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Abstract

Existing research on Domain Robustness (DR)001
suffers from disparate setups, limited task va-002
riety, and scarce research on recent capabili-003
ties such as in-context learning. Furthermore,004
the common practice of measuring DR might005
not be fully accurate. Current research fo-006
cuses on challenge sets and relies solely on007
the Source Drop (SD): Using the source in-008
domain performance as a reference point for009
degradation. However, we argue that the Target010
Drop (TD), which measures degradation from011
the target in-domain performance, should be012
used as a complementary point of view. To ad-013
dress these issues, we first curated a DR bench-014
mark comprised of 7 diverse NLP tasks, which015
enabled us to measure both the SD and the016
TD. We then conducted a comprehensive large-017
scale DR study involving over 14,000 domain018
shifts across 21 fine-tuned models and few-shot019
LLMs. We found that both model types suffer020
from drops upon domain shifts. While fine-021
tuned models excel in-domain, few-shot LLMs022
often surpass them cross-domain, showing bet-023
ter robustness. In addition, we found that a024
large SD can often be explained by shifting to025
a harder domain rather than by a genuine DR026
challenge, and this highlights the importance of027
TD as a complementary metric. We hope our028
study will shed light on the current DR state of029
NLP models and promote improved evaluation030
practices toward more robust models. 1031

1 Introduction032

Modern transformer-based NLP models, and partic-033

ularly Large Language Models (LLMs) have proven034

effective on various tasks and evaluation setups,035

including fine-tuning (Devlin et al., 2018; Raffel036

et al., 2020) and in-context learning (Brown et al.,037

2020; Chowdhery et al., 2022). Following that,038

there has been an improvement in the models’ abil-039

ity to perform tasks while transferring to domains040

1Our benchmark will be released upon acceptance.
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Four Domain Shift Scenarios

Source In-domain Performance: 𝑺𝑺
Target In-domain Performance:  𝑻𝑻
Cross-domain Performance:        𝑺𝑻

Source Drop: 𝑆𝐷 = 𝑆𝑆 − 𝑆𝑇
Target Drop: 𝑇𝐷 = 𝑇𝑇 − 𝑆𝑇

Figure 1: Illustration of the four domain shift scenarios.
In the Classic and Observed scenarios, we observe a 15-
point drop between the Source In-domain Performance
(SS) and the Cross-domain Performance (ST). Con-
versely, in the Unobserved and No Challenge scenarios,
SS = 70 and ST = 85, meaning the model gains 15
points upon domain shift. We would typically conclude
that there is a DR challenge only in the first two sce-
narios. However, we argue that this commonly adopted
perspective is inaccurate since it overlooks the Target In-
domain Performance (TT). Our work provides a fresh
perspective by considering both degradation metrics:
The Source Drop (SD) and the Target Drop (TD).

with no labeled data available (Hendrycks et al., 041

2020; Ben-David et al., 2022a; Wang et al., 2022a). 042

Despite these improvements, the performance upon 043

domain shift can still be inferior to the model’s per- 044

formance on the source domains, a problem we 045

refer to as the Domain Robustness (DR) challenge 046

(Ramponi and Plank, 2020; Wang et al., 2022b; 047

Hupkes et al., 2023; Yang et al., 2023b). 048

Research of DR is quite disparate: A wide vari- 049

ety of setups, models, training procedures, and dif- 050

ferent dataset sizes are used. There is also a severe 051

lack of variety in evaluation tasks for DR: Most 052

papers use classification tasks, omitting important 053

tasks such as sequence tagging, question answer- 054

ing, and text generation (Hendrycks et al., 2020; 055

Koh et al., 2021). Moreover, many past works use 056

challenge sets to measure the DR challenge. These 057
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are highly curated datasets that select synthetic (Be-058

linkov and Bisk, 2018; Rychalska et al., 2019) or059

particularly hard samples for models to process un-060

der domain shifts (McCoy et al., 2019; Yuan et al.,061

2023). All this makes it hard to compare different062

works and map out the extent of the DR challenge063

in a natural domain shift setting.064

Moreover, prior works focused solely on fine-065

tuned models, disregarding few-shot setups that066

have become prominent.2 In those setups, the DR067

challenge manifests itself more moderately: No068

training data can potentially anchor the model to069

the source distribution, but only a few demonstra-070

tions from the source domain are used in the prompt071

(Min et al., 2022; Weber et al., 2023).072

Adding to the above, we observe a fundamental073

problem with how we examine the DR challenge.074

Let us conduct a thought experiment, illustrated075

in Figure 1: A model is trained and tested on data076

from domain A (A → A), achieving a score of 90,077

but when tested on domains B and C, it scores 75.078

The observed 15-point drop typically leads to the079

conclusion the model lacks robustness, a common080

assertion in DR papers. But what if we were told081

that “had the model been trained and tested on data082

from B, it would have achieved a score of 80”,083

would we still consider it as facing a severe DR084

challenge, given only a 5-point drop from B’s in-085

domain performance (B → B), rather than 15?086

Furthermore, if the model attains a score of 70087

when trained and tested on domain C (C → C),088

can we still assert a DR challenge exists even when089

it performs better cross-domain (A → C)?090

Building on the insights from the thought ex-091

periment, our paper introduces a novel perspective092

on the DR challenge. Traditional approaches typ-093

ically focus on the Source Drop (SD), assessing094

how model performance degrades compared to its095

source in-domain performance. However, this view096

overlooks the degradation compared to the setup097

where the model had been trained and tested on the098

target domain, which we define as the Target Drop099

(TD). We study these variables and build various100

metrics upon them in §3.101

Importantly, most works focus solely on the SD102

and overlook the TD, resulting in a partial depic-103

tion of the DR challenge. For instance, in studies104

involving challenge sets that report a large SD, the105

drop may be primarily attributed to shifting to a106

2We use few-shot models to denote LLMs in an in-context
learning setting, where the prompt contains demonstrations.

harder domain (TT < SS, see §3.1), and not by 107

a genuine DR challenge, e.g., the Classic and Ob- 108

served scenarios in Figure 1. By incorporating 109

both metrics, we aim to provide a more holistic and 110

accurate understanding of the DR challenge. 111

To overcome deficiencies in the current body of 112

research, in §4 we introduce a novel DR bench- 113

mark. Unlike existing benchmarks, which largely 114

rely on synthetic, adversarial, or challenge sets that 115

may not adequately represent natural settings, our 116

benchmark is unique and possesses four key prop- 117

erties: (i) It focuses on shifts (such as topical shifts) 118

that naturally occur in real-life scenarios; (ii) It cov- 119

ers a wide variety of NLP tasks, more than other 120

studies, including sequence and token level classi- 121

fication, QA, and generation tasks; (iii) Each task 122

consists of several domains; and (iv) Each domain 123

has a sufficient amount of labeled data, enabling its 124

use as a source and as a target domain. 125

Following that, we conduct an extensive study 126

by benchmarking many fine-tuned models and few- 127

shot LLMs, detailed in §5. We examine factors 128

such as the model size, dataset size, number of 129

few-shot demonstrations, and more. Our findings, 130

reported in §6, incorporate results of more than 131

14,000 domain shifts of 21 models and various 132

training and testing setups. Our main findings are: 133

1. Fine-tuned models suffer from drops upon do- 134

main shifts. While the extent of the drop varies, 135

challenging shifts are prevalent in every task; 136

2. Increasing the size of fine-tuned models en- 137

hances both in-domain and cross-domain per- 138

formance while reducing performance drops, 139

particularly in classification tasks; 140

3. Few-shot models also face a DR challenge as the 141

domain of the demonstrations impacts their per- 142

formance. However, the domain shift effect for 143

few-shot models is weaker and more nuanced; 144

4. Increasing the fine-tuning dataset size as well 145

as the number of few-shot demonstrations en- 146

hances in-domain and cross-domain perfor- 147

mance but can also mildly increase the drop 148

due to stronger “source domain anchoring”; 149

5. While fine-tuned models excel in-domain, few- 150

shot LLMs often surpass them cross-domain, 151

showing better robustness and smaller drops; 152

6. Considering only one metric can lead to wrong 153

conclusions since many domain shifts are not 154

Classic, and only one drop metric (SD or TD) 155

is positive while the other is negative; 156

7. We found that a large SD can often be explained 157
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by shifting to a harder domain, and not by a158

