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Abstract

Linguistic steganography involves embedding
secret messages within seemingly innocuous
texts to enable covert communication. Prov-
able security, which is a long-standing goal
and key motivation, has become adaptive to
language-model-based steganography. Previ-
ous provably secure approaches have achieved
perfect imperceptibility, measured by zero Kull-
back-Leibler (KL) divergence, but at the ex-
pense of embedding capacity. In this paper, we
attempt to directly use a classic entropy cod-
ing method (range coding) to achieve secure
steganography, and then propose an efficient
and provably secure linguistic steganographic
method with a rotation mechanism. Experi-
ments across various language models show
that our method achieves around 100% entropy
utilization (embedding efficiency) for embed-
ding capacity, outperforming the existing base-
line methods. Moreover, it delivers high embed-
ding speeds (up to 1554.66 bits/s on GPT-2).

1 Introduction

Linguistic steganography, as a promising field in
safeguarding information, refers to the art of con-
cealing messages within texts. With rapid advance-
ments in large language models (LLM) (Brown
et al., 2020; Achiam et al., 2023; Anthropic, 2024),
LM-based steganography methods (Ziegler et al.,
2019; Wu et al., 2024) have dominated in linguis-
tic steganography, as leveraging LMs can create
flexible text content, diverse genres, and consistent
contexts, and LMs enable linguistic steganography
to achieve high embedding capacity. Figure 1 il-
lustrates how a sender (Alice) and a receiver (Bob)
communicate using linguistic steganography.
Intuitively, to prevent concealment from de-
tection, steganographic content is expected to
closely resemble normal content, leading to the con-
cept of steganographic security. This notion was
first formalized by Cachin (1998) using the Kull-
back—Leibler (KL) divergence between the cover
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Figure 1: A schematic diagram of linguistic steganog-
raphy, where PRNG refers to a pseudo-random number
generator for controlling randomness and reproducibil-
ity. Alice embeds the secret message into a stegano-
graphic text (stegotext), and Bob extracts the secret
message from the received stegotext.

Alice

distribution P, and the steganographic distribution
Ps. However, incorporating steganographic algo-
rithms into the language model’s prediction and
sampling processes often introduces distributional
distortions. To address this challenge, recent work
has explored approaches aimed at achieving prov-
able security in steganography.!

However, existing provably secure methods have
notable limitations. ADG (Zhang et al., 2021) fails
to strictly preserve the original probability distribu-
tion by grouping candidate tokens at each genera-
tive step. Meteor (Kaptchuk et al., 2021), which
is based on arithmetic coding (AC) (Ziegler et al.,
2019), inevitably distorts the original distribution
when encoding intervals. Although iMEC (de Witt
et al., 2023), Discop (Ding et al., 2023), and
SparSamp (Wang et al., 2025) maintain the orig-
inal probability distribution, the first two suffer
from limited embedding capacity and slow embed-
ding speeds. SparSamp, the current state-of-the-art
method, still falls short of achieving ideal embed-

'Related work is introduced in Appendix A in detail.



ding capacity (i.e., 100% entropy utilization).

Motivated by these limitations, we aim to design
a steganographic method that satisfies three key
properties: (i) preservation of the original probabil-
ity distribution, (ii) full entropy utilization (embed-
ding efficiency), and (iii) high embedding speed. In
this paper, rather than introducing complex tech-
niques, we turn our attention to a classic entropy
coding method—range coding (RC; Martin, 1979).
RC is closely related to arithmetic coding (AC) in
the context of data compression, but with a key
difference: it performs encoding using digits in any
base, rather than restricting to bits.

This property makes RC particularly well-suited
for preserving the original probability distribution
and achieving higher embedding speed. Specifi-
cally, when all operations are carried out in dec-
imal form without binary encoding, the original
probability distribution at each generative step is
merely rescaled to a new range, without any distor-
tion in ratios. Furthermore, as an entropy coding
method akin to AC, RC inherently allows RC-based
steganography to fully utilize the entropy, thereby
achieving ideal embedding capacity. The key con-
tributions of this work are as follows:

1) We begin by proposing a vanilla RC steganog-
raphy, and analyze its security issues.

2) To address these issues, we introduce Rota-
tion Range Coding (RRC) steganography, which
incorporates a rotation mechanism. This mecha-
nism ensures zero KL divergence at each genera-
tive step and prevents the reuse of randomness. It
ensures provable security.

3) We provide theoretical analysis and proofs
showing that RRC steganography achieves zero
KL divergence and approximately 100% entropy
utilization for embedding capacity, both of which
are empirically validated.

4) Experimental results in various language mod-
els demonstrate that RRC steganography consis-
tently achieves the highest embedding efficiency
(i.e., entropy utilization) and great embedding
speed (up to 1554.66 bits/s in GPT-2) compared to
all provably secure baseline methods. Experiments
also show that our RRC steganography has strong
scalability and anti-steganalysis capacity.

2 Background and Preliminaries

2.1 Language Model Basics

A language model (LM) has a vocabulary V con-
taining words or word fragments known as “to-

kens.” Consider a sequence of LM-generated T'
tokens {s()} € VT Entries with negative indices,
[s(=Np) .. s(=1)], represent a “prompt” of length
N, and [8(0)7 ceey s(T*U] are tokens generated by
an LM in response to the prompt.

