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ABSTRACT

Implicit Neural Representations (INRs) have recently gained attention as a power-
ful approach for continuously representing signals such as images, videos, and 3D
shapes using multilayer perceptrons (MLPs). However, MLPs are known to ex-
hibit a low-frequency bias, limiting their ability to capture high-frequency details
accurately. This limitation is typically addressed by incorporating high-frequency
input embeddings or specialized activation layers. In this work, we demonstrate
that these embeddings and activations are often configured with hyperparameters
that perform well on average but are suboptimal for specific input signals under
consideration, necessitating a costly grid search to identify optimal settings. Our
key observation is that the initial frequency spectrum of an untrained model’s
output correlates strongly with the model’s eventual performance on a given tar-
get signal. Leveraging this insight, we propose frequency shifting (or FreSh), a
method that selects embedding hyperparameters to align the frequency spectrum
of the model’s initial output with that of the target signal. We show that this simple
initialization technique improves performance across various neural representa-
tion methods and tasks, achieving results comparable to extensive hyperparameter
sweeps but with only marginal computational overhead compared to training a
single model with default hyperparameters.

1 INTRODUCTION

Implicit Neural Representations (INRs) are advancing computer graphics research by integrating
classical algorithms with continuous signal representations. They have been successfully applied in
signal representation and inverse problems, with notable applications in neural rendering, compres-
sion, and 2D and 3D signal reconstruction (Xie et al., 2022).

INRs primarily rely on multilayer perceptrons (MLPs), making them susceptible to spectral bias,
which refers to the slower convergence of MLPs when approximating high-frequency components
of the target signal (Rahaman et al., 2019). Although spectral bias can benefit generalization (Ronen
et al., 2019), it can also hinder performance (Gorji et al., 2023; Rahaman et al., 2019), especially in
scenarios that require high precision of signal reconstruction, such as the training of INRs. This led
to the development of numerous architectures aimed at overcoming spectral bias and its resulting
capacity constraints by increasing the frequencies present in the input signal at the first layer of the
model (embedding layer), e.g., through frequency-changing activation functions (Sitzmann et al.,
2020b; Liu et al., 2024; Tancik et al., 2020) or auxiliary data structures (Chan et al., 2022; Müller
et al., 2022).

The frequency of such embedding layers is typically controlled by hyperparameters whose con-
figuration can significantly affect performance (see Figure 1). In section 3 we show that default
hyperparameter values can hinder performance and lead to blurry reconstructions. Improving per-
formance is possible by using parameters sweeps, however, optimizing embedding parameters by
training multiple models introduces significant overhead and is not feasible in practice.

The high computational cost of performing a parameter sweep comes from training each model.
Instead of training, we approximate model performance using the Fourier transform and the Wasser-
stein distance (Wasserstein, 1969), significantly reducing the computational costs (see Table 4). Our
method, dubbed FreSh (Frequency Shifting for Accelerated Neural Representation Learning), se-
lects the embedding configuration where the frequency distribution of the model’s output is close
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Figure 1: The configuration of embeddings is crucial for the convergence speed. We train Siren
with various embedding configurations (ω0 ∈ [10, 200]) for 5k steps on a Kodak image (top-left).
The best grid-search found model (ω0 = 90), the FreSh configuration (ω0 = 110) and the baseline
(ω0 = 30) are marked with diamonds (bottom-left). The optimal and FreSh configurations (top and
middle rows) lead to sharper details, such as the number on the sail, compared with the baseline
(bottom row). Even though Siren uses a frequency embedding, the baseline is blurry due to low
frequency bias. Note how the sizes of uniformly colored areas in the output at step 0 indicate the
size of image features the network can easily learn - this observation is pivotal for FreSh.

to that of the target signal. This shift in the model’s frequency distribution results in better signal
modeling (see Figure 1). We validate our approach experimentally, demonstrating improved quality
in representation tasks such as image and video overfitting and in an inverse problem, specifically
3D shape modeling with NeRF. We show that these improvements result from a more accurate ap-
proximation of all frequencies (see Figure 6).

In existing INR studies (Sitzmann et al., 2020b; Tancik et al., 2020; Saragadam et al., 2023; Liu
et al., 2024; Müller et al., 2022), new architectures are often introduced with minimal attention to
simplifying the costly process of hyperparameter selection, even though it is crucial for achieving
the best performance. Our framework addresses this gap by leveraging frequency information to
guide the selection process for embeddings of various INR models. Our key contributions are:

• We develop a technique for comparing frequency contents of images based on the Discrete
Fourier Transform and the Wasserstein distance.

• We introduce FreSh (Frequency Shifting for Accelerated Neural Representation Learning)
- a model agnostic method for configuring coordinate embeddings for better performance,
that can be easily applied using a provided script 1. FreSh works by adjusting the capacity
of an INR to model all target signal’s frequencies.

• We achieve state-of-the-art results in image and video approximation, as well as 3D shape
reconstruction (NeRF), using a fraction of the compute of a conventional grid search.

2 RELATED WORK

INRs are neural models used for signal representation that received considerable attention in re-
search (Tewari et al., 2022) and have been applied in various domains, including representation of
images (Klocek et al., 2019), videos (Chen et al., 2022b), and 3D shapes (Park et al., 2019). Notable
applications include 3D shape reconstruction (Mildenhall et al., 2021), robotics (Wang et al., 2021b;
Lin et al., 2021), and compression (Lu et al., 2021; Takikawa et al., 2021). INR architectures are
often simple, consisting of a single MLP, with improvements focusing on embedding layers (Chen
et al., 2022a; Müller et al., 2022), activations (Sitzmann et al., 2020b), rendering techniques (Barron
et al., 2021; 2023), and regularization methods (Yang et al., 2023).

1We release code for FreSh at link to code
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Spectral bias is a phenomenon observed in MLPs describing their preference for learning low-
frequency functions and ignoring high-frequency noise (Rahaman et al., 2019; Ronen et al., 2019;
Xu, 2018), which helps explain the remarkable generalization properties of deep models. Never-
theless, this low-frequency bias hurts model performance when high-frequency components of the
signal are informative (Gorji et al., 2023). A common way of overcoming this bias in INRs is by
introducing high-frequency embeddings (Sitzmann et al., 2020b; Mildenhall et al., 2021; Müller
et al., 2022; Liu et al., 2024) that change the space over which the MLP operates, thus modifying
the frequencies of the target function. However, the effectiveness of such approaches is limited as
optimal hyperparameter configurations have to be found by trial and error for each target signal.