genuine DR challenge;159

8. Our focus on many natural domain shifts reveals160

that while challenge sets are helpful diagnostic161

tools, they tend to overestimate the severity of162

DR, which is generally milder;163

In conclusion, we show that thoroughly assess-164

ing DR in NLP models requires evaluating multiple165

domain shifts and incorporating both drop metrics166

(SD and TD). We manifest that while nuanced, the167

DR challenge is still prevalent. In §7, we delve168

into the implications of our findings for the NLP169

community. In Appendix §A, we present a theo-170

rem that elucidates some of our findings regarding171

the relationship between the DR metrics. We hope172

this work will provide a fresh perspective on model173

robustness and facilitate further research.174

2 Related Work175

The term DR generally refers to the extent to which176

the performance of a model does not degrade when177

applied to newly collected samples from other do-178

mains. In some cases, robustness refers to consis-179

tency (low variance) (Yu et al., 2022). Literature180

on robustness in NLP can be categorized by the181

type of distribution shift examined: Synthetic and182

Natural (Wang et al., 2022b; Hupkes et al., 2023).183

Synthetic shift works include adversarial attacks184

(Jin et al., 2020), input perturbations (Belinkov and185

Bisk, 2018), counterfactual (Kaushik et al., 2020),186

diagnostic (Wang et al., 2019) and challenge (or187

contrast) sets (McCoy et al., 2019). These works188

assess robustness using datasets designed to chal-189

lenge NLP models rather than represent a natural190

language distribution. While the synthetic shifts are191

helpful diagnostic tools (Goel et al., 2021), they do192

not accurately depict the actual state of DR “in the193

wild”. Hence, we focus on natural domain shifts.194

Natural shift study focuses on organic scenarios195

where a discrepancy exists between the training and196

deployment data. These studies encompass various197

setups, including medium shift (Miller et al., 2020),198

temporal shift (Cvejoski et al., 2022), and domain199

shift (e.g., to medical (Miller et al., 2021) and legal200

(Chalkidis et al., 2020) domains).201

Researchers proposed various benchmarks to202

evaluate the robustness of NLP models and the203

quality of solutions, including domain shifts in a204

single NLP task (Budzianowski et al., 2018; Reid205

et al., 2022; Miller et al., 2020; Yu et al., 2021;206

Zhong et al., 2021; Chronopoulou et al., 2022;207

Gekhman et al., 2023b; Yu et al., 2023), with chal- 208

lenge sets (Rychalska et al., 2019; Mosbach et al., 209

2023; Weber et al., 2023; Yuan et al., 2023) or only 210

with fine-tuned models (Hendrycks et al., 2020; Tu 211

et al., 2020; Koh et al., 2021). Our study addresses 212

a broad range of domain shifts in many more NLP 213

tasks than previous work, including sequence and 214

token-level classification, QA, and generation. In 215

addition, we examine both small fine-tuned mod- 216

els and few-shot LLMs. Importantly, unlike other 217

works, which focused on the source drop, we also 218

consider the target drop, providing a more holistic 219

perspective on DR. To the best of our knowledge, 220

this is the most comprehensive DR study in NLP. 221

3 Domain Robustness 222

Domain is a widely used term in NLP that typically 223

refers to a cohesive corpus or dataset, which may be 224

characterized by factors such as topic, style, genre, 225

syntax, linguistic register, and medium. Although 226

‘domain’ lacks a clear and consistent definition 227

(Ramponi and Plank, 2020), we formally describe 228

a domain D by a joint distribution PD(X,Y ) over 229

X (the input space) and Y (the outcome space). In 230

a domain shift, the source domain S , and the target 231

domain T differ in their underlying joint distribu- 232

tion PS(X,Y ) ̸= PT (X,Y ). 233

Given a training set of examples from the source 234

domain S ∼ S, the goal of the NLP model is to 235

learn PS(X,Y ) (or PS(Y |X)), and to the general- 236

ize to the (potentially unknown) target domain dis- 237

tribution(s) in which it will be deployed, PT (X,Y ). 238

To evaluate the performance on the target domain, 239

we use a test set T ∼ T , which is unobserved 240

during training. We use the term Domain Robust- 241

ness (DR) to describe the inherent (in)ability of 242

an NLP model to generalize from the source 243

domain to the target domains. 244

For fine-tuned models, the DR challenge arises 245

when the test data comes from a domain that is 246

different from the labeled training data. Meanwhile, 247

few-shot models face the DR challenge when the 248

domain of the demonstrations used in the prompt 249

differs from that of the target data. 250

3.1 Measuring Domain Robustness 251

This subsection proposes concepts and metrics for 252

characterizing the DR challenge, summarized in 253

Table 1. Given a source domain S and a target 254

domain T , we use ST to denote the Cross-domain 255

Performance, which is the score (e.g., F1) achieved 256
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SS Source In-domain Performance
TT Target In-domain Performance
ST Cross-domain Performance
SD Source Drop (Observed Drop): SS− ST
TD Target Drop (Unobserved Drop): TT− ST
IDD In-domain difference: SS− TT

SS Average In-domain: E[SS] = E[TT]
ST Average Cross-domain: E[ST]
∆ Average Drop: SS− ST = E[SD] = E[TD]
WSD Worst SD: max(S,T ) SD

WTD Worst TD: max(S,T )TD

Table 1: The notations of Domain Robustness concepts
and metrics we use in this study. Toy example in Table 7.

when training a model on data S ∈ S and testing257

it on T ∈ T . When training and testing the model258

with data from the source domain, we use SS to de-259

note the Source In-domain Performance. Likewise,260

TT is the Target In-domain Performance.261

Finally, we define the in-domain difference to be262

IDD = SS− TT. A positive IDD may indicate a263

shift towards an inherently more challenging tar-264

get domain, for example, the shifts A → C and265

A → B from Figure 1. The cornerstone of this pa-266

per is that a truthful DR characterization requires267

considering SS, TT, and ST. Specifically, full268

characterization requires understanding the joint269

distribution of SS, TT, and ST (see Appendix §A).270

Nevertheless, identifying these random variables271

and their relationships is not tractable without fur-272

ther assumptions, and therefore, we introduce prac-273

tical and interpretable metrics that quantify the274

degradation in performance when shifting domains.275

We denote the Average In-domain Performance276

by SS = E[SS], and the Average Cross-domain277

Performance by ST = E[ST]. The difference be-278

tween these metrics is the Average Drop, denoted279

by ∆ = SS− ST. Intuitively, the larger the ∆ is,280

the more severe the DR challenge of the model is.281

3.2 The Source and Target Drops282

Although characterizing the DR challenge ideally283

requires task-level analysis across various domain284

shifts, this approach can be impractical or less rel-285

evant when focusing on a specific shift. Hence,286

we introduce shift-level degradation metrics. The287

Source Drop (SD) and the Target Drop (TD) are288

the drops in performance caused by a domain shift,289

alternately using the source and target’s in-domain290

performance as a point of reference:291

SD = SS− ST292

TD = TT− ST293

Notice that the training data from the target domain 294

may not be available in a real-life scenario, and 295

in this case, the TT can not be computed. The 296

performance degradation we observe in practice is 297

the SD. The TD is a more theoretical measure: “ 298

What would the drop be compared to if the model 299

were trained on data from the target domain?” 300

From the above definitions, it follows that: 301

SD = TD + IDD. This is a solid justification 302

for using both SD and TD when quantifying the 303

DR challenge. Using only one could potentially 304

paint an image obscured by the IDD, which is not 305

a by-product of the domain shift itself. For instance, 306

in studies involving challenge sets that report a 307

large SD, the drop may be primarily influenced 308

by a large IDD rather than both SD and TD be- 309

ing large (e.g., the shift A → C in Figure 1). In 310

§6.4, we found that this is the case in many do- 311

main shifts. We refer the readers to Appendix §A 312

for an extended discussion and theorem on the 313

relationships between the DR metrics. 314

Finally, other task-level metrics we use are the 315

Worst SD (WSD) and Worst TD (WTD), which 316

measure the highest SD and TD observed across 317

all domain shifts and identify challenging shifts. 318

3.3 Domain Shift Scenarios 319

We next introduce a novel framework for classi- 320

fying domain shifts into four possible scenarios. 321

These scenarios are defined by the sign (positive 322

or negative) of the source and target drops, which 323

can help us understand the nature of the DR chal- 324

lenge. In Appendix §A.2, we further discuss these 325

scenarios and motivate when each might occur. 326

The Classic Scenario (A → B in Figure 1) In this 327

scenario both SD and TD are positive. Accord- 328

ingly, we deduce that the model is not effectively 329

generalizing from the source domain to the target. 330

The Observed Scenario (A → C in Figure 1) This 331

scenario occurs when the shift is to a harder domain 332

and TT < ST < SS. In this scenario, only the ob- 333

served drop, SD is positive. Although we observe 334

a performance drop, it might be explained by mov- 335

ing to a harder domain and not due to a genuine 336

DR challenge since the model achieves generaliza- 337

tion to the target domain and even exhibits higher 338

performance than TT. 339

The Unobserved Scenario (C → A in Figure 1) 340

This scenario occurs when the shift is from a harder 341

domain to an easier one: SS < ST < TT. In this 342
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Task #D Train Dev Test

SA Sentiment Analysis 6 10K 2.5K 2.5K
NLI Natural Language Inference 5 50K 2.5K 2K
AB Aspect Based SA (ABSA) 5 2K 500 1.4K
QA Question Answering 6 9K 1K 2.5K
QG Question Generation 6 7.5K 900 1K
AS Abstractive Summarization 5 10K 1K 500
TG Title Generation 6 17.5K 1K 1K

Table 2: Details about the tasks in The Domain Ro-
bustness Benchmark. “#D” is the number of domains.
“Train”, “Dev”, “Test” columns present the size of the
splits of each domain. Note that we present the average
size for the test split since it differs between domains.
More details can be found in the project repository.

scenario, only SD is negative, and we do not ob-343

serve a performance drop. However, since TD is344

positive, we know the model can potentially gener-345

alize better and it might suffer from a DR challenge.346

The No Challenge Scenario (C → B in Figure 1)347

Occurs when ST is larger than both SS and TT,348

therefore, SD and TD are negative.349

4 The Domain Robustness Benchmark350

In Sections 1 and 2, we identified shortcomings in351

existing DR benchmarks. These include an overem-352

phasis on challenge sets and synthetic datasets,353

coupled with neglecting key NLP tasks such as354

token-level classification, QA, and particularly gen-355

eration tasks. To our knowledge, this is the first DR356

study focusing on various generation tasks, which357

have gained prominence with the widespread use358

of LLMs and GenAI. Moreover, most benchmarks359

consider only a single or very few domains and360

often use target domains with only test splits, pre-361

venting measuring target drops. These limitations362

restrict a complete understanding of the state of the363

DR challenge in “natural settings”.364

To bridge these gaps, we curated a novel DR365

benchmark that focuses on natural shifts and covers366

seven downstream tasks. Each task consists of367

several domains with the same amount of labeled368

data, enabling using any domain as a source or a369

target and computing the metrics from §3. Table 2370

details the number of examples in each task domain.371

In Appendix §D, we describe the preprocessing we372

performed and discuss technical assumptions.373

Sentiment Analysis (SA) Following Ziser and Re-374

ichart (2018) and Calderon et al. (2022), we com-375

bine five domains of the Amazon product review376

dataset (Blitzer et al., 2007) with the airline review377

dataset (Nguyen, 2015) into a single dataset with378

six domains: Appliances, Beauty, Books, Games, 379

Software, and Airline. 380

Natural Language Inference (NLI) We use five 381

domains from MNLI dataset (Williams et al., 2018): 382

Fiction, Government, Slate, Telephone, and Travel. 383

Aspect Based Sentiment Analysis (AB) Follow- 384

ing Lekhtman et al. (2021), we combine the Se- 385

mEval 2014, 2015, and 2016 (Pontiki et al., 2014, 386

2015, 2016) ABSA datasets, together with the 387

MAMs dataset (Jiang et al., 2019) into a sin- 388

gle dataset with four domains: Device, Laptops, 389

Restaurants, Service, and MAMs. 390

Question Answering (QA) We rely on the SQuAD 391

v2 dataset (Rajpurkar et al., 2016, 2018), one of 392

the most common QA datasets. We asked human 393

annotators to categorize the documents according 394

to the Wikipedia’s taxonomy,3 and created six do- 395

mains: Geography, History, Philosophy, Science, 396

Society, and Technology. 397

Question Generation (QG) We rely on our do- 398

main partition of the SQuAD dataset (Rajpurkar 399

et al., 2016) and only use examples with an answer. 400

Given a Wikipedia document and an answer to the 401

question, the task of the NLP model is to generate 402

the question (Calderon et al., 2023). 403

Abstractive Summarization (AS) We rely on 404

the Webis-TLDR-17 dataset (Völske et al., 2017), 405

which consists of Reddit posts and their “TL;DR” 406

summary. We asked human annotators to catego- 407

rize subreddits into five domains: Drugs, Fitness, 408

LoL (video game), Politics, and Relationships. 409

Title Generation (TG) We focus on generating 410

titles for Amazon product reviews (Yang et al., 411

2023a). Our dataset contains six domains: Beauty, 412

Books, DVD, Kitchen, Sports, and Wireless. 413

5 Experimental Setup 414

Table 3 presents details about the participating mod- 415

els. Additional implementation details, including 416

hyperparameters and prompts are in Appendix §E. 417

Fine-tuning Models For classification tasks (SA, 418

NLI, AB, QA) we employ encoder-only models. 419

Specifically, we use RoBERTa (Liu et al., 2019) 420

and DeBERTa-v3 (He et al., 2021a), as well as 421

the smaller DistilBERT (Sanh et al., 2019). For 422

conditional generation tasks (QG, AS, TG), we 423

3We merged the vital articles categories: https://en.
wikipedia.org/wiki/Wikipedia:Vital_articles, into
eight categories and used six of them as domains.
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Arch. Name #P #L Name #P #L

fine-
tuned
EO

DistilBert 66m 6
DeBERTa-XS 70m 12
DeBERTa-S 142m 6

RoBERTa-B 125m 12 DeBERTa-B 184m 12
RoBERTa-L 355m 24 DeBERTa-L 435m 24

fine-
tuned
ED

T5-S 60m 12
BART-B 139m 12

T5-B 220m 24
T5-L 737m 48 BART-L 406m 24

few-
shot
DO

Orca-7b 7b 32 Orca-13b 13b 40
Mistral 7b 7b 32 NeuralChat 7b 32
Llama2-7 7b 32

Llama2-13b 13b 40
Llama2-70b 70b 40
GPT3.5 ? ? GPT4 ? ?

