
Impact of Decentralized Learning on Player Utilities in Stackelberg Games

Kate Donahue * 1 Nicole Immorlica * 2 Meena Jagadeesan * 3 Brendan Lucier * 2 Aleksandrs Slivkins * 2

Abstract
When deployed in the world, a learning agent
such as a recommender system or a chatbot often
repeatedly interacts with another learning agent
(such as a user) over time. In many such two-
agent systems, each agent learns separately and
the rewards of the two agents are not perfectly
aligned. To better understand such cases, we ex-
amine the learning dynamics of the two-agent
system and the implications for each agent’s ob-
jective. We model these systems as Stackelberg
games with decentralized learning and show that
standard regret benchmarks (such as Stackelberg
equilibrium payoffs) result in worst-case linear
regret for at least one player. To better cap-
ture these systems, we construct a relaxed re-
gret benchmark that is tolerant to small learn-
ing errors by agents. We show that standard
learning algorithms fail to provide sublinear re-
gret, and we develop algorithms to achieve near-
optimal O(T 2/3) regret for both players with re-
spect to these benchmarks. We further design re-
laxed environments under which faster learning
(O(
√
T )) is possible. Altogether, our results take

a step towards assessing how two-agent interac-
tions in sequential and decentralized learning en-
vironments affect the utility of both agents.1

1. Introduction
When learning agents such as recommender systems or
chatbots are deployed into the world, these learning agents
often repeatedly interact with other learning agents (such as
humans). For example, a recommender system—through
repeated interactions with a user—learns which content to
suggest to the user, while the user simultaneously learns

*Authors in alphabetical order 1Cornell University 2Microsoft
Research 3University of California, Berkeley. Correspondence to:
Kate Donahue <kdonahue@cs.cornell.edu>, Meena Jagadeesan
<mjagadeesan@berkeley.edu>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024
by the author(s).

1Full version: arxiv.org/abs/2403.00188.

their own preferences over content (Example A.2). As an-
other example, a chatbot such as ChatGPT—during a chat
session—can iteratively refine its generated content to the
user’s stylistic preferences, while the user (or prompt en-
gineering agent) simultaneously learns how to best interact
with the chatbot (Example A.1).

These two-agent systems—among many others—share the
following structural features. The environments are decen-
tralized (both agents operate autonomously, without central
coordination of their actions). Furthermore, the environ-
ments are sequential (one agent always chooses their ac-
tion first2) and misaligned (the agents can obtain different
utilities for the same pair of actions3). Finally, the envi-
ronments exhibit learning (both agents learn from repeated
interactions about which actions to take). For such two-
agent environments, core questions of interest include: how
quickly does this two-agent system learn, and what are the
implications for each agent’s objective?

In the absence of learning, the interaction between mis-
aligned agents taking sequential actions is formalized by
Stackelberg games. In this setting, the leader chooses an
action first and the follower chooses an action to respond.
The two agents are allowed to have distinct utility functions
over pairs of actions. The standard benchmark is the Stack-
elberg equilibrium, where the leader picks the best action
they can, assuming that the follower will pick their own
best response. However, this classical solution concept is
tailored to the full-information setting where both players
know their own utilities and the leader knows how the fol-
lower will best respond; in fact, the static Stackelberg game
framework breaks down when agents instead must learn
these utilities from noisy feedback.

Our focus is on a decentralized Stackelberg learning envi-
ronment. In this setting, the leader and the follower repeat-
edly interact and each make decisions about which actions
to take, where each agent only observes their own real-
ized stochastic rewards. In this environment, it is natural
to model each player’s learning process as a multi-armed

2E.g., a recommender system recommends a slate of items and
the user picks among them; in a chatbot session, the user picks a
prompt that the LLM responds to.

3Misalignment could arise from fundamental differences in
agent preferences or from misspecification.

1

https://arxiv.org/abs/2403.00188


Impact of Decentralized Learning on Player Utilities in Stackelberg Games

bandit algorithm4 which learns over time which arms (ac-
tions) to pull. A unique feature of this sequential two-
player learning environment is that agents must learn in two
separate ways—first, both agents learn their own (fixed)
preferences from stochastic observations, and secondly, the
leader needs to learn and adapt to the follower’s (evolving)
responses to the leader’s actions—which complicates the
design of learning algorithms.

In this paper, we initiate the study of how this learning en-
vironment impacts both the leader and follower’s utility,
motivated by how both objectives are of societal interest
in natural real-world settings (see Example A.1 and Exam-
ple A.2). Rather than only focusing on the regret of the
leader as is typical in learning in Stackelberg games, we
thus examine the maximum regret of the two agents. Our
main contributions are to design appropriate benchmarks
for each agent and to construct algorithms which achieve
near-optimal regret against these benchmarks. Our results
apply to the most general setting which allows for arbitrary
relationships between the two player’s utilities.

• Linear regret for Stackelberg benchmarks: We first
show that the player utilities in the Stackelberg equi-
librium are fundamentally unachievable and necessarily
lead to linear regret for at least one agent (Theorem 3.1).

• Relaxed benchmarks: The possibility of linear re-
gret motivates us to design relaxed benchmarks which
are more tolerant to the other agent being suboptimal.
We thus define γ-tolerant benchmarks (Definition 4.1),
which account for incomplete learning: the benchmark
captures an agent’s worst-case utility if the other agent is
up to γ-suboptimal.5

• Regret bounds: Using the γ-tolerant benchmarks, we
construct algorithms for the leader and follower that
achieve O(T 2/3) regret (Theorem 4.4). Surprisingly, this
dependence on T is unavoidable, and any pair of algo-
rithms achieves Ω(T 2/3) regret (Theorem 4.5). Nonethe-
less, under relaxed settings—either with a weaker bench-
mark or when players agree on which pairs of actions
are meaningfully different —we show that faster learn-
ing (i.e., O(

√
T ) regret) is possible (Section 5).

From an algorithmic perspective, our results provide in-
sight into which bandit algorithms for the leader allow for
low regret for both players. Out-of-box stochastic algo-
rithms do not provide this guarantee: both agents choos-
ing ExploreThenCommit can lead to linear regret even
for the γ-tolerant benchmarks (Proposition 4.3). The in-
tuition is that since the follower’s actions can change be-
tween time steps, the leader is not operating in a stochas-

4See Slivkins (2019); Lattimore and Szepesvári (2020) for
textbook treatments of multi-armed bandits.

5Section 4 describes our benchmark and γ in greater detail,
and Section 1.1 compares our benchmarks to prior work.

tic environment; as a result, the follower’s exploration
phase can distort the leader’s learning. This motivates
us to design algorithms where the leader waits for the
follower to partially converge before starting to learn:
ExploreThenCommitThrowOut (Algorithm 2) and
ExploreThenUCB (Algorithm 3). The more sophisti-
cated of these two algorithms (ExploreThenUCB) guar-
antees a T 2/3 regret bound when the follower applies any
algorithm with certain properties (i.e., high-probability in-
stantaneous regret bounds) (Theorem 4.4). We then con-
sider two relaxed environments where the leader no longer
needs to worry about being overly distorted by the follower;
in these environments, the leader can start learning be-
fore the follower has partially converged, which enables
O(
√
T ) regret bounds (Theorems 5.1 and 5.3).

More broadly, our work takes a step towards assessing the
utility of both learning agents in decentralized, misaligned
environments. Our model and results capture the general
setting where the player utilities to be arbitrarily related,
where players might not even agree upon which pairs of
actions give similar or different rewards. This motivated
us to design benchmarks which are tolerant to small errors
in the other player. We hope that our benchmarks and al-
gorithms serve as a starting point for assessing when two-
agent learning systems in misaligned environments can en-
sure high utility for both agents.

1.1. Related Work

Most closely related is the work on learning in Stackelberg
games (SGs) where both players incur stochastic rewards.
Bai et al. (2021); Gan et al. (2023) focus on the central-
ized setting where the learner controls the actions and ob-
serves the rewards of both players; in contrast, we study a
decentralized setting where each player controls their own
actions and only observes their own rewards. Nonethe-
less, the benchmarks proposed in these papers are related to
the γ-tolerant benchmarks that we consider, but with some
key differences. For the leader’s utility, their benchmark is
equivalent to our γ-tolerant benchmark with a fixed value
of ϵ (rather than an inf over ϵ ≤ γ with a regularizer).
For the follower’s utility, their benchmark only ensures ϵ-
optimality with respect to the leader’s selected action; in
contrast, we consider a different style of follower bench-
mark that is more conceptually similar to the benchmark
for the leader. Finally, we study regret, whereas they study
the speed of convergence.

Several papers study decentralized online learning in SGs.
Camara et al. (2020); Collina et al. (2023b) posit that the
follower runs a no-counterfactual-internal-regret algorithm
and design no-regret algorithms for the leader. However,
they assume strong alignment between the players’ rewards
Camara et al. (2020) requires that a follower choosing an ϵ-

2



Impact of Decentralized Learning on Player Utilities in Stackelberg Games

suboptimal action only results in an O(ϵ) utility loss for the
leader.6 Collina et al. (2023b) partially relax this assump-
tion, but still require the existence of stable actions for the
leader. In contrast, we do not place any alignment condi-
tions: in fact, misalignement is the driver of our linear re-
gret result for the original Stackelberg benchmarks (Theo-
rem 3.1). Other differences are that we focus on stochastic,
rather than adversarial, rewards, and our benchmark is in-
dependent of the follower’s choice of learning algorithm.7

Haghtalab et al. (2023) take a different perspective and con-
sider the follower running a calibrated algorithm. They
design a leader algorithm which waits for the follower to
partially converge, and show that the Stackelberg value is
obtained in the limit as T → ∞. In contrast, we focus on
instance-independent regret bounds for a fixed time hori-
zon T , which requires us to relax the benchmark. Other dif-
ferences are we focus on stochastic, rather than determinis-
tic, rewards, we assume the follower observes the leader’s
action, and we consider the follower’s utility in addition to
the leader’s utility.

Our work also connects with a vast literature on learning in
SGs and interacting learners (see Appendix A.2).

2. Model and assumptions
In this section we describe our formal model. We first de-
fine an instance I = (A,B, v1, v2) in our setup, which cap-
tures the setup of the underlying static Stackelberg game.
Let A be a finite action set for the leader (Player 1) and let
B be a finite action set for the follower (Player 2). Let
vi(a, b) ∈ [0, 1] denote Player i’s value (i.e., mean re-
ward) for the leader choosing a and the follower choos-
ing b. The Stackelberg equilibrium takes the following
form. Let b∗(a) be the best-response with respect to the fol-
lower’s rewards:8 b∗(a) = argmaxb∈Bv2(a, b). The Stack-
elberg equilibrium (a∗, b∗) is defined to be the best action
the leader can take, assuming that the follower will exactly
best-respond:

a∗ = argmaxa∈Av1(a, b
∗(a)) and b∗ = b∗(a∗).

For simplicity, we restrict both players to pure strategies.

We move from the static Stackelberg Equilibrium environ-
ment to a repeated dynamic environment which we call a
decentralized Stackelberg game (DSG). A DSG operates
over T time steps where each player selects actions using
a multi-armed bandit algorithm. A DSG is sequential: at
each time step t, the leader chooses an action at ∈ A and

6See Assumption 2 in Camara et al. (2020). Appendix D con-
siders some relaxations, but they lead to Ω(T ) worst-case regret.

7However, our regret bounds assume that the follower’s algo-
rithm gracefully improves over time, see Section 2.3.

8In case of ties in follower utility, b∗(a) is the best-response
with lowest leader utility.

then the follower chooses an bt ∈ B. A DSG is also de-
centralized: each player can observe their own stochastic
rewards but not thestochastic rewards of the other player.
We measure regret for each player i by their cumulative
reward across all time steps relative to a benchmark.

2.1. Interaction Between Players

In a DSG, the interaction between the leader and follower
proceeds as follows. The leader chooses an algorithm ALG1

mapping their history (formalized below) of observed ac-
tions and rewards to a distributions over actions A, and the
follower similarly chooses an algorithm ALG2 mapping the
leader’s action and their history to a distribution over ac-
tions B. After the players select algorithms, the interaction
between the leader and the follower proceeds as follows at
each time step t:

1. The leader chooses action at ∼ ALG1(H1,t) as a func-
tion of their history H1,t and reveals at to the follower.

2. After observing at, the follower chooses action bt ∼
ALG2(at, H2,t) as a function of their history H2,t.

3. Players 1 and 2 incur stochastic rewards r1,t(at, bt) ∼
N (v1(at, bt), 1) and r2,t(at, bt) ∼ N (v2(at, bt), 1).
The noise distribution is Gaussian with unit variance9.

This interaction captures that the players are dynamic in
their learning: in particular, this framework is sufficiently
general to capture a wide range of learning strategies.
However, we do not study the meta-game where agents
strategically pick learning algorithms10. We believe that
this model captures many real-world environments such as
user-chatbot interactions and recommender system-user in-
teractions, where agents learn about their incurred rewards
from past interactions even if they do not actively opti-
mize the higher-order manner in which they learn. See
Appendix A.1 (Example A.1 and Example A.2) for more
details of how these real-world examples are captured by
our model.

Information structures. Having described how the play-
ers interact, we next discuss the players’ history, which
further enforces decentralization. Each player i can only
observe their own reward ri,t(at, bt) (and cannot observe
the reward of the other player). In a strongly decentral-
ized Stackelberg game (StrongDSG), the follower can ob-
serve the leader’s action at, but the leader cannot observe
the follower’s action bt, whereas in a weakly decentralized
Stackelberg game (WeakDSG), the leader can additionally
observe the follower’s action bt. Notation for each player’s

9We assume the reward distributions are independent across
time steps and players. We make the Gaussian assumption for
simplicity, and we expect that our results would likely extend to
subgaussian Bernoulli distributions.