Positional encodings are a broad class of functions that map coordinates into a high dimensional
space through a function of adjustable frequency. Their particularly prominent use is in Transform-
ers (Vaswani et al., 2017), but they are also crucial for INRs. One of their first applications was
NeRF (Mildenhall et al., 2021), a model for 3D scene reconstruction from a set of posed 2D images.
NeRF embeddings are not stable in sparse settings due to its usage of very high frequencies (Yang
et al., 2023), and its axis-alignment makes reconstruction quality rotation-dependent (Tancik et al.,
2020). Despite its drawbacks, it is frequently used (Barron et al., 2021; Pumarola et al., 2021; Barron
et al., 2023), which could be due to its low sensitivity to hyperparameters compared to alternatives.
These alternatives include various activation functions (Sitzmann et al., 2020b; Saragadam et al.,
2023) and a direction-invariant version of NeRF using Fourier features (Tancik et al., 2020).

Activation functions are a popular method of improving the capacity of INRs, where the first layer
acts as a positional embedding. A well-known example is Siren (Sitzmann et al., 2020b), which
uses a sine activation to increase signal frequencies in the model’s first layer. Architectures that
generalize this approach utilize the Gabor wavelet (Saragadam et al., 2023), non-periodic functions
(Ramasinghe & Lucey, 2022), and variable-periodic functions (Liu et al., 2024). In this work, we
particularly focus on Siren due to its popularity, but we also address other activations.

Auxiliary data structures are used in neural scene representation to associate fragments of the
scene with a feature vector of trainable parameters, trading a larger memory footprint for smaller
computational costs. However, due to the extremely small MLPs used, these approaches can lose
some of global reasoning and implicit regularization (Neyshabur et al., 2014; Goodfellow et al.,
2016) capabilities of neural models. As directly storing a fine grid of features would be prohibitively
expensive, practical approaches use low-rank approximations (Chen et al., 2022a), 2D feature maps
(Chan et al., 2022) and hash tables (Müller et al., 2022) to reduce the memory cost. In such settings
spectral bias is not avoided, and the resolution of the voxel grid needs to be tuned for each scene.
Although our main goal is to improve pure neural network-based solutions, we also verify on the
recent architecture from Müller et al. (2022) that FreSh is applicable to grid-based approaches.

ResFields is a novel framework for INRs that improves their capacity for representing complex
signals by incorporating temporal residual layers into MLPs (Mihajlovic et al., 2023). By modifying
network weights with a time-dependent component represented as a factorized matrix, it increases
the performance with only a small impact on parameter count and inference speed. We use ResFields
to improve current state-of-the-art results on video representation.

Initialization schemes for INRs have been extensively studied to accelerate training convergence.
IGR (Gropp et al., 2020) introduced an implicit geometric initialization to speed up learning 3D
shapes, while others (Rajeswaran et al., 2019; Sitzmann et al., 2020a; Wang et al., 2021a; Tancik
et al., 2021) leveraged data-driven meta-learning approaches (Finn et al., 2017; Nichol, 2018) for
learning implicit fields. In contrast to these methods, which rely on computationally expensive pre-
training or hand-crafted priors, our approach avoids such requirements, offering a more efficient
alternative. Moreover, novel initialization methods such as the ones proposed by Saratchandran
et al. (2024) are largely orthogonal with our method.

Regularization strategies can be applied to stabilize the training of NeRF-based models, especially
in sparse settings (Yang et al., 2023). As our interest is in hyperparameter selection, we do not test
the effects of regularization on final results. Moreover, some regularization methods (Yang et al.,
2023) were developed only for NeRF-like embeddings and would have to be generalized for a fair
comparison. It is also worth noting that the Wasserstein distance has been already applied to improve
INRs (Ramasinghe et al., 2024) through regularization, which is different from our application.
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Table 1: Comparison between the default, optimal, and FreSh configurations of Siren during 15,000-
step training on various datasets, using one image per dataset. We provide the PSNR scores and the
total training time, which includes ω0 selection. The default value of ω0 leads to suboptimal results,
but improvements can be achieved by using an optimal configuration found through a hyperparam-
eter sweep (ω0 ∈ {30, 40, ..., 140}). This process involves training multiple models, making fixing
ω0 a common strategy. FreSh achieves similar improvements to grid search while being an order of
magnitude faster and comparable in time with a plain Siren. Results are averaged over three seeds.
The grid search was performed once, and the best configuration was re-evaluated using different
seeds.

PSNR ↑ Step Training
500 1000 5000 15000 time (h) ↓

Siren (ω0 = 30) 25.26 ±0.03 26.10 ±0.04 29.13 ±0.06 31.18 ±0.02 2.66±>0.01

Siren + Grid Search 27.36 ±0.06 28.39 ±0.03 30.51 ±0.03 32.02 ±0.02 32.69±0.16

Siren + FreSh 27.11 ±0.03 28.16 ±0.02 30.32 ±0.03 31.81 ±0.01 2.82±0.01

3 MOTIVATION

In this section, we show that the training of an INR highly depends on configuring the embedding in
a way that aligns its frequencies with the target signal. This leaves practitioners with two options, ei-
ther using a suboptimal, default embedding configuration or finding a well performing configuration
through a costly parameter sweep.

We illustrate the impact of proper hyperparameter selection in an image representation task in Fig-
ure 1 using the Siren model, which uses an input-scaling parameter ω0 to increase embedding fre-
quencies. We compare a default, unaligned with the target signal configuration of Siren (ω0 = 30)
to an aligned configuration (ω0 = 90) selected through a parameter sweep over ω0 ∈ {30, . . . , 140}.
The aligned configuration speeds up training by employing frequencies three times greater than the
baseline, achieving sharp details while the baseline is blurry. Note how the sizes of uniformly col-
ored areas in the output at step 0 indicate the size of features the network can easily learn - this
observation is pivotal for FreSh. We perform a similar investigation on 5 images, each from a dif-
ferent dataset (see section 5), reporting the results in Table 1. We find that optimizing ω0 always
improves the baseline results, with specific best values of ω0 depending on the target signal. The fail-
ure of SGD to optimize the embedding layer (see Appendix A) necessitates hyperparameter sweeps,
as a one-size-fits-all solution will inevitably be suboptimal for some target signals. Our goal is to
perform this search and enhance INR performance while avoiding the high computational cost of
repeated model re-training.

4 FRESH

In this section, we discuss how to compare the frequency contents of images and introduce FreSh,
a computationally efficient method for initializing frequency embeddings that biases the model to-
wards the frequencies present in the target signal.

4.1 PRELIMINARIES

This section discusses important theoretical concepts relevant to our study. INR architectures are
discussed in the Appendix, with the exception of the Siren model (Sitzmann et al., 2020b), which
we use as a high-level example to illustrate how similar approaches work. We provide a list of
embedding hyperparameters from each model used in our study in Table 2.

