|C|+ t+ 1];
11: [L(t), R(t))← [c′(t)[i− 1], c′(t)[i]);
12: mid(tend) ← (L(tend) +R(tend))/2;
13: for t = tend, ..., 1, 0 do
14: o(t) ← U(0, 1).sample(PRNG(t));
15: mid(t−1) ← L(t−1) + (mid(t) − L(t−1) − o(t) ×

∆(t−1)) mod ∆(t−1); // Rotate reversely

16: d
(−1)
s ← round_half_down(mid(−1));

17: ms ← dec2bin(d
(−1)
s ).zfill(l); //Binarize & Fill 0

18: return ms

for the following sampling (Line 2), ensuring re-270

producibility and correct extraction. Note that271

the pseudo-random numbers generated by PRNG272

are used to control the sampling of the offset273

o ∼ U(0, 1) at each t (Line 9), and then o is274

used to rotate d
(t−1)
s to d

(t)
s (Line 10). Besides,275

the termination condition in RRC steganography276

is L(t)+R(t)

2 − d
(t)
s ∈ (−0.5, 0.5] (Lines 14–15),277

which is tailored for unique extraction and avoid-278

ing generating unnecessary tokens.279

4.2 Extraction of RRC Steganography280

Algorithm 4 outlines how the receiver (Bob) ex-281

tracts the secret message ms from the stegano-282

graphic text ts. As Alice and Bob have agreed283

on PRNG and symmetric key K, Bob can syn-284

chronize each t-time rotation with Alice and re-285

produce each range of d(t)s according to each in-286

terval [L(t), R(t)) at each t. Based on the termi-287

nation condition of the embedding algorithm, the288

end time tend = |S| − |C| − 1, and mid(tend) =289

(L(tend) +R(tend))/2, there is:290

mid(tend) − d(tend)
s ∈ (−0.5, 0.5]291

292
d(tend)
s ∈ [mid(tend) − 0.5,mid(tend) + 0.5)293

Considering linear transformation and the rota- 294

tion in embedding, for each t there is (Line 15): 295

mid(t−1) = L(t−1) + (mid(t) − L(t−1) − o(t)× 296

∆(t−1)) mod ∆(t−1) 297

298

d(t)s ∈ [mid(t) − 0.5,mid(t) + 0.5) 299

where ∆(t−1) = R(t−1) − L(t−1). After iteration, 300

as d(−1)
s ∈ Z, there is (Line 16): 301

d(−1)
s ∈ [mid(−1) − 0.5,mid(−1) + 0.5) 302

303

d(−1)
s = round_half_down(mid(−1)) 304

where round_half_down means that when a 305

number is exactly halfway between two possi- 306

ble rounded values (e.g., 2.5), round_half_down 307

rounds toward the smaller rounded values (e.g., 2). 308

Therefore, in RRC steganography, d(−1)
s can be 309

computed uniquely by Bob, and then ms is bina- 310

rized from d
(−1)
s (Line 17). 311

5 Analysis of RRC Steganography 312

In this section, we prove the zero KL divergence of 313

our RRC steganography and analyze its embedding 314

capacity and complexity. 315

5.1 Proof of Zero KL Divergence 316

Considering rotation, there is an proposition (the 317

rigorous proof is shown in Appendix B.1): 318

Proposition 1. d
(t)
s ∼ U(L(t−1), R(t−1)). 319

Then, we explain how the original probability 320

distribution is preserved: 321

Proposition 2. In Line 11 (Algorithm 3), the se- 322

lected probability of each tokeni is p(t)i . 323

Proof. Considering the interval construction from 324

p(t) to c′(t) (Lines 5–8 in Algorithm 3), p(t) = 325

(p
(t)
1 , ..., p

(t)
|V|), c(t) = (c

(t)
o , c

(t)
1 , ..., c

(t)
|V|) = 326

(0,
∑1

k=1 pk, ...,
∑|V|

k=1 pk), and c′(t) = L(t−1) + 327

∆(t−1) × c(t) = (L(t−1), L(t−1) + ∆(t−1) × 328∑1
k=1 pk, ..., R

(t−1)). According to Proposition 1, 329

d
(t)
s ∼ U(L(t−1), R(t−1)), so the probability den- 330

sity function is 331

f
d
(t)
s
(x) =

1

∆(t−1)
(x ∈ [L(t−1), R(t−1)) 332
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333