Table 3: Details about the participating models in this
study. ‘Arch.’ states the architecture type: EO for
Encoder-only, ED for Encoder-decoder, and DO for
Decoder-only. ‘#P’ is the number of parameters in mil-
lions (m) or billions (b), and ‘#L’ is the number of layers.

utilize two common encoder-decoder models: T5424

(Raffel et al., 2020) and BART (Lewis et al., 2020).425

We chose these open-source models because they426

offer a variety of sizes (see Table 3).427

We conduct hyperparameter tuning for each428

model and source domain, selecting optimal pa-429

rameters based on the source domain’s validation430

set, and then evaluate the model across all target431

domains. See Appendix §E for more details.432

Zero-shot and Few-shot LLMs We examine433

LLMs with an API, including GPT3.5 (turbo) and434

GPT4 (OpenAI, 2023), as well as the open-sourced435

LLMs LLama v2 (Touvron et al., 2023), Orca v2436

(Mitra et al., 2023) (which is based on LLama v2437

and fine-tuned using signals from GPT4), Mistral-438

7b (Jiang et al., 2023) and NeuralChat (Lv et al.,439

2023) (which is based on Mistral and fine-tuned440

using the Orca dataset (Mukherjee et al., 2023)).441

For each test example from a target domain, the442

LLM receives an input comprising a task instruc-443

tion and the example. In few-shot setups, the input444

is augmented with additional demonstrations from445

the source domain. Task instructions and prompt446

examples are provided in Appendix §E.1.447

Due to the high costs of API calls and the448

quadratic increase in the number of experiments449

with the number of domains, we limit our presenta-450

tion of few-shot results to three domains and 600451

examples for each task (see Appendix §D.3).452

Metrics For classification tasks (SA, NLI, AB, QA)453

we report the F1 score. For generation tasks (QG,454

AS, TG) we report the BertScore (Zhang et al.,455

2020) with a pre-trained SBERT model (Reimers456

and Gurevych, 2019). Please see our note in §8.L1.457

Task Model SS ST ∆ WSD WTD

SA
RoBERTa-L 95.76 92.79 2.97 13.92 19.82
DeBERTa-L 96.21 94.10 2.11 9.60 10.25

NLI
RoBERTa-L 89.29 87.81 1.48 4.83 2.89
DeBERTa-L 90.43 88.92 1.51 5.47 3.10

AB
RoBERTa-L 73.31 49.42 23.90 35.28 32.41
DeBERTa-L 71.98 50.19 21.80 35.54 34.49

QA
RoBERTa-L 82.01 81.72 0.29 6.01 2.53
DeBERTa-L 74.54 74.10 0.44 6.29 2.72

QG
T5-L 77.36 77.24 0.13 4.26 1.16
BART-L 76.30 76.30 0.00 4.43 0.80

AS
T5-L 62.40 61.42 0.98 4.62 2.55
BART-L 62.33 61.62 0.71 4.96 1.93

TG
T5-L 66.48 65.22 1.26 6.78 5.06
BART-L 65.87 64.72 1.15 6.61 4.58

Table 4: Comparison between different large fine-tuned
models. The columns are: SS - Average In-domain,
ST - Average Cross-domain, ∆ - Average Drop, WSD -
Worst Source Drop and WTD - Worst Target Drop.

6 Results 458

6.1 Fine-tuned Models 459

In Table 4, we present the results of large fine-tuned 460

models. As can be seen, for every task the average 461

in-domain performance consistently exceeds the 462

average cross-domain performance. An exception 463

to this is the QA and QG tasks, which share the 464

same partition of domains, explaining why they 465

behave similarly. Moreover, the vast majority of 466

tasks exhibit non-negligible drops in performance 467

upon domain shift. This leads to the conclusion 468

that the DR problem still exists in fine-tuned models, 469

though in varying severity, depending on the task. 470

Some tasks (e.g., AB) exhibit significant drops in 471

most domain shifts, while other tasks (e.g., QA) 472

exhibit minor drops, but we can still expect to have 473

challenging shifts for every domain. 474

In Appendix §C we provide additional results 475

for fine-tuned models. Specifically, in §C.1 we 476

explore the effect of the model size. We observe 477

that larger models improve absolute in-domain and 478

cross-domain performance and exhibit an apparent 479

reduction in performance drops, especially in clas- 480

sification tasks. In §C.4, we examine the impact 481

of the source dataset size. We find enhancements 482

in both in-domain and cross-domain performance, 483

however, the performance drop is only reduced in 484

classification tasks and worsens in generation tasks. 485

6.2 Few-shot Models 486

Unlike fine-tuning, a domain shift occurs for few- 487

shot models when the domain of the prompt demon- 488

strations differs from the test example’s domain. 489

Table 5 presents the results of 4-shots LLMs. 490
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Model SA NLI AB QA QG AS TG
SS ST WSD WTD SS ST WSD WTD SS ST WSD WTD SS ST WSD WTD SS ST WSD WTD SS ST WSD WTD SS ST WSD WTD

Orca-7b 80.9 79.2 8.7 6.3 70.7 70.4 16.8 2.5 44.0 41.9 24.5 8.2 25.8 23.6 5.0 3.8 65.9 65.5 3.0 1.5 53.4 53.2 2.3 1.2 52.6 52.7 0.6 1.0
Orca-13b 92.6 92.3 10.0 2.7 75.7 74.4 15.5 6.3 52.6 49.2 38.3 11.9 62.8 62.4 4.5 2.5 73.3 73.3 2.2 0.8 61.0 60.4 2.0 3.2 58.9 58.8 1.8 0.8
Mistral 83.8 80.9 11.0 5.7 49.0 45.8 17.1 10.3 49.9 43.5 34.5 19.4 48.7 46.8 6.7 7.2 69.8 69.5 5.2 1.2 59.0 58.5 2.4 4.7 57.4 57.4 1.2 1.0
Neural 92.4 92.4 12.0 1.3 79.8 77.0 16.0 8.8 42.6 39.3 20.3 10.1 50.8 49.5 5.5 4.6 72.0 72.1 3.9 0.8 61.6 61.4 1.6 1.6 58.4 58.3 1.6 0.4
Llama-70b 94.1 93.9 8.3 1.3 56.6 56.3 5.3 4.5 51.4 48.6 35.9 8.9 36.6 36.0 4.4 3.5 73.3 73.1 4.6 0.6 60.5 59.2 2.7 3.5 57.7 57.7 2.3 0.7
GPT3.5 92.1 92.9 10.0 0.0 72.9 71.7 16.4 7.2 52.7 51.9 37.0 2.4 60.1 59.7 6.4 2.3 74.6 74.5 4.4 0.3 64.7 64.4 3.0 0.9 58.5 58.4 1.3 0.8
GPT4 95.2 94.7 11.0 2.0 87.0 86.0 6.4 3.9 51.0 47.9 28.9 6.9 71.0 71.1 6.0 0.8 76.0 75.8 3.5 0.5 64.1 64.0 2.5 0.6 58.0 57.9 1.5 0.4
Best FT 95.5 91.7 9.6 10.2 91.0 89.0 5.5 3.1 74.4 47.2 35.3 32.4 83.7 83.5 3.1 2.0 77.7 77.5 4.3 0.4 63.2 62.0 3.5 1.7 65.1 63.2 6.8 5.1

Table 5: Comparison between fine-tuned and (4) few-shot models. The ‘Best FT’ selects the best performing
fine-tuned model according to the source development set: DebERTa-L for SA and NLI, RoBERTa-L for AB and
QA, and T5-L for QG, AS, TG. All the results are for the same examples and three domains (see Appendix §D.3).
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Figure 2: Average SD (orange lines) and Average TD (blue lines) as a function of challenging domain shifts.
Specifically, we sort the domain shifts by their In-domain Difference (IDD) and as we move to the right on the
x-axis, we incrementally include an additional domain shift in the average drop calculation. Consequently, the
leftmost point represents the shift with the largest IDD, while the rightmost point encompasses all shifts. The
best fine-tuned model (see caption of Table 5, solid lines) against GPT4 (dashed lines). This figure illustrates
three key findings: (1) The SD is larger than the TD, and when including all shifts their averages are equal; (2)
Generally, fine-tuned models exhibit larger drops; (3) Examining only challenging shifts and focusing solely on the
SD, obscure the true DR state. Incorporating the TD can compensate for this and provide a clearer understanding.

Similar to fine-tuned models, in most tasks and491

few-shot models, in-domain performance surpasses492

cross-domain performance, indicating that the do-493

main of the demonstration has an effect. However,494

the average drops in few-shot models, particularly495

in GPT3.5 and GPT4, are lower than in fine-tuned496

models (see also Figure 2). This probably stems497

from weaker anchoring to the source domain since498

in few-shot setups, the parameters are not updated499

based on source domain optimization. Yet, few-500

shot models experience large worst drops, although,501

except for NLI and QA, they are much lower than502

the worst drops of fine-tuned models.503

Nevertheless, the robustness of few-shot models504

comes at a cost of absolute performance. As shown505

in Table 5, fine-tuned models outperform all non-506

GPT models in both in-domain and cross-domain507

settings. For GPT models, aside from the AS task,508

the fine-tuned models achieve higher in-domain509

performance. However, in certain tasks (SA, AB,510

AS), GPT models exceed the cross-domain per-511

formance of fine-tuned models. This discrepancy512

highlights the importance of Domain Adaptation513

research of fine-tuned NLP models.514

In Appendix §C.2 we study the effect of the num-515

ber of demonstrations, finding that a larger number516

of demonstrations usually improves in-domain and517

cross-domain performance, though in some cases518

SA NLI AB QA QG TG AS
0.00

0.25

0.50

0.75

1.00

Fi
ne

-tu
ni

ng

Classic Unobserved Observed No Challenge

SA NLI AB QA QG TG AS
0.00

0.25

0.50

0.75

1.00

Fe
w

-s
ho

t

Figure 3: The proportion of each domain shift scenario
(see §3.3) for fine-tuned (top chart) and few-shot models
(bottom). For each task, the proportion is measured over
all the models and domain shifts. More details in §C.8.