10See (Harris et al., 2022; Kolumbus and Nisan, 2022) for ex-
amples of works studying the meta-game.

3



Impact of Decentralized Learning on Player Utilities in Stackelberg Games

histories are presented in Appendix B.4.

Note that a strongly decentralized Stackelberg game
(StrongDSG) restricts what information the leader has ac-
cess to, and is thus more challenging than a weakly decen-
tralized Stackelberg game (WeakDSG). One motivation for
a strongly decentralized Stackelberg game is interpretabil-
ity: the leader and follower may be taking actions in spaces
that are not mutually understandable (e.g. a chatbot’s repre-
sentation of human preferences may not be interpretable).
Most of our positive results (i.e., algorithm constructions)
focus on StrongDSGs, whereas our negative results apply
to both StrongDSGs and WeakDSGs.

2.2. Measuring Regret

As is typical in multi-armed bandits, we measure perfor-
mance by the regret of each player with respect to a bench-
mark, where higher benchmarks make learning more chal-
lenging (further detail on benchmarks is in Sections 3 and
4). For each player i ∈ {1, 2}, given a benchmark βi, we
define the (expected) regret of Player i on instance I to be:

Ri(T ; I) = βi · T −

(
T∑

t=1

E[ri,t(at, bt)]

)
where the expectation is over randomness in the algorithm
and in the stochastic rewards. Given action sets A and B,
Ri(T ) denotes the worst-case regret across all value func-
tions v1 and v2 on instances of the form I = (A,B, v1, v2).

Our goal is to obtain sublinear worst-case regret for both
players: that is, we will assess max(R1(T ), R2(T )). We
note that this challenging goal is a departure from previ-
ous work which has typically focused solely on sublinear
regret for the leader (see Section 1.1). Our motivation for
selecting this objective is that (a) a human could be either
the leader or the follower, and (b) the societal welfare may
demand that we care about the utility of both the leader and
the follower (discussed further in Appendix A.1).

2.3. Assumptions on the Follower’s Algorithm ALG2

When we analyze regret in Sections 4-5, many of our con-
structions do not require that the follower run a particu-
lar algorithm, but instead allow the follower to run any al-
gorithm with sufficiently good performance along certain
fine-grained performance metrics that capture how an al-
gorithm’s performance gracefully improves over time.

These metrics measure the follower’s errors while learning,
defined by the difference between v2(at, bt) (the follower’s
mean reward) and the maxb∈B v2(at, b) (the best mean re-
ward that the follower could achieve for at). This measure
of suboptimality maxb∈B v2(at, b) − v2(at, bt) captures
how well the follower is best-responding to the leader’s ac-
tion. This differs from our main notion of regret in Section

2.2, which captures the follower’s level of discontent rela-
tive to a fixed benchmark.

For intuition, we first describe these performance metrics—
high-probability instantaneous regret and high-probability
anytime regret—for a typical single-bandit learner which
acts in isolation. High-probability instantaneous regret
measures the suboptimality of the arms that the algorithm
pick arms at each time step. A high-probability anytime
regret bound guarantees that the regret bound for the algo-
rithm holds with high probability at every time step t.

In a DSG, we will require similar properties to hold for the
follower’s algorithm ALG2, but we take account how the
algorithm ALG2 depends on the action at which is selected
by the leader’s algorithm ALG1. Let nt+1(a) be the number
of times that arm a has been pulled up prior to the (t+1)th
time step. For t ∈ [T ] and a ∈ A, let GInst

a,t denote the event

v2(at, bt) ≥ max
b∈B

v2(at, b)− g(nt+1(a) + 1, T,B)

and let GAnyt
a,t denote the event

∑
t′≤t|at′=a

v2(a, bt′) ≥

 ∑
t′≤t|at′=a

max
b∈B

v2(a, b)

− h∗,

where h∗ = h(nt+1(a), T,B).

An algorithm ALG2 satisfies a high-probability instan-
taneous regret bound of g if for any ALG1 chosen by
the leader and any I = (A,B, v1, v2), it holds that
P[∩t∈[T ],a∈AG

Inst
a,t ] ≥ 1− |A| · T−3, where the probability

captures randomness in the algorithm and in the stochas-
tic rewards. An algorithm ALG2 satisfies a high-probability
anytime regret bound of h if for any ALG1 chosen by the
leader and any instance I = (A,B, v1, v2), it holds that
P[∩t∈[T ],a∈AG

Anyt
a,t ] ≥ 1 − |A| · T−3, where the random-

ness is over the algorithm.

In Appendix G, we discuss the relationship between these
metrics, the performance of standard algorithms for the fol-
lower on these metrics, and algorithms for the leader for
more general g, h. As an example, if the follower runs
a separate instantiation of ActiveArmElimination
(Algorithm 7) on every arm a ∈ A, this satis-
fies high-probability instantaneous regret g(t, T,B) =
O(
√
|B| · log T/t) and high-probability anytime regret

h(t, T,B) = O(
√
|B| · t · log T ) (Proposition G.2).

3. Stackelberg value is unachievable
In this section, we show that the natural benchmark given
by the players’ utilities in the underlying static Stackel-
berg game is unachievable. Formally, given an instance
I = (A,B, v1, v2), let (a∗, b∗) be the Stackelberg equilib-
rium. We define the Stackelberg benchmarks to be each

4



Impact of Decentralized Learning on Player Utilities in Stackelberg Games

player’s utility at (a∗, b∗), that is: βorig
1 = v1(a

∗, b∗) and
βorig
2 = v2(a

∗, b∗) (where the superscript “orig” denotes
that this is the benchmark for original offline Stackelberg
games). The following result shows that it is not possible
to simultaneously achieve sublinear regret for both players
with respect to the Stackelberg benchmarks.
Theorem 3.1. For both StrongDSGs and WeakDSGs, for
any algorithms ALG1 and ALG2, there exists an instance I∗
with |A| = |B| = 2 where at least one of the players incurs
linear regret with respect to the Stackleberg benchmarks
βorig
1 and βorig

2 , that is: max(R1(T ; I∗), R2(T ; I∗)) =
Ω(T ).

Proof sketch of Theorem 3.1. It suffices to prove this lower
bound in a centralized environment where a single learner
chooses action pairs (a, b) and observes rewards for both
players (Lemma C.1). We show that on I and Ĩ in Table
1 (with δ = O(1/

√
T )), at least one player incurs linear

regret on at least one instance. The small value of δ means
that the algorithm fails to distinguish between these in-
stances with constant probability. Nonetheless, the bench-
marks are different: on instance I, (a∗, b∗) = (a1, b1),
βorig
1 = 0.6 and βorig

2 = δ > 0; on instance Ĩ, (a∗, b∗) =

(a2, b1), β
orig
1 = 0.5, and βorig

2 = 0.6. Intuitively, when
the algorithm fails to distinguish between these instances,
then it must choose the same distribution over A × B on
both I and Ĩ. However, any such distribution either incurs
constant loss for the leader on I or constant loss for the
follower on Ĩ. See Appendix C.4 for a full proof.

The linear regret in Theorem 3.1 is driven by misalignment
between the leader’s utilities and the follower’s utilities:
small differences in the follower’s utilities can lead to ar-
bitrarily large differences in the leader’s utilities. As a re-
sult, the suboptimal actions that the follower takes while
learning are amplified in the leader’s regret. This motivates
the design of relaxed benchmarks that take into account the
suboptimal actions players inevitably take while learning.

b1 b2
a1 (0.6, δ) (0.2, *)
a2 (0.5, 0.6) (0.4, 0.4)

Table 1. A family of instances with free parameter v2(a1, b2) =
*. We focus on two instances I with mean rewards v and Ĩ with
mean rewards ṽ, where v2(a1, b2) = 0 and ṽ2(a1, b2) = 2δ. For
δ sufficiently small, the instances I and Ĩ are hard to distinguish
and turn out to imply a Ω(T ) lower bound on regret with respect
to the original Stackelberg benchmarks (Theorem 3.1).

4. γ-tolerant benchmark and regret bounds
Having shown that the Stackelberg equilibrium is unattain-
able, we next propose a novel benchmark and give tight

sublinear regret bounds with respect to it.

4.1. γ-tolerant Benchmark

Our benchmark is related to the Stackelberg Equilibrium,
but adapted to account for the fact that both players are
learning and cannot be counted on to exactly best respond.
This benchmark depends on I = (A,B, v1, v2) but is in-
dependent of the learning algorithms for either player. At
a high-level, we construct approximate best response sets
for each player and use these sets to construct more real-
istic benchmarks; within these sets, our benchmark will be
tolerant to suboptimality with respect to the other player.

If the leader takes action a, then we define the follower’s
ϵ-best-response set Bϵ(a) as:

Bϵ(a) := {b ∈ B | v2(a, b) ≥ max
b′∈B

v2(a, b
′)− ϵ}.

Defining the ϵ-best response set Aϵ for the leader is more
subtle. Informally, we define this set to include any ac-
tion a ∈ A which has “any chance” of doing at least
as well as the the leader’s best action if the follower is
ϵ-best responding. Specifically, this includes actions a
where some action b ∈ Bϵ(a) achieves utility close to
maxa′∈A minb′∈Bϵ(a) v1(a

′, b′) for the leader:11

Aϵ = {a ∈ A | max
b∈Bϵ(a)

v1(a, b) ≥ max
a′∈A

min
b′∈Bϵ(a′)

v1(a
′, b′)−ϵ}.

Observe that the set Bϵ(a) always contains the follower’s
best-response set

{
b ∈ argmaxb′∈Bv1(a, b

′)
}

, and further-
more approaches this best-response set in the limit as ϵ →
0; similarly, the set Aϵ always contains the leader’s best-
response set

{
a ∈ argmaxa′∈Av1(a

′, b∗(a′))
}

where ties
are broken in favor of the follower, and furthermore ap-
proaches this best-response set in the limit as ϵ→ 0.

We use these ϵ-best-response sets to create the relaxed
benchmarks for the leader and follower. In these bench-
marks, we add an ϵ-relaxed Stackelberg utility term with a
ϵ-regularizer term, and then take an infimum over all pos-
sible values ϵ ≤ γ. In particular, the ϵ-relaxed Stackelberg
utility takes a max over the player’s actions and a min over
the other player’s ϵ-best response set; the regularizer adds
a ϵ penalty for errors made by the other player.

Definition 4.1. Given a maximum tolerance γ > 0, we
define the γ-tolerant benchmarks βtol

1 and βtol
2 to be:

βtol
1 = inf

ϵ≤γ

(
max
a∈A

min
b∈Bϵ(a)

v1(a, b)︸ ︷︷ ︸
ϵ-relaxed Stackelberg utility

+ ϵ︸︷︷︸
ϵ-regularizer

)

11At first glance, it might appear more natural to in-
stead define Aϵ to be {a ∈ A | minb∈Bϵ(a) v1(a, b) ≥
maxa′∈A minb′∈Bϵ(a′) v1(a

′, b′) − ϵ}. However, this set may
not contain the leader’s best-response set, which makes it a less
natural definition of an approximate best-response set.

5



Impact of Decentralized Learning on Player Utilities in Stackelberg Games

βtol
2 = inf

ϵ≤γ

(
min
a∈Aϵ

max
b∈B

v2(a, b)︸ ︷︷ ︸
ϵ-relaxed Stackelberg utility

+ ϵ︸︷︷︸
ϵ-regularizer

)
.

We provide some high-level intuition for why our bench-
mark might be appropriate for learning environments. For
small values of ϵ, the ϵ-best-response sets describe actions
that (from the player’s perspective) are similar and difficult
to distinguish between while learning. The ϵ-relaxed Stack-
elberg utility takes a worst-case perspective and takes a
minimum over the other player’s ϵ-best-response set, since
the player’s choices within this set can be unpredictable
while learning.12 The ϵ-regularizer captures the player’s
intolerance of suboptimality of the other player (see Ap-
pendix F for a discussion of regularizers and γ).

We illustrate these benchmarks in the following example.

Example 4.2. Consider the example in Table 2 (with 0.4 >
γ ≥ 4δ). In this case, the leader’s benchmark is equal to the
Stackelberg utility (βorig

1 = βtol
1 = 0.5 + δ), while the fol-

lower’s benchmark is weaker (βorig
2 = 0.4 > 3δ+δ = βtol

2 ),
where the second δ comes from the regularizer. The intu-
ition is that the leader’s ϵ-best-response set Aδ = {a1, a2}
contains both actions, even though a2 is not a Stackel-
berg equilibrium, which noticeably lowers the follower’s
ϵ-relaxed Stackelberg utility. In Appendix B, we provide
more detailed discussions of examples.

b1 b2
a1 (0.5 + δ, 0.4) (0.2, 0)
a2 (0.5, 3δ) (0.4, 2δ)

Table 2. Instance in Example 4.2.

4.2. Linear Regret for ExploreThenCommit

We first show that out-of-box stochastic bandit algorithms
do not directly provide sublinear regret against the γ-
tolerant benchmark. The challenge is that the leader’s
learning gets distorted when both players simultaneously
learn. To demonstrate this, we show that if both the leader
and follower are running ExploreThenCommit (Algo-
rithm 1), the regret could be linear for both players. Specif-
ically, this can occur if the leader’s exploration phase ends
before the follower’s exploration phase. This lower bound
holds for any maximum tolerance γ ≤ 1.

Proposition 4.3. Consider a StrongDSG where
the follower runs a separate instantiation of
ExploreThenCommit(E,B) for every a ∈
A. Moreover, suppose that the leader runs
ExploreThenCommit(E′ · |B|,A) for any E′ ≤ E

12For the leader, Bai et al. (2021) also takes a similar worst-case
perspective over the ϵ-best-response set, but does not introduce a
regularizer or take a minimum over ϵ.