P
(
d(t)s ∈ [c′(t)[i− 1], c′(t)[i])

)
334

=

∫ c′(t)[i]

c′(t)[i−1]
f
d
(t)
s
(x) dx335

=
c′(t)[i]− c′(t)[i− 1]

∆(t−1)
336

=
(∆(t−1) ×

∑i
k=1 pk)− (∆(t−1) ×

∑i−1
k=1 pk)

∆(t−1)
337

=

i∑
k=1

pk −
i−1∑
k=1

pk338

= pi339

Thus, the preposition holds.340

Therefore, as our proposed RRC Steganography341

does not change the original predicted probability342

by LM for each token, KL divergence between the343

original probability distribution and steganographic344

probability distribution is constantly zero.345

5.2 Embedding Capacity346

First, we consider when the embedding ends ac-347

cording to the proposed termination condition,348

there is a proposition (its proof is shown in Ap-349

pendix B.2):350

Proposition 3. ∆(t) ≤ 1 is a sufficient condition351

for the embedding termination L(t)+R(t)

2 − d
(t)
s ∈352

(−0.5, 0.5] (Lines 14–15 in Algorithm 3).353

Then, given the initial interval [L(−1), R(−1)) =354

[0, 2n) and the interval length ∆(−1) = 2n, the355

interval length at t is:356

∆(t) = 2n ·
t∏

i=0

p
(i)
output (4)357

and there is:358

∆(t)

∆(t−1)
= p

(t)
output (5)359

where p(i)output is the probability of the output token360

(i = 0, 1, ...t).361

According to Preposition 3, when ∆(t) ≤ 1, the362

embedding iteration ends. Considering information363

theory and Equation 4, the interval shrinkage rate is364

determined by the entropy of the probability distri-365

bution. The average amount of information per iter-366

ation is H(t), and the total amount of information is367

required to cover n bits of the initial interval. There-368

fore, the number of loops is satisfied:
∑t

i=0H
(t) ≥369

n where H(t) = −
∑|V|

i=1 p
(t)
i log2 p

(t)
i , and let the 370

average entropy is Havg, so that the loop number 371

(which is exactly the number of the generated to- 372

kens) is: Ntoken ≈ n
Havg

. Thus, the embedding 373

capacity (bits per token) can be represented as: 374

n

Ntoken
≈ Havg (6) 375

Therefore, our RRC steganography can achieve 376

approximate 100% utilization of entropy. 377

5.3 Complexity 378

Similar to AC steganography (Ziegler et al., 2019), 379

RC-based steganography requires updating proba- 380

bility intervals after each step, resulting in a time 381

complexity of O(|V|). 382

6 Experiments 383

To validate the security and efficiency of our RRC 384

steganography, we evaluate it compared to a se- 385

ries of methods toward provable security in this 386

era, including arithmetic coding (AC) (Ziegler 387

et al., 2019), ADG (Zhang et al., 2021), Me- 388

teor (Kaptchuk et al., 2021), iMEC (de Witt 389

et al., 2023), Discop (Ding et al., 2023), and 390

SparSamp (Wang et al., 2025). 391

6.1 Setup 392

To validate the generalizability of our stegano- 393

graphic method, we implement it using three lan- 394

guage models of various scales: GPT-2 (Radford 395

et al., 2019),4 OPT-1.3b (Zhang et al., 2022),5 and 396

Llama-2-7b (Touvron et al., 2023).6 397

For each language model and steganographic 398

method, 1,000 samples are generated using 1,000 399

different initial contexts. These contexts consist 400

of the first 10 words from sequences randomly se- 401

lected from the C4 dataset.7 402

All the experiments are conducted with top-p 403

(p = 1.0) sampling, i.e., encoding the entire vocab- 404

ulary V , and 1.0 temperature. Experiments are im- 405

plemented in Python 3.12.7 with Torch 2.5.0, and 406

accelerated by using RTX 6000 Ada Generation 407

GPUs. Besides, considering the precision limita- 408

tion of the tensor, we import the Python’s decimal 409

module for computing with enough precision.8 410

4https://huggingface.co/openai-community/gpt2
5https://huggingface.co/facebook/opt-1.3b
6https://huggingface.co/meta-llama/Llama-2-7b-hf
7https://huggingface.co/datasets/allenai/c4
8Otherwise without a enough precision, errors or incorrect

extractions could occur.
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Method Avg / Max KLD
(bits/token) ↓ Capacity