mildly increasing the drop between them (by caus- 519

ing a stronger “source domain anchoring”). 520

In Appendix §C.3, we also analyze the impact 521

of few-shot model size. Same as for fine-tuned 522

models, increasing model size generally improves 523

absolute performance and tends to reduce drops. 524

6.3 Characterizing the DR Challenge 525

To understand the nature of the domain shifts, we 526

present the proportion of the four scenarios (from 527

§3.3) in Figure 3. In Appendix C.8, we provide 528

details on this analysis and confirm its statistical 529
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Task σSD σTD WSD WTD ρSS ρTT R2
SD R2

TD
Fi

ne
-t

un
in

g

SA 3.62 3.33 13.23 17.05 0.28 0.42 0.34 0.08
NLI 3.06 1.29 7.14 5.12 -0.28 0.82 0.83 0.06
AB 7.09 6.53 36.05 36.55 -0.15 0.10 0.27 0.12
QA 3.71 2.07 6.76 4.52 -0.06 0.68 0.75 0.14
QG 2.29 0.46 4.55 1.21 -0.28 0.95 0.96 0.02
AS 1.91 0.65 4.81 2.49 0.06 0.77 0.95 0.58
TG 2.70 1.47 6.94 4.88 0.31 0.70 0.92 0.60

Fe
w

-s
ho

t

SA 7.49 1.77 10.58 3.73 -0.26 0.82 0.94 0.36
NLI 8.63 3.93 15.54 8.27 -0.47 0.85 0.80 0.39
AB 22.68 4.64 32.70 10.57 -0.13 0.86 0.99 0.55
QA 4.20 1.92 5.78 3.09 -0.25 0.53 0.71 0.28
QG 3.17 0.50 4.11 0.75 -0.36 0.88 0.95 0.25
AS 1.74 1.13 2.55 2.01 0.01 0.31 0.75 0.55
TG 1.21 0.55 1.62 0.91 -0.24 0.79 0.82 0.34

Table 6: Statistics of the SD and the TD. We first cal-
culate the statistic for each model and then present the
mean statistic for the task. This includes: (1) The stan-
dard deviation of the SD (σSD) and the TD (σTD); (2)
The Worst SD (WSD) and TD (WTD); (3) Spearman’s
correlation between the ST and SS (ρSS) or TT (ρTT);
(4) The R-squared of IDD and SD (R2

SD) or TD (R2
TD).

significance. Notably, for fine-tuned models, the530

Classic scenario, marked by positive SD and TD,531

emerges as the most dominant and occurs in most532

tasks with a frequency exceeding 50%, which in-533

dicates the prevalent DR challenge. On the other534

hand, all four scenarios are common across few-535

shot tasks, suggesting that the effect of domain shift536

on few-shot models is weaker and more nuanced.537

This is also true in fine-tuned QA and QG tasks,538

which share the same domain partitions.539

Although there is a positive TD in most cases,540

many are Unobserved scenarios. This finding is541

essential since many past works overlooked the542

TD. Our study implies that a DR challenge can543

exist even when the shift is to an easier domain544

(SS < TT) and even if practitioners do not observe545

a performance degradation. In comparison, the546

Observed scenario (positive SD but negative TD),547

is less frequent but still appears in half of the fine-548

tuning and few-shot tasks. This also underscores549

the necessity for both metrics and calls for a deeper550

analysis: which metric more accurately estimates551

the average drop and cross-domain performance?552

6.4 Comparing SD and TD553

In Table 6, we see that for every task and for both554

fine-tuning and few-shot, the variance of the SD555

is larger than the variance of the TD. In addition,556

for almost all tasks (except for fine-tuning SA and557

AB) the Worst SD is higher than the worst TD.558

These findings indicate that the TD is a more robust559

estimator of the average drop.560

Moreover, we find that the ST behaves more561

like the TT rather than the SS, as can be seen562

by Table 6, where the correlation between ST and 563

TT is much stronger than the correlation with SS 564

(typically above 0.7). This suggests that attempting 565

to estimate the cross-domain performance without 566

incorporating knowledge of the TT is challenging. 567

Additionally, Table 6 shows the R2 between the 568

in-domain difference (IDD = SS − TT) and the 569

drops. These values indicate the extent to which 570

drop variations can be predicted by the IDD. The 571

high R2 of the SD, compared to the TD, suggests 572

that observing a large SD is likely attributed to 573

shifting to a harder domain and not by genuine 574

DR issues. This raises a red flag for the NLP com- 575

munity since many works measure DR by source 576

performance degradation on challenge sets. 577

The issue becomes clear in Figure 2, which 578

shows the average SD and TD calculated over 579

challenging shifts. The figure reveals that when 580

focusing on challenging shifts (as shown on the left 581

x-axis), the SD appears extremely large. Conse- 582

quently, focusing on challenge sets and relying on 583

the SD tend to portray a severe picture of the DR 584

state. Examining the TD and additional domain 585

shifts provides a more accurate depiction. 586

In Appendix §A, we provide a detailed dis- 587

cussion of the analysis from this subsection and 588

present a theorem that unifies our findings, demon- 589

strating their equivalence. In Appendix §A.1 we 590

explore the connection between the domain diver- 591

gence and drop metrics. Our study underscores 592

using both metrics, however, when only one is 593

available, the TD is the preferable choice. 594

7 Discussion 595

In this work, we study the DR challenge in modern 596

NLP models. To this end, we constructed a new DR 597

benchmark comprising various NLP tasks and do- 598

main shifts. We proposed shift-level and task-level 599

metrics for precise evaluation and benchmarked 600

numerous fine-tuned models and few-shot LLMs 601

while examining the effect of multiple factors. 602

Our extended discussion in Appendix §B (to be 603

included with an extra page) delves into the key 604

implications of our findings. Specifically, our com- 605

prehensive study highlights the need for a nuanced 606

approach to assessing robustness, and that current 607

research can paint a skewed picture. Finally, our 608

work underscores the ongoing relevance of Domain 609

Adaptation research in NLP and the importance of 610

developing robust, adaptable models capable of 611

handling the diverse nature of real-world data. 612
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8 Limitations613

L1. Prompt Engineering Noteworthy, we experi-614

mented with various prompts and task instruction615

revisions but saw no significant change. Following616

Gao et al. (2021), we also tried selecting demon-617

strations from the source domain most similar to618

the target test example using a pre-trained SBERT619

model (Reimers and Gurevych, 2019). However,620

this approach did not enhance performance and in-621

troduced biases, such as demonstrations from only622

one class, leading the LLM to classify the test ex-623

ample with this class.624

L2. Larger Models Although we examined a625

broad range of models of various sizes, we did626

not fine-tune models with more than one billion627

parameters. This decision stems from two reasons.628

The first is our belief that fine-tuned models should629

be relatively fast and compact. Otherwise, few-630

shot LLMs like those we examined in the study631

can be used. Second, the volume of experiments632

(including hyperparameter tuning) imposed prac-633

tical limitations, and examining larger fine-tuned634

models was not feasible due to their computational635

resource requirements. Nonetheless, we believe636

that the trends observed in the smaller fine-tuned637

models will likely persist, and we leave the exami-638

nation of larger models to future research.639

L3. Domain Adaptation Solutions Although a640

wide array of DA solutions exists to address the641

DR challenge and improve the OOD generalization642

of NLP models, our study specifically focuses on643

the diagnostic aspect. We aim to explore whether644

this challenge is prevalent in modern NLP models,645

and our findings confirm it is prevalent. We antic-646

ipate that future research could leverage our new647

DR benchmark for diagnostic purposes as well as648

for benchmarking DA solutions. Furthermore, we649

hope our study will facilitate further research in650

this vital area and inspire novel DA methods.651

L4. Text Generation Evaluation Text generation652

evaluation is an open research problem, and many653

techniques exist. Although we report BERTScore654

for simplicity, we did conduct a comprehensive655

analysis using various metrics (BLEU, ROUGE,656

METEOR, BLEURT, etc...) and observed simi-657

lar trends to our findings. We chose BERTScore658

because it captures semantic similarity and con-659

text. In addition, upon manual inspection of LLM660

outputs, we found them comparable or even supe-661

rior to the reference texts used for benchmarking.662

Yet, automatic evaluation with references is use- 663

ful for assessing the extent to which models learn 664

and capture the dataset distribution P (Y |X). This 665

perspective shifts the focus from human prefer- 666

ence to a more technical objective. Supporting this 667

viewpoint is the fact that increasing the number of 668

demonstrations also enhances the performance. 669
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1315
1316

A On The Relationship Between SS, TT, 1317

ST, SD and TD 1318

In this subsection, we expand the discussion from 1319

§3.1 and §3.2 about the Domain Robustness (DR) 1320

metrics introduced in our study. Our aim is to ad- 1321

dress and clarify any questions that might arise 1322

from the nuanced definitions presented earlier. Ad- 1323

ditionally, we offer a theoretical perspective on our 1324

findings discussed in the results subsection §6.4. 1325

In §3 we define the DR challenge as the inherent 1326

inability of an NLP model to generalize from the 1327

source domain to the target domains. This inability 1328

is closely linked to the in-domain and cross-domain 1329

performance of the model, and full characterization 1330

of it requires understanding the joint distribution 1331

of SS, TT and ST. These three performance mea- 1332

sures are random variables, with their variability 1333

stemming from the selection of source and target 1334

domains, the sampling of training and testing data 1335

from these domains, and the variabilities in the 1336

training and inference processes. 1337

Nonetheless, identifying these random variables 1338

and their relationships is not tractable without fur- 1339

ther assumptions. We hence introduce simple, prac- 1340

tical, and interpretable metrics that quantify the 1341

properties of the joint distribution: SS = E[SS], 1342

ST = E[ST] and ∆ = SS−ST. Although our def- 1343

initions rely on expectations, in practice, these met- 1344

rics are task-level statistics (averages) that estimate 1345

them. Intuitively, the average drop (∆) estimates 1346

the expected task-level performance degradation 1347

when shifting domains and the larger it is, the more 1348

severe the DR challenge of the model is. 1349

Other three metrics that are derived from the 1350

joint distribution and quantify performance degra- 1351

dation at the shift level are SD, TD, and IDD. A 1352

positive in-domain difference may indicate a shift 1353

to a harder domain, and in contrast to the SD and 1354

the TD, the IDD is not a genuine by-product of the 1355

DR challenge since it does not consider the ST. 1356

Based on our assertion that the joint distribution 1357

of SS, TT and ST is needed for characterizing the 1358

DR challenge, then it follows that we need at least 1359

two of the degradation metrics (SD, TD, and IDD) 1360

to do so. Moreover, the following trivial equation: 1361

SD = IDD + TD 1362

TD = IDD− SD 1363

presents how the three metrics are connected. Ac- 1364

cordingly, looking solely on one drop metric (SD 1365

or TD) can lead to incorrect conclusions, as large 1366

15



Source Target ST SS TT IDD SD TD Scenario

A A 90 90
B B 80 80
C C 70 70
A B 75 90 80 10 15 5 Classic
A C 75 90 70 20 15 -5 Observed
B A 95 80 90 -10 -15 -5 No Challenge
B C 65 80 70 10 15 5 Classic
C A 80 70 90 -20 -10 10 Unobserved
C B 75 70 80 -10 -5 5 Unobserved