Siren (Sitzmann et al., 2020b) addresses spectral bias by mapping its inputs, x ∈ Rd, through a
high-frequency embedding, given as:

γS(x) = sin(ω0Wx+ b), (1)

where W ∼ U [− 1
d ,

1
d ] are the weights of the layer and b is bias. The scaling parameter ω0 controls

the frequency magnitudes of this embedding and the authors (Sitzmann et al., 2020b) recommend
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Figure 2: Example workflow of FreSh when applied to Siren and a high-frequency Kodak image.
The image and outputs from various model configurations undergo a Discrete Fourier Transform
(left). The Fourier coefficients of the same degree are then summed to produce the image spec-
trum (top-right). The model spectra are compared with the dataset spectrum using the Wasserstein
distanceW (bottom-middle), with only the configuration at the global minimum, highlighted by a
diamond, used for training (bottom-right). Note that the Wasserstein distance follows a smooth trend
with a distinct global minimum, indicating stable and predictable behavior. For additional examples
of model spectra, see Figure 8.

setting ω0 = 30, but adjustments are needed to reach optimal performance (Saragadam et al., 2023).
Siren was specifically designed so that the first layer is the sole contributor to the frequency increase
inside the model, which results in the frequency distribution (spectrum) of this model being very
concise.

Table 2: Embedding hyperparameters of
architectures used in our study. In all mod-
els increasing the hyperparameter value re-
sults in higher embedding frequencies.

Frequency
Model Parameter Description

Fourier σ Weight variance
Siren ω0 Scaling parameter
Finer ω, k Scaling parameters
Hashgrid Nmax Grid resolution

Other models adopt a similar approach to Siren and
control embedding frequencies through a hyperpa-
rameter, with higher values corresponding to higher
frequencies. Notable models that employ this strat-
egy include NeRF (Mildenhall et al., 2021), Fourier
(Tancik et al., 2020), Finer (Liu et al., 2024), and
Hashgrid (Müller et al., 2022). While most models
use embedding frequencies that are similar to what
is present in the dataset and not excessively high,
NeRF employs frequencies that often surpass those
found in the dataset, which makes it incompatible with
our comparison-based method. Similarly, Wire (Sara-
gadam et al., 2023) uses very high frequencies and in-
creases frequencies at each hidden layer, not just at the embedding layer. This makes it incompatible
with FreSh. As such, we provide results for NeRF and Wire as a reference, but do not optimize them
with FreSh. The approach of Finer differs from other models by employing two hyperparameters,
though they largely serve the same purpose, raising questions about the necessity of both. We ex-
plore two scenarios for Finer: in each scenario, we optimize only one of the parameters.

Discrete Fourier Transform (DFT) of an image A ∈ RC×N×N describes its frequencies based on
both their magnitude and direction. For example, sin(x0) and sin(x1) represent the same frequency
magnitude but different directions. We denote the DFT of the c-th channel ofA as F(Ac) ∈ RN×N ,
where the element Fj,k(Ac) is defined as

Fj,k(Ac) =

N−1∑
m=0

e−i2π jm
N

N−1∑
n=0

e−i2π kn
N Ac,m,n. (2)

Since DFT depends on direction, it is not invariant to transposition, i.e., F(Ac) ̸= F(AT
c ).

Direction dependence makes DFT different from embeddings used in INR models, which treat all
inputs symmetrically. Consequently, DFT has an unnecessarily complex structure (a matrix instead
of a vector), capturing differences, such as image transposition, that are irrelevant to our application.

5
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To make the DFT more suitable for our purposes, we reduce it to a spectrum vector S(A) =
(S(A, 1), . . . ,S(A,N − 1)) which removes direction dependence of DFT (S(A) = S(AT )), for
examples, see Figure 2. We achieve this by summing together elements of DFT that represent
the same frequency, but not direction, meaning the elements where DFT indices sum to the same
number. This is well illustrated by transposing an image, as Fi,j(A

T
c ) is the same as Fj,i(Ac).

Specifically, the elements of the spectrum vector are created by summing along DFT diagonals:

S(A, d) =
∑

c∈{0,...,C−1}

∑
(i,j)∈{0,...,N−1}

i+j=d

|Fi,j(Ac)|, (3)

We additionally denote the first n entries of S(A) as:

Sn(A) = (S(A, 1), . . . ,S(A,n)). (4)

We omit the term S(A, 0) corresponding to a constant signal, as changes to this component can be
fully captured by the bias of the output layer of a neural network. As such, S(A, 0) is easy to model
and is not affected by changes to the embedding.

The term spectrum is sometimes used to describe the 2-dimensional DFT of an image. However, to
the best of our knowledge, it has not been widely applied in the context of INRs, and no prior work
has introduced the spectrum as a vector.

Wasserstein distance is a distance function between probability distributions. For distributions P
and Q over R, and a cost function c(x, y) = |x− y|, it is defined as:

W(P,Q) = inf
π∈Γ(P,Q)

∫
R×R

c(x, y) dπ(x, y) , (5)

where Γ(P,Q) is the set of all joint distributions on R × R with marginals P and Q. Although
complex to estimate in multiple dimensions, in our 1-dimensional, discrete case the Wasserstein
distance is the L1 norm of the difference between cumulative distribution functions: ||CDF(Q) −
CDF(P )||1(Panaretos & Zemel, 2019).

Table 3: Average PSNR on image representation tasks. FreSh outperforms or matches the baseline
performance without introducing significant computational costs (see Table 4). Results for Wire are
provided for reference only, as it is incompatible with FreSh (see section 4.1). The best results in
each section are bolded. Results are averaged over 3 seeds.

PSNR ↑ Average Chest X-Ray FFHQ-1024 FFHQ-wild Kodak Wiki Art

Siren 33.85 ±0.01 37.35 ±>0.01 37.54 ±0.04 34.32 ±0.01 31.60 ±0.03 28.45 ±0.01

+FreSh 34.62±0.01 37.99±0.01 39.11±0.01 35.40±0.01 31.78±0.02 28.80±0.01

Fourier 32.12 ±0.01 36.96 ±0.03 35.01 ±0.04 32.65 ±0.01 28.84 ±0.04 27.15 ±0.01

+FreSh 33.45±0.02 37.77±0.04 36.81±0.06 34.62±0.01 30.06±0.01 28.01±0.02

Finer 35.11±>0.01 38.63±0.02 40.45±0.01 36.48±0.02 31.40±0.02 28.57±0.01

+FreSh 35.03 ±0.01 38.51 ±0.04 40.31 ±0.07 36.48±0.01 31.31 ±0.03 28.54 ±0.01

Finerk=0 34.81 ±0.01 38.44±0.01 39.91 ±0.02 35.96 ±0.01 31.43±0.02 28.31 ±0.01

+FreSh 34.88±0.03 38.43 ±0.03 40.12±0.06 36.28±0.02 31.16 ±0.01 28.44±0.05

Wire 33.54 ±0.02 37.96 ±0.02 38.13 ±0.04 35.04 ±0.01 28.95 ±0.06 27.62 ±0.01

4.2 FRESH

FreSh performs a parameter sweep in which the Discrete Fourier Transform and the Wasserstein
distance are used to approximate model performance, instead of the costly model training required
for grid search.