(bits/token) ↑
Entropy

(bits/token)
Utilization

(%) ↑ Speed
(bits/s) ↑

Multinomial sampling 0 / 0 N/A 5.86 N/A N/A
AC 1.95E-03 / 3.01E-02 5.86 5.87 99.83 1025.36
ADG 1.60E-04 / 1.57E-03 4.81 5.89 81.60 36.45
Meteor w/o sort 4.22E-02 / 1.16E-01 4.17 5.79 71.96 950.27
Meteor w/ sort 4.11E-02 / 1.16E-01 4.77 5.81 82.08 25.25
iMEC 0 / 0 4.16 5.83 71.44 27.30
Discop w/o sort 0 / 0 2.31 5.90 39.31 218.34
Discop w/ sort 0 / 0 5.58 5.86 95.17 44.30
SparSamp 0 / 0 5.74 5.93 96.76 1267.82
RRC steganography (ours) 0 / 0 5.93 5.93 99.98 1554.66

Table 1: Quantitative comparison with previous steganographic methods on GPT-2.

Method Avg / Max KLD
(bits/token) ↓ Capacity

(bits/token) ↑
Entropy

(bits/token)
Utilization

(%) ↑ Speed
(bits/s) ↑

Multinomial sampling 0 / 0 N/A 4.59 N/A N/A
AC 1.85E-03 / 1.13E-02 4.64 4.65 99.81 352.09
ADG 1.38E-04 / 1.61E-03 3.45 4.64 74.20 25.29
Meteor w/o sort 2.80E-02 / 8.34E-02 3.13 4.54 69.03 410.79
Meteor w/ sort 2.77E-02 / 8.12E-02 3.65 4.52 80.76 46.02
iMEC 0 / 0 3.24 4.61 70.24 19.78
Discop w/o sort 0 / 0 1.92 4.67 41.08 154.25
Discop w/ sort 0 / 0 4.39 4.63 94.71 31.94
SparSamp 0 / 0 4.35 4.53 96.08 852.36
RRC steganography (ours) 0 / 0 4.70 4.67 100.67 750.41

Table 2: Quantitative comparison with previous steganographic methods on OPT-1.3b.

Method Avg / Max KLD
(bits/token) ↓ Capacity

(bits/token) ↑
Entropy

(bits/token)
Utilization

(%) ↑ Speed
(bits/s) ↑

Multinomial sampling 0 / 0 N/A 3.46 N/A N/A
AC 6.92E-04 / 9.90E-03 3.53 3.52 100.33 104.37
ADG 1.81E-04 / 3.90E-03 2.41 3.54 68.14 21.15
Meteor w/o sort 1.24E-02 / 4.00E-02 2.42 3.50 69.14 98.71
Meteor w/ sort 1.21E-02 / 4.19E-02 2.89 3.53 81.84 50.26
iMEC 0 / 0 2.48 3.43 72.35 10.30
Discop w/o sort 0 / 0 1.50 3.49 42.99 127.61
Discop w/ sort 0 / 0 3.33 3.48 95.72 26.13
SparSamp 0 / 0 3.38 3.44 98.12 326.12
RRC steganography (ours) 0 / 0 3.57 3.52 101.41 146.24

Table 3: Quantitative comparison with previous steganographic methods on Llama-2-7b.