An LM for the next token prediction at position
t, is a function fry () whose input is a sequence
of known tokens [s(—™¢) ... s(=1)] which con-
sists of a prompt and the first £ — 1 LM-generated
tokens. Then it outputs a logit vector, correspond-
ing to each token in V. These logits are then
converted into a discrete probability distribution
p® = (pgt), .. ,p‘(fj)') over the vocabulary, by a
softmax operator (for example). The next token
is then sampled from p*) using either standard
multinomial sampling, beam search, or so on.

2.2 LM-based Steganography

Alice (the sender) wants to communicate a se-
cret message ms ~ U({0,1}') with Bob (the re-
ceiver) by embedding it in a natural-language text
ts (a stegotext). The uniform distribution is cho-
sen for m, without loss of generality: if mg has
additional structure it can be further compressed
to a uniformly distributed random variable (Han,
2005). Alice and Bob have agreed on an embed-
ding function S,,,,; and an extracting function Se.¢
that perform steganography. Alice and Bob also
have access to the exact same language model,
M?, which can be used during embedding and
extraction. These two functions are supposed to
be invertible. In other words, Se;p (M, mys) = ts,
Se$t<Mo, ts) = m;.2

2.3 Security of Steganography

Cachin (1998) first modeled steganographic secu-
rity from the perspective of information theory,
where given an object x, the security of a stegosys-
tem can be quantified by Kullback-Leibler diver-
gence between the cover distribution (the channel
distribution) P, and the stego distribution Pk,

Dir(P||Ps) = > P(x)log

Pe(x)
(1
xeC Ps(

X)
which typically measures how different the two

distributions are. When Dg (P.||Ps) = 0, the
stegosystem is considered to be perfectly secure.

’In this work, we do not consider disambiguation meth-
ods (Nozaki and Murawaki, 2022; Yan et al., 2023; Qi et al.,
2025) that focus on maintaining ms = m/, since this work is
orthogonal to disambiguation.



Benefiting from the explicit generative models
that can predict probability distributions, the above
definition of steganographic security can be mod-
eled into another goal, that is, steganography is
indistinguishable from the normal generation pro-
cess, i.e., random sampling (Ding et al., 2023).

2.4 TImperceptibility of LM-based
Steganography

Following the previous formulation (Dai and Cai,
2019; Shen et al., 2020), statistical imperceptibility
refers to the similarity between the true language
model M in the monitored channel and M?# which
is the language model M integrated with stegano-
graphic algorithms. Specifically, the total variation
distance (TVD) is used to measure statistical im-
perceptibility. Consider the TVD between M? and
M3, ie. d(M?t, M?), by triangle inequality:

d(MP, M?®) < d(ME M), d(M°, M) (2)

As d(M?, M?) is a criterion to measure the orig-
inal language model, which is limited by the re-
search on language models. Thus, d(M?°, M?®) is
the main focus of linguistic steganography.

According to Pinsker’s inequality (Fedotov
et al., 2003) and additivity of KL divergence,
d(M?°, M?) can be further decomposed in each
step, that is:3

o s In2 & R
dM® M) <\ =~ ;D kr(PD|HY) (3)

where p(*) is the original probability distribution
at t' step, and p*) is transformed from p®) via
sampling and encoding. Hence, linguistic steganog-
raphy could aim to minimize D, (p®||p"), in
order to obtain relative near-imperceptibility.

In summary, Dgz(p®[|p®) = 0 (for
each t) is a sufficient condition for achiev-
ing near-imperceptible steganography. Besides,
Dy (p®[|p®) = 0 (for each ¢) also implies in-
distinguishability from random sampling, thereby
satisfying the requirement for perfect security.

3 Vanilla Range-Coding Steganography

In this section, we tentatively start by describ-
ing a simple “vanilla” version of range-coding
(RC) steganography, which directly applies RC to
steganography without any security consideration.

3Some derivation is omitted here, as details are verified
in (Dai and Cai, 2019; Shen et al., 2020; Fedotov et al., 2003).
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Figure 2: An example of procedures for embedding
a 16-bit secret message into a text via the vanilla RC
steganography. The interval is iteratively narrowed until
it can uniquely represent the decimal value 20219.
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Algorithm 1 Vanilla RC steganography (embed)

Input:

Context (initial historical tokens), C'
Language model, M

Message length, [

Secret message, ms

Output:
Steganographic text, ¢,

1: ds < bin2dec(my); // Decimalize
2: [L,R) + [0,2); // Initialize interval
3: while round(££%) # d, do

4 pM «— M(0); // Predict probs
5. ™ « 0||p™.cumsum(); // Cumulate probs
6: M« L4+ (R-L)xcY; // Rescale
7: Select token; so that ds € [¢/V[i — 1], ¢/ [i]);

8: [L,R) « [¢W[i—1],V[]);

9:  C < C||token;;
10: Detokenize C to ts;
11: return ¢

3.1 Embedding & Extraction

Figure 2 briefly illustrates how vanilla RC steganog-
raphy embeds a message into a text. In range cod-
ing, all the information can be represented in deci-
mals and ranges (intervals).