Table 7: Toy example of domain shifts. The task-level
statistics are: SS = 80; ST = 77.5; ∆ = 2.5; WSD =
15; WTD = 10. Notice that the mean of SD is 2.5,
equal to that of TD and ∆. However, as many previous
studies have done, examining only the challenging shifts
(with IDD > 0, indicated by gray rows) and focusing on
SD alone can obscure the real DR state. In these shifts,
the mean SD is 15, which might be misconstrued due to
large IDD. Incorporating the TD into the analysis can
rectify this and avoid misinterpretations. Nonetheless,
the most comprehensive approach to understanding task-
level behavior is to consider all domains both as sources
and targets, as we do. In this case, the means of all
drops are equal: ∆ = E[SD] = E[TD].

drops might be attributed to the IDD. Notably,1367

when a range of experiments is conducted using all1368

domains for both training and testing, it follows1369

that E[SS] = E[TT], and from the linearity of the1370

expectation, ∆ = E[SD] = E[TD]. Importantly,1371

while SD and TD have equal expected values, they1372

are distinct random variables with differing vari-1373

ances. See the toy example in Table 7.1374

Although an accurate and truthful understanding1375

of the DR challenge requires considering both met-1376

rics, many works measure only the SD. However,1377

this is the least indicative option, as we empirically1378

show that the TD is a more robust estimator of the1379

average drop, ∆. This is because the TD tends to1380

have a lower extreme magnitude and variance than1381

the SD, and the IDD explains a larger portion of1382

the SD than the TD.1383

Below, we introduce a theorem that binds these1384

properties together and demonstrates their equiva-1385

lence. But even more, it reveals them to be equiv-1386

alent to the case when the ST is more akin to the1387

TT (e.g. when Cov[ST,TT] > Cov[ST,SS]). In1388

other words, if we believe that in our task the po-1389

tential of the model to perform well cross-domain1390

is determined by the difficulty of the target domain,1391

as in the case of challenge sets, then the reference1392

point for measuring a degradation should be the1393

TT and not the SS, and the TD would be indeed1394

the better drop metric.1395

Theorem 1. Let (S, T ) be different source and 1396

target domains sampled independently from the 1397

domain space, and let (SS,TT,ST) be RVs of their 1398

performances. The following are equivalent: 1399

(1) Cov[TT, ST] > Cov[SS,ST] 1400

(2) Cov[IDD,SD]2 > Cov[IDD,TD]2 1401

(3) Var[SD] > Var[TD] 1402

(4) E[|SD|] > E[|TD|] 1403

Remark 1. Although in Theorem 1 we employ fun- 1404

damental probability concepts such as expectation, 1405

variance, and covariance, our results utilize well- 1406

established and easily interpretable statistics: (1) 1407

We use the Pearson’s correlation between the ST 1408

and the SS or the TT; (2) We use the R-squared 1409

(R2) between the IDD and the SD or the TD. No- 1410

tably, the R-squared indicates the proportion of 1411

the variability in a dependent variable (SD) that 1412

is explained by the independent variable (IDD), 1413

serving as a gauge of the goodness of fit. We use 1414

Peasron’s correlation to understand the relationship 1415

of SS, TT, and ST because it considers the direc- 1416

tionality of the relationship, indicated by the sign. 1417

In contrast, here we use the R2 since it focuses 1418

on the degree, ignoring the sign; (3) We use the 1419

sample standard deviation of the drops; (4) We use 1420

the maximum drops (Worst SD or TD); While the 1421

concepts in Theorem 1 are not direct equivalents 1422

of these statistics, they are closely related and help 1423

elucidate our findings. 1424

Remark 2. Notice that, ST = TT − TD and 1425

SD = IDD + TD. Although we found a strong 1426

relationship between the ST and the TT (e.g., 1427

ρ = 0.95 in the fine-tuning QG task) or between 1428

the SD and the IDD (e.g., R2 = 0.96 in fine-tuning 1429

QA task), this does not imply that the TD is zero 1430

and no DR challenge exist. These strong correla- 1431

tions or high R2 values merely reflect the TD has 1432

a low variability. Its magnitude cannot be inferred 1433

from the correlation or R2 alone. 1434

Proof. We start be denoting x = Var[SS] > 0 and 1435

y = Cov[TT, ST]− Cov[SS,ST]. Notice that 1436

E[SS] = E[TT] and Var[SS] = Var[TT]. From 1437

the linearity of expectation, we get: 1438

E[SD] = E[SS]− E[ST] 1439

= E[TT]− E[ST] = E[TD] 1440
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(1) ⇔ (2): Since S and T are independent then1441

Cov[SS,TT] = 0. From the bilinearity of the co-1442

variance, we get:1443

Cov[IDD,SD] = Var[SS] + Cov[SS,TT]1444

−Cov[SS,ST] + Cov[TT,ST] = x+ y1445

Similarly, Cov[IDD, SD] = −x+ y.1446

If (1) holds, then y > 0. Since x and y are both1447

positive, then (x+ y)2 > (−x+ y)2 and (2) holds.1448

The same is true for the other direction: if (2) holds,1449

then y must be positive, and (1) holds.1450

(1) ⇔ (3): From the variance of a sum, we get:1451

Var[SD] = Var[SS]− 2Cov[ST,SS] + Var[ST]1452

Var[TD] = Var[TT]− 2Cov[ST,TT] + Var[ST]1453

If (1) holds, then:1454

Var[SD]−Var[TD] =1455

2(Cov[ST,TT]− Cov[ST, SS]) > 01456

and (3) holds. Invert the order to prove (3) ⇒ (1).1457

(1) ⇔ (4): Notice that:1458

E[SD2] = E[SS]2 − 2E[SS · ST] + E[ST]21459

E[TD2] = E[SS]2 − 2E[TT · ST] + E[ST]21460

Since E[SS] = E[TT], we get:1461

E[SD2]− E[TD2] = 2(E[TT · ST]− E[SS · ST])1462

From the definition of covariance:1463

Cov[ST,SS] = E[SS · ST]− E[SS]E[ST]1464

Cov[ST,TT] = E[TT · ST]− E[TT]E[ST]1465

1466

and therefore:1467

Cov[ST,TT]− Cov[ST,SS]1468

= E[TT · ST]− E[SS · ST]1469

Now, if (1) holds, then E[TT · ST] > E[SS · ST]1470

and E[SD2] > E[SD2], and (4) holds. To prove the1471

converse, reverse the implications.1472

A.1 Domain Divergence and Performance1473

Drops1474

Many past works have explored the connection be-1475

tween domain divergence, a notion of distance be-1476

tween two domains, and the performance drops1477

SA NLI AB QA QG AS TG

JS −Div 0.23 0.32 0.27 0.30 0.27 0.18 0.18

Fi
ne

-t
un

in
g ∆ 3.45 2.72 22.99 0.60 0.17 0.93 1.24

ρ(Div,SD) 0.43 0.02 0.53 -0.02 0.02 0.07 0.09
ρ(Div,TD) 0.73 0.16 0.54 0.02 0.19 0.15 0.38
ρ(IDD, SD) 0.53 0.91 0.51 0.86 0.98 0.98 0.96
ρ(IDD,TD) -0.27 0.01 -0.30 -0.29 -0.08 -0.61 -0.78

Fe
w

-s
ho

t

∆ 1.29 2.20 3.37 0.49 0.13 0.45 0.18
ρ(Div,SD) 0.00 0.02 0.01 -0.04 0.01 0.20 0.12
ρ(Div,TD) 0.12 0.16 0.19 -0.08 0.07 0.26 0.00
ρ(IDD, SD) 0.97 0.88 0.99 0.83 0.97 0.86 0.79
ρ(IDD,TD) -0.29 0.33 -0.64 0.01 -0.26 -0.71 0.07

Table 8: Correlations between domain divergence
(Jensen-Shannon) and performance drop metrics. We
first calculate the statistic for each model and then
present the mean statistic for the task. The first row
presents the average JS-divergence in the task. ρ(·, ·)
presents the Spearman’s correlation. We also present
the correlation between the IDD and the performance
drop for comparison.

(Remus, 2012; Ruder et al., 2017). This in- 1478

cludes theoretical works that upper-bound the cross- 1479

domain performance based on domain divergence 1480

(Ben-David et al., 2010; Redko et al., 2020), and 1481

empirical studies that have identified a degree of 1482

correlation between divergence metrics and SD (El- 1483

Sahar and Gallé, 2019; Kashyap et al., 2021). 1484

While divergence is indeed connected to cross- 1485

domain performance and thus to the performance 1486

drop, in practice, numerous other factors may influ- 1487

ence robustness and performance drops, for exam- 1488

ple, the IDD = SS−TT, which serves to quantify 1489

the transition to a more challenging domain and is 1490

not a byproduct of a domain shift or a divergence 1491

(because it is defined only by SS and TT, and not 1492

by ST). In this subsection, we aim to explore the 1493

correlation between domain divergence and the per- 1494

formance drop metrics introduced in this paper. 1495

Following Remus (2012) and Ruder et al. (2017), 1496

we decided to use the Jensen Shannon Divergence 1497

(JS-Div). This decision is based on findings from 1498

Kashyap et al. (2021), which demonstrated that, 1499

among various divergence metrics, the JS-Div 1500

typically shows the highest average correlation. We 1501

utilize word frequency distribution to compute the 1502

JS-Div, excluding stop-words and considering 1503

only the top 10k frequent words (Kashyap et al., 1504

2021). We then compute for each model and task 1505

the correlation between the divergence and the SD 1506

or TD across all pairs of domains. Table 8 presents 1507

the average Spearman’s correlations. 1508

Our results indicate that stronger correlations be- 1509

tween domain divergence and performance drops 1510

occur when the DR challenge is more severe. For 1511
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instance, these correlations are higher for fine-1512