6.2 Metrics411

Avg (Max) KLD, a security metric, refers to the412

average (maximum) value of the KL divergence in413

all steps, which indicates the average (maximum)414

degree to the original distribution by steganogra-415

phy (Ding et al., 2023).416

Embedding capacity refers to the average num-417

ber of bits that can be embedded per generated418

token.419

Entropy utilization (embedding efficiency)420

refers to the ratio of embedding capacity to the421

average entropy over all steps.422

Embedding speed refers to the average seconds423

required to embed a single secret bit. 424

6.3 Main Results 425

Tables 1, 2, and 3 present the average results across 426

various metrics for the three adopted language mod- 427

els. Both Meteor and Discop are evaluated in 428

two configurations: sorted and unsorted. For each 429

metric, the best-performing result is highlighted 430

in bold, while the second-best is indicated with 431

underline. The embedded secret message is a ran- 432

domly generated 128-bit sequence. In addition, 433

multinomial sampling generation (random sam- 434

pling) is also carried out for comparison. The key 435

findings from these experiments are as follows: 436
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Message length (bits) 32 64 128 256 512 1024 2048 4096 8192

Utilization (%) ↑ 99.86 99.19 99.98 99.89 99.77 99.93 100.35 100.43 99.99
Speed (bits/s) ↑ 1390.23 1496.88 1554.66 1572.40 1475.68 1511.83 1191.88 880.82 604.76
Running time (s) 0.023 0.043 0.082 0.163 0.374 0.677 1.718 4.650 13.546

Table 4: Average results on utilization, speed and running time of RRC steganography across various message
lengths l on GPT-2.

GPT-2 OPT-1.3b Llama-2-7b

bert-base-uncased 49.3% 48.1% 49.7%
roberta-base 51.1% 50.1% 51.3%
roberta-large 48.9% 52.6% 47.7%

Table 5: Steganalysis accuracies against RRC steganog-
raphy under cases where models for steganography vary
and models for steganalysis vary.