Algorithm 1 outlines how the sender (Alice) em-
beds the secret message m into the text ¢ using
vanilla RC steganography. Specifically, m is first
decimalized to d in Line 1, and all subsequent
procedures operate directly on dg rather than on a
bitstream. In Line 2, the initial interval is set to
[0, 2%), where [ is the length of m. During subse-
quent iterative processes (Lines 3-9), the interval is
progressively narrowed at each step. The iteration
ends when the midpoint of the interval is exactly
rounded to ds (which ensures uniqueness).

Algorithm 2 outlines how the receiver (Bob) ex-



Algorithm 2 Vanilla RC steganography (extract)

Algorithm 3 Rotation RC steganography (embed)

Input:

Context (initial historical tokens), C'
Language model, M

Message length, [

Steganographic text, ¢,

Output:
Secret message, m

1: Tokenize ts to S

2: [L,R) « [0,2Y); // Initialize interval
3: fort =0,1,...,|S|—|C| —1do

4 p® — M(S[:|C|+1]): // Predict probs
5. ¢® « 0]|p"Y.camsum();  // Cumulate probs
6: Y« L4+ (R-L)xcY; // Rescale
7:  Select token; so that token; = S[|C| 4+t + 1];

8: [L,R) « [¢P[i —1],Vi]);

9: ds + round(=£R);
10: my < dec2bin(d,).zfill(l); //Binarize & FillO0
11: return mg

tracts the secret message mg from the received text
ts. The initial interval is narrowed according to
each token received, and d; is the rounded value
of the midpoint of the final interval. Finally, the
extraction result m is binarized from d;.

3.2 Security Issues

For vanilla RC steganography, there can be two
security issues:

1) Distortion on probability distribution. Taking
the first generative step in Figure 2 as an example,
the (softmax) probability of token; (¢ = 0), pgo), is
0.65, and its interval is [0, 42598.4). Considering a
random 16-bit secret message m ~ U ({0, 1}16),
sods ~ U({0,1,...,215—1}) (d; is a discrete uni-
form random variable). Then, the steganographic
sampled probability for token; (t = 0) is

P (d, € [0,42598.4)) = é;% £0.65 = pl”
Thus, distortion on probability distribution occurs
and zero KL divergence or perfect security can-
not hold. Even though it could be mitigated when
lengthening m (I can be set greater than the tensor
precision). However, similar to AC steganogra-
phy, as the interval is narrowed iteratively, obvious
distortion in small intervals is inevitable.

2) Randomness reuse. According to Kaptchuk
et al. (2021), reusing randomness in multiple sam-
pling events could expose features and bias to detec-
tors. Therefore, only using the bits of the message
as the randomness or encrypting the message with
a pseudorandom cipher, as in a public-key solu-

Input:

Context (initial historical tokens), C'
Pseudo-random number generator, PRNG
Language model, M

Symmetric key (seed), K

Message length, |

Secret message, ms

Output:
Steganographic text, ¢,

1 diY « bin2dec(ms);

2: PRNG:.set_seed(K);

3: [V REYY «[0,2'); // Initialize interval

4: fort =0,1,...do

p — M(C);

e« 0||p™ .cumsum();

A=1D — p(t=1) _ y(t=1)

O NGRSO

o® « U(0,1).sample(PRNGY);

100 dP « LOY 4 @ — LOY 4 o®
A“_l)) mod AC¢~Y; // Rotate

11:  Select token; so that d” € [¢'®[i — 1], ¢ D[i]);

122 [LW,RM) « [¢W[i — 1], D [i]);

13:  C «+ C||token;;

14: i Z24EY g ¢ (—0.5,0.5] then

15: break

16: Detokenize C' to ts;

17: return t,

// Decimalize

// Predict probs
Cumulate probs
/! P

// Rescale

R A

tion, is insecure because multiple samplings will
be forced to reuse randomness.

4 Rotation Range-Coding Steganography

Considering the security issues discussed above,
we propose a rotation range-coding (RRC) stegano-
graphic method. Instead of directly using the con-
stant dg, our proposed rotation mechanism up-
dates dgt_l) to dgt) at each time step ¢ (initial
ds = dg_l)), with the following objectives:

* To transform the discrete uniform random vari-
able d; to a continuous uniform random vari-
able dgt) at each ¢, thereby preserving the orig-
inal probability distribution and ensuring zero
KL divergence.

e To introduce “fresh” randomness at each ¢,
thereby preventing the reuse of randomness.

4.1 Embedding of RRC Steganography

Algorithm 3 outlines the embedding procedures
of RRC steganography (there is a overlap of Al-
gorithm 1 and Algorithm 3). Inspired by other
provably secure methods, we employ a pseudo-
random number generator (PRNG) and a symmet-
ric key K to generate pseudo-random numbers



Algorithm 4 Rotation RC steganography (extract)

Input:

Context (initial historical tokens), C'
Pseudo-random number generator, PRNG
Language model, M

Symmetric key (seed), K

Message length, [

Steganographic text, ¢

Output:
Secret message, m

: Tokenize ts to S;

: PRNG.set_seed(K);

c [LEY,REY) «[0,2Y); //Initialize interval

Dlend < |S|—|C]—1

fort =0,1,...,tcnqg do
P = M(S[:[C|+1]);
c® « 0||p® .cumsum();
A(tfl) «— R(tfl) _ L(tfl)
W LD L ACD e, // Rescale