Method description. Our goal is to select an embedding configuration θi from a set ofM configura-
tions {θi}i∈{1,...,M} that would maximize performance when fitting a target image Y ∈ RC×N×N .
We propose to use the configuration θi where the associated output of the model at initialization,
Ŷ i

init, has a similar frequency distribution to the target image, in other words Sn(Y ) ≈ Sn(Ŷ i
init).

6
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Figure 4: Example model outputs for image modeling (top) and NeRF (bottom). FreSh representa-
tions are better at modeling high-frequency details such as text or ropes. For additional examples,
see appendix E.
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selected image and NeRF datasets
across different Siren configurations.
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tinct global minimum, indicating sta-
ble and predictable behavior. Shaded
area represents the 95% confidence
interval.

We note that the spectrum Sn(A) is absolutely homoge-
neous (Sn(αA) = |α|Sn(A)), which implies that scaling
does not affect the relative presence of different frequen-
cies. Additionally, it is equivalent to scaling the original
signal, a common data pre-processing step. As such, the
spectrum can be interpreted as a probability distribution,
making the Wasserstein distance a natural choice for a sim-
ilarity measure. This requires only that we use the normal-
ized spectrum, defined as S̃n(A) = Sn(A)

∥Sn(A)∥1
.With this, we

define the FreSh configuration θj as the one that minimizes
the Wasserstein distance between the target signal and the
model, meaning

j = argmin
i
W(S̃n(Y ), S̃n(Ŷ i

init)) (6)

= argmin
i
||CDF(S̃n(Y ))− CDF(S̃n(Ŷ

i
init))||1. (7)

In settings where multiple target images are available (video approximation and NeRF), we select
one at random to calculate the Wasserstein distance. We visualize the entire selection process for
images in Figure 2, and provide a full algorithm of FreSh in the Appendix (see algorithm 1).

Measurement noise. Due to the randomness of the image used as the target signal, Y , on video
approximation and NeRF tasks and the randomness of the model output Ŷ i

init arising from random
network weights, the measurement of the Wasserstein distance is noisy. To prevent this from affect-
ing the selection process, we measure the Wasserstein distance 10 times and use its mean to select

7
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the optimal configuration. This is particularly important on video approximation and NeRF tasks
as there both Y and Ŷ i

init are sources of noise. This results in higher measurement variance in those
tasks (see Figure 3). The FreSh process could be further optimized to use less compute by decreas-
ing the number of measurements, especially on low-noise image representation tasks, but we do not
investigate it in detail as FreSh already requires only a negligible amount of compute.

Spectrum size. The reason for using a cropped spectrum (equation 4), instead of the full spectrum
(equation 3), is due to the noise present in real-world signals. Synthetic signals such as Ŷinit have
predominately low-frequency components (see Figure 2), which makes them inherently mismatched
with real-world signals in the high-frequency range. As such, using equation 3 (or increasing the
spectrum size n) would shift FreSh embeddings towards higher frequencies. On the other hand, low
values of n can remove high-frequency (not noise) components of the target signal, leading to worse
performance. We found setting n to 64 achieves good results, with additional improvements possible
through adjusting n, which we further investigate in an ablation study in the Appendix. Although
our method introduces a new hyperparameter, it is not sensitive to the target signal, making it easy
to configure. Additionally, the spectrum size could be used as an implicit regularizer, as lowering it
leads to lower frequencies being selected.

5 EXPERIMENTS Table 4: Total time (h) needed to train all mod-
els (Siren, Fourier, Finer, Finerk=0) for the image
fitting task with grid search and FreSh, assuming
that 20 hyperparameter values are tested (except
Finer with 31 values). Time of grid search was
estimated based on training time of a single con-
figuration. FreSh is an order of magnitude faster.
Measurements are averaged over 3 seeds.

Time (h) ↓ Baseline Grid Search FreSh

Siren 29.1 ±0.3 584.2 ±6.6 30.3 ±0.4

Fourier 23.5 ±0.5 470.2 ±9.4 24.5 ±0.4

Finer 33.0 ±0.1 1022.7±2.2 36.0 ±0.3

Finerk=0 31.5 ±0.1 629.6 ±2.5 34.6 ±0.3

FreSh increases results quality and learning
speed by tailoring the embedding to the tar-
get signal, which improves modeling across
all frequencies (see Figure 6) without enor-
mous computational costs of conventional grid
searches (see Table 4). We show performance
improvements on signal representation tasks
and on an inverse problem in the form of
estimating radiance fields (Mildenhall et al.,
2021). In all experiments, we use FreSh to
select one embedding configuration from σ ∈
{1, 2, . . . , 20}, ω0 ∈ {10, 20, . . . , 200}, ω ∈
{10, 20, . . . , 200} and k ∈ {0.0, 0.1, . . . , 3.0}
(parameters are described in table 2). Unless stated otherwise, we set the spectrum size hyperpa-
rameter, n, to 64. All experiments are implemented in PyTorch (Paszke et al., 2019) and use the
Adam optimizer (Kingma & Ba, 2014).

Calculating both the Fourier transform and Wasserstein distance is computationally cheap relative
to the cost of training. This is a crucial advantage of our method over a trial and error approach, as it
makes it feasible to test multiple embedding configurations. We measured the highest relative cost
of running FreSh on a high-resolution FFHQ-wild image, where the time required by FreSh reached
50 seconds per tested configuration, which is equivalent to 1% of the training time.

5.1 SIGNAL REPRESENTATION

We evaluate on image and video overfitting using the first 10 images from FFHQ (Karras et al.,
2019) (both the “in the wild” and cropped images at a resolution of 1024x1024), Wiki Art (Saleh
& Elgammal, 2015), Chest X-Ray (Kermany et al., 2018), and Kodak (Franzen, 2024) datasets. For
videos, we use the “bikes” and “cat” videos from (Sitzmann et al., 2020b). Image heights and widths
for the image fitting task range from 380 to 6720. In video overfitting, we use the current state-of-
the-art solution in the form of ResFields (Mihajlovic et al., 2023), which improves the capacity of
the MLP by making the weights time-dependent.

We report the average PSNR across all image datasets after full training (15k steps) in Table 3,
example outputs in Figure 4 and training curves in Figure 5. FreSh consistently achieves results
that are either better than or comparable to the respective baselines, achieving similar performance
about 2 times faster in the case of Siren and about 4 times faster in the case of Fourier features,
while being an order of magnitude less costly to execute than conventional grid search (see Table 4).
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Modifying the hyperparameters of Finer did not lead to any noticeable improvements. Nonetheless,
FreSh performs comparably well, being especially helpful when the bias is eliminated (k = 0).

150 300 450
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1.5

Frequency

R
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r Siren + FreSh

Fourier + FreSh

Figure 6: The mean spectrum of residuals
for the image representation task expressed
as a percentage of the baseline configura-
tion performance, as measured on Kodak
images. The dotted line indicates the base-
line performance. FreSh improves model-
ing across all frequencies, lowering the er-
ror by about 30%. The shaded area repre-
sents the 95% confidence interval.