tuned models compared to few-shot models, corre-1513

sponding with larger average drops (∆). Addition-1514

ally, we see stronger correlations in tasks such as1515

SA, AB, and TG, which also have larger drops.1516

In addition, we also present in Table 8 correla-1517

tions between the IDD and drops. We see that the1518

IDD is a strong predictor (larger magnitude) of1519

the SD, while the opposite holds for domain diver-1520

gence, which is a better predictor of the TD. This1521

is interesting because the domain divergence is the-1522

oretically linked to the cross-domain performance,1523

while the IDD is not, further suggesting that the1524

TD is a more reliable estimator of the DR.1525

Finally, DR studies typically measure robustness1526

by analyzing shifts only to synthetic, adversarial,1527

or challenge sets, which are known to exhibit high1528

IDD. These studies also tend to rely solely on the1529

SD, with high drops suggesting a lack of model1530

robustness. However, our findings raise concerns1531

about the validity of these assessments, which tend1532

to overestimate the severity of the DR challenge,1533

which is generally milder. A more balanced ap-1534

proach would analyze the TD as well, which could1535

help mitigate this bias.1536

A.2 Intuition for Domain Shift Scenarios1537

In §3.3 we introduce a framework for classifying1538

types of domain shifts into four scenariosL Classic1539

(SD > 0 and TD > 0), Observed (SD > 0 but1540

TD < 0), Unobserved (SD < 0 but TD > 0), and1541

No Challenge (SD < 0 and TD < 0).1542

While performance degradation with respect to1543

TT (positive TD) seems intuitive (as we do not1544

expect the model to perform better than it would1545

have had it been trained on data from the target1546

domain), one may wonder about the cases where1547

TD is negative. Specifically the Observed and No1548

Challenge scenarios which can be counter-intuitive.1549

In what follows, we will elaborate on these sce-1550

narios. First, notice that every scenario can occur1551

if the effect of the domain shift is noisy. Second,1552

consider the following motivation:1553

The No Challenge scenario (SS > ST and1554

TT > ST): Imagine a model trained on advanced1555

math problems (graduate level) being applied to1556

basic math problems (elementary level). In this1557

case, we anticipate a No Challenge scenario due to1558

the simplicity of elementary problems compared1559

to graduate-level problems (SS > ST) and the1560

model’s capability to understand complex graduate-1561

level content, which implies it can certainly handle1562

elementary-level problems (TT > ST). 1563

The Observed scenario (SS > ST > TT): 1564

Now consider the opposite direction. The model 1565

is trained on elementary math problems and ap- 1566

plied to graduate-level problems. Obviously, we 1567

anticipate SS to be larger than ST. In addition, 1568

within the set of graduate-level problems, there are 1569

some introductory or “warmup” problems (that the 1570

model trained on the elementary-level problem can 1571

solve). Despite the presence of simpler problems 1572

within the graduate-level set, the overall complexity 1573

of this domain can prevent the model from learn- 1574

ing even the elementary concepts when trained on 1575

graduate-level problems, and thus, ST > TT. 1576

Notice that, indeed, the Observed and No chal- 1577

lenge scenarios are the least common scenarios (see 1578

Figure 3). They occur mostly in the few-shot setups 1579

and can be attributed to the weaker effect of the 1580

domain shift on few-shot models. In addition, they 1581

also occur for FT models in the QA and QG tasks 1582

where the shift effect is also weak (see Table 5). 1583

B Extended Discussion 1584

In the section, we extend the discussion from §7 1585

and summarise and discuss the key implications of 1586

our work. 1587

On Domain Robustness Research As discussed 1588

in the paper, most past DR works focused solely 1589

on the observed performance degradation (SD) as 1590

a measure of the DR challenge. However, as as- 1591

serted in this paper, a full characterization of the 1592

DR challenge requires deriving the joint distribu- 1593

tion of SS, TT, and ST, which is not tractable. 1594

Therefore, we propose practical metrics to quantify 1595

the performance degradation: SD and TD. 1596

We need both metrics for a single domain shift 1597

because large drops might be attributed to the in- 1598

domain difference (IDD) and obscure the DR chal- 1599

lenge of the shift. Indeed, our findings indicate that 1600

a large SD commonly coexists with a large IDD. 1601

At the task level, the expected values of both drop 1602

metrics (SD and TD) are equal and correspond to 1603

the average drop (∆). However, we empirically 1604

find that the TD is a better estimator of the ∆. This 1605

implies that when examining a limited number of 1606

domain shifts, it is crucial to include the TD. 1607

In addition, we suggest that current research may 1608

paint an inaccurate picture of the state of domain 1609

robustness. This stems from two of our findings. 1610

First, performance degradation is larger when mea- 1611

sured with the SD than with the TD. Second, every 1612
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task has shifts with severe performance drops, even1613

when most shifts are not remotely as bad. This1614

means that past works focused only on the SD and1615

challenging shifts such as challenge sets and other1616

highly-curated datasets present a distorted image1617

of the actual state of DR, which is actually much1618

milder. Nevertheless, we acknowledge the impor-1619

tance of challenge sets as diagnostic tools.1620

On the Relevance of Fine-tuning Zero-shot and1621

few-shot LLMs can perform various tasks without1622

the additional cost of annotating data or training a1623

model. However, their usage can be very costly, as1624

they require massive computational resources, and1625

their latency can be extremely high. Additionally,1626

when the data cannot be sent to external servers be-1627

cause of privacy constraints or when the domain is1628

unique or specific (e.g., in national security settings1629

or human conversations), LLMs that cannot be fine-1630

tuned may be less effective. Moreover, with enough1631

task-specific labeled data that few-shot LLMs can1632

cheaply annotate, it is possible to develop a small,1633

high-performing, fine-tuned model (Calderon et al.,1634

2023; Gekhman et al., 2023a; Ormazabal et al.,1635

2023). For these reasons, fine-tuning a smaller1636

model that does not have few-shot capabilities is1637

still the de-facto standard (Levine et al., 2022).1638

Moreover, there is strong evidence that few-shot1639

language models underperform fine-tuned models1640

in specific domains that require expertise, such as1641

biomedical (Gutierrez et al., 2022) or when the1642

training size is large enough (Yuan et al., 2023).1643

This study also shows that task-specific fine-tuned1644

models outperform few-shot models in-domain, al-1645

though this gap may be closed soon. Nevertheless,1646

we also found that few-shot LLMs are more robust1647

to domain shifts and can outperform fine-tuned1648

models cross-domain. This calls for further Do-1649

main Adaptation research of fine-tuned models.1650

On the Relevance of Domain Adaptation Domain1651

Adaptation (DA) is a field that addresses solutions1652

to the DR problem. DA research considers various1653

setups, each having different assumptions on the1654

availability of data from the target domain at the1655

model training time (Blitzer et al., 2007; Plank and1656

van Noord, 2011; Ziser and Reichart, 2017, 2019;1657

Rotman and Reichart, 2019; Ben-David et al., 2020;1658

Ramponi and Plank, 2020; He et al., 2021b; Ben-1659

David et al., 2022a; Calderon et al., 2022; Volk1660

et al., 2022; Ge et al., 2023; Lang et al., 2023;1661

Liang et al., 2023; Veen et al., 2023).1662

Modern NLP models are believed to be robust1663

due to the pretraining process, where the models 1664

have seen a vast amount of diverse data from var- 1665

ious domains. Another reason could be data con- 1666

tamination (Magar and Schwartz, 2022; Shi et al., 1667

2023), i.e., pretraining on data from a downstream 1668

task improves the performance on it (Radford et al., 1669

2019; Han and Eisenstein, 2019; Gururangan et al., 1670

2020). This belief questions the relevance or the 1671

necessity of Domain Adaptation research. 1672

However, in this study, we demonstrated that 1673

the DR challenge still exists. We show that there 1674

is a performance drop due to domain shift in ev- 1675

ery task or model, and moreover, some shifts are 1676

remarkably challenging. We believe that DA re- 1677

search remains essential and relevant, particularly 1678

for NLP. To facilitate further research, we provide 1679

an NLP benchmark with natural topic shifts, which 1680

has some challenging setups for various NLP tasks. 1681

We hope this benchmark will be used to evaluate 1682

and improve DA methods. 1683

On Predicting Cross-domain Performance Esti- 1684

mating performance has an important impact on the 1685

deployment and maintenance of NLP models and 1686

related financial decisions (e.g., the need for anno- 1687

tation) (Van Asch and Daelemans, 2010; ElSahar 1688

and Gallé, 2019; Varshney et al., 2022; Ben-David 1689

et al., 2022b). We found that the TT is a better pre- 1690

dictor of the cross-domain performance (ST) than 1691

the SS. Accordingly, knowledge about the target 1692

domain is essential, and without it, estimators may 1693

struggle to predict cross-domain performance. In 1694

addition, previous studies have attempted to predict 1695

performance drops (specifically, only the SD) us- 1696

ing domain divergence (Kashyap et al., 2021). Our 1697

study (see A.1) suggests that domain divergence is 1698

a better predictor of the TD than the SD. 1699

C Additional Results 1700

C.1 Fine-tuned Model Size 1701

Larger fine-tuned models often lead to better per- 1702

formance, but the question remains: How does the 1703

model size affect its domain robustness? To address 1704

this question, we have conducted comprehensive 1705

experiments using models of different sizes within 1706

the same architectural families, as detailed in Ta- 1707

ble 3. In Figure 4, we compare the absolute per- 1708

formance of various model sizes within the same 1709

model families. Conversely, Figure 5 presents the 1710

performance drops for these models. 1711

Same as our finding in 6, we observe that also 1712

across all model sizes and all tasks (except QA 1713
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Figure 4: Fine-tuning performance for the seven tasks of different models with varying sizes. The plots present
the F1 and BertScore scores of the average in-domain (black line) and cross-domain (green line) performance. In
addition, the highest in-domain score (orange line) and the lowest cross-domain score (blue line) are displayed.
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Figure 5: Fine-tuning drops of DeBERTa and T5 families. The plots present: The Average Drop (green bars); The
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and QG), the average in-domain performance con-1714

sistently exceeds the average cross-domain perfor-1715

mance and the Worst SD surpasses the Worst TD.1716

When examining the influence of increasing1717

model size, we find that, as expected, larger mod-1718

els within the same architectural family improve1719

the absolute in-domain cross-domain performance.1720

Regarding the performance drop, the general trend1721

is that larger models reduce performance drops,1722

a trend that is more pronounced in classification1723

tasks. This indicates that utilizing larger models1724

could enhance not just the absolute performance,1725

but also the DR of these models.1726

C.2 Number of Few-shot Demonstrations1727

In contrast to fine-tuning, in few-shot setups there1728

is potentially a weaker anchoring of the model in1729

the source domain since it is not trained on domain-1730

specific data. Instead, the few-shot model is sim-1731

ply provided with a few demonstrations from the1732

source domain. We investigate whether increasing1733

the number of demonstrations strengthens this an-1734

choring, thereby potentially affecting the model’s1735

domain robustness. Figures 6 and 7 illustrate the1736

impact of the number of demonstrations on both1737

the absolute performance and performance drops1738

of few-shot models, respectively.1739

Unsurprisingly, when comparing zero-shot to1740

few-shot, we see that incorporating demonstrations1741

generally enhances performance for most tasks and1742

models. Nevertheless, in many instances, particu-1743

larly with GPT3.5, using just a single demonstra- 1744

tion surprisingly leads to poorer performance. This 1745

could imply that a single demonstration might in- 1746

troduce a bias detrimental to performance (e.g., the 1747

LLM predicts the same label as the demonstration). 1748

For tasks other than SA, we observe that a greater 1749

number of demonstrations tends to improve both 1750

in-domain and cross-domain performance. The 1751

influence on performance drops is less straightfor- 1752

ward - it appears that increasing the number of 1753

demonstrations may either exacerbate the drop in 1754

performance or have no significant effect. 1755

In conclusion, it is better to use a greater num- 1756

ber of demonstrations, with a preference for those 1757

originating from the target domain. 1758

C.3 Few-shot Model Size 1759

In this subsection, we explore the effect of the few- 1760

shot model size on DR. For this analysis, we ex- 1761

perimented with LLMs from the Orca and Llama2 1762

families. These families support 2 (Orca) and 3 1763

(Llama2) of different sizes, all of which have un- 1764

dergone similar training and alignment procedures. 1765

Due to hardware constraints, we were unable to 1766

load the Llama2-70b model. Therefore, all Llama2 1767

models were loaded with NF4 quantization, and 1768

computations were performed in 16-bit FP. 1769

Although the results are inconclusive, since in 1770

some tasks (QA and TG) the performance of the 1771

70b model sharply drops, we can still observe in 1772

Figure 8 that increasing the model size generally 1773
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Figure 6: Performance of GPT3.5 (top), NeuralChat (middle) and Mistral (bottom) as a function of the number
of few-shot demonstrations. The plots present the F1 and BertScore scores of the average in-domain (black line)
and cross-domain (green line) performance. In addition, the highest in-domain score (orange line) and the lowest
cross-domain score (blue line) are displayed.
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Figure 7: Performance drops of GPT3.5 (top), NeuralChat (middle) and Mistral (bottom) as a function of the number
of few-shot demonstrations. The plots present: The Average Drop (green line); The Worst SD (orange line); and the
Worst TD (blue line).