1) As analyzed in Wang et al. (2025), iMEC,437

Discop and SparSamp are probability-unchanged438

steganography. The zero KL divergence of RRC439

steganography is proved in Section 5.1, thus these440

methods and our RRC steganography can achieve441

0 KL divergence.442

2) Our RRC steganography empirically achieves443

around 100% entropy utilization, which complies444

with the theoretical analysis in Section 5.2, which445

denotes the 100% embedding efficiency. Besides,446

the entropy utilization of our method is steadily447

superior to other baseline methods when imple-448

mented in different language models.449

3) Our RRC steganography achieves a highly450

competitive embedding speed, which is the fastest451

in GPT-2 (up to 1554.66 bits/s). However, in the452

other two language models, our method obtains453

the secondary fastest speeds, which are inferior to454

SparSamp, because SparSamp is especially charac-455

terized by its great speed and O(1) complexity.456

6.4 Scalability of RRC Steganography457

Steganography based on range coding has a distinct458

characteristic, that is, it embeds the entire secret459

message using decimal values, rather than embed-460

ding it bit by bit. In other words, the minimum unit461

of embedding is the complete l-bit message itself.462

If the embedding process is not completed, the mes-463

sage is considered not embedded at all. Therefore,464

scalability should be considered, as it reflects how465

well RRC steganography can support the secret466

message with various lengths.467

Table 4 lists the average utilization, speed, and468

running time when RRC steganography embeds the469

secret message with various lengths (up to 8192470

bits) on GPT-2.9 The number of generated texts for 471

each message length is 1000. From this table, we 472

can find that: 473

1) RRC steganography can achieve steady en- 474

tropy utilization around 100%. 475

2) When the message length varies from 64 to 476

1024 bits, the embedding speed is steadily around 477

1500 bits per second. 478

3) Our method supports messages with signifi- 479

cantly higher bit lengths (with 8192 bits not rep- 480

resenting an upper limit), enabled by the scalable 481

precision of Python’s decimal module. 482

6.5 Anti-steganalysis Capacity 483

In this section, we evaluate the ability of our 484

method to evade detection using steganalysis tech- 485

niques, specifically through a fine-tuned discrimi- 486

nator. Further details are provided in Appendix C. 487

The discriminators used for detection are fine-tuned 488

versions of the pretrained BERT (Devlin et al., 489

2019) and RoBERTa (Conneau et al., 2019) models, 490

respectively. Table 5 presents the steganalysis accu- 491

racies for steganographic texts generated by three 492

different language models. Accuracies around 50% 493

indicate that the steganalysis methods perform no 494

better than random guessing in detecting texts. 495

7 Conclusion 496

In this paper, we explore the use of a relatively 497

simple approach, range coding (RC), to directly 498

achieve provably secure steganography. However, 499

two key security challenges arise: (1) distortion of 500

the probability distribution and (2) reuse of random- 501

ness. To address these issues, we propose Rotation 502

Range Coding (RRC) steganography, and provide 503

theoretical explanations and proofs for it. RRC 504

empirically outperforms the baseline methods in 505

both embedding efficiency and capacity, while also 506

achieving competitive embedding speed. Moreover, 507

RRC steganography is not limited to certain mod- 508

els, so that it has a strong potential to be transferred 509

to multi-modal steganography in the future. 510

9Tables 6 and 7 (in Appendix) show results conducted in
OPT-1.3b and Llama-2-7b.
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Limitations511

In the symmetric steganographic system based on512

RRC steganography, Alice and Bob must agree513

on the secret message length l before the stegano-514

graphic communication, which is used to initialize515

the interval [0, 2l) for both sides and fill “0” in516

extraction (Line 17 in Algorithm 4).517

For the analysis of embedding capacity or em-518

bedding efficiency (Section 5.2) of RRC steganog-519

raphy, we only explain an approximate 100% en-520

tropy utilization for it without rigorous theoretical521

proofs, but experiments can empirically prove that522

its utilization is approximate 100%.523

Ethical Considerations524

While steganography has legitimate applications525

such as embedding copyright information and re-526

sisting censorship, it can also be misused for dis-527

information or to evade censorship. This dual-use528

nature underscores the need for effective monitor-529

ing and regulation.530
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A Related Work684