In this situation, FreSh successfully reproduces the
performance of the original model with bias, raising
questions about the need for both parameters. The
advantage of FreSh is especially visible in terms of
perceived quality, as measured by SSIM. These im-
provements are achieved through better approximation
of the target signal across all frequency components
(see Figure 6) thanks to the increased frequency mag-
nitudes in the embedding layer. Similarly to optimal
configurations from Table 1, configurations selected
by FreSh are highly varied, highlighting the subopti-
mality of any constant configuration (see Appendix E).

To show the versatility of FreSh, we successfully ap-
ply it to videos, which contain temporal changes not
directly measured by our method. We measure PSNR
and SSIM and report the results in Table 5, with a
full table available in the Appendix (see Table 9). We
found that to improve the model’s frequency model-
ing, we needed to remove time from the input coor-
dinates, making it an indirect input only through the
weight modifications of ResFields. This suggests that commonly used embedding strategies are
ineffective for signals with qualitatively different directions (see Figure 16).

5.2 NEURAL RADIANCE FIELDS

Table 5: Mean PSNR on video representa-
tion. FreSh outperforms baseline embed-
ding configurations and the NeRF-like em-
bedding (Positional Encoding). Each con-
figuration was tested with and without time
as an input coordinate. The model benefits
from embeddings reconfigured with FreSh
only when time is not an input, indicating
that different frequency magnitudes are re-
quired for spatial and temporal directions.
Results for Positional Encoding are pro-
vided for reference only, as it is incompat-
ible with FreSh (see section 4.1). Results
are averaged over 3 seeds.

Time Cat Bikes
Input PSNR ↑ PSNR ↑

Siren ✓ 38.72 ±0.05 41.12 ±0.03

+FreSh ✓ 36.84 ±0.03 40.28 ±0.01

Siren ✗ 39.84 ±0.03 40.39 ±0.02

+FreSh ✗ 40.61±0.04 41.62±0.01

Fourier ✓ 38.14 ±0.07 40.92 ±0.07

+FreSh ✓ 37.38 ±0.04 40.29 ±0.03

Fourier ✗ 38.82 ±0.03 40.61 ±0.03

+FreSh ✗ 39.68±0.04 41.13±0.02

Pos. enc. ✓ 37.39±0.01 39.78±0.04

Pos. enc. ✗ 37.13 ±0.04 39.57 ±0.05

Hashgrid ✓ 34.71±0.15 37.13±>0.01

Neural radiance fields (Mildenhall et al., 2021) are
used for synthesizing novel views of a 3D object based
on a limited number of measurements (images) of the
object. Unlike in the image fitting task, the target sig-
nal is unknown and spectra calculations required by
FreSh are performed on the available images. To ren-
der views Ŷinit from the model, we take a single sam-
ple along each ray in the middle of the scene, where
we assume the volume density is maximal. We per-
form experiments using a torch implementation (Tang,
2022; Tang et al., 2022) of InstantNGP (Müller et al.,
2022) and synthetic NeRF data. Due to the complex-
ity of this task, we adjusted the spectrum size for each
model, and use 128 for Hashgrid, 64 for Fourier and
Finer, and 32 for the spectrally-concise Siren.

FreSh achieves similar or better reconstruction qual-
ity than baseline configurations and positional encod-
ing, with the exception of axis-aligned datasets (lego,
materials) where positional encodings have an advan-
tage due to their frequencies also being axis-aligned
(see Table 6). In the case of the Hashgrid embedding,
we found that the recommended range for the reso-
lution parameter Nmax ∈ [512, 524288] induced fre-
quencies that are too high, with FreSh selecting resolu-
tions outside this range (Nmax ∈ {64, 128, 256}). This
lowering of embedding frequencies leads to higher re-
construction quality, highlighting the applicability of
FreSh in various settings and detecting models with
both too low and too high frequencies.
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Table 6: Average PSNR achieved with Positional Encoding (also known as NeRF), Siren, Fourier,
Finer and Hashgrid embeddings on synthetic NeRF datasets. FreSh improves performance in many
instances. Results for positional encoding are provided for reference only, as it is incompatible with
FreSh (see section 4.1).

PSNR ↑ Average Chair Drums Ficus Hotdog Lego Materials Mic Ship

Siren 31.21±0.09 34.20±0.11 26.03±0.13 30.25±0.06 35.81±0.13 30.28±0.14 29.67±0.11 34.25±0.08 28.60±0.18

+FreSh 31.43±0.09 34.71±0.11 26.15±0.14 31.03±0.06 35.70±0.13 30.81±0.15 29.40±0.12 34.41±0.07 28.74±0.19

Fourier 32.04±0.09 34.70±0.13 26.42±0.12 31.19±0.05 35.97±0.14 31.58±0.15 31.67±0.10 34.38±0.09 30.07±0.12

+FreSh 32.63±0.09 36.32±0.11 26.92±0.14 32.38±0.05 36.26±0.14 33.41±0.17 30.99±0.12 34.43±0.09 30.58±0.19

Finer 31.64±0.09 34.64±0.11 26.12±0.13 31.31±0.06 35.75±0.14 31.59±0.13 29.71±0.11 34.35±0.08 29.55±0.14

+FreSh 31.62±0.09 34.86±0.11 26.10±0.13 31.13±0.06 35.77±0.14 31.80±0.13 29.51±0.11 34.27±0.07 29.47±0.17

Finerk=0 31.39±0.09 34.38±0.11 26.02±0.13 30.80±0.06 35.72±0.14 31.08±0.13 29.68±0.11 34.18±0.08 28.94±0.17

+FreSh 31.62±0.09 34.84±0.11 26.02±0.13 31.23±0.06 35.66±0.14 31.66±0.13 29.47±0.11 34.37±0.08 29.60±0.13

Hashgrid 31.09±0.09 34.04±0.13 25.77±0.09 30.65±0.05 34.82±0.18 31.42±0.13 28.67±0.09 34.34±0.08 29.06±0.18

+FreSh 31.22±0.09 33.55±0.14 26.17±0.11 31.05±0.05 35.22±0.14 32.56±0.14 28.92±0.09 34.09±0.07 28.71±0.20

Pos. enc. 32.22±0.09 35.46±0.11 26.04±0.12 30.77±0.06 35.75±0.14 33.77±0.16 31.78±0.11 35.15±0.08 29.72±0.10

6 LIMITATIONS

While this work represents an initial step toward automating embedding configuration for INRs,
FreSh has several limitations inherited from existing embedding methods. Notably, FreSh does not
account for direction-dependent frequency magnitudes, potentially impacting performance in sce-
narios where directionality is important, such as video approximation. Although the spectrum size
hyperparameter is easier to configure than traditional embedding parameters due to its independence
from the target signal, it still can require manual tuning. Moreover, FreSh performance is inherently
limited by the constraints of the embeddings it configures and cannot achieve quality better than a
conventional grid search. Specific to FreSh, it is not applicable to models that utilize excessively
high embedding frequencies, such as NeRF or Wire.