10:  Select token; so that token; = S [|C| 4+t + 1];

11: [L®, R « [¢D[i — 1], ¢/ Di]);

12: mid(tend) (L<tm> + R(tend))/z;

13: fort = tepg, ..., 1,0 do

14: oY « U(0,1).sample(PRNG®);

150 mid®Y « LY 4 (mid® — LD — o® x

A%y mod ATY); // Rotate reversely
16: dgfl) — round_half_down(mid“l));
17: my < dec2bin(dS V) .zfill(l); //Binarize & Fill 0

// Predict probs
// Cumulate probs

VR Nk

18: return mg

for the following sampling (Line 2), ensuring re-
producibility and correct extraction. Note that
the pseudo-random numbers generated by PRNG
are used to control the sampling of the offset
o ~ U(0,1) at each ¢t (Line 9), and then o is
used to rotate dgtil) to dgt) (Line 10). Besides,
the termination condition in RRC steganography
is LOERO ) ¢ (—0.5,0.5] (Lines 14-15),
which is tailored for unique extraction and avoid-
ing generating unnecessary tokens.

4.2 Extraction of RRC Steganography

Algorithm 4 outlines how the receiver (Bob) ex-
tracts the secret message m, from the stegano-
graphic text t;. As Alice and Bob have agreed
on PRNG and symmetric key K, Bob can syn-
chronize each ¢-time rotation with Alice and re-
produce each range of dg) according to each in-
terval [L(®), R®)) at each t. Based on the termi-
nation condition of the embedding algorithm, the
end time to,g = |S| — |C| — 1, and mid(*erd) =
(L{tena) 4 Rtena)) /2, there is:

mid(fena) — ltena) ¢ (—0.5,0.5]
d(tend) ¢ [midend) — 0.5, midtend) 4 0.5)

Considering linear transformation and the rota-
tion in embedding, for each ¢ there is (Line 15):

mid®Y = LD 4 (mid® — LD — o0
A1) mod A¢Y

d® € mid® — 0.5, mid® + 0.5)

s

where A=) = R(E-1) _ 1(t=1)  After iteration,
as dg_l) € 7Z, there is (Line 16):

dCY e mid=Y — 0.5, mid~" +0.5)

dg—l) = round_half_down(mid~1)

where round_half down means that when a
number is exactly halfway between two possi-
ble rounded values (e.g., 2.5), round_half_down
rounds toward the smaller rounded values (e.g., 2).

Therefore, in RRC steganography, dg_l) can be
computed uniquely by Bob, and then m is bina-
rized from dgfl) (Line 17).

5 Analysis of RRC Steganography

In this section, we prove the zero KL divergence of
our RRC steganography and analyze its embedding
capacity and complexity.

5.1 Proof of Zero KL Divergence

Considering rotation, there is an proposition (the
rigorous proof is shown in Appendix B.1):

Proposition 1. dgt) ~ U(L(tfl)’ R(tfl))'

Then, we explain how the original probability
distribution is preserved:

Proposition 2. In Line 11 (Algorithm 3), the se-
lected probability of each token,; is pz(»t).

Proof. Considering the interval construction from
p® to ¢ (Lines 5-8 in Algorithm 3), p(*) =

(pgt),...,pﬁ))‘), c = (cgt),cgt),...,cﬁ?‘)

(0, 0y prs ooy S D), and ¢® = LD 4
AT e 2 (LD D 4 Al-D
Z,lczl Dies ., RE1). According to Proposition 1,
d ~ U(L®D, R=1) 50 the probability den-
sity function is

1 _ _
fyo () = ACTD (x € [LUD, RUD)



P (dm € [V —1]," [z’]))

S

on
= / fyo () da

/(O[i—1]
O[] - O - 1]
- A-1)
_ (A(t_l) X 22:1 pk;) - (A(t_l) X 22;;11 pk)
A(t—l)

i i—1
=D _pi= D p
k=1 k=1
Thus, the preposition holds. O

Therefore, as our proposed RRC Steganography
does not change the original predicted probability
by LM for each token, KL divergence between the
original probability distribution and steganographic
probability distribution is constantly zero.

5.2 Embedding Capacity

First, we consider when the embedding ends ac-
cording to the proposed termination condition,
there is a proposition (its proof is shown in Ap-
pendix B.2):

Proposition 3. A®) < 1 is a sufficient condition

(t) 1 R(t) t
L —gR . d( )

for the embedding termination s €

(—0.5,0.5] (Lines 14-15 in Algorithm 3).

Then, given the initial interval [L(~1), R(-1)) =
[0,2") and the interval length A(-1) = 27 the
interval length at ¢ is:

t
A =2 T Pl *
i=0
and there is:
A®) .
A(t_l) = pggtput (5)
where p(()igtput is the probability of the output token
(t=0,1,...t).