In this section, we introduce the existing attempts685

to provably secure steganography, and analyze their686

characteristics or limitations.687

A.1 Arithmetic Coding (AC) & Meteor688

Arithmetic coding (AC) is a form of entropy en-689

coding used in lossless data compression (Rissanen690

and Langdon, 1979). A steganographic method that691

first adopts AC is proposed by Le (2003). Then,692

AC is applied in deep generative model and image693

generation to the filed of provably secure steganog-694

raphy (Yang et al., 2019). Following these works,695

in the field of linguistic steganography, researchers696

have presented a series of variant methods, espe-697

cially including the original AC-based steganogra-698

phy (Ziegler et al., 2019), the AC-based method699

with a self-adjusting mechanism (Shen et al., 2020),700

and Meteor (Kaptchuk et al., 2021).701

The sort of these AC-based steganographic meth-702

ods commonly encounter a problem, that is, the703

precision limitation results in distortion in the orig-704

inal probability distribution at each generative step.705

Specifically, when the original probabilities are706

encoded into binary-based intervals, the selected707

probability for each token always has the form of708

2−p(t) , where p(t) is the precision at time t. It is709

almost impossible to maintain the original distribu-710

tion perfectly, thus introducing distortion.711

To mitigate this distortion, one method is using712

a higher initial precision, and even the Python’s713

decimal module can used here to support a pre-714

cision that is higher than the precision of the ten-715

sor. However, during the iteration of AC-based716

steganography, the external interval is narrowed717

and expanded many times, and when the external718

interval is small, p(t) is also small. Therefore, as719

the precision is AC-based methods are changed all720

the times and cannot be controlled well, distortion721

on probability distribution is inevitable.722

Besides, even though Meteor addresses some723

problems that basic AC-based steganography suf-724

fers, Meteor suffers from limited embedding capac-725

ity. The reason is that, as Meteor does not narrow726

the interval successively and only considers each727

generated symbol separately, thus it cannot fully728

utilize the entropy. And Meteor does not address729

the probability-distortion problem that arises in730

AC-based methods.731

A.2 Adaptive Dynamic Grouping (ADG) 732

Zhang et al. (2021) proposed a grouping-based 733

steganographic method called adaptive dynamic 734

grouping (ADG). At each time step, it dynamically 735

groups the probability distribution of all tokens of 736

the vocabulary into 2r groups with approximately 737

the same probability sum, and then numbers them 738

0, 1, ..., 2r − 1. All tokens in each group repre- 739

sent the same message bits of length r. Then, they 740

match the first r bits from the message to be em- 741

bedded and converts them to a decimal number in 742

{0, 1, ..., 2r − 1}, and performs random sampling 743

from the normalized distribution of its correspond- 744

ing group to obtain the next token. In their as- 745

sumptions, ADG can theoretically achieve perfect 746

security (no probability distortion) if and only if 747

the grouping is perfectly balanced. 748

However, the problem is that since the 749

vocabulary-size probability distribution is discrete, 750

the requirement is almost impossible to satisfy. In 751

most cases, the actual distribution used to embed 752

the message is a modified distribution, which is 753

different from the original distribution. 754

A.3 Iterative Minimum Entropy Coupling 755

(iMEC) 756

de Witt et al. (2023) analyzed information-theoretic 757

steganography through the lens of minimum en- 758

tropy coupling. They investigated how much in- 759

formation about a fixed-length secret message can 760

be inferred by the sender and receiver through the 761

selection of tokens, aiming to maximize and accu- 762

mulate this information until the entire message is 763

determined. They demonstrated that achieving per- 764

fect steganographic security is equivalent to solving 765

a coupling problem, and that maximizing transmis- 766

sion efficiency under perfect security corresponds 767

to solving a minimum entropy coupling problem. 768

Their proposed iMEC scheme fully exploits the 769

theoretical properties of coupling and minimum en- 770

tropy coupling. As a result, the method preserves 771

the original probability distribution and achieves 772

provably perfect security. 773

However, iMEC does have a certain bit error rate. 774

In addition, to achieve minimum entropy coupling 775

and enhance the embedding rate, a considerable 776

amount of computational complexity, specifically 777

O(|V| log |V|), is necessary to couple the probabil- 778

ities. Low computation efficiency of iMEC makes 779

it difficult to be practically utilized in a vocabulary- 780

size situation. 781
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A.4 Distribution Copies (Discop)782

Ding et al. (2023) proposed a provably se-783

cure steganographic method based on distribution784

copies (Discop). In this method, several distribu-785

tion copies are generated by rotating all intervals by786

specific displacements. At each time step, the mes-787

sage determines which distribution copy to sample788

from. Discop also employs an iterative method789

based on the Huffman tree to further enhance the790

capacity. Experimental results demonstrated a high791

utilization rate of entropy. However, the complexity792

of creating a Huffman tree (O(|V|) complexity) at793

each step could not be efficient when a vocabulary-794

size candidate pool is encoded.795

A.5 Sparse Sampling (SparSamp)796

Wang et al. (2025) proposed SparSamp, an efficient797

and provably secure steganographic method based798

on sparse sampling. SparSamp embeds messages799

by combining them with pseudo-random numbers800

to generate message-derived randomness for sam-801

pling. This approach introduces only O(1) addi-802

tional computational complexity per sampling step,803

ensuring high computational efficiency. However,804

the entropy utilization of SparSamp is significantly805

constrained by the length l of the secret message,806

making it difficult to achieve 100% entropy utiliza-807

tion for embedding capacity.808

B Prepositions and Proofs809

B.1 Proof of Preposition 1810

Preposition 1. d(t)s ∼ U(L(t−1), R(t−1)).811

Proof. Considering Lines 9–10 in Algorithm 3,812

as d
(t)
s = L(t−1) + (d

(t−1)
s − L(t−1) + o(t) ×813

∆(t−1)) mod ∆(t−1), and o(t) ∈ U(0, 1), we let814

A = d
(t−1)
s − L(t−1) and B = o(t) × ∆(t−1).815

Considering X = (A + B) mod ∆(t−1), for any816

x ∈ [0,∆(t−1)), there is:817

P (X ≤ x) = P ((A+B) mod ∆(t−1) ≤ x)818

Let A = k∆(t−1) + r, where k ∈ Z and819

r ∈ [0,∆(t−1)). Considering periodicity of mod-820

ulo operations, there is821

(A+B) mod ∆(t−1) = (r +B) mod ∆(t−1)822

Case 1: r+B ≤ ∆(t−1). There are X = r+B823

and P (B ≤ ∆(t−1) − r) = ∆(t−1)−r
∆(t−1) .824

Case 2: r + B > ∆(t−1). There are X = r +825

B −∆(t−1) and P (B > ∆(t−1) − r) = r
∆(t−1) .826

Therefore, for any x ∈ [0,∆(t−1)), there is 827

P (X ≤ x) =
x

∆(t−1)
828

which means X ∼ U(0,∆(t−1)). 829

As d(t)s = L(t−1)+X , d(t)s ∼ U(L(t−1), L(t−1)+ 830

∆(t−1))), thus d(t)s ∼ U(L(t−1), R(t−1)). 831

B.2 Proof of Preposition 3 832

Preposition 3. ∆(t) ≤ 1 is a sufficient condition 833

for the embedding termination L(t)+R(t)