7 CONCLUSION

Hyperparameter selection is crucial for INR performance, yet there is limited research in this area.
This makes evaluating new architectures costly due to the need for extensive grid searches, or un-
fair when suboptimal hyperparameter values are used. We address these challenges by introducing
FreSh, a model-agnostic method for configuring coordinate embeddings that significantly reduces
the cost of finding effective configurations compared to parameter sweeps. FreSh leverages fre-
quency information to select the configuration that best aligns with the target signal, effectively
biasing the model to fit all relevant frequencies. While FreSh is not compatible with certain models,
such as Wire, it proves highly effective when applicable, facilitating the use of improved embed-
dings like Fourier features. This is particularly relevant in the context of Neural Radiance Fields
(NeRF), where the adoption of this embeddings has been limited by high hyperparameter sensitiv-
ity. Although FreSh introduces a new hyperparameter, it is not sensitive to the target signal and it
requires little to none adjustment. By utilizing ResFields, we have observed that frequency mag-
nitudes in certain tasks are significantly direction-dependent. This suggests that new embeddings
may be needed to account for this dependence, and expanding FreSh to also consider directional
dependencies is a promising research direction that could further enhance its effectiveness.
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A OPTIMIZATION OF EMBEDDING WEIGHTS
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Figure 7: Frequency magnitudes of the em-
bedding layer of Siren for baseline configu-
rations (at initialization and after training)
and FreSh configuration (at initialization)
during training on 5 images from the exper-
iment in section 3. During training, mag-
nitudes of the baseline model fail to in-
crease to a scale comparable with the op-
timal configurations, highlighting that em-
bedding frequencies are not effectively op-
timized by gradient descent. As frequency
magnitudes remain largely constant during
training, they must be configured as a hy-
perparameter. Magnitudes were clipped to
range [0, 80].

The embedding layer of an INR requires careful tun-
ing of its hyperparameters (as discussed in section 3),
even though its parameters should be optimized by
gradient descent. To explain this phenomenon, we
investigate the embedding of Siren and observe a pat-
tern similar to that noted by Tancik et al. (2020) about
the Fourier model: gradient descent fails to effec-
tively optimize the embedding layer. This is likely
caused by the periodic nature of activation function
used in the embedding.

Measuring frequency of an embedding neuron
Let’s recall that the Siren embedding is given as:

embedding(x) = sin(ω0Wx+ b), (8)

where W are the embedding weights. Denot-
ing the i-th row of W as wi, we analyze the
frequency of each embedding neuron indepen-
dently, ignoring the bias term b, as it only af-
fects phase, not frequency magnitude. Specifi-
cally, we consider the frequency of sin(ω0wi · x),
which is maximal along the direction specified by
wi. This allows us to simplify the analysis to the
frequency of sin(ω0||wi||2||x||2 cos(∠(wi,x))) =
sin(ω0||wi||2||x||2).
Frequency is defined as the number of full peri-
ods a function completes over a unit distance. By
choosing 2π as the unit distance, the frequency of
sin(||x||2) is simply 1. Consequently, the frequency
of sin(ω0||wi||2||x||2) scales proportionally and is
given by ω0||wi||2.

Experiment We investigate how frequency magnitudes change during training on 5 images (we use
the same images as in section 3) by comparing the distributions of frequency magnitudes between
models at initialization and after training (see Figure 7). We additionally provide frequency magni-
tudes of embeddings configured using grid search (see Table 1) as a reference of optimal magnitudes.
We use the same experimental setup as in section 5, only changing whether the embedding weights
are optimized or not.

During training the magnitudes change only slightly, but this increase is negligible when compared
to magnitudes induced by optimal embeddings, whose size reflects the multiple-fold increase of
ω0 observed in Table 1. Since gradient descent fails to notably increase embedding frequencies,
the magnitudes must be adjusted as a hyperparameter, significantly increasing the cost of finding
optimal models.

B ARCHITECTURES FROM RELATED WORKS

This section covers architectures that were left out of the main text.

NeRF (Mildenhall et al., 2021) maps 5D coordinates - spatial location (x, y, z) and viewing direction
(θ, φ) - to volume density and view-dependent emitted radiance, which are then used to render novel
views of a scene. It employs positional embedding (Vaswani et al., 2017), which is a multiresolution
sequence of L frequencies:

γP (x) = [sin(20x), cos(21x), . . . , sin(2L−2x), cos(2L−1x)]. (9)

γP helps overcome the spectral bias of MLPs but is biased toward axis-aligned directions, which can
result in performance loss depending on the rotation of the target object (Tancik et al., 2020). This
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embedding works well with frequencies which are higher than the main components of the target
signal (e.g., L = 16). When training NeRF models, we embed the spatial coordinates using γP and
the viewing direction with the spherical harmonics basis (Fridovich-Keil et al., 2022; Verbin et al.,
2022), following the approach of Müller et al. (2022).

Fourier features (Tancik et al., 2020) is a direction-invariant alternative to eq. (9) which densely
samples Fourier basis functions. Although such sampling is not feasible in realistic settings, it can
be well approximated through random sampling (Rahimi & Recht, 2007), resulting in the mapping:

γF (x) = [sin(2πWx), cos(2πWx)], (10)
where weights are sampled from an isotropic frequency distribution, such as Gaussian W ∼
N (0, σ). Scale of this distribution, σ, controls frequency magnitudes and it was found to be an
important factor in the final performance of a model (Tancik et al., 2020). Even though the perfor-
mance of Fourier features was shown to be better than that of eq. (9), it has not been widely adopted,
possibly due to the high sensitivity of this embedding to the value of σ. We refer to this embedding
as Fourier.

Finer (Liu et al., 2024) is a variation of the Siren model with a broader supported frequency set. It
extends the frequency set of Siren by utilizing a variable-periodic activation, φ(x) = sin((|x|+1)x),
in its embedding:

γF (x) = φ(ω(Wx+ b)), (11)
where W ∈ Rm×d is the matrix of weights and b ∈ Rm is bias. This model controls frequencies
through the scaling parameter ω and the width of bias distribution k (b ∼ Uniform(−k, k)) 2.
The authors of Finer suggest using bias as the main method for increasing the model capacity to
approximate high-frequency signals. However, a similar effect can also be achieved by adjusting ω,
which raises questions about the necessity of using bias. We consider two scenarios: one where ω is
fixed at 30 and k is optimized, and another where bias is removed (k = 0) and ω is optimized. We
find that bias can be removed without significantly affecting performance (see Table 3). We denote
the model with no bias as Finerk=0.