improves the absolute in-domain and cross-domain1774

performance. This behavior is not surprising and1775

is similar to what is observed in fine-tuning se-1776

tups. Regarding the drops presented in Figure 9,1777

the trends can be mixed. Yet, it appears that both1778

the average drops and the worst drops are decreas-1779

ing as the size increases.1780

C.4 Dataset Size 1781

Our next analysis aims to explore how the number 1782

of training samples from the source domain influ- 1783

ences the domain robustness. Figures 10 and 11 1784

depict the impact of the size of the source training 1785

dataset on the performance of models in classifica- 1786

tion and generation tasks, respectively. 1787
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Figure 8: Few-shot (4 demonstrations) performance for the seven tasks of Llama2-family models with varying sizes.
The plots present the F1 and BertScore scores of the average in-domain (black line) and cross-domain (green line)
performance. In addition, the highest in-domain score (orange line) and the lowest cross-domain score (blue line)
are displayed. Due to hardware constraints, all models were loaded with NF4 quantization, and computations were
performed in 16-bit FP.
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Figure 9: Few-shot (4 demonstrations) drops for the seven tasks of Llama2-family models with varying sizes. The
plots present: The Average Drop (green bars); The Worst SD (orange bars); and the Worst TD (blue bars). The
lines on the bars present the Average Worst SD and TD, i.e., for each source domain we first find the worst drop
and then take the average over all source domains. Due to hardware constraints, all models were loaded with NF4
quantization, and computations were performed in 16-bit FP.

As expected, an increase in the dataset size en-1788

hances performance in both in-domain and cross-1789

domain. For classification tasks, while an increase1790

in sample size tends to decrease the worst SD and1791

TD, it does not affect the average drop. On the1792

other hand, in generation tasks, the effect varies1793

across different tasks. Interestingly, in the TG and1794

AS tasks, we observe larger drops when increasing1795

the number of samples.1796

C.5 Epochs and Model Selection1797

In the standard fine-tuning process, a model is1798

trained until it no longer shows improvement on1799

the validation set and the model selected for de-1800

ployment is the one that attains the highest val-1801

idation score. However, this approach does not1802

guarantee optimal performance in the target do-1803

main, nor does it necessarily lead to the best model1804

selection. We therefore wish to measure how the1805

in-domain and cross-domain performance evolve1806

over the course of the fine-tuning procedure, across1807

different epochs.1808

As seen in Figure 12, in most cases, models1809

appear to reach convergence in terms of average1810

in-domain and cross-domain performance within1811

a few epochs. Yet, it is noteworthy that the lowest1812

cross-domain performance exhibits significant vari-1813

ability, undergoing substantial fluctuations during1814

the training process. A similar pattern is observed 1815

in the performance drops. 1816

These findings raise an interesting research ques- 1817

tion: Considering the significant variability of the 1818

cross-domain performance during the fine-tuning 1819

process, what is the optimal strategy for selecting 1820

a domain robust model? This question opens an 1821

interesting avenue for further research. 1822

C.6 Token Embeddings 1823

Every Transformer-based model employs an em- 1824

bedding matrix to transform tokens into continuous 1825

vectors. One strategy, known as ‘freezing’ this 1826

matrix, involves not updating its weights during 1827

fine-tuning (Ben-David et al., 2020). This tactic 1828

is motivated by the idea that, given the vocabulary 1829

differences across domains, maintaining the origi- 1830

nal embeddings might prevent the introduction of 1831

biases specific to the source domain. Consequently, 1832

this approach could potentially enhance the ability 1833

to generalize across different domains. 1834

The results, presented in Table 9, indicate that 1835

freezing embeddings during fine-tuning does not 1836

harm the in-domain performance while increasing 1837

the cross-domain performance by approximately 1838

0.5 points in SA and 0.2 points in NLI. Regarding 1839

the worst drops, in the SA task this approach re- 1840

markably improves the drops while in the NLI task, 1841
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Figure 10: Classification performance and drops of DistilBERT (first row), RoBERTa-B (second row), DeBERTa-XS
(third row) and DeBERTa-B (fourth row) as a function of the training dataset size of the source domain. In the
leftmost three columns: The F1 scores of the average performance in-domain (black line); cross-domain (green
line); The highest in-domain score (orange line); The lowest cross-domain score (blue line). In the rightmost three
columns: The Average Drop (green line); The Worst SD (orange line); and the Worst TD (blue line).
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Figure 11: Generation performance and drops of T5-S (first row), BART-B (second row) and BART-L (third row) as
a function of the training dataset size of the source domain. In the leftmost three columns: The BERTScores of the
average performance in-domain (black line); cross-domain (green line); The highest in-domain score (orange line);
The lowest cross-domain score (blue line). In the rightmost three columns: The Average Drop (green line); The
Worst SD (orange line); and the Worst TD (blue line).
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Figure 12: Performance and drops of RoBERTa-B (first row), RoBERT-L (second row), DeBERTa-B (third row) and
DeBERTa-L (fourth row) as a function of the epoch. In the leftmost three columns: The F1 scores of the average
performance in-domain (black line); cross-domain (green line); The highest in-domain score (orange line); The
lowest cross-domain score (blue line). In the rightmost three columns: The Average Drop (green line); The Worst
SD (orange line); and the Worst TD (blue line).

it slightly degrades them. These findings suggest1842

that freezing embeddings could serve as a simple1843

baseline for future research in domain adaptation.1844

Task SS ST ∆ WSD WTD

SA 95.13 91.67 3.46 14.16 19.18
+ FZ 95.13 92.17 2.96 10.04 12.99
NLI 85.76 83.13 2.63 6.51 5.03
+ FZ 85.60 83.33 2.27 7.04 5.18

Table 9: Results of RoBERTa-B in the SA and NLI tasks
under two scenarios: First, when the token embeddings
matrix is trainable (SA and NLI), and second, when
it is frozen (+ FZ). The columns are: SS - Average
In-domain Performance, ST - Average Cross-domain
Performance, ∆ - Average Drop, WSD - Worst SD and
WTD - Worst TD.

C.7 Prior Shift1845

When developing our benchmark, we decided to re-1846

strict it to several technical assumptions (described1847

in §D.2). These assumptions enable a precise and1848

Model Task SS ST ∆ WSD WTD

DistilBERT
QA 55.89 55.15 0.75 9.49 6.44
+ IB 53.76 54.13 -0.37 7.51 17.62

RoBERTa-B
QA 74.01 73.15 0.86 6.29 5.03
+ IB 70.66 69.96 0.71 15.67 24.42

RoBERTa-L
QA 82.01 81.72 0.29 6.01 2.53
+ IB 81.09 80.62 0.47 13.74 10.55

DeBERTa-XS
QA 73.41 72.36 1.06 6.93 5.16
+ IB 70.50 70.01 0.48 17.86 21.51

DeBERTa-S
QA 71.83 71.19 0.64 6.10 6.19
+ IB 66.10 67.00 -0.90 13.67 18.10

DeBERTa-B
QA 78.56 78.37 0.19 6.20 3.55
+ IB 78.57 78.21 0.36 14.95 10.00

DeBERTa-L
QA 74.54 74.10 0.44 6.29 2.72
+ IB 79.82 79.06 0.77 17.67 15.84

Table 10: Results of fine-tuned models in the QA task
under two scenarios: First, when all domains have
an identical ratio of questions without answers (QA),
and second, when the distribution of ’no answer’ ques-
tions varies between domains (+ IB - imbalanced). The
columns are: SS - Average In-domain Performance, ST -
Average Cross-domain Performance, ∆ - Average Drop,
WSD - Worst SD and WTD - Worst TD.

clear analysis in a “controlled experiment” manner. 1849

One of the assumptions is that the prior distribution 1850
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P (Y ) remains relatively consistent across various1851