(i.e., the leader’s exploration phase ends before the
follower’s exploration phase). Then, there exists an
instance I∗ such that both players incur linear regret with
respect to the γ-tolerant benchmarks βtol

1 and βtol
2 : that is,

min(R1(T ; I∗), R2(T ; I∗)) = Ω(T ).

Proof sketch of Proposition 4.3. In the leader’s exploration
phase, the follower alternates uniformly between all actions
B. This distorts the leader’s learning during the leader’s
exploration phase, and as a result, the leader can choose a
highly suboptimal arm during the commit phase. This can
lead to linear regret for both players. We construct a single
instance (Table 2, with δ = 0.1) where both players incur
linear regret. The full proof is deferred to Appendix D.1.

4.3. Warm-up algorithm

The constant regret in Proposition 4.3 motivates the design
of more sophisticated algorithms where the leader waits for
the follower to partially converge before starting to learn.

As a warmup, we show that a simple modification of
the setup of Proposition 4.3 guarantees sublinear re-
gret (i.e., O

(
|A|1/3|B|1/3(log T )1/3T 2/3

)
regret for both

players (Theorem D.1 in Appendix D.2). Both play-
ers run ExploreThenCommit-based algorithms, but the
leader waits for the follower to finish exploring before
starting to explore. More specifically, the leader runs
ExploreThenCommitThrowOut(Algorithm 2), which
is similar to ExploreThenCommit(Algorithm 1), but
with an extra exploration phase at the start, after which all
rewards are thrown out. This initial phase is to allow the
follower to partially converge.

One drawback of Theorem D.1 is that requiring the fol-
lower to run a single algorithm is relatively restrictive. In
the next subsection, we allow for a rich class of follower
algorithms.

4.4. Main Algorithm

Our main result in this section is an adaptive algorithm
for the leader (ExploreThenUCB, Algorithm 3) that
achieves the same regret bounds while permitting greater
flexibility for the follower (Theorem 4.4). Specifically,
we only require that the follower converges to ϵ-optimal
responses quickly, which we formalize through high-
probability instantaneous regret (Section 2.3).

Since the leader’s algorithm needs to be robust to a
broader range of follower behaviors, we replace the com-
mit phase of ExploreThenCommit with an adaptive
algorithm. This motivates ExploreThenUCB, which
explores in the first phase, and then runs a version of
UCB on the arms A. The initial exploration phase

6



Impact of Decentralized Learning on Player Utilities in Stackelberg Games

in ExploreThenUCB, similar to the initial exploration
phase in ExploreThenCommitThrowOut, ensures
that the leader waits for the follower to partially converge
before starting to learn.

ExploreThenUCB(E) (Algorithm 3). The algorithm
ALG1 = ExploreThenUCB(E) takes as input E ∈
[T/ |A|]. For the first |A| · E rounds, the algorithm ALG1

pulls each arm inA a total of E times, and then discards all
history from these rounds. For the remaining T − |A| · E
rounds, the algorithm runs UCB, computing the upper con-
fidence bound vUCB

1 (a) = v̂1,t(a)+αt(a) using confidence
bound αt(a) = Θ

(√
(log T )/nE·|A|,t(a)

)
, where v̂1,t(a)

is the empirical mean and nE·|A|,t(a) is the number of
times that action a is chosen in the UCB phase after time
step E · |A| and prior to time step t. The algorithm then
chooses the arm with maximum upper confidence bound.

Even though the rewards observed by the leader are not
stochastic (since the follower can pick different arms over
time), we show if the leader runs ExploreThenUCB
and the follower runs algorithms with low high-
probability instantaneous regret, then both players achieve
O
(
|A|1/3|B|1/3(log T )1/3T 2/3

)
regret. The assumptions

on the follower’s algorithm are satisfied by standard algo-
rithms such as ActiveArmElimination (Algorithm
7; Proposition G.2) and ExploreThenCommit (Algo-
rithm 1; Proposition G.3). For this result, we require
that the maximum tolerance γ is not too small: γ =

ω
(
T−1/3 (|A| · |B|)1/3

)
(see Appendix F).

Theorem 4.4. Let E = Θ(|A|−2/3(|B| log T )1/3T 2/3).
Consider a StrongDSG, where ALG2 is any algorithm
with high-probability instantaneous regret g(t, T,B) =
O
(
(|A||B| log T )1/3T−1/3

)
for t > E and g(t, T,B) = 1

for t ≤ E, and where ALG1 = ExploreThenUCB(E).
Then, it holds that the regret with respect to the γ-tolerant
benchmarks βtol

1 and βtol
2 is bounded as:

max(R1(T ), R2(T )) = O
(
|A|1/3|B|1/3(log T )1/3T 2/3

)
.

Proof sketch of Theorem 4.4. The intuition is that the ex-
ploration phase of ExploreThenUCB ensures that all of
the follower’s actions have bounded suboptimality, and the
UCB phase accounts for the follower changing which ac-
tion they choose over time. In more detail, high-probability
instantaneous regret guarantees that after the explore phase,
all actions that the follower’s chooses are within the ϵ-best-
response set Bϵ∗(a) for ϵ∗ = Θ((|A|·|B|·log T )1/3T−1/3).
For the UCB phase, the main lemma (Lemma D.5) is that
if an arm a ∈ A is pulled, the empirical mean is at least
maxa∈A minb∈Bϵ∗ (a) v1(a, b) − Θ

(√
log T/nE·|A|,t(a)

)
(the optimal utility for the leader when the follower
worst-case ϵ-best-responds minus the confidence set size).
Lemma D.5 enables us to analyze the leader’s cumulative

reward from each arm a ∈ A and thus bound the leader’s
regret. For the follower’s regret, Lemma D.5 enables us
to bound the number of times that arms outside of Aϵ are
chosen, which enables us to bound the follower’s regret.
We defer the full proof to Appendix D.3.

4.5. Regret Lower Bound

A natural question is whether the regret bound in Theorem
4.4 can be improved from Õ(T 2/3) to Õ(

√
T ), given that

such dependence is possible in single-player bandit prob-
lems. Interestingly, we show a lower bound of T 2/3 with
respect to the γ-tolerant benchmarks, thus demonstrating
that the dependence on T in Theorem 4.5 is near-optimal.
This lower bound holds for any maximum tolerance γ ≤ 1.

Theorem 4.5. Consider StrongDSGs or WeakDSGs with
action sets A and B such that |A| ≥ 2 and |B| ≥ 2. For
any algorithms ALG1 and ALG2, there exists an instance
I∗ = (A,B, v1, v2) such that at least one of the players in-
curs Ω(T 2/3 ·(|B|)1/3) regret with respect to the γ-tolerant
benchmarks βtol

1 and βtol
2 :

max(R1(T ; I∗), R2(T ; I∗)) = Ω(T 2/3 · (|B|)1/3).

Proof sketch. In this sketch, we give intuition for a weaker
bound of Ω(T 2/3), deferring the strengthening to Ω(T 2/3 ·
(|B|)1/3) to Appendix C.5. Like in the proof of Theo-
rem 3.1, it suffices to consider a centralized environment
(Lemma C.1). We show that on the I and Ĩ in Table 3
(with δ = Θ(T−1/3)), at least one player incurs Ω(T 2/3)
regret on at least one of these instances. The only way to
distinguish the instances is to pull (a1, b2) at least Ω(T 2/3)
times, which gives low utility for both players. Intuitively,
when the algorithm fails to distinguish I and Ĩ, the algo-
rithm must choose the same distribution over A × B, but
this gives Θ(T−1/3) loss for the leader on I or Θ(T−1/3)
loss for the follower on Ĩ. The full proof, which relies on a
KL-divergence argument, is deferred to Appendix C.5.

b1 b2
a1 (0.5 + δ, δ) (0, *)
a2 (0.5, 3δ) (0.5, 3δ)

Table 3. A family of instances with free parameter v2(a1, b2) =
*. We focus on two instances I with mean rewards v and Ĩ with
mean rewards ṽ, where v2(a1, b2) = 0 and ṽ2(a1, b2) = 2δ. For
δ sufficiently small, the instances I and Ĩ are hard to distinguish
and turn out to imply a Ω(T 2/3) lower bound on regret with re-
spect to the γ-tolerant benchmark (Theorem 4.5).

At a high-level, the T 2/3 regret bound in Theorem 4.5 is
driven by the need to obtain precise estimates of highly

7



Impact of Decentralized Learning on Player Utilities in Stackelberg Games

suboptimal action pairs in order to learn to distinguish be-
tween two instances. This is fundamentally different from
single learner environments, where the learner only needs
to obtain precise estimates of near-optimal arms. Our re-
gret upper bound (Theorem 4.4) and lower bound (Theo-
rem 4.5) have near-matching dependence on T and |B|, but
a gap in dependence on |A| (the upper bound scales with
|A|1/3 while the lower bound is independent of |A|1/3).
An interesting direction for future work is to close this gap.

5. Relaxed Settings with Faster Learning
The lower bound in the previous section showed that
Θ(T 2/3) regret is optimal for the benchmarks βtol

1 and βtol
2

for general instances. Since a T 2/3 lower bound is atypical
for K-armed bandits problems, we next consider relaxed
environments under which faster learning—-i.e., O(

√
T )

regret—is possible. In the first environment, we consider
well-behaved instances (Section 5.1) and in the second en-
vironment, we weaken the benchmarks (Section 5.2). In
both environments, we show that the learner does not need
to worry about their learning being overly distorted by the
follower; thus, the leader can start learning immediately,
even before the follower’s actions have partially converged,
which leads to improved regret bounds. The algorithms
that we design for the leader are variants of UCB.

5.1. Continuity Condition on Utilities

We first show that improved regret bounds are possible with
a continuity condition on the player utilities. For intuition,
the example in Table 1 gave a “hard” example resulting
in linear regret in Theorem 3.1 and the related example in
Table 3 resulted in Ω(T 2/3) regret in Theorem 4.5. These
examples relied on two outcomes with nearly identical util-
ities for the follower having significantly different utilities
for leader, which could be viewed as a violation of conti-
nuity. This suggests that if arms that are sufficiently dif-
ferent for the leader were also sufficiently different for the
follower, then it might be possible to beat the regret lower
bound from Theorem 3.1 and Theorem 4.5.

We formalize continuity as follows: given an instance I =
(A,B, v1, v2), we define the Lipschitz constant L∗ by

L∗ = sup
i ̸=j∈{1,2}

sup
(a,b)̸=(a′,b′)

|vi(a, b)− vi(a
′, b′)|

|vj(a, b)− vj(a′, b′)|
.

For example, when the two players have the same utili-
ties (i.e., v1 = v2), then L∗ = 1. More generally, our
continuity condition captures the extent to which players
agree on which outcomes are different from each other (a
more detailed discussion is given in Appendix E.1). Re-
turning to the examples in Tables 1, 3, the “hard” instances
yielding linear regret for the original Stackelberg bench-
marks (Theorem 3.1; Table 1) have L∗ = Θ(T−1/2) and

the corresponding “hard” instances for T 2/3 regret for the
γ-tolerant benchmarks (Theorem 4.5; Table 3) require that
L∗ = Θ(T−1/3); in contrast, we focus on utility functions
where L∗ is a constant.

When L∗ is bounded, we show that it is possible for both
players to achieve Õ(

√
T ) regret even with respect to the

original Stackelberg benchmarks. The follower can run
any algorithm ALG2 with sufficiently low high-probability
anytime regret (e.g., ActiveArmElimination as in
Proposition G.2 or UCB as in Proposition G.4). We
construct another UCB-based algorithm LipschitzUCB
(Algorithm 4) for the leader, which expands the confidence
sets based on the Lipschitz constant L∗.

LipschitzUCB(L,C) (Algorithm 4). The algorithm
ALG1 = LipschitzUCB(L,C) takes as inputs param-
eters L and C. (The parameter L is intended to be an
upper bound on the Lipschitz constant L∗, and the pa-
rameter C ′ is intended to be such that ALG2 satisfies any-
time regret bound h(t, T,B) =

√
Ct log T , where C =

C ′ ·
√
|B| for a constant C ′.) For each arm a ∈ A, the

algorithm computes UCB estimates vUCB
1 (a) of the quan-

tity maxb∈B v1(a, b) using the high-probability anytime re-
gret bounds of ALG2 as well as the upper bound on the
Lipschitz constant. The algorithm then chooses the arm
at = argmaxa∈A maxb∈B′(a) v

UCB
1 (a).

We obtain the following regret bound with respect to the
Stackelberg benchmark, our strongest benchmark.

Theorem 5.1. Consider a StrongDSG where I =
(A,B, v1, v2) has Lipschitz constant L∗. Let ALG2 be
any algorithm satisfying high-probability anytime regret
h(t, T,B) = C ′

√
|B|t log T where C ′ is a constant, and let

ALG1 = LipschitzUCB(L,C ′
√
|B|) for any L ≥ L∗.

Then both players achieve the following regret bounds with
respect to the original Stackelberg benchmarks βorig

1 and

βorig
2 : that is, R1(T ; I) = O

(
L
√
T |A||B| log T

)
and

R2(T ; I) = O
(
L2
√

T |A| · |B| log T
)

.

Our continuity condition bears resemblance to the restric-
tions on utilities in Camara et al. (2020); Collina et al.
(2023b): in fact, our conditions are conceptually stronger
since we require Lipschitz continuity across all pairs of ac-
tions rather only for near-optimal actions. See Appendix
E.1 for additional discussion.