Multiresolution hash encoding (Hashgrid) divides the space into increasingly finer grids (e.g.,
16), assigning each voxel to a random feature vector via a hash table (Müller et al., 2022). The
authors recommend adjusting specific hyperparameters for each dataset, particularly the size of the
hash table, which impacts the memory footprint, and the resolution of the finest level, Nmax, which
affects the size of details that can be easily modelled. As a baseline, we use a resolution of 2048.
At low resolutions, the number of grid vertices is of comparable size to the number of hash table
entries, effectively limiting the total parameter count of low resolution models. To prevent different
parameter counts from affecting the performance, we set a relatively low hash table size of 8192
entries.

Wire uses a continuous complex Gabor wavelet activation function:

ψ(x) = ejω0xe−|s0x|2 , (12)
where ω0 controls frequency and s0 controls width of the wavelet, with typically used values of
ω0 = 20 and s0 = 10. This activation makes model design problematic, as it increases frequencies
at every layer of the model, making frequencies of the model depth-dependent. Moreover, we note
that, similarly to NeRF, Wire uses extremely high frequencies, which are incompatible with FreSh.
As such, we report results of Wire only for context.

C ADDITIONAL SPECTRUM EXAMPLES

In this section we consider untrained models, showing their outputs and comparing their spectra
to the Kodak “bikes” image (see Figure 2). As illustrated in Figure 8, the Wasserstein distance
effectively highlights that using high-frequency embedding configurations would be beneficial for
Siren and Fourier, as their spectra are closer to the spectrum of the signal. We note that the feature
sizes in most model outputs align with those typically found in natural images. However, models
such as Wire produce extremely small, high-frequency features, implying that they perform well
despite using high frequencies, possibly by taking advantage of some additional mechanism.

2Saragadam et al. (2023) denote ω as ω0. We removed the index to make hyperparameters of Finer and
Siren easier to differentiate.
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D PSEUDOCODE FOR FRESH

We present the pseudocode for FreSh in Algorithm 1. The algorithm is slightly different between
image and video/NeRF tasks, due to multiple images being available for the latter. This is reflected
in the definition of Ysample which consist of multiple images - one for each measurement of the
Wasserstein distance. It is constructed by sampling 10 images for NeRF and video approximation
tasks, while for the image approximation task, Ysample consists of the same image repeated 10 times.
Even though the target signal is not random for the image approximation task, it is also measured
multiple times due to the randomness of the model output.

Algorithm 1: FreSh
Input: Θ set of embedding configurations, n > 0
Data: Ysample a sample of images, X input coordinates
Output: θbest embedding configuration with the lowest Wasserstein distance
dbest ←∞;
θbest ← None;
for θ ∈ Θ do

distances← [];
for Y in Ysample do

Starget ← full spectrum(Y )[: n];
ϕ← get random model weights();
Smodel ← full spectrum(model(θ, ϕ,X))[: n];
d← wasserstein distance(Smodel, Starget);
distances.append(d);

dmean ← mean(distances);
if dmean < dbest then

dbest ← dmean;
θbest ← θ;

return θbest;

E ADDITIONAL SIGNAL REPRESENTATION AND RECONSTRUCTION RESULTS

Table 7: Ablation study of spectrum size on image approximation task. All runs in the table were
conducted with a fixed seed. The optimal spectrum size depends primarily on the base architecture,
with the dataset having minimal impact. The best results in each section are bolded.

n Average Chest X-Ray FFHQ-1024 FFHQ-wild Kodak Wiki Art

Siren + FreSh 32 34.28 37.49 38.13 35.00 32.13 28.67
Siren + FreSh 64 34.59 38.00 39.09 35.37 31.72 28.78
Siren + FreSh 128 34.15 38.37 38.66 34.93 30.41 28.37

Fourier + FreSh 32 33.00 37.33 36.03 34.06 29.93 27.68
Fourier + FreSh 64 33.47 37.80 36.83 34.64 30.04 28.05
Fourier + FreSh 128 33.55 38.10 37.13 34.89 29.58 28.03

Finer + FreSh 32 34.80 38.43 39.87 35.96 31.44 28.30
Finer + FreSh 64 35.06 38.59 40.44 36.50 31.23 28.56
Finer + FreSh 128 34.97 38.76 40.09 36.38 31.17 28.46

Finerk=0 + FreSh 32 34.44 38.07 39.16 35.33 31.42 28.19
Finerk=0 + FreSh 64 34.95 38.50 40.27 36.32 31.13 28.53
Finerk=0 + FreSh 128 34.79 38.68 40.10 36.35 30.61 28.24

Spectrum size Spectrum size, n, controls the number of frequencies included in the spectrum
(eq. (4)). The size of the spectrum has to be limited due to the inherent mismatch between natural
and synthetic signals (as discussed in section 4). Given that the architecture primarily determines
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the characteristics of the spectrum (e.g., Siren was designed to have a concise spectrum), the specific
target signal is not expected to play a significant role in selecting the optimal spectrum size. Our
ablation study in Table 7 supports this, showing that the source of the dataset has minimal impact
on the optimal spectrum size. Since the optimal spectrum size does not depend on the target signal,
fine-tuning this value is significantly simplified, as it can be selected using a small subset of target
signals. After determining the optimal spectrum size for a given architecture, no further tuning
should be needed.

In general, we find that FreSh performs well when the spectrum size n is set to 64, although perfor-
mance can be further improved through fine-tuning (see Table 7). Interestingly, Siren-based models
gain no benefit from increasing the spectrum size beyond 64. This is likely because Siren is designed
with hidden layers that have minimal impact on frequencies (Sitzmann et al., 2020b), leading to a
concise spectrum, which is well described even with a shorter spectrum. In contrast, the Fourier
model benefits from larger spectra, likely because no special considerations were made in its design
to keep the spectrum concise.

Selected hyperparameter values We report configurations selected by FreSh on the image ap-
proximation task in Figure 9. Similarly to the optimal configurations (see Table 1), we observe high
variability in model configurations selected by FreSh. Even when narrowed to a single dataset (e.g.
Kodak), the configurations are varied, highlighting the need for adjusting the embedding frequencies
for each target signal.

Decreasing the default embedding frequency In almost all experiments in section 5, models
benefit from embedding configurations that induce higher frequencies than the baseline configura-
tion. However, the Hashgrid model is an exception, where FreSh improves performance by selecting
configurations that induce lower frequencies. In this section, we present another such example by
testing Siren on a low-frequency synthetic dataset.

We generate the target signal as a sum of sinusoids with up to 5 periods and train Siren using the
same setting as described in section 5. Since the target signal is relatively simple, we reduce the
training time by a factor of 10. We found that with the default learning rate training is not stable
and PSNR can decrease by us much as 40% in 100 steps, which is why we additionally lower the
learning rate by a factor of 10. For this dataset, FreSh selects configuration of ω0 = 10, resulting
in frequencies three times lower than those in the baseline model. This low-frequency embedding
improves the results, as shown in Figure 10. This shows that FreSh improves quality by aligning
frequencies and not by simply increasing them.