2 − d
(t)
s ∈ 834

(−0.5, 0.5] (Lines 14–15 in Algorithm 3). 835

Proof. If ∆(t) = R(t) − L(t) ≤ 1: 836

L(t) ≤ d(t)s < R(t) ≤ L(t) + 1 837

838
L(t) +R(t)

2
∈ (L(t), L(t)+0.5] ⊂ (L(t), d(t)s +0.5] 839

840
L(t) +R(t)

2
∈ [R(t)−0.5, R(t)) ⊂ (ds−0.5, R(t)) 841

842
L(t) +R(t)

2
∈ (ds − 0.5, ds + 0.5] 843

844
L(t) +R(t)

2
− d(t)s ∈ (−0.5, 0.5] 845

846

C Steganalysis 847

We generated 5,000 pairs of cover texts (via multi- 848

nomial sampling) and steganographic texts, re- 849

spectively implemented on GPT-2, OPT-1.3b, and 850

Llama-2-7b. In each pair, the lengths (token num- 851

ber) of two texts are the same. The initial contexts 852

for generation are the first 10 words from sequences 853

randomly selected from the C4 dataset. For each 854

experimental group, 5,000 texts are split in a 6:2:2 855

ratio to create the training, validation, and test sets. 856

For fine-tuning BERT or RoBERTa models, we 857

use Adam (Kingma and Ba, 2017) as the optimizer 858

with a learning rate of 5× 10−5. The batch size is 859

set to 2048, and the discriminator is trained for 20 860

epochs, running time of the whole training process 861

is approximately 5 minutes. 862

D Samples of Stegotexts 863

We present examples of stegotexts generated by 864

RRC steganography. Each generated text embeds a 865

128-bit random secret message. The initial context 866

is Occasionally when I get some free time, 867

I’ll do. Following the approach of Ziegler et 868
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Message length (bits) 32 64 128 256 512 1024 2048 4096 8192

Utilization (%) ↑ 100.09 99.26 100.67 100.35 100.30 100.02 100.14 100.14 100.08
Speed (bits/s) ↑ 685.32 745.03 750.41 720.93 701.11 588.33 403.20 248.71 184.42
Running time (s) 0.047 0.086 0.171 0.355 0.730 1.740 5.079 16.469 44.421

Table 6: Average results on utilization, speed and running time of RRC steganography across various message
lengths l on OPT-1.3b.

Message length (bits) 32 64 128 256 512 1024 2048 4096 8192

Utilization (%) ↑ 102.01 100.29 101.41 100.52 100.25 100.31 100.35 100.17 100.04
Speed (bits/s) ↑ 142.67 144.63 146.24 142.00 126.51 92.65 79.38 63.21 46.10
Running time (s) 0.224 0.443 1.143 1.803 4.047 11.052 25.800 64.800 177.701

Table 7: Average results on utilization, speed and running time of RRC steganography across various message
lengths l on Llama-2-7b.

al. (Ziegler et al., 2019), we terminate the genera-869

tion process once the proposed method has finished870

embedding the message.871

Stegotext generated by GPT-2

Occasionally when I get some free time, I’ll
do something that uses all of those sensors
scanned at the bottom of the computer -
search for something. But I don’t know how
to do that

872

Stegotext generated by OPT-1.3b

Occasionally when I get some free time, I’ll
do flat screen, planner style arrangement
cards. It really highlights that the cards
are supposed to be focused

873

Stegotext generated by Llama-2-7b

Occasionally when I get some free time, I’ll
do a quick Google search on a random topic
that interests me (if I have one free not
sitting in front of a computer screen!),
and just see where my curiosity takes me.
The first thing

874
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