5.2. Weaker Benchmark

Finally, we will consider the case where utilities are al-
lowed to be arbitrary (L∗ can be unbounded), but where we
compete with weakened benchmarks, which we call self-
γ-tolerant. These benchmarks capture the case where the
player is not only tolerant of suboptimality the other player,
but also tolerant of their own suboptimality. We thus take a

8



Impact of Decentralized Learning on Player Utilities in Stackelberg Games

min over the ϵ-best-response sets of both players.
Definition 5.2. Given a maximum tolerance γ > 0, we
define the self-γ-tolerant benchmarks to be:

βself-tol
1 = inf

ϵ≤γ

(
min
a∈Aϵ

min
b∈Bϵ(a)

v1(a, b) + ϵ
)

βself-tol
2 = inf

ϵ≤γ

(
min
a∈Aϵ

min
b∈Bϵ(a)

v2(a, b) + ϵ
)
.

The tolerance of a player to their own suboptimality is the
key difference from the γ-tolerant benchmarks from Sec-
tion 4. For the follower, the benchmarks behave similarly:
for a given value of ϵ, moving from maxb∈B v2(a, b) to
minb∈Bϵ(a) v2(a, b) differs by only an additive value of ϵ.
However for the leader, there is a conceptual difference:
the value mina∈Aϵ

minb∈Bϵ(a) v1(a, b) + ϵ is not necessar-
ily within ϵ of maxa∈A minb∈Bϵ(a) v1(a, b) + ϵ. This is
becauseAϵ includes any action a that achieves high reward
for some (near-optimal) actions by the follower, even if the
worst-case (near-optimal) action by the follower yields ar-
bitrarily low reward for the leader. As an illustration, the
“hard” instances specified in Table 3 with δ = Θ(T−1/3)
led to the T 2/3 regret bound. The self-tolerant benchmark
βself-tol
1 reduces to 0.2 + δ (rather than 0.5), so choosing

(a1, b2) no longer results in constant loss for the leader.
Example 4.2 [Continued]. Let’s again consider I in Ta-
ble 2. The minimum is again attained at ϵ = δ, but
the benchmark values change to βself-tol

1 = 0.4 + δ and
βself-tol
2 = 2 · δ+ δ. The intuition is that the self-γ-tolerance

benchmark only requires each agent to compete with the
worst element within the product set Aδ × Bδ(a). The re-
sulting benchmark differs from the γ-tolerant benchmark
for the follower only by δ, but differs by 0.4 (a constant)
for the leader. We provide a detailed derivation along with
diagrams illustrating richer examples in Appendix B.

For the self-tolerant benchmarks, it is possible to achieve
Õ(
√
T |A||B|) regret for both players (Theorem 5.3),

which outperforms the T 2/3 lower bound for the stronger
benchmark shown in Theorem 4.5. To demonstrate this, we
focus on WeakDSGs, and construct algorithms that achieve
a O(
√
T ) regret upper bound. For the follower, we take the

algorithm ALG2 to be ActiveArmElimination (Al-
gorithm 7), which cycles through phases of exploration,
after which all sufficiently suboptimal arms are elimi-
nated. For the leader, we construct a UCB-based algorithm
PhasedUCB (Algorithm 5) which constructs confidence
bounds for every pair of actions (a, b).

We show both players achieve O(
√
T ) regret. For this

result, we require that the γ is not too small: γ =
Ω(T−1/4(|A| · |B| · log T )1/2)) (see Appendix F).
Theorem 5.3. Consider a WeakDSG, where for each
a ∈ A, the algorithm ALG2 runs a separate instan-
tiation of ActiveArmElimination with parameters

M1, . . . ,MP (where Mi = Θ(log T · 22i) denotes the
number of times that each arm is pulled in phase i). Let
ALG1 = PhasedUCB(M1, . . . ,MP ). Then it holds that
the regret with respect to the self-γ-tolerant benchmarks
βself-tol
1 and βself-tol

2 is bounded as:

max(R1(T ), R2(T )) = O
(√
|A| · |B| · T · log T

)
.

The regret bound in Theorem 5.3 is nearly optimal, as we
show in a Ω(

√
T |A| · |B|) lower bound for self-γ-tolerant

benchmarks (Proposition C.5), which holds for any maxi-
mum tolerance γ ≤ 1.

Theorem 5.3 requires the follower to run a specific algo-
rithm: this contrasts with our results for the γ-tolerant
benchmark (Theorem 4.4) and the Lipschitz benchmark
(Theorem 5.1) which allowed for greater flexibility for the
follower. An interesting direction for future work would be
to design a leader algorithm for the self-γ-tolerant bench-
mark that permits a richer family of follower behaviors.

6. Discussion
In this paper, we studied two-agent environments where in-
teractions are sequential, utilities are misaligned, and each
agent learns their utilities over time. We modeled these
environments as decentralized Stackelberg games where
both agents are bandit learners who only observe their
own utilities, and we investigated the implications for each
agent’s cumulative utility over time. Motivated by the of-
fline Stackelberg equilibrium benchmarks being infeasible
(Theorem 3.1), we designed γ-tolerant benchmarks which
allow for approximate best responses by the other agent.
We proved that both players can achieve Θ̃(T 2/3) regret
with respect to the γ-tolerant benchmarks (Theorem 4.4),
and also showed that Θ̃(T 2/3) regret is unavoidable for any
pair of algorithms (Theorem 4.5). Furthermore, we showed
that O(

√
T ) regret is possible in two relaxed environments.

Our results have broader implications for designing two-
agent environments to achieve favorable utility for both
agents. For example, given that our results illustrate that
certain properties for the follower (such as high-probability
instantaneous regret or high-probability anytime regret
bounds) and certain properties for the leader (such as wait-
ing for the follower to partially converge) are conducive
to low regret, it may be helpful for a designer to engineer
or encourage agents to follow these algorithmic principles.
As another example, our continuity results in Section 5.1 il-
lustrate the importance of reducing near-ties in utilities be-
tween different items, which could be achieved by allowing
agents to express preferences in a nuanced fashion.

More broadly, our benchmarks and regret analysis suggest
interesting avenues for future work (see Appendix A.3).

9



Impact of Decentralized Learning on Player Utilities in Stackelberg Games

Impact Statement
This papers presents a theoretical framework to analyze the
impact of repeated interactions between learning agents on
both agents utilities. Our work is motivated by human-AI
environments such as recommender systems-user interac-
tions and user-chatbot interactions. Our theoretical work
could have implications for the design of algorithmic tools,
as well as their interfaces with human users. Addition-
ally, because our work studies the utility of both agents, it
raises important ethical questions about which agent’s util-
ity should be favored by society. We believe these ethical
questions must be considered carefully when applying our
results to AI system design.

Acknowledgements
We thank Keegan Harris, Jason Hartline, Nika Haghtalab,
Nick Wu, and Kunhe Yang for valuable comments and
feedback. KD was partially supported by a Vannevar Bush
Faculty Fellowship, a Simons Collaboration grant, and a
grant from the MacArthur Foundation. MJ was partially
supported by an Open Philanthropy AI Fellowship.

References
Alekh Agarwal, Haipeng Luo, Behnam Neyshabur, and

Robert E. Schapire. Corralling a band of bandit algo-
rithms. In Proceedings of the 30th Conference on Learn-
ing Theory, COLT 2017, Amsterdam, The Netherlands,
7-10 July 2017, volume 65 of Proceedings of Machine
Learning Research, pages 12–38. PMLR, 2017.

Arpit Agarwal and William Brown. Online recommenda-
tions for agents with discounted adaptive preferences.
CoRR, abs/2302.06014, 2023.

Saba Ahmadi, Hedyeh Beyhaghi, Avrim Blum, and Keziah
Naggita. The strategic perceptron. In EC ’21: The 22nd
ACM Conference on Economics and Computation, Bu-
dapest, Hungary, July 18-23, 2021, pages 6–25. ACM,
2021.

Ioannis Anagnostides, Constantinos Daskalakis, Gabriele
Farina, Maxwell Fishelson, Noah Golowich, and Tuo-
mas Sandholm. Near-optimal no-regret learning for cor-
related equilibria in multi-player general-sum games. In
STOC ’22: 54th Annual ACM SIGACT Symposium on
Theory of Computing, Rome, Italy, June 20 - 24, 2022,
pages 736–749. ACM, 2022.

Guy Aridor, Yishay Mansour, Aleksandrs Slivkins, and
Zhiwei Steven Wu. Competing bandits: The perils of
exploration under competition. CoRR, abs/2007.10144,
2020.

Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer. Finite-
time analysis of the multiarmed bandit problem. Mach.
Learn., 47(2-3):235–256, 2002.

Yu Bai, Chi Jin, Huan Wang, and Caiming Xiong. Sample-
efficient learning of stackelberg equilibria in general-
sum games. Advances in Neural Information Processing
Systems, 34:25799–25811, 2021.

Michiel A. Bakker, Martin J. Chadwick, Hannah Sheahan,
Michael Henry Tessler, Lucy Campbell-Gillingham,
Jan Balaguer, Nat McAleese, Amelia Glaese, John
Aslanides, Matt M. Botvinick, and Christopher Summer-
field. Fine-tuning language models to find agreement
among humans with diverse preferences. In Advances
in Neural Information Processing Systems 35: Annual
Conference on Neural Information Processing Systems
2022, NeurIPS 2022, New Orleans, LA, USA, November
28 - December 9, 2022, 2022.

Maria-Florina Balcan, Avrim Blum, Nika Haghtalab, and
Ariel D Procaccia. Commitment without regrets: Online
learning in stackelberg security games. In Proceedings
of the sixteenth ACM conference on economics and com-
putation, pages 61–78, 2015.

10



Impact of Decentralized Learning on Player Utilities in Stackelberg Games

Santiago R. Balseiro and Yonatan Gur. Learning in re-
peated auctions with budgets: Regret minimization and
equilibrium. Manag. Sci., 65(9):3952–3968, 2019.

Gagan Bansal, Tongshuang Wu, Joyce Zhou, Raymond
Fok, Besmira Nushi, Ece Kamar, Marco Túlio Ribeiro,
and Daniel S. Weld. Does the whole exceed its parts? the
effect of AI explanations on complementary team perfor-
mance. In CHI ’21: CHI Conference on Human Factors
in Computing Systems, Virtual Event / Yokohama, Japan,
May 8-13, 2021, pages 81:1–81:16. ACM, 2021.

Christian Borgs, Jennifer T. Chayes, Nicole Immorlica, Ka-
mal Jain, Omid Etesami, and Mohammad Mahdian. Dy-
namics of bid optimization in online advertisement auc-
tions. In Proceedings of the 16th International Confer-
ence on World Wide Web, WWW 2007, Banff, Alberta,
Canada, May 8-12, 2007, pages 531–540. ACM, 2007.

Simina Brânzei, MohammadTaghi Hajiaghayi, Reed
Phillips, Suho Shin, and Kun Wang. Dueling over
dessert, mastering the art of repeated cake cutting. arXiv
preprint arXiv:2402.08547, 2024.

Mark Braverman, Jieming Mao, Jon Schneider, and
S. Matthew Weinberg. Selling to a no-regret buyer. In
Proceedings of the 2018 ACM Conference on Economics
and Computation, Ithaca, NY, USA, June 18-22, 2018,
pages 523–538. ACM, 2018.

William Brown, Jon Schneider, and Kiran Vodrahalli. Is
learning in games good for the learners? Advances in
Neural Information Processing Systems, 36, 2023.

Modibo K Camara, Jason D Hartline, and Aleck Johnsen.
Mechanisms for a no-regret agent: Beyond the common
prior. In 2020 ieee 61st annual symposium on founda-
tions of computer science (focs), pages 259–270. IEEE,
2020.

Lawrence Chan, Dylan Hadfield-Menell, Siddhartha Srini-
vasa, and Anca Dragan. The assistive multi-armed ban-
dit. In 2019 14th ACM/IEEE International Confer-
ence on Human-Robot Interaction (HRI), pages 354–
363. IEEE, 2019.

Banghao Chen, Zhaofeng Zhang, Nicolas Langrené, and
Shengxin Zhu. Unleashing the potential of prompt engi-
neering in large language models: a comprehensive re-
view. CoRR, abs/2310.14735, 2023.

Yiling Chen, Yang Liu, and Chara Podimata. Learning
strategy-aware linear classifiers. In Advances in Neu-
ral Information Processing Systems 33: Annual Confer-
ence on Neural Information Processing Systems 2020,
NeurIPS 2020, December 6-12, 2020, virtual, 2020.

Natalie Collina, Eshwar Ram Arunachaleswaran, and
Michael Kearns. Efficient stackelberg strategies for
finitely repeated games. In Proceedings of the 2023 In-
ternational Conference on Autonomous Agents and Mul-
tiagent Systems, AAMAS 2023, London, United King-
dom, 29 May 2023 - 2 June 2023, pages 643–651. ACM,
2023a.

Natalie Collina, Aaron Roth, and Han Shao. Efficient prior-
free mechanisms for no-regret agents. arXiv preprint
arXiv:2311.07754, 2023b.

Nina Corvelo Benz and Manuel Rodriguez. Human-
aligned calibration for ai-assisted decision making. Ad-
vances in Neural Information Processing Systems, 36,
2024.

Constantinos Daskalakis, Alan Deckelbaum, and Anthony
Kim. Near-optimal no-regret algorithms for zero-sum
games. In Dana Randall, editor, Proceedings of the
Twenty-Second Annual ACM-SIAM Symposium on Dis-
crete Algorithms, SODA 2011, San Francisco, Califor-
nia, USA, January 23-25, 2011, pages 235–254. SIAM,
2011.

Constantinos Daskalakis, Maxwell Fishelson, and Noah
Golowich. Near-optimal no-regret learning in general
games. In Advances in Neural Information Processing
Systems 34: Annual Conference on Neural Information
Processing Systems 2021, NeurIPS 2021, December 6-
14, 2021, virtual, pages 27604–27616, 2021.