According to Preposition 3, when A®) < 1, the
embedding iteration ends. Considering information
theory and Equation 4, the interval shrinkage rate is
determined by the entropy of the probability distri-
bution. The average amount of information per iter-
ation is H*), and the total amount of information is
required to cover n bits of the initial interval. There-
fore, the number of loops is satisfied: >>¢_, H®) >

n where HO = — " 50150, p® and let the
average entropy is Hyyg, so that the loop number
(which is exactly the number of the generated to-
kens) is: Nioken ~ 77— Thus, the embedding

avg
capacity (bits per token) can be represented as:

~ Havg (6)

Therefore, our RRC steganography can achieve
approximate 100% utilization of entropy.

5.3 Complexity

Similar to AC steganography (Ziegler et al., 2019),
RC-based steganography requires updating proba-
bility intervals after each step, resulting in a time
complexity of O(|V]).

6 Experiments

To validate the security and efficiency of our RRC
steganography, we evaluate it compared to a se-
ries of methods toward provable security in this
era, including arithmetic coding (AC) (Ziegler
et al., 2019), ADG (Zhang et al., 2021), Me-
teor (Kaptchuk et al., 2021), iMEC (de Witt
et al., 2023), Discop (Ding et al., 2023), and
SparSamp (Wang et al., 2025).

6.1 Setup

To validate the generalizability of our stegano-
graphic method, we implement it using three lan-
guage models of various scales: GPT-2 (Radford
et al., 2019),* OPT-1.3b (Zhang et al., 2022), and
Llama-2-7b (Touvron et al., 2023).

For each language model and steganographic
method, 1,000 samples are generated using 1,000
different initial contexts. These contexts consist
of the first 10 words from sequences randomly se-
lected from the C4 dataset.’

All the experiments are conducted with top-p
(p = 1.0) sampling, i.e., encoding the entire vocab-
ulary V, and 1.0 temperature. Experiments are im-
plemented in Python 3.12.7 with Torch 2.5.0, and
accelerated by using RTX 6000 Ada Generation
GPUs. Besides, considering the precision limita-
tion of the tensor, we import the Python’s decimal
module for computing with enough precision.?

*https://huggingface.co/openai-community/gpt2

Shttps://huggingface.co/facebook/opt-1.3b

®https://huggingface.co/meta-llama/Llama-2-7b-hf

"https://huggingface.co/datasets/allenai/c4

80therwise without a enough precision, errors or incorrect
extractions could occur.
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Avg / Max KLD

Capacity Entropy Utilization Speed

Method (bits/token) ¥ (bits/token) | (bitsftoken) (%) | (bits/s) |
Multinomial sampling 0/0 N/A 5.86 N/A N/A
AC 1.95E-03 / 3.01E-02 5.86 5.87 99.83 1025.36
ADG 1.60E-04 / 1.57E-03 4.81 5.89 81.60 36.45
Meteor w/o sort 4.22E-02 / 1.16E-01 4.17 5.79 71.96 950.27
Meteor w/ sort 4.11E-02/ 1.16E-01 4.77 5.81 82.08 25.25
IMEC 0/0 4.16 5.83 71.44 27.30
Discop w/o sort 0/0 231 5.90 39.31 218.34
Discop w/ sort 0/0 5.58 5.86 95.17 44.30
SparSamp 0/0 5.74 5.93 96.76 1267.82
RRC steganography (ours) 0/0 5.93 5.93 99.98 1554.66
Table 1: Quantitative comparison with previous steganographic methods on GPT-2.

Avg / Max KLD Capacit Entro Utilization Speed
Method (%)its/token) + (bitsr/)toke};l) T (bits/tollzgn) %) 1 (bli)ts/s) T
Multinomial sampling 0/0 N/A 4.59 N/A N/A
AC 1.85E-03 / 1.13E-02 4.64 4.65 99.81 352.09
ADG 1.38E-04 / 1.61E-03 3.45 4.64 74.20 25.29
Meteor w/o sort 2.80E-02 / 8.34E-02 3.13 4.54 69.03 410.79
Meteor w/ sort 2.77E-02 / 8.12E-02 3.65 4.52 80.76 46.02
iIMEC 0/0 3.24 4.61 70.24 19.78
Discop w/o sort 0/0 1.92 4.67 41.08 154.25
Discop w/ sort 0/0 4.39 4.63 94.71 31.94
SparSamp 0/0 4.35 4.53 96.08 852.36
RRC steganography (ours) 0/0 4.70 4.67 100.67 750.41

Table 2: Quantitative comparison with previous steganographic methods on OPT-1.3b.

Avg / Max KLD Capacity Entropy Utilization Speed
Method (bits/token) ¥ (bits/token) | (bits/token) (%) | (bits/s) |
Multinomial sampling 0/0 N/A 3.46 N/A N/A
AC 6.92E-04 / 9.90E-03 3.53 3.52 100.33 104.37
ADG 1.81E-04 / 3.90E-03 2.41 3.54 68.14 21.15
Meteor w/o sort 1.24E-02 / 4.00E-02 2.42 3.50 69.14 98.71
Meteor w/ sort 1.21E-02 / 4.19E-02 2.89 3.53 81.84 50.26
iMEC 0/0 2.48 3.43 72.35 10.30
Discop w/o sort 0/0 1.50 3.49 42.99 127.61
Discop w/ sort 0/0 3.33 3.48 95.72 26.13
SparSamp 0/0 3.38 3.44 98.12 326.12
RRC steganography (ours) 0/0 3.57 3.52 101.41 146.24

Table 3: Quantitative comparison with previous steganographic methods on Llama-2-7b.