Learning speed Re-configuring a model with FreSh increases the learning speed, with image
approximations being sharp after as little as 1000 iterations. We include example outputs from all
image datasets in Figures 11 to 14.

Video approximation We report PSNR and SSIM scores on the video approximation task in Ta-
ble 9. Similarly to PSNR, SSIM is highest with models configured using FreSh and without a time
input, making it an indirect input only through the weight modifications of ResFields. This could be
explained by different characteristics of the video signal along temporal and spatial directions (see
Figure 16).

Object reconstruction We provide additional examples in Figure 15.

INR Improvement Methods Recent advances have introduced methods to mitigate the spectral
bias in INRs, such as Batch Normalization (Cai et al. (2024)) and Fourier Reparameterization (Shi
et al. (2024)). Meanwhile, Saratchandran et al. (2024) propose the From Activation to Initialization
(FAI) method, which optimizes initialization based on the activation function but does not directly
address spectral bias. We evaluate FreSh alongside these approaches to highlight their complemen-
tary nature (see Table 8).

Experiments were conducted using a fixed seed and one image per dataset (5 images total). Batch
Normalization has been shown to improve learning primarily when paired with Positional Encoding
in image-based tasks, however, we additionally test its performance with Siren.
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Table 8: FreSh compared with other INR improvement methods. Other than FreSh, we evaluate
three approaches: improved weight initialization (From Activation to Initialization or FAI), Fourier
Reparameterization (FR), and Batch Normalization (BN). FreSh improves the performance of other
methods.

PSNR ↑ Chest X-Ray FFHQ-1024 FFHQ-wild Kodak Wiki Art
Siren 38.3 35.1 33.7 26.8 22.2
Siren + Fresh 38.8 36.4 34.6 26.4 22.7
Siren + FAI 38.8 35.7 34.0 26.9 22.3
Siren + FAI + Fresh 39.3 36.8 34.9 26.3 22.7
Siren + FR 37.6 34.8 33.6 26.8 22.1
Siren + FR + Fresh 38.4 36.4 34.4 26.0 22.5
Siren + BN 26.9 25.9 24.5 19.8 17.3
ReLU + Pos. Enc + BN 38.1 33.3 32.6 24.8 21.3

0 20 40 60
0

0.02

0.04

0.06

0.08

Frequency

M
ag

ni
tu

de

Spectrum

Bikes

Baseline

High freq.

Siren (ω0 = 30, W = 14.6)

Siren (ω0 = 90, W = 3.9)

0 20 40 60

Frequency

Spectrum

Fourier (σ = 1, W = 15.2)

Fourier (σ = 3, W = 7.5)

0 20 40 60

Frequency

Spectrum

Finer (ω0 = 30, W = 6.1)

Finer (ω0 = 90, W = 6.4)

0 20 40 60

Frequency

Spectrum

Wire (W = 8.6)

Figure 8: Example outputs from untrained models (top two rows) and their corresponding spectra
(bottom row). For comparison, the spectrum of the Kodak “bikes” image is also provided, along
with the Wasserstein distances between the model configurations and the target image. We consider
a baseline (top row) and a high-frequency (middle row) configuration for each model other than
Wire, where the baseline is already high-frequency. The Wasserstein distance effectively shows
that Siren and Fourier baseline configurations are too low-frequency for the highly detailed “bikes”
image. Notably, the uniformly colored regions in outputs from models other than Wire (and the
high-frequency Finer) tend to be comparable in size or larger than typical features in natural images.
In contrast, the output from Wire exhibits extremely fine, high-frequency features.
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Figure 9: Embedding configurations selected by FreSh for the image representation task. Hyper-
parameter values are highly varied even within datasets, highlighting the need for fine-tuning the
embedding layer for each target signal.
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Figure 10: Training of Siren on an low frequency image. (a) Target image created as a sum of
sinusoids of at most 5 periods. (b) PSNR values averaged over 10 seeds. Siren using the default
configuration (ω0 = 30) is slower in fitting the signal than a low-frequency Siren configured with
FreSh (ω0 = 10). This example demonstrates that reducing the model frequency can sometimes be
advantageous, and FreSh is capable of identifying such situations.

Table 9: Video representation results for NeRF, Siren and Fourier embeddings. FreSh outperforms
baseline embedding configurations and NeRF. Each configuration was tested with and without time
as an input coordinate. The model benefits from embeddings reconfigured with increased frequen-
cies only when time is not an input, indicating that different frequency magnitudes are required for
spatial and temporal directions. Results are averaged over 3 seeds.

Use Cat Bikes
time PSNR SSIM PSNR SSIM

Siren ✓ 38.72 ±0.05 0.9518 ±0.0004 41.12 ±0.03 0.9677 ±0.0001

+FreSh ✓ 36.84 ±0.03 0.9444 ±0.0002 40.28 ±0.01 0.9684 ±0.0002

Siren ✗ 39.84 ±0.03 0.9553 ±0.0001 40.39 ±0.02 0.9657 ±0.0001

+FreSh ✗ 40.61±0.04 0.9579±0.0002 41.62±0.01 0.9708±0.0001

Fourier ✓ 38.14 ±0.07 0.9481 ±0.0006 40.92 ±0.07 0.9678 ±0.0006

+FreSh ✓ 37.38 ±0.04 0.9483 ±0.0002 40.29 ±0.03 0.9696 ±>0.0001

Fourier ✗ 38.82 ±0.03 0.9514 ±0.0003 40.61 ±0.03 0.9667 ±0.0001

+FreSh ✗ 39.68±0.04 0.9555±0.0002 41.13±0.02 0.9700±0.0002

NeRF ✓ 37.39±0.01 0.9471±0.0002 39.78±0.04 0.9675±0.0002

NeRF ✗ 37.13 ±0.04 0.9462 ±0.0002 39.57 ±0.05 0.9664 ±0.0004
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Figure 11: Model comparison on Kodak images after 1000 iterations of training.

Figure 12: Model comparison on a Chest X-Ray image after 1000 iterations of training.
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Figure 13: Model comparison on images from FFHQ-wild and FFHQ-1024 after 1000 iterations of
training.
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Figure 14: Model comparison on Wiki Art images after 1000 iterations of training.
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Figure 15: Example model outputs for the object modeling task after approximately 20% of the
training.
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Figure 16: Axis-aligned analysis of video signals. We compute the average DFT of the video
signal over 1000 randomly selected axis-aligned vectors and measure the mean pixel values along
three directions: Time (T), Width (W), and Height (H). Signal along the time direction rapidly
changes, such as during scene transitions, leading to spiky frequency distributions. This qualitative
difference between temporal and spatial coordinates suggests that they should be treated differently
in an embedding layer. Pixel locations and values were normalized to the range [0, 1] to account for
variations in video sizes and pixel value ranges.
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