Yuan Deng, Jon Schneider, and Balasubramanian Sivan.
Strategizing against no-regret learners. Advances in neu-
ral information processing systems, 32, 2019.

Kate Donahue, Kostas Kollias, and Sreenivas Gollapudi.
When are two lists better than one?: Benefits and harms
in joint decision-making. AAAI ’24’, 2024.

Jinshuo Dong, Aaron Roth, Zachary Schutzman, Bo Wag-
goner, and Zhiwei Steven Wu. Strategic classifica-
tion from revealed preferences. In Proceedings of the
2018 ACM Conference on Economics and Computation,
Ithaca, NY, USA, June 18-22, 2018, pages 55–70. ACM,
2018.

Michael D. Ekstrand and Martijn C. Willemsen. Behav-
iorism is not enough: Better recommendations through
listening to users. In Shilad Sen, Werner Geyer, Jill
Freyne, and Pablo Castells, editors, Proceedings of
the 10th ACM Conference on Recommender Systems,
Boston, MA, USA, September 15-19, 2016, pages 221–
224. ACM, 2016.

11



Impact of Decentralized Learning on Player Utilities in Stackelberg Games

Eyal Even-Dar, Shie Mannor, and Yishay Mansour. Pac
bounds for multi-armed bandit and markov decision pro-
cesses. In COLT, volume 2, pages 255–270. Springer,
2002.

Tanner Fiez, Benjamin Chasnov, and Lillian J Ratliff. Con-
vergence of learning dynamics in stackelberg games.
arXiv preprint arXiv:1906.01217, 2019.

Jiarui Gan, Minbiao Han, Jibang Wu, and Haifeng
Xu. Robust stackelberg equilibria. arXiv preprint
arXiv:2304.14990, 2023.

Denizalp Goktas, Jiayi Zhao, and Amy Greenwald. Ro-
bust no-regret learning in min-max stackelberg games.
In 21st International Conference on Autonomous Agents
and Multiagent Systems, AAMAS 2022, Auckland, New
Zealand, May 9-13, 2022, pages 543–552. International
Foundation for Autonomous Agents and Multiagent Sys-
tems (IFAAMAS), 2022.

Wenshuo Guo, Nika Haghtalab, Kirthevasan Kandasamy,
and Ellen Vitercik. Leveraging reviews: Learning to
price with buyer and seller uncertainty. In Proceedings
of the 24th ACM Conference on Economics and Com-
putation, EC 2023, London, United Kingdom, July 9-12,
2023, 2023.

Guru Guruganesh, Yoav Kolumbus, Jon Schneider,
Inbal Talgam-Cohen, Emmanouil-Vasileios Vlatakis-
Gkaragkounis, Joshua R. Wang, and S. Matthew Wein-
berg. Contracting with a learning agent. CoRR,
abs/2401.16198, 2024.

Nika Haghtalab, Thodoris Lykouris, Sloan Nietert, and
Alexander Wei. Learning in stackelberg games with non-
myopic agents. In Proceedings of the 23rd ACM Confer-
ence on Economics and Computation, pages 917–918,
2022.

Nika Haghtalab, Chara Podimata, and Kunhe Yang. Cal-
ibrated stackelberg games: Learning optimal com-
mitments against calibrated agents. arXiv preprint
arXiv:2306.02704, 2023.

MohammadTaghi Hajiaghayi, Mohammad Mahdavi,
Keivan Rezaei, and Suho Shin. Regret analy-
sis of repeated delegated choice. arXiv preprint
arXiv:2310.04884, 2023.

Minbiao Han, Michael Albert, and Haifeng Xu. Learn-
ing in online principal-agent interactions: The power of
menus. CoRR, abs/2312.09869, 2023.

Keegan Harris, Ioannis Anagnostides, Gabriele Farina,
Mikhail Khodak, Zhiwei Steven Wu, and Tuomas
Sandholm. Meta-learning in games. arXiv preprint
arXiv:2209.14110, 2022.

Keegan Harris, Zhiwei Steven Wu, and Maria-Florina Bal-
can. Regret minimization in stackelberg games with side
information. CoRR, abs/2402.08576, 2024.

Joey Hong, Sergey Levine, and Anca D. Dragan. Zero-
shot goal-directed dialogue via RL on imagined conver-
sations. CoRR, abs/2311.05584, 2023.

Meena Jagadeesan, Michael I. Jordan, and Nika Haghtalab.
Competition, alignment, and equilibria in digital market-
places. In Thirty-Seventh AAAI Conference on Artificial
Intelligence, AAAI 2023, pages 5689–5696, 2023.

Hsu Kao, Chen-Yu Wei, and Vijay G. Subramanian. De-
centralized cooperative reinforcement learning with hi-
erarchical information structure. In International Con-
ference on Algorithmic Learning Theory, 29 March - 1
April 2022, Paris, France, volume 167 of Proceedings
of Machine Learning Research, pages 573–605. PMLR,
2022.

Gerard Jounghyun Kim. Human-computer interaction:
fundamentals and practice. CRC press, 2015.

Jon Kleinberg and Robert Kleinberg. Delegated search ap-
proximates efficient search. In Proceedings of the 2018
ACM Conference on Economics and Computation, pages
287–302, 2018.

Jon M. Kleinberg, Sendhil Mullainathan, and Manish
Raghavan. The challenge of understanding what users
want: Inconsistent preferences and engagement opti-
mization. CoRR, abs/2202.11776, 2022.

Yoav Kolumbus and Noam Nisan. How and why to ma-
nipulate your own agent: On the incentives of users of
learning agents. Advances in Neural Information Pro-
cessing Systems, 35:28080–28094, 2022.

Tor Lattimore and Csaba Szepesvári. Bandit Algorithms.
University of Cambridge ESOL Examinations, 2020.
ISBN 9781108571401.

Niklas Lauffer, Mahsa Ghasemi, Abolfazl Hashemi, Ya-
giz Savas, and Ufuk Topcu. No-regret learning in dy-
namic stackelberg games. IEEE Transactions on Auto-
matic Control, 2023.

Jonathan Lazar, Jinjuan Heidi Feng, and Harry Hochheiser.
Research methods in human-computer interaction. Mor-
gan Kaufmann, 2017.

Joshua Letchford, Vincent Conitzer, and Kamesh Muna-
gala. Learning and approximating the optimal strategy to
commit to. In Algorithmic Game Theory, Second Inter-
national Symposium, SAGT 2009, Paphos, Cyprus, Oc-
tober 18-20, 2009. Proceedings, volume 5814 of Lecture
Notes in Computer Science, pages 250–262. Springer,
2009.

12



Impact of Decentralized Learning on Player Utilities in Stackelberg Games

Tao Lin and Yiling Chen. Persuading a learning agent.
arXiv preprint arXiv:2402.09721, 2024.

Brendan Lucier, Sarath Pattathil, Aleksandrs Slivkins, and
Mengxiao Zhang. Autobidders with budget and ROI
constraints: Efficiency, regret, and pacing dynamics.
CoRR, abs/2301.13306, 2023.

I. Scott MacKenzie. Human-computer interaction: An em-
pirical research perspective. 2024.

John P Miller, Juan C Perdomo, and Tijana Zrnic. Outside
the echo chamber: Optimizing the performative risk. In
International Conference on Machine Learning, pages
7710–7720. PMLR, 2021.

Smitha Milli, Luca Belli, and Moritz Hardt. From opti-
mizing engagement to measuring value. In FAccT ’21:
2021 ACM Conference on Fairness, Accountability, and
Transparency, Virtual Event / Toronto, Canada, March
3-10, 2021, pages 714–722. ACM, 2021.

Denis Nekipelov, Vasilis Syrgkanis, and Eva Tardos.
Econometrics for learning agents. In Proceedings of the
sixteenth acm conference on economics and computa-
tion, pages 1–18, 2015.

Noam Nisan and Gali Noti. An experimental evaluation of
regret-based econometrics. In Proceedings of the 26th
International Conference on World Wide Web, WWW
’17, page 73–81. International World Wide Web Con-
ferences Steering Committee, 2017.

Gali Noti and Vasilis Syrgkanis. Bid prediction in repeated
auctions with learning. In Proceedings of the Web Con-
ference 2021, WWW ’21, page 3953–3964, New York,
NY, USA, 2021. Association for Computing Machinery.

Aldo Pacchiano, My Phan, Yasin Abbasi-Yadkori, Anup
Rao, Julian Zimmert, Tor Lattimore, and Csaba
Szepesvári. Model selection in contextual stochastic
bandit problems. In Advances in Neural Information
Processing Systems 33: Annual Conference on Neural
Information Processing Systems 2020, NeurIPS 2020,
December 6-12, 2020, virtual, 2020.

Alexander Pan, Erik Jones, Meena Jagadeesan, and Ja-
cob Steinhardt. Feedback loops with language models
drive in-context reward hacking. CoRR, abs/2402.06627,
2024.

Juan Perdomo, Tijana Zrnic, Celestine Mendler-Dünner,
and Moritz Hardt. Performative prediction. In Inter-
national Conference on Machine Learning, pages 7599–
7609. PMLR, 2020.

James Pita, Manish Jain, Fernando Ordóñez, Milind
Tambe, Sarit Kraus, and Reuma Magori-Cohen. Effec-
tive solutions for real-world stackelberg games: When
agents must deal with human uncertainties. In Proceed-
ings of The 8th International Conference on Autonomous
Agents and Multiagent Systems-Volume 1, pages 369–
376, 2009.

Jenny Preece, Yvonne Rogers, Helen Sharp, David
Benyon, Simon Holland, and Tom Carey. Human-
computer interaction. Addison-Wesley Longman Ltd.,
1994.

Aleksandrs Slivkins. Introduction to multi-armed bandits.
Found. Trends Mach. Learn., 12(1-2):1–286, 2019.

Eleni Straitouri and Manuel Gomez Rodriguez. Designing
decision support systems using counterfactual prediction
sets. arXiv preprint arXiv:2306.03928, 2023.

Eleni Straitouri, Lequn Wang, Nastaran Okati, and
Manuel Gomez Rodriguez. Improving expert predictions
with conformal prediction. In International Confer-
ence on Machine Learning, pages 32633–32653. PMLR,
2023.

Jonathan Stray, Ivan Vendrov, Jeremy Nixon, Steven Adler,
and Dylan Hadfield-Menell. What are you optimizing
for? aligning recommender systems with human values.
CoRR, abs/2107.10939, 2021.

Lequn Wang, Thorsten Joachims, and Manuel Gomez Ro-
driguez. Improving screening processes via calibrated
subset selection. In International Conference on Ma-
chine Learning, pages 22702–22726. PMLR, 2022.

Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong.
Federated machine learning: Concept and applications.
ACM Trans. Intell. Syst. Technol., 10(2):12:1–12:19,
2019.

Fan Yao, Chuanhao Li, Denis Nekipelov, Hongning Wang,
and Haifeng Xu. Learning the optimal recommenda-
tion from explorative users. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 36, pages
9457–9465, 2022.

Kaiqing Zhang, Zhuoran Yang, and Tamer Basar. Multi-
agent reinforcement learning: A selective overview of
theories and algorithms. CoRR, abs/1911.10635, 2019.

Geng Zhao, Banghua Zhu, Jiantao Jiao, and Michael Jor-
dan. Online learning in stackelberg games with an omni-
scient follower. In International Conference on Machine
Learning, pages 42304–42316. PMLR, 2023.

13



Impact of Decentralized Learning on Player Utilities in Stackelberg Games

Banghua Zhu, Stephen Bates, Zhuoran Yang, Yixin Wang,
Jiantao Jiao, and Michael I. Jordan. The sample com-
plexity of online contract design. In Proceedings of the
24th ACM Conference on Economics and Computation,
EC 2023, London, United Kingdom, July 9-12, 2023,
page 1188. ACM, 2023.

Simon Zhuang and Dylan Hadfield-Menell. Consequences
of misaligned AI. In Advances in Neural Information
Processing Systems 33: Annual Conference on Neural
Information Processing Systems 2020, NeurIPS 2020,
December 6-12, 2020, virtual, 2020.

Tijana Zrnic, Eric Mazumdar, S. Shankar Sastry, and
Michael I. Jordan. Who leads and who follows in
strategic classification? In Advances in Neural Infor-
mation Processing Systems 34: Annual Conference on
Neural Information Processing Systems 2021, NeurIPS
2021, December 6-14, 2021, virtual, pages 15257–
15269, 2021.

Song Zuo and Pingzhong Tang. Optimal machine strategies
to commit to in two-person repeated games. In Proceed-
ings of the Twenty-Ninth AAAI Conference on Artificial
Intelligence, January 25-30, 2015, Austin, Texas, USA,
pages 1071–1078. AAAI Press, 2015.

14



Impact of Decentralized Learning on Player Utilities in Stackelberg Games

Summary of appendix: We give an overview of each section of the appendix. Appendix A describes real-world examples
in greater depth, includes additional discussion of related works, and highlights some further areas of future research.
Appendix B contains additional technical details, such as worked out examples further illustrating how our benchmarks are
calculated, as well as some supporting lemmas and notation. Appendix C contains proofs of our results on lower bounds for
regret (primarily Theorems 3.1 and 4.5). Next, Appendix D contains proofs for Section 4 and Appendix E contains proofs
for Section 5. Appendix F contains additional discussion and results related to parameters involved in our benchmarks.
Finally, Appendix G contains a discussion of the fine-grained performance metrics for the follower’s algorithm, focusing
on the performance of standard algorithms for the follower as well as generalized algorithms for the leader.