6.2 Metrics

Avg (Max) KLD, a security metric, refers to the
average (maximum) value of the KL divergence in
all steps, which indicates the average (maximum)
degree to the original distribution by steganogra-
phy (Ding et al., 2023).

Embedding capacity refers to the average num-
ber of bits that can be embedded per generated
token.

Entropy utilization (embedding efficiency)
refers to the ratio of embedding capacity to the
average entropy over all steps.

Embedding speed refers to the average seconds

required to embed a single secret bit.

6.3 Main Results

Tables 1, 2, and 3 present the average results across
various metrics for the three adopted language mod-
els. Both Meteor and Discop are evaluated in
two configurations: sorted and unsorted. For each
metric, the best-performing result is highlighted
in bold, while the second-best is indicated with
underline. The embedded secret message is a ran-
domly generated 128-bit sequence. In addition,
multinomial sampling generation (random sam-
pling) is also carried out for comparison. The key
findings from these experiments are as follows:



Message length (bits) | 32 | 64 | 128 | 256 | 512 | 1024 | 2048 | 4096 | 8192
Utilization (%) 1 99.86 99.19 99.98 99.89 99.77 99.93 100.35 | 100.43 99.99
Speed (bits/s) 1 1390.23 | 1496.88 | 1554.66 | 1572.40 | 1475.68 | 1511.83 | 1191.88 | 880.82 | 604.76
Running time (s) 0.023 0.043 0.082 0.163 0.374 0.677 1.718 4.650 | 13.546

Table 4: Average results on utilization, speed and running time of RRC steganography across various message

lengths [ on GPT-2.

\ GPT-2 OPT-1.3b Llama-2-7b
bert-base-uncased | 49.3% 48.1% 49.7%
roberta-base 51.1% 50.1% 51.3%
roberta-large 48.9% 52.6% 47.7%

Table 5: Steganalysis accuracies against RRC steganog-
raphy under cases where models for steganography vary
and models for steganalysis vary.

1) As analyzed in Wang et al. (2025), iMEC,
Discop and SparSamp are probability-unchanged
steganography. The zero KL divergence of RRC
steganography is proved in Section 5.1, thus these
methods and our RRC steganography can achieve
0 KL divergence.

2) Our RRC steganography empirically achieves
around 100% entropy utilization, which complies
with the theoretical analysis in Section 5.2, which
denotes the 100% embedding efficiency. Besides,
the entropy utilization of our method is steadily
superior to other baseline methods when imple-
mented in different language models.

3) Our RRC steganography achieves a highly
competitive embedding speed, which is the fastest
in GPT-2 (up to 1554.66 bits/s). However, in the
other two language models, our method obtains
the secondary fastest speeds, which are inferior to
SparSamp, because SparSamp is especially charac-
terized by its great speed and O(1) complexity.

6.4 Scalability of RRC Steganography

Steganography based on range coding has a distinct
characteristic, that is, it embeds the entire secret
message using decimal values, rather than embed-
ding it bit by bit. In other words, the minimum unit
of embedding is the complete [-bit message itself.
If the embedding process is not completed, the mes-
sage is considered not embedded at all. Therefore,
scalability should be considered, as it reflects how
well RRC steganography can support the secret
message with various lengths.

Table 4 lists the average utilization, speed, and
running time when RRC steganography embeds the
secret message with various lengths (up to 8192

bits) on GPT-2.° The number of generated texts for
each message length is 1000. From this table, we
can find that:

1) RRC steganography can achieve steady en-
tropy utilization around 100%.

2) When the message length varies from 64 to
1024 bits, the embedding speed is steadily around
1500 bits per second.

3) Our method supports messages with signifi-
cantly higher bit lengths (with 8192 bits not rep-
resenting an upper limit), enabled by the scalable
precision of Python’s decimal module.

6.5 Anti-steganalysis Capacity

In this section, we evaluate the ability of our
method to evade detection using steganalysis tech-
niques, specifically through a fine-tuned discrimi-
nator. Further details are provided in Appendix C.
The discriminators used for detection are fine-tuned
versions of the pretrained BERT (Devlin et al.,
2019) and RoBERTa (Conneau et al., 2019) models,
respectively. Table 5 presents the steganalysis accu-
racies for steganographic texts generated by three
different language models. Accuracies around 50%
indicate that the steganalysis methods perform no
better than random guessing in detecting texts.

7 Conclusion

In this paper, we explore the use of a relatively
simple approach, range coding (RC), to directly
achieve provably secure steganography. However,
two key security challenges arise: (1) distortion of
the probability distribution and (2) reuse of random-
ness. To address these issues, we propose Rotation
Range Coding (RRC) steganography, and provide
theoretical explanations and proofs for it. RRC
empirically outperforms the baseline methods in
both embedding efficiency and capacity, while also
achieving competitive embedding speed. Moreover,
RRC steganography is not limited to certain mod-
els, so that it has a strong potential to be transferred
to multi-modal steganography in the future.

Tables 6 and 7 (in Appendix) show results conducted in
OPT-1.3b and Llama-2-7b.