domains. For classification tasks, every domain1852

has the same class distribution. In the QA task,1853

it translates to each domain having the same ratio1854

of ‘no answer’ examples (0.2). This subsection1855

explores what happens when this assumption does1856

not hold and a prior shift occurs. To this end, we1857

reconstruct the QA dataset by resampling exam-1858

ples from each domain, reflecting their original ‘no1859

answer’ distribution. Accordingly, the ratio of ‘no1860

answer’ examples can vary between 0.05 and 0.4.1861

In Table 10, we present the results of several1862

encoder-only models trained on the balanced and1863

imbalanced QA datasets. Our observations indicate1864

that while the impact on the average is relatively1865

low, the worst drops are much more prominent1866

when the prior shift occurs. We analyzed the results1867

and found a simple explanation for this.1868

The increased diversity across different domains1869

leads to greater variability in absolute performance.1870

For example, domains with a higher proportion of1871

‘no answer’ questions, which are typically more1872

challenging, tend to have a lower absolute in-1873

domain performance (or lower cross-domain per-1874

formance when shifting to those domains). This1875

increased variability leads to more pronounced dis-1876

crepancies between in-domain and cross-domain1877

performance, resulting in larger drops. Although1878

the average drop remains consistently low – be-1879

cause sometimes the shift is to an easier domain,1880

compensating drops when the shift is to a harder1881

domain – the worst drops are significantly more1882

pronounced. This experiment effectively illustrates1883

that as the shift becomes more prominent (affecting1884

both X and Y variables), there is a notable increase1885

in performance variability across domains, leading1886

to more substantial drops in some cases.1887

C.8 Scenarios Statistical Validation1888

In §3.3 we introduce four possible scenarios of1889

domain shift: Classic, Unobserved, Observed, and1890

No Challenge. Each scenario is determined by the1891

sign of the SD and the TD of a single domain1892

shift. We present the proportion of each scenario1893

in Figure 3, taking into account the results of all1894

domain shifts and all participating models. For1895

all few-shot models, we use 4-shots. Since we1896

conducted experiments with more shots in §C.2,1897

we also include results 8-shots for GPT3.5, Neural,1898

and Mistral, and 16-shots for GPT3.5.1899

We next validate whether the domain shift has1900

a statistically valid effect on the model perfor-1901

mance. Consider that if there is no effect, we 1902

would expect the order of (SS,TT, ST) to be 1903

distributed uniformly. There are six possible se- 1904

quences, where two belong to the Classic scenario 1905

(ST < SS < TT or ST < TT < SS), two belong 1906

to the No Challenge scenario (SS < TT < ST or 1907

TT < SS < ST), one belongs to the Observed 1908

scenario (TT < ST < SS), and one to the Un- 1909

observed scenario (SS < ST < TT). Under the 1910

assumption of uniform distribution, each sequence 1911

would have a probability of 1/6. 1912

We conduct a Chi-square test with a significance 1913

threshold of 0.05, applying a Bonferroni correc- 1914

tion for multiple comparisons (14 tests in total, 1915

adjusting the significance level to 0.0036). The 1916

test results show that all P-values are below 0.001, 1917

except for the QA task in few-shot models, which 1918

is at 0.004. These findings confirm that the effect 1919

of domain shift on model performance is statisti- 1920

cally significant. Notably, the results highlight that 1921

the demonstration domain used in few-shot models 1922

influences the cross-domain performance. 1923

D The Domain Robustness Benchmark: 1924

Technical Details 1925

D.1 Preprocessing 1926

Sentiment Analysis (SA) We removed links from 1927

texts since they were tokenized to dozens of tokens 1928

and significantly increased the input length. 1929

Question Answering (QA) We split the documents 1930

of each category (and their corresponding ques- 1931

tions) into train, development, and test sets. 1932

Question Generation (QG) The input is a concate- 1933

nation of the document and the answer, separated 1934

by the “answer:” token. 1935

Abstractive Summarization (AS) Since the sum- 1936

maries of the Webis-TLDR-17 dataset were auto- 1937

matically extracted and not verified, they may be 1938

of low quality. After manually examining dozens 1939

of them, we decided to use only summaries that 1940

have 15-60 words, and at least 75% of them appear 1941

in the post. 1942

Title Generation (TG) After manually examining 1943

examples, we found many reviewers misused the 1944

title option: They started writing a long review 1945

in the title and continued it in the body box. We 1946

therefore decided to use only titles that have 5- 1947

20 words, and at least 75% of them appear in the 1948

grounding review. 1949
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Motivation
Practical Cognitive Intrinsic Fairness

□

Generalisation type
Compositional Structural Cross Task Cross Language Cross Domain Robustness

□ □

Shift type
Covariate Label Full Assumed

□

Shift source
Naturally occuring Partitioned natural Generated shift Fully generated

□

Shift locus
Train–test Finetune train–test Pretrain–train Pretrain–test

□ □ □

Table 11: Categorization of our study according to the GenBench taxonomy (Hupkes et al., 2023).

D.2 Technical Domain Shift Assumptions1950

As discussed in §3, a domain can be characterized1951

by various attributes such as topic, style, syntax,1952

and medium. When one of these attributes changes,1953

the joint distribution P (X,Y ) changes, and a do-1954

main shift occurs. In developing our benchmark,1955

we grounded it in technical assumptions aimed at1956

facilitating a controlled experimental analysis, as1957

detailed §D.2. One of these assumptions is to fo-1958

cus on natural topic shifts (although other factors1959

are likely to change as well, such as the style and1960

syntax). This contrasts with other studies that ex-1961

plore synthetic shifts, such as adversarial attacks,1962

challenge sets, or transitions to datasets from dif-1963

ferent data-generating processes (e.g., having other1964

annotation guidelines).1965

Our rationale was to isolate and control a sin-1966

gle variable and facilitate a “controlled experiment”1967

approach, allowing for a precise and clear analy-1968

sis and characterization of the DR challenge. In1969

line with this objective, we have established the1970

following technical assumptions:1971

1. Our benchmark focuses on natural topic shift,1972

e.g., training an NLP model on book reviews1973

and applying it to kitchen product reviews.1974

In contrast to many other works (Hendrycks1975

et al., 2020; Miller et al., 2020; Koh et al.,1976

2021; Yuan et al., 2023), our natural topic1977

shift allows us to avoid complexities that arise1978

when the shift is a byproduct of construct-1979

ing a challenge set or transitioning to another1980

dataset that was constructed by a different data1981

generating process (e.g., different annotation1982

guidelines).1983

2. Each task consists of several domains, facil-1984

itating a more comprehensive and accurate 1985

estimation of average performance and perfor- 1986

mance degradation. 1987

3. For each task, all the domains have the same 1988

number of training examples, enabling its use 1989

as a source and as a target domain. Moreover, 1990

it helps mitigate (non-DR) biases that may 1991

arise when transitioning from a domain with 1992

sufficient training data to a domain with scarce 1993

labeled data. 1994

4. We try to reduce the effect of the prior shift, 1995

i.e., changes in P (Y ): For classification tasks, 1996

we create balanced datasets (for QA, same 1997

ratio of ‘no answer’), while for generation 1998

tasks, we sample examples with similar out- 1999

put length distributions. In Appendix §C.7, 2000

we discuss experiments exploring changes in 2001

P (Y ) upon a domain shift. We found that 2002

this variation leads to increased performance 2003

variability across domains, resulting in larger 2004

worst drops but minimally impacting the av- 2005

erage drop (because shifts to easier domains 2006

compensate for shifts to harder domains). 2007

While our assumptions simplify the domain shift, 2008

we argue that if the DR challenge exists under these 2009

assumptions (and it does), then it will definitely 2010

exist more severely when our assumptions are vio- 2011

lated and a complex shift occurs. Researchers who 2012

wish to focus on a specific type of prior shift (e.g., 2013

unbalanced domains) can easily use our publicly 2014

available benchmark to construct more challenging 2015

setups. 2016
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D.3 Domains for Few-shot Experiments2017

As mentioned in Section 5, due to the high costs2018

associated with API calls, we limit our presenta-2019

tion of few-shot results to only three domains for2020

each task, rather than encompassing all five or six2021

domains. In addition, we randomly sample 2002022

test examples for each target domain. This cost2023

constraint arises from the quadratic increase in the2024

number of experiments relative to the number of do-2025

mains (for instance, six domains lead to 36 domain-2026

shift setups, whereas three domains result in just 9).2027

Additionally, the extended input length, a conse-2028

quence of augmenting it with multiple demonstra-2029

tions, also contributes to this decision. For a fair2030

comparison, we present results for the same three2031

domains for both few-shot and fine-tuned models2032

in Table 5. The specific domains we focus on are:2033

• SA - Airline, Beauty, Books.2034

• NLI - Fiction, Telephone, Traval.2035

• AB - Device, Laptops, MAMs.2036

• QA - History, Science, Society.2037

• QG - Geography, History, Science.2038

• AS - Fitness, LoL, Relationships.2039

• TG - Beauty, Books, DVDs.2040

E Implementation Details2041

Our experiments are conducted in the PyTorch and2042

HuggingFace frameworks and optimize the fine-2043

tuning models with the AdamW optimizer. An2044

exception is the OpenAI’s models, which were run2045

via their paid API service and their results are cor-2046

rect as of January 2023. The data, results and code2047

are provided in the project repository.2048

Hyperparameter Tuning For each model and2049

source domain, we initially conduct hyperparam-2050

eter tuning, selecting the optimal set based on the2051

source domain’s validation set. Subsequently, we2052

evaluate the model across all target domains. In2053

the hyperparameter tuning phase for classification2054

models, we experiment with the following learn-2055

ing rates: [1e-5, 5e-5, 1e-4] and batch sizes: [4,2056

8, 16, 64] and 10 epochs. For generation models,2057

we explore learning rates of [1e-3, 5e-4, 1e-4, 5e-5,2058

1e-5], use a batch size of 64 and 15 epochs.2059

Instructions and Demonstrations For each test 2060

example from a target domain, the LLM input in- 2061

cludes a system prompt detailing the task instruc- 2062

tion, and a user prompt presenting the example. In 2063

few-shot setups, we augment this with additional 2064

demonstrations (input and target) from the source 2065

domain. This involves adding extra user-assistant 2066

turns: the user turn shows the demonstration input, 2067

and the assistant turns present the demonstration 2068

target (label). We randomly select demonstrations 2069

from the source domain’s training set for each test. 2070

In classification tasks, for N > 1-shots the prompt 2071

includes demonstrations of all labels. Task instruc- 2072

tions and prompt examples are in Appendix E.1. In 2073

addition, to not exceed the maximum input length 2074

of several models, we truncate the maximum length 2075

of each demonstration to 256 tokens (but no trun- 2076

cation was applied to the test example). Please see 2077

L2 in §8 for other prompting attempts. 2078

The classification results of few-shot LLMs are 2079

based on “long-form generation”. Notice that we 2080

mentioned the labels in the prompt and asked the 2081

LLM to respond only with them (see examples 2082

§E.1). The LLMs we used in our study underwent 2083

SFT with instructions and, therefore, almost always 2084

followed our instructions and responded with a la- 2085

bel (we also used temperature=0.0). When they did 2086

not–such as when they began generating an expla- 2087

nation before or after stating the label–we extracted 2088

the first mentioned label (lowercase). We found la- 2089

bels 100% of the time (except for CodeLlama-70b). 2090

E.1 Prompts 2091

Prompt for SA (Sentiment Analysis)

SYSTEM
You will be provided with a review and
asked to classify its sentiment.
You can only response "negative" or
"positive".

USER
Review:
[text]

2092

Prompt for NLI (Multi-NLI)

SYSTEM
You will be provided with a premise and
a hypothesis and asked to classify their

2093
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relationship.
You can only response "entailment",
"neutral" or "contradiction".

USER
Premise:
[premise]

Hypothesis:
[hypothesis]

2094

Prompt for AB (ABSA)

SYSTEM
You will be provided with a sequence of
words and asked to extract the aspect and
the polarity of each word.
You can only response with a sequence of
tags corresponding to each word. The tags
are: "O", "T-POS", "T-NEG", "T-NEU",
where "O" indicates a non aspect word. For
example, the answer of: "The good boy", is:
"O O T-POS".

USER
Text:
[text]

2095

Prompt for QA (SQuAD v2)

SYSTEM
You will be provided with a context and a
question and asked to extract the answer
from the context.
You can only response with a copied span
of text from the context. If there is no
answer, response: "No answer".

USER
Context:
[context]

Question:
[question]

2096

Prompt for QG (Question Generation)

SYSTEM
You will be provided with a context and an
answer, and asked to generate a question
that would lead to the answer.
You can only response with the question.

USER
Context:
[context]

Answer:
[answer]

2097

Prompt for AS (TL;DR Abstractive Sum-
marization)

SYSTEM
You will be provided with a reddit post and
asked to generate a short TL;DR summary
of the post that the Redditor might have
written at the end of the post.
You can only response with the summary.

USER
Post:
[text]

2098

Prompt for TG (Title Generation)

SYSTEM
You will be provided with a product review
and asked to generate a title that the
reviewer might have given to the review.
You can only response with the title.

USER
Review:
[text]

2099

Example of 2-shot SA prompt

SYSTEM
You will be provided with a review and
asked to classify its sentiment.
You can only response "negative" or
"positive".

2100
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USER
Review:
[text1]

ASSISTANT
negative

USER
Review:
[text2]

ASSISTANT
positive

USER
Review:
[text]

2101
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