A. Additional Discussion
A.1. Real-world Examples

We describe two real-world examples which fit into our framework.
Example A.1 (User-chatbot interaction). Consider user-chatbot interactions where the user (e.g., a human or a prompt
engineer) selects a prompt and the chatbot (e.g., an LLM-based application such as chatGPT) selects a response. We
model the user as the leader and the chatbot as the follower: the user picks a (perhaps high-level) prompt or prompt
engineering technique a ∈ A, and the chatbot picks a response or style of response b ∈ B. Repeated interactions may
occur within a single chatbot session, such as with ChatGPT, where sessions can be resumed when the user logs in at a
later time. An example of such an interaction is where the user repeatedly asks for help with similar queries (e.g. content
generation or help with technical tasks) and learns better prompt engineering techniques (Chen et al., 2023), while the
chatbot learns how to best respond to this user by using the session history as its context (Hong et al., 2023; Pan et al.,
2024). The user and chatbot may have misaligned rewards for each prompt-output pair: this misalignment could arise from
fundamental differences in preferences if the chatbot is trained to optimize societal preferences or cultural norms (e.g.,
avoiding violent language) which conflict with individual user preferences (Bakker et al., 2022). Misalignment could also
arise from unintentional misspecification if chatbot optimizes a metric which does not fully capture user preferences (e.g.,
if the user has an imperfect ability to communicate preferences (Zhuang and Hadfield-Menell, 2020)).
Example A.2 (User-recommender system interaction). Consider interactions between a recommender system and a user,
where recommender system gives a slate (or subset) of items a ∈ A to the user, and the user picks an action b ∈ B from
the slate. When the user returns to the same content recommendation system (e.g. a Netflix/Hulu user with a profile)
many times, this becomes a repeated game where both the recommendation system and user learn about their preferences
(Hajiaghayi et al., 2023). Again, misalignment could occur from the engagement metric being misaligned with user
welfare (Milli et al., 2021) or for unintentional reasons (e.g., misspecification due to discrete thumbs up/thumbs down user
feedback, since true preferences are more nuanced).

Examples A.1-A.2 motivate why our objective is to minimize regret for both the leader and the follower. First, we may
inherently care about utility for the human, who could be either the leader (Example A.1) or the follower (Example A.2).
Secondly, we may also care about utility for the algorithmic tools: for example, a recommendation system that fails to
make money may go out of business, or in certain cases, the chatbot/recommender may better capture societal objective
than certain humans.

A.2. Additional Related Work

The literature on learning in SGs is vast and includes many other variations. Many works (e.g., (Letchford et al., 2009;
Balcan et al., 2015; Zhao et al., 2023; Lauffer et al., 2023)) consider the leader performing (offline or) online learning
and followers myopically best-responding. Other model variants studied include the leader strategizing against a follower
who is running a no-regret learning algorithm (Braverman et al., 2018; Deng et al., 2019; Guruganesh et al., 2024; Brown
et al., 2023; Lin and Chen, 2024), the leader and follower both running gradient-based algorithms (Fiez et al., 2019; Goktas
et al., 2022), non-myopic followers who best-respond to a discounted utility over future time steps (Haghtalab et al., 2022;
Hajiaghayi et al., 2023), repeated game formulations under complete information (Zuo and Tang, 2015; Collina et al.,
2023a) the leader offering a menu of actions to the follower (Han et al., 2023), the (human) follower having cognitive biases
in responding (Pita et al., 2009), and both players having side information (Harris et al., 2024). Other works have studied
learning in structured SGs, including delegated choice (e.g., (Kleinberg and Kleinberg, 2018; Hajiaghayi et al., 2023)),
strategic classification (e.g., (Dong et al., 2018; Chen et al., 2020; Zrnic et al., 2021; Ahmadi et al., 2021)), performative
prediction (e.g., (Perdomo et al., 2020; Miller et al., 2021)), pricing under buyer and seller uncertainty (e.g., (Guo et al.,

15



Impact of Decentralized Learning on Player Utilities in Stackelberg Games

b1 b2 b3
a1 (1, 0.5 + 2δ) (0.7, 0.5 + δ) (1.1, 0)
a2 (0.8, 3.5 · δ) (1.2, 3 · δ) (0.9, 4 · δ)
a3 (0.5, 0.5) (0.7, 0) (2, 0.1)

Table 4. Calculating the δ-tolerant benchmark: Note that (a1, b1) is the Stackelberg equilibrium, which by Theorem 3.1 cannot in general
be learned with sublinear regret. For each row, cells shaded in blue if they are within the δ best response for the follower (Bδ(ai)). Entry
(a2, b1) (with purple text) gives the leader’s δ-relaxed Stackelberg utility - the leader’s best action, assuming the follower picks the worst
item within the δ-response ball. Rows a1, a2 (shaded in red) are in Aδ , the set of actions where the leader has a chance of doing at least
as well as the δ-relaxed Stackelberg utility ((a2, b1)). Finally, (a2, b3) (in green) gives the follower’s best response, assuming the leader
picks the worst action for it within Aδ .

2023)), contract theory (e.g., (Zhu et al., 2023)), cake cutting (Brânzei et al., 2024), and aligned utilities (e.g., (Kao et al.,
2022)).

Our work also connects to a broader literature on interacting learners. This literature examines interactions between
multiple bandit learners, studying aspects such as the convergence of systems of no-regret learners to coarse correlated and
correlated equilibrium (e.g. (Daskalakis et al., 2011; 2021; Anagnostides et al., 2022)), multiple bandit learners competing
for market share (e.g., (Aridor et al., 2020; Jagadeesan et al., 2023)), and multiple autobidding algorithms competing in
an auction (e.g., (Borgs et al., 2007; Balseiro and Gur, 2019; Lucier et al., 2023)). Most closely related to this paper is
corralling bandit algorithms (e.g., (Agarwal et al., 2017; Pacchiano et al., 2020)), where a “master algorithm” dynamically
chooses among several “base algorithms”: our decentralized learning environment in the case of aligned player utilities
is essentially an instance of corralling bandits, with the “base algorithms” corresponding to different leader actions. The
interacting learner literature also examines human-algorithm collaboration studying aspects such as misalignment between
engagement metrics and user welfare (e.g., (Ekstrand and Willemsen, 2016; Milli et al., 2021; Stray et al., 2021; Kleinberg
et al., 2022)), impact of underspecification on human-AI misalignment (e.g., (Zhuang and Hadfield-Menell, 2020)), and
“assistive” algorithmic tools (e.g. (Chan et al., 2019)). Most closely related to this paper is work on online learning in
subset selection and conformal prediction, where goals often revolve around selecting a subset of items to present to a
learning user (Straitouri and Rodriguez, 2023; Corvelo Benz and Rodriguez, 2024; Straitouri et al., 2023; Wang et al.,
2022; Donahue et al., 2024; Agarwal and Brown, 2023; Yao et al., 2022), often with the goal of achieving complementarity
(Bansal et al., 2021). The related area of human-AI interaction (see (Preece et al., 1994; Kim, 2015; MacKenzie, 2024;
Lazar et al., 2017) for textbook treatments) studies similar questions, often from a more behavioral angle. More broadly,
the interacting learner literature also studies applied domains including multi-agent reinforcement learning (see Zhang
et al. (2019) for a survey) and federated learning (see Yang et al. (2019) for a survey).

A.3. Directions for Future Work

Our benchmark and regret analysis suggest several interesting avenues for future work. For example, while Theorem 4.4
offered flexibility in the follower’s choice of algorithm, we required that the leader follow a particular algorithm: it would
be interesting to explore richer classes of leader algorithms which maintain low regret. Additionally, while our framework
captures a range of real-world applications including chatbots (Example A.1 in Appendix A.1) and recommender systems
(Example A.2 in Appendix A.1), an interesting future direction would be to focus on a particular application and incorporate
application-specific nuances (e.g., bidder learning rates in advertising auctions (Nekipelov et al., 2015; Noti and Syrgkanis,
2021; Nisan and Noti, 2017)). Finally, while we study the role of continuity requirements that reflect alignment (Section
5.1), it would be interesting to consider other structured bandit environments such as linear utility functions and generalize
our benchmarks and results accordingly.

B. Worked-out examples, auxiliary notation, and auxiliary lemmas
B.1. Worked-out Version of Example 4.2 for γ-tolerant benchmark

We work out the γ-tolerant benchmark for Example 4.2 in more detail. Consider instance I (leftmost table) in Table 2
(with 0.4 > γ ≥ 4δ), which we will use to illustrate our benchmark. We show that βtol

1 = 0.5 + δ and βtol
2 = 4δ. To

calculate the benchmarks, we compute the sum of the ϵ-relaxed Stackelberg value and ϵ-regularizer for different values of
ϵ and then take a minimum. We will show that the minimum turns out to be achieved at ϵ = δ.

16



Impact of Decentralized Learning on Player Utilities in Stackelberg Games

b1 b2 b3
a1 (1, 0.5 + 2δ) (0.7, 0.5 + δ) (1.1, 0)
a2 (0.8, 3.5 · δ) (1.2, 3 · δ) (0.9, 4 · δ)
a3 (0.5, 0.5) (0.7, 0) (2, 0.1)

Table 5. Calculating the self-δ-tolerant benchmark: Note that Bδ,Aδ are defined the same as in the γ-tolerant benchmark in Table 4,
so the only difference is the location of the δ-relaxed Stackelberg utility values for the leader and the follower, which are calculated by
finding the worst expected reward for each within the Bδ,Aδ sets. Here, they occur for the leader in (a1, b2) (in purple) and for the
follower in (a2, b2) (in green).

First, for ϵ = 0 this benchmark is equal to the Stackelberg equilibrium, which gives values 0.5 + δ, 0.4 for the leader and
follower respectively. For ϵ ∈ (0, δ), the ϵ-relaxed Stackelberg value stays the same while the regularizer increases. For
ϵ = δ, the behavior of the ϵ-Stackelberg utility becomes more complicated.

• Follower ϵ-best-response set: In this instance, Bδ(a1) = {a1}: for arm a1, because 0.4 > δ, only {b1} is in the
best-response set. However, Bδ(a2) = {b1, b2}: both arms for the follower are within δ of optimal.

• Leader ϵ-relaxed Stackelberg utility: This term captures the best utility that the leader can achieve if the follower
worst-case ϵ-best-responds according to argminb∈Bδ

(a). Since Bδ(a1) = {b1}, we see that minb∈Bδ
(a1) = 0.5 + δ.

However, for a2, minb∈Bδ
(a) = v1(a2, b2) = 0.4. The leader’s best action is to pick a1, so the δ-relaxed Stackelberg

utility is equal to 0.5 + δ.

• Leader ϵ-best-response sets: We construct the Aδ set by considering all actions a where the best-case outcome within
the Bδ(a) gives reward at least within δ of our benchmark value of 0.5+ δ. We can seeAδ = {a1, a2} because they both
contain an item within δ of the benchmark value ((a1, b1) or (a2, b1) respectively).

• Follower’s ϵ-relaxed Stackelberg utility: This term considers the worst-case action within Aδ for the follower. If the
leader picks a1, the only response is b1 which gives value 0.4, while if the leader picks a2, the best response is b2 which
gives value 3 · δ. The minimum of these, plus a regularizer term, gives a benchmark of 4 · δ.

The above analysis shows that for ϵ = δ, the ϵ-relaxed Stackelberg utility plus the ϵ-regularizer are equal to (0.5 + 2δ, 4δ)
for the leader and follower, respectively. For ϵ ∈ (δ, γ), the best response sets will not change, but the penalty for ϵ will
increase, so these will not affect the infimum. Taking the minimum over the calculated benchmarks for ϵ ∈ {0, γ} gives
0.5 + δ, 4δ for the leader and follower respectively.

B.2. Worked-out Version of Example 4.2 for self-γ-tolerant benchmark

We work out the self-γ-tolerant benchmark for Example 4.2 in more detail. Again, consider I in Table 2, which we also
used to illustrate the γ-tolerant benchmark in Example 4.2. Recall that for ϵ = 0, we recover the Stackelberg equilibrium
benchmark of (0.5 + δ, 0.1) for the leader and follower, respectively. For ϵ ∈ (0, δ) the Bϵ(a),Aϵ sets don’t change,
but the penalty increases, so this is irrelevant for the infimum. Recall that from that analysis, we found that Bδ(a1) =
{b1},Bδ(a2) = {a1, a2}, and Aδ = {a1, a2}. The self−γ-tolerance benchmark only requires each agent to compete with
the worst element within the product set Aδ × Bδ(a) (if we consider the instance where ϵ = δ).

For the given instance, this gives the benchmarks for the leader and follower of 0.4+ δ and 2 · δ+ δ, where we have added
a δ regularizer penalty to both. Finally, we note that for ϵ ∈ (δ, 0.1), again the Bϵ(a),Aϵ sets do not change but the penalty
increases, so these are again irrelevant for the infimum. Taking the minimum of the benchmarks over ϵ ∈ {0, δ} gives
0.4 + δ, 3δ for the leader and follower respectively. Note that this differs from the γ-tolerant benchmark for the follower
only by δ, but differs by 0.1 (a constant) for the leader.

B.3. Additional Worked-out Example for the Benchmark

Tables 4 and 5 contain worked examples of how the benchmarks are calculated for more complex examples.

B.4. Additional Notation and Auxiliary Lemmas

We introduce the following notation and auxiliary lemmas which will be convenient in our proofs.

17



Impact of Decentralized Learning on Player Utilities in Stackelberg Games

Notation for Player Histories. First, we introduce the following notation for the player histories that will be convenient
to use in algorithmic specifications and proofs.

In a weakly decentralized Stackelberg game (WeakDSG), let the leader’s history up to time step t be the set of arms that
were pulled, as well as the reward for the leader at each time step:

H1,t := {(t′, at′ , bt′ , r1,t′(at′ , bt′)) | 1 ≤ t′ < t} .

In a strongly decentralized Stackelberg game (StrongDSG), the leader cannot even observe the action chosen by the fol-
lower, but the follower’s information remains unchanged. That is H1,t := {(t′, at′ , r1,t′(at′ , bt′)) | 1 ≤ t′ < t}.

Let the follower’s history be
H2,t := {(t′, at′ , bt′ , r2,t′(at′ , bt′)) | 1 ≤ t′ < t} .

When the follower runs a separate algorithm on each choice of a ∈ A and does not share information across arms (e.g.,
in Proposition 4.3, Theorem D.1, Proposition G.4, and Proposition G.2), then the follower’s history for the arm a ∈ A is
given by:

H2,t,a := {(nt′+1(a), bt′ , r2,t′(at′ , bt′)) | 1 ≤ t′ < t, at′ = a} ,
where nt′+1(a) is the number of times that arm a is pulled prior to the (t′ + 1)th time step.

Auxiliary lemma for regret analysis. Next, we introduce the following auxiliary lemma which will be useful in the regret
analysis.
Lemma B.1. Let C be a finite set of arms and let T ≥ 1 be a time horizon. Let (c1, . . . , cT ) ∈ CT denote any history of
arm pulls. Let nt(c) =

∑t−1
t=1 1[ct′ = c] denote the number of times that c is pulled prior to time step t. Then it holds that:∑

c∈C

1√
nt(c)

≤ O
(√

T · |C|
)

Proof. We observe that

∑
c∈C

1√
nt(c)

=
∑
c∈C

nt(c)∑
n=1

1√
n
≤(A)

∑
c∈C

O
(√

nt(c) + 1
)
≤(B) O

(√
T · |C|

)
where (A) follows from an integral bound and (B) follows from Jensen’s inequality.

C. Proofs of Regret Lower Bounds
Our regret bounds analyze a centralized setting (Appendix C.1) and build on standard tools (Lattimore and Szepesvári,
2020) for regret lower bounds (Appendix C.2). We prove Proposition C.5 in Appendix C.3, Theorem 3.1 in Appendix C.4,
and Theorem 4.5 in Appendix C.5.

C.1. Centralized Environment

When analyzing regret lower bounds, it is also convenient to consider a centralized environment where a single player
controls the actions of both players and observes all past actions. While the centralized environment is not our primary
focus, it can (informally speaking) be viewed as a limiting case of the decentralized setting with extremely sophisticated
players who could communicate their strategies to each other. We define the history for the centralized environment to be:

HC
t = {(t′, at′ , bt′ , r1,t′(at′ , bt′), r2,t′(at′ , bt′)) | 1 ≤ t′ ≤ t} .

The centralized player chooses an algorithm ALG mapping a history to a joint distribution over pairs of actions.

We show that centralized algorithms are strictly more general than decentralized environments, in that any rewards realized
in a decentralized environment can also be realized in a centralized environment.
Lemma C.1. Consider a StrongDSG or WeakDSG. Fix an instance I = (A,B, v1, v2) and time horizon T .
For any pair of algorithms ALG1 and ALG2, there exists a centralized algorithm ALG such that the leader re-
wards (r1,1(a1, b1), . . . , r1,T (aT , bT )) are identically distributed for ALG and (ALG1,ALG2) and the follower rewards
(r2,1(a1, b1), . . . , r2,T (aT , bT )) are also identically distributed for ALG and (ALG1,ALG2).

18



Impact of Decentralized Learning on Player Utilities in Stackelberg Games

Lemma C.1 follows immediately from designing ALG to “simulate” histories for the leader and the follower (by projecting
away the information unavailable to each player) and then to choose arms by applying ALG1 and ALG2 on these histories.

C.2. Useful Lemmas

Our regret bounds leverage the following standard tools (Lattimore and Szepesvári, 2020) which we restate for complete-
ness. Like in Lattimore and Szepesvári (2020), we will use the Bretagnolle–Huber inequality.

Theorem C.2 (paraphrased from Theorem 14.2 in (Lattimore and Szepesvári, 2020)). Let P and Q be probability measures
on the same measurable space (Ω,F), and let E ∈ F be an arbitrary event. Then it holds that:

P (G) +Q(Gc) ≥ 1

2
e−KL(P,Q)

where Gc = Ω \G is the complement of G and KL(P,Q) is the KL divergence between P and Q.

We similarly work with the canonical bandit model (Section 4.6 in Lattimore and Szepesvári (2020)) but with some mod-
ifications because there are two observed rewards (for the leader and the follower) in our setup. We call the analogous
setup in our setting the canonical centralized bandit model. Note that the sample space of the probability space is now
(((A× B)× R× R)T (instead of ([k]× R)T , like in the typical canonical bandit model).

We show an analogous divergence decomposition (Lemma 15.1 in Lattimore and Szepesvári (2020)) applies to our setting.
For this result, fixA and B, and let v and ṽ be two different specifications of utilities. For i ∈ {1, 2}, let ri(a, b) denote the
reward distribution N(vi(a, b), 1) and let r̃i(a, b) denote the reward distribution N(ṽi(a, b), 1).

Theorem C.3 (adapted from Lemma 15.1 in (Lattimore and Szepesvári, 2020)). Fix an algorithm ALG for the centralized
environment. Let P (resp. P̃ ) denote the probability measure corresponding to the canonical centralized bandit model for
ALG applied to (A,B, v) (resp. (A,B, ṽ)). Let nT (a, b) =

∑T
t=1 1[at = a, bt = b] denote the number of times that arm

(a, b) is pulled. Then it holds that:

D(P, P̃ ) =
∑

(a,b)∈A×B

EP [nT (a, b)] · (D(r1(a, b), r̃1(a, b)) +D(R2(a, b), r̃2(a, b)).

where D(·, ·) denotes the KL divergence, where ri(a, b) denotes the reward distribution N(vi(a, b), 1) and r̃i(a, b) denotes
the reward distribution N(ṽi(a, b), 1) for i = 1, 2.

Proof. This follows from the exact same argument as the proof in Lattimore and Szepesvári (2020), where Xt is interpreted
as the pair of rewards (r1,t(at, bt), r2,t(at, bt)) (or (r̃1,t(at, bt), r̃2,t(at, bt)) observed at time step t. Let r(a, b) be the
product distribution r1(a, b)× r2(a, b), and let r̃(a, b) be the product distribution r̃1(a, b)× r̃2(a, b). This yields:

D(P, P̃ ) =
∑

(a,b)∈A×B

EP [nT (a, b)] ·D(r(a, b), r̃(a, b)).

The result follows from applying the “chain rule” which implies that the KL divergence of a product distribution is the sum
of KL divergences of the individual distributions:

D(r(a, b), r̃(a, b)) = D(r1(a, b), r̃1(a, b)) +D(r2(a, b), r̃2(a, b).

Recall that we assume Gaussian noise, which further simplifies Theorem C.3. By applying standard KL divergence bounds
for univariate Gaussians, we obtain the following corollary of Theorem C.3.

Corollary C.4. Fix an algorithm ALG for the centralized environment. Let P (resp. P̃ ) denote the probability measure
corresponding to the canonical centralized bandit model for ALG applied to (A,B, v) (resp. (A,B, ṽ)). Let nT (a, b) =∑T

t=1 1[at = a, bt = b] denote the number of times that arm (a, b) is pulled. Then it holds that:

D(P, P̃ ) =
∑

(a,b)∈A×B

EP [nT (a, b)] ·
(v1(a, b)− ṽ1(a, b))

2 + (v2(a, b)− ṽ2(a, b))
2

2
.

19



Impact of Decentralized Learning on Player Utilities in Stackelberg Games

b1 . . . b′ . . .
a1 (δ, δ) (δ, δ) (δ, δ) (δ, δ)
... (0, 0) (0, 0) (0, 0) (0, 0)
a′ (0, 0) (0, 0) * (0, 0)
... (0, 0) (0, 0) (0, 0) (0, 0)

Table 6. Hard instance for Proposition C.5, where ∗ is equal to (0, 0) for instance Ia1,b1 , and (2δ, 2δ) otherwise.

C.3. Statement and Proof for Proposition C.5

We state and prove Proposition C.5.
Proposition C.5. Consider WeakDSGs with action setsA and B such that |A| ≥ 2 and |B| ≥ 2. For any algorithms ALG1

and ALG2, there exists an instance I∗ = (A,B, v1, v2) such that at least one of the players incurs Ω(
√
T · (|A| − 1) · |B|)

regret with respect to the self-γ-tolerant benchmarks βself-tol
1 and βself-tol

2 , that is: max(R1(T ; I∗), R2(T ; I∗)) =

Ω(
√

T · (|A| − 1) · |B|).

Proof of Proposition C.5. Fix A and B such that |A| ≥ 2 and |B| ≥ 1.

We define a family of instances in the centralized game and evaluate the self-tolerant benchmarks on this family of in-
stances. Arbitrarily pick some a1 ∈ A to be the “base” action. Let Fδ,A,B be the family of (|A| − 1) · |B| + 1
instances of the form (A,B, v1, v2) for varying settings of v1 and v2, where we index the instances by (a′, b′) ∈
((A \ {a1}) × B) ∪ {(a1, b1)}. The utility functions for the instance I(a′,b′) are equal to the terms below (illustrated
in Table 6):

v1(a, b) = v2(a, b) =


δ if a = a1

0 if (a′, b′) ̸= (a, b), a ̸= a1

2δ if (a′, b′) = (a, b), a ̸= a1

We claim that the βself-tol
1 = βself-tol

2 = δ for the instance I(a1,b1) and βself-tol
1 = βself-tol

2 = 2δ for the instances I(a′,b′) where
(a′, b′) ̸= (a1, b1). To see this, observe that on the instance I(a1,b1), it holds that Bϵ(a1) = B and Aϵ = {a1} if ϵ < δ.
Thus, it holds that mina∈Aϵ minb∈Bϵ(a) v1(a, b) + ϵ ≥ δ for all ϵ, so the benchmark is equal to

βself-tol
1 = βself-tol

2 = δ,

as desired. On instances I(a′,b′) where (a′, b′) ̸= (a1, b1), it holds that Bϵ(a′) = {b′} if ϵ < 2δ and Aϵ = {a′} if ϵ < δ.
If ϵ < δ or ϵ ≥ 2δ, then mina∈Aϵ

minb∈Bϵ(a) v1(a, b) + ϵ ≥ 2δ. If δ ≤ ϵ < 2δ, then Aϵ = {a′, a1} and it also holds that
mina∈Aϵ minb∈Bϵ(a) v1(a, b) + ϵ ≥ 2δ. This means that the self-tolerant benchmarks are equal to:

βself-tol
1 = βself-tol

2 = 2δ,

as desired.

Because the utilities in Fδ,A,B and the benchmarks are the same for the leader and follower, we see that the regret is also
the same for both players. Thus, for the remainder of the analysis, we do not need to distinguish between the regret of the
leader and the regret of the follower. Let R(T ; I) denote the regret incurred on instance I. Since the benchmarks are equal
to the maximum reward across all pairs of arms, the expected regret is always nonnegative.

Fix any ALG for the centralized environment. For each (a, b) ∈ ((A \ {a1}) × B) ∪ {(a1, b1)}, let Pa,b denote the
probability measure over canonical centralized bandit model when ALG is applied to the instance Ia,b (see Appendix C.2).
Let nT (a, b) =

∑T
t=1 1[at = a, bt = b] be the random variable denoting the number of times that (a, b) is pulled. We

define:
(am, bm) := argmin(a,b)∈A×B|a ̸=a1

EP(a1,b1)
[nT (a, b)]

to be the arm pulled the minimum number of times in expectation over P(a1,b1) (i.e., the expectation when ALG is applied
to the instance Ia1,b1 ). This means that

EP(a1,b1)
[nT (am, bm)] ≤ T

(|A| − 1) · |B|
.

20



Impact of Decentralized Learning on Player Utilities in Stackelberg Games

We will construct δ such that the regret is high on at least one of the instances I(a1,b1) and I(am,bm).

Now, let G denote the event that
∑

b∈B nT (a1, b) ≤ T/2 (i.e., the arm a1 is pulled less than T/2 times). It is easy to see
that the regret satisfies:

R(T ; Ia1,b1) ≥
δ · T
2
· Pa1,b1 [G]

R(T ; Iam,bm) ≥ δ · T
2
· Pam,bm [Gc]

where Gc is the complement of G. We apply Theorem C.2 to see that:

R(T ; Ia1,b1) +R(T ; Iam,bm) =
δ · T
2

(Pa1,b1 [G] + Pam,bm [Gc])

≥(1)
δ · T
2
· 1
2

exp (−KL(Pa1,b1 , Pam,bm))

≥(2)
δ · T
2
· 1
2

exp
(
−EPa1,b1

[nT (am, bm)] · (2δ)2
)

≥(3)
δ · T
4
· exp

(
− 4 · δ2 · T
(|A − 1)|B|

)
.

where (1) applies Theorem C.2 and (2) applies Corollary C.4, and (3) applies the fact that nT (am, bm) ≤ T
(|A|−1)·|B| . If

we set δ = Θ(
√

|A−1)|B|
T ), then we obtain a bound of Θ(

√
T · (|A| − 1) · |B|). Since expected regret is nonnegative for

these instances (see discussion above), this implies that either R(T ; Ia1,b1) = Ω(
√
T · (|A| − 1) · |B|) or R(T ; Iam,bm) =

Ω(
√
T · (|A| − 1) · |B|) as desired.

C.4. Proof of Theorem 3.1

Theorem 3.1. For both StrongDSGs and WeakDSGs, for any algorithms ALG1 and ALG2, there exists an instance I∗ with
|A| = |B| = 2 where at least one of the players incurs linear regret with respect to the Stackleberg benchmarks βorig

1 and
βorig
2 , that is: max(R1(T ; I∗), R2(T ; I∗)) = Ω(T ).

Proof. It suffices to prove this lower bound in a centralized environment where a single learner can choose action pairs
(a, b) and observes rewards for both players (Lemma C.1). We construct a pair of instances I and Ĩ such that at least one
of the players incurs linear regret on at least one of the instances. In particular, we take I and Ĩ to be the instances depicted
in Table 1 with δ = O(1/

√
T ).

We first compute the benchmarks on these two instances. On instance I, it holds that (a∗, b∗) = (a1, b1), β
orig
1 = 0.6 and

βorig
2 = δ ≥ 0. On the other hand, on instance Ĩ, it holds that (a∗, b∗) = (a2, b1), β

orig
1 = 0.5, and βorig

2 = 0.6. It is easy to
see that R1(T ; I) and R2(T ; Ĩ) are always nonnegative.

Fix any ALG for the centralized environment. Let P (resp. P̃ ) denote the probability measure over canonical centralized
bandit model when ALG is applied to the instance I (resp. Ĩ) (see Appendix C.2). We will show that the regret is high on
at least one of the instances I and Ĩ.

Now let nT (a, b) =
∑T

t=1 1[at = a, bt = b] be the random variable denoting the number of times that (a, b) is pulled, and
let G denote the event that nT (a1, b1) ≤ T/2 (i.e., the arm (a1, b1) is pulled less than T/2 times). It is easy to see that the
regret satisfies:

R1(T ; I) ≥
0.1 · T

2
· P [G]

R2(T ; Ĩ) ≥
(0.6− δ) · T

2
· P̃ [Gc]

21



Impact of Decentralized Learning on Player Utilities in Stackelberg Games

b1 . . . b′ . . .
a1 (0.5, 3 · δ) (0.5, 3 · δ) (0.5, 3 · δ) (0.5, 3 · δ)
... (0.5 + δ, δ) (0, 0) * (0, 0)
... (0.5 + δ, δ) (0, 0) * (0, 0)
... (0.5 + δ, δ) (0, 0) * (0, 0)

Table 7. Hard instance for Theorem 4.5, where ∗ is equal to (0, 0) for instance Ia1,b1 , and (0, 2δ) otherwise. Note that this example is
structurally similar to the illustrative example in Table 3, but with |A| , |B| ≥ 2.

where Gc is the complement of G. We apply Theorem C.2 to see that:

R1(T ; I) +R2(T ; Ĩ) =
0.1 · T

2
· P [G] +

(0.6− δ) · T
2

· P̃ [Gc]

≥ 0.1 · T
2
·
(
P [G] + P̃ [Gc]

)
≥(1)

0.1 · T
2
· 1
2

exp
(
−KL(P, P̃ )

)
≥(2)

0.1 · T
2
· 1
2

exp
(
−EP [nT (a1, b2)] ·

(2 · δ)2

2

)
≥(3)

0.1 · T
4
· exp

(
−2 · δ2 · T

)
.

where (1) applies Theorem C.2 and (2) applies Corollary C.4, and (3) uses the fact that nT (a1, b2) ≤ T . If we take
δ = O(T−1/2), then we obtain a bound of Ω(T ). Since these expected regrets are always nonnegative (see discussion
above), this implies that either R1(T ; I) = Ω(T ) or R2(T ; Ĩ) = Ω(T ) as desired.

C.5. Proof of Theorem 4.5

Theorem 4.5. Consider StrongDSGs or WeakDSGs with action sets A and B such that |A| ≥ 2 and |B| ≥ 2. For any
algorithms ALG1 and ALG2, there exists an instance I∗ = (A,B, v1, v2) such that at least one of the players incurs
Ω(T 2/3 · (|B|)1/3) regret with respect to the γ-tolerant benchmarks βtol

1 and βtol
2 :

max(R1(T ; I∗), R2(T ; I∗)) = Ω(T 2/3 · (|B|)1/3).

Proof. Fix A and B such that |A| ≥ 2 and |B| ≥ 2.

We define a family of instances in the centralized game and evaluate the self-tolerant benchmarks on this family of in-
stances. Arbitrarily pick some (a1, b1) ∈ A × B to be the “base” action. Let Fδ,A,B be the family of |B| instances of the
form (A,B, v1, v2) for varying settings of v, where we index the instances by B. The utility functions for the instance Ib′
are equal to terms below (illustrated in Table 7):

v1(a, b) =


0.5 if a = a1

0.5 + δ if a ̸= a1, b = b1

0 if a ̸= a1, b ̸= b1.

v2(a, b) =


3δ if a = a1

δ if a ̸= a1, b = b1

2δ if b = b′, a ̸= a1, b ̸= b1

0 if b ̸= b′, a ̸= a1, b ̸= b1

We claim that the βtol
1 = 0.5+ δ and βtol

2 = δ for the instance I(a1,b1) and βtol
1 = 0.5 and βtol

2 = 3δ for the instances I(a′,b′)

where (a′, b′) ̸= (a1, b1).

22



Impact of Decentralized Learning on Player Utilities in Stackelberg Games

• Instance Ib1 : If ϵ < δ, it holds that Bϵ(a) = {b1} for a ̸= a1 and Aϵ = A \ {a1}. If ϵ ≥ δ, then it holds that Bϵ(a) = B
and Aϵ = A. Altogether, this means that βtol

1 = 0.5 + δ and βtol
2 = δ.

• Instances Ib′ where b′ ̸= b1: If ϵ < δ, it holds that Bϵ(a) = {b′} for a ̸= a1 andAϵ = {a1}. If δ ≤ ϵ < 2δ, then it holds
that Bϵ(a1) = B and Bϵ(a) = {b′, b1} for a ̸= a1, and Aϵ = A. If ϵ ≥ 2δ, then it holds that Bϵ(a) = B and Aϵ = A.
Altogether, this means that βtol

1 = 0.5 and βtol
2 = 3δ.

It is easy to see that the regret R1(T ; Ib1) and the regret R2(T ; Ib) for b ̸= b1 are always nonnegative.

Fix an ALG be an algorithm for the centralized environment. For each b ∈ B, let Pb denote the probability measure
over canonical centralized bandit model when ALG is applied to the instance Ib (see Appendix C.2). Let nT (a, b) =∑T

t=1 1[at = a, bt = b] be the random variable denoting the number of times that (a, b) is pulled. We define:

bm := argminb∈B|b̸=b1
EPb1

∑
a̸=a1

nT (a, b)


to be the arm b such that the set of arms (a′, b) for a′ ̸= a1 is pulled the minimum number of times in expectation over Pb1

(i.e., the expectation when ALG is applied to the instance Ib1 ). This means that∑
b ̸=b1

∑
a̸=a1

EPb1
[nT (a, b)] ≥ (|B| − 1)

∑
a̸=a1

EPb1
[nT (a, bm)].

We will construct δ such that the regret is high on at least one of the instances Ib1 and Ibm .

Now, let G denote the event that
∑

a̸=a1
nT (a, b1) ≤ T/2 (i.e., arms of the form (a′, b1) for a′ ̸= a are pulled less than

T/2 times). It is easy to see that the regret satisfies:

R1(T ; Ib1) ≥
δ · T
2
· Pb1 [E]

R2(T ; Ibm) ≥ 2 · δ · T
2

· Pbm [Ec]

R1(T ; Ib1) ≥ (0.5 + δ) · E

 ∑
a̸=a1,b ̸=b1

nT (a, b)

 ≥ 0.5 · E

 ∑
a ̸=a1,b̸=b1

nT (a, b)

 .

where Gc is the complement of G. We apply Theorem C.2 to see that:

2 ·R1(T ; Ib1) +R2(T ; Ibm)

=
δ · T
2
· Pb1 [E] +

2 · δ · T
2

· Pbm [Ec] + 0.5 · E

 ∑
a ̸=a1,b ̸=b1

nT (a, b)


≥ δ · T

2
· (Pb1 [E] + Pbm [Ec]) + 0.5 · E

 ∑
a̸=a1,b̸=b1

nT (a, b)


≥(1)

δ · T
2

exp (−KL(Pb1 , Pbm)) + +0.5 · E

 ∑
a̸=a1,b ̸=b1

nT (a, b)


≥(2)

δ · T
2
· 1
2

exp

−EPb1

∑
a ̸=a1

nT (a, bm)

 · (2δ)2
2

+ 0.5 · E

 ∑
a ̸=a1,b ̸=b1

nT (a, b)


≥(3)

δ · T
2
· 1
2

exp

−EPb1

∑
a ̸=a1

nT (a, bm)

 · (2δ)2
2

+ 0.5(|B| − 1) · E

∑
b ̸=b1

nT (a, bm)


23



Impact of Decentralized Learning on Player Utilities in Stackelberg Games

where (1) applies Theorem C.2 and (2) applies Corollary C.4 and where (3) uses the fact that∑
b ̸=b1

∑
a ̸=a1

EP [nT (a, b)] ≥ (|B| − 1)
∑

a̸=a1
EP [nT (a, bm)].

We claim that the expression is Ω(T 2/3(|B|−1)1/3). We split into two cases based on the value of E
[∑

a ̸=a1
nT (a, bm)

]
:

E
[∑

a ̸=a1
nT (a, bm)

]
≥ Θ(T 2/3(|B| − 1)−2/3) and E

[∑
a̸=a1

nT (a, bm)
]
≤ Θ(T 2/3(|B| − 1)−2/3).

1. Case 1: E
[∑

a̸=a1
nT (a, bm)

]
≥ Θ(T 2/3(|B|−1)−2/3). In this case, we see that 0.5(|B|−1)·E

[∑
b̸=b1

nT (a, bm)
]
=

Ω(T 2/3(|B| − 1)1/3).

2. Case 2: E
[∑

a ̸=a1
nT (a, bm)

]
≤ Θ(T 2/3(|B| − 1)−2/3). In this case, we can write:

δ · T
2
· 1
2

exp

−EPb1

∑
a̸=a1

nT (a, bm)

 · (2δ)2
2

 ≥ δ · T
2
· 1
2

exp
(
−Θ

(
T 2/3(|B| − 1)−2/3 · δ2

))
.

In this case, we set δ = Θ(T−1/3(|B| − 1)1/3) and the expression becomes Ω(T 2/3(|B| − 1)1/3).

This proves that 2 ·R1(T ; Ib1) +R2(T ; Ibm) = Ω(T 2/3(|B| − 1)1/3).

Since expected regret is nonnegative for these instances (see discussion above), this implies that either R1(T ; Ib1) =
Ω(T 2/3(|B| − 1)1/3) or R2(T ; Ibm) = Ω(T 2/3(|B| − 1)1/3) as desired.

D. Proofs for Section 4
D.1. Statement and Proof of Proposition 4.3

First, we describe the algorithm formally.

ExploreThenCommit(E, C) (Algorithm 1). The algorithm ALG = ExploreThenCommit(E, C) takes as input
E ∈ [T ] and a set of arms C.13 When ALG is applied to an instance, for the first |C| · E rounds, the algorithm ALG pulls
each arm in C a total of E times in a round-robin fashion. For the remaining T − |C| ·E rounds, the algorithm commits to
the optimal empirical mean from the first |C| · E rounds. This is a standard algorithm for multi-armed bandits (Slivkins,
2019; Lattimore and Szepesvári, 2020).

We now state and prove Proposition 4.3.
Proposition 4.3. Consider a StrongDSG where the follower runs a separate instantiation of
ExploreThenCommit(E,B) for every a ∈ A. Moreover, suppose that the leader runs ExploreThenCommit(E′ ·
|B|,A) for any E′ ≤ E (i.e., the leader’s exploration phase ends before the follower’s exploration phase). Then, there
exists an instance I∗ such that both players incur linear regret with respect to the γ-tolerant benchmarks βtol

1 and βtol
2 :

that is, min(R1(T ; I∗), R2(T ; I∗)) = Ω(T ).

This proof holds for γ < 0.1 (the construction can be generalized to other constant γ by adjusting the values of the mean
rewards; we present this construction which builds on Table 2).

Proof. We take I∗ to be the instance I in Table 8 (equivalent to Table 2 with δ = 0.1).

The fact that E′ < E means that the leader’s exploration phase takes place entirely during the follower’s exploration phase.
Moreover, since the leader’s exploration parameter E′ · |B| is divisible by |B|, for every arm a ∈ A, the follower pulls every
arm b ∈ B an equal number of times. Given that follower explores evenly between the two arms b1 and b2, the leader’s
expected average reward E[v̂1(a1)] from a1 during the first E′ · |B| rounds is given by (0.6+0.2)/2 = 0.4 and the leader’s
expected average reward E[v̂1(a2)] average reward from a2 is given by (0.5 + 0.4)/2 = 0.45.

The proofs boils down to analyzing the relationship between the distributions v̂1(a1) and v̂1(a2). Note that we allow E,E′

to be arbitrary, so we cannot use standard concentration bounds. Instead, we leverage the symmetry of the distribution of

13By setting C = A, this algorithm can be instantiated as ALG1 for the leader; by setting C = B, this algorithm can be instantiated as
ALG2 for the follower.

24



Impact of Decentralized Learning on Player Utilities in Stackelberg Games

Algorithm 1: ExploreThenCommit(E, C) applied to history H (see e.g., (Slivkins, 2019; Lattimore and
Szepesvári, 2020))

1 Fix an arbitrary ordering C =
{
c1, . . . , c|C|

}
.

2 Let t = |H|.
/* Explore for the first