Limitations

In the symmetric steganographic system based on
RRC steganography, Alice and Bob must agree
on the secret message length [ before the stegano-
graphic communication, which is used to initialize
the interval [0,2!) for both sides and fill “0” in
extraction (Line 17 in Algorithm 4).

For the analysis of embedding capacity or em-
bedding efficiency (Section 5.2) of RRC steganog-
raphy, we only explain an approximate 100% en-
tropy utilization for it without rigorous theoretical
proofs, but experiments can empirically prove that
its utilization is approximate 100%.

Ethical Considerations

While steganography has legitimate applications
such as embedding copyright information and re-
sisting censorship, it can also be misused for dis-
information or to evade censorship. This dual-use
nature underscores the need for effective monitor-
ing and regulation.
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A Related Work

In this section, we introduce the existing attempts
to provably secure steganography, and analyze their
characteristics or limitations.

A.1 Arithmetic Coding (AC) & Meteor

Arithmetic coding (AC) is a form of entropy en-
coding used in lossless data compression (Rissanen
and Langdon, 1979). A steganographic method that
first adopts AC is proposed by Le (2003). Then,
AC is applied in deep generative model and image
generation to the filed of provably secure steganog-
raphy (Yang et al., 2019). Following these works,
in the field of linguistic steganography, researchers
have presented a series of variant methods, espe-
cially including the original AC-based steganogra-
phy (Ziegler et al., 2019), the AC-based method
with a self-adjusting mechanism (Shen et al., 2020),
and Meteor (Kaptchuk et al., 2021).

The sort of these AC-based steganographic meth-
ods commonly encounter a problem, that is, the
precision limitation results in distortion in the orig-
inal probability distribution at each generative step.
Specifically, when the original probabilities are
encoded into binary-based intervals, the selected
probability for each token always has the form of
2_p(t), where p(®) is the precision at time ¢. It is
almost impossible to maintain the original distribu-
tion perfectly, thus introducing distortion.

To mitigate this distortion, one method is using
a higher initial precision, and even the Python’s
decimal module can used here to support a pre-
cision that is higher than the precision of the ten-
sor. However, during the iteration of AC-based
steganography, the external interval is narrowed
and expanded many times, and when the external
interval is small, p(*) is also small. Therefore, as
the precision is AC-based methods are changed all
the times and cannot be controlled well, distortion
on probability distribution is inevitable.

Besides, even though Meteor addresses some
problems that basic AC-based steganography suf-
fers, Meteor suffers from limited embedding capac-
ity. The reason is that, as Meteor does not narrow
the interval successively and only considers each
generated symbol separately, thus it cannot fully
utilize the entropy. And Meteor does not address
the probability-distortion problem that arises in
AC-based methods.
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A.2 Adaptive Dynamic Grouping (ADG)

Zhang et al. (2021) proposed a grouping-based
steganographic method called adaptive dynamic
grouping (ADG). At each time step, it dynamically
groups the probability distribution of all tokens of
the vocabulary into 2" groups with approximately
the same probability sum, and then numbers them
0,1,...,2" — 1. All tokens in each group repre-
sent the same message bits of length . Then, they
match the first r bits from the message to be em-
bedded and converts them to a decimal number in
{0,1,...,2" — 1}, and performs random sampling
from the normalized distribution of its correspond-
ing group to obtain the next token. In their as-
sumptions, ADG can theoretically achieve perfect
security (no probability distortion) if and only if
the grouping is perfectly balanced.

However, the problem is that since the
vocabulary-size probability distribution is discrete,
the requirement is almost impossible to satisfy. In
most cases, the actual distribution used to embed
the message is a modified distribution, which is
different from the original distribution.

A.3 [Iterative Minimum Entropy Coupling
(IMEC)

de Witt et al. (2023) analyzed information-theoretic
steganography through the lens of minimum en-
tropy coupling. They investigated how much in-
formation about a fixed-length secret message can
be inferred by the sender and receiver through the
selection of tokens, aiming to maximize and accu-
mulate this information until the entire message is
determined. They demonstrated that achieving per-
fect steganographic security is equivalent to solving
a coupling problem, and that maximizing transmis-
sion efficiency under perfect security corresponds
to solving a minimum entropy coupling problem.
Their proposed iMEC scheme fully exploits the
theoretical properties of coupling and minimum en-
tropy coupling. As a result, the method preserves
the original probability distribution and achieves
provably perfect security.

However, IMEC does have a certain bit error rate.
In addition, to achieve minimum entropy coupling
and enhance the embedding rate, a considerable
amount of computational complexity, specifically
O(|V|log|V]), is necessary to couple the probabil-
ities. Low computation efficiency of iMEC makes
it difficult to be practically utilized in a vocabulary-
size situation.



A.4 Distribution Copies (Discop)

Ding et al. (2023) proposed a provably se-
cure steganographic method based on distribution
copies (Discop). In this method, several distribu-
tion copies are generated by rotating all intervals by
specific displacements. At each time step, the mes-
sage determines which distribution copy to sample
from. Discop also employs an iterative method
based on the Huffman tree to further enhance the
capacity. Experimental results demonstrated a high
utilization rate of entropy. However, the complexity
of creating a Huffman tree (O(]V|) complexity) at
each step could not be efficient when a vocabulary-
size candidate pool is encoded.

A.5 Sparse Sampling (SparSamp)

Wang et al. (2025) proposed SparSamp, an efficient
and provably secure steganographic method based
on sparse sampling. SparSamp embeds messages
by combining them with pseudo-random numbers
to generate message-derived randomness for sam-
pling. This approach introduces only O(1) addi-
tional computational complexity per sampling step,
ensuring high computational efficiency. However,
the entropy utilization of SparSamp is significantly
constrained by the length [ of the secret message,
making it difficult to achieve 100% entropy utiliza-
tion for embedding capacity.

B Prepositions and Proofs

B.1 Proof of Preposition 1
Preposition 1. dgt) ~ U(L(t—l), R(t—l)).

Proof. Considering Lines 9—10 in Algorithm 3,
as V) = LO-D 4 (@Y — LOD 4 o) x
A=)y mod A1 and o € U(0,1), we let
A= d™V — LD and B = o) x Al
Considering X = (A + B) mod A*~D for any
z € [0, At=D), there is:

P(X <z) = P((A+ B) mod A=Y < )

Let A = kAGD 4 r where k € Z and
r € [0, A=1). Considering periodicity of mod-
ulo operations, there is

(A4 B) mod A¥™Y = (+ + B) mod At~V

Case I: 7+ B < At-1), T(herf): are X =r+ B
_ t—1)_
andP(B S A(t 1) —T) = %
Case 2: 1+ B > A=Y There are X = r +

B~ AtDand P(B > A-D — ) = L.
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Therefore, for any x € [0, A1), there is

P(X <zx)=

X
At-1)

which means X ~ U(0, A=),
Asdd) = LD+ X, dY ~ U(LED, LD 4
AGD)), thus d) ~ U(LED, RE-D), O

B.2 Proof of Preposition 3

Preposition 3. AW < 1 is a sufficient condition

. L LR
for the embedding termination % — dgt) €

(—0.5,0.5] (Lines 14—15 in Algorithm 3).
Proof. If A = R®) — L() < 1:

LW <d® < RW <LV 41

L L R®
—
L £ R®
—

e (LW, LM 40.5] c (LW, d? +0.5]

e [RW—0.5,RM) c (d;—0.5, RM)

LW L R®
2

L® 4+ R®

€ (ds — 0.5, ds + 0.5]

—d® e (=0.5,0.5]

C Steganalysis

We generated 5,000 pairs of cover texts (via multi-
nomial sampling) and steganographic texts, re-
spectively implemented on GPT-2, OPT-1.3b, and
Llama-2-7b. In each pair, the lengths (token num-
ber) of two texts are the same. The initial contexts
for generation are the first 10 words from sequences
randomly selected from the C4 dataset. For each
experimental group, 5,000 texts are split in a 6:2:2
ratio to create the training, validation, and test sets.

For fine-tuning BERT or ROBERTa models, we
use Adam (Kingma and Ba, 2017) as the optimizer
with a learning rate of 5 x 10~°. The batch size is
set to 2048, and the discriminator is trained for 20
epochs, running time of the whole training process
is approximately 5 minutes.

D Samples of Stegotexts

We present examples of stegotexts generated by
RRC steganography. Each generated text embeds a
128-bit random secret message. The initial context
is Occasionally when I get some free time,
I’11 do. Following the approach of Ziegler et



Message length (bits) | 32 | 64 | 128 | 256 | 512 | 1024 | 2048 | 4096 | 8192

Utilization (%) 1 100.09 99.26 | 100.67 | 100.35 | 100.30 | 100.02 | 100.14 | 100.14 | 100.08
Speed (bits/s) 1 685.32 | 745.03 | 750.41 | 720.93 | 701.11 | 588.33 | 403.20 | 248.71 | 184.42
Running time (s) 0.047 0.086 0.171 0.355 0.730 1.740 5.079 | 16.469 | 44.421

Table 6: Average results on utilization, speed and running time of RRC steganography across various message
lengths [ on OPT-1.3b.

Message length (bits) | 32 | 64 | 128 | 256 | 512 | 1024 | 2048 | 4096 | 8192
Utilization (%) 1 102.01 | 100.29 | 101.41 | 100.52 | 100.25 | 100.31 | 100.35 | 100.17 100.04
Speed (bits/s) 1 142.67 | 144.63 | 146.24 | 142.00 | 126.51 92.65 79.38 63.21 46.10
Running time (s) 0.224 0.443 1.143 1.803 4.047 | 11.052 | 25.800 | 64.800 | 177.701

Table 7: Average results on utilization, speed and running time of RRC steganography across various message
lengths [ on Llama-2-7b.

al. (Ziegler et al., 2019), we terminate the genera-
tion process once the proposed method has finished
embedding the message.

Stegotext generated by GPT-2

Occasionally when I get some free time, I’11
do something that uses all of those sensors
scanned at the bottom of the computer -
search for something. But I don’t know how
to do that

Stegotext generated by OPT-1.3b

Occasionally when I get some free time, I’11
do flat screen, planner style arrangement
cards. It really highlights that the cards
are supposed to be focused

Stegotext generated by Llama-2-7b

Occasionally when I get some free time, I’11
do a quick Google search on a random topic
that interests me (if I have one free not
sitting in front of a computer screen!),
and just see where my curiosity takes me.
The first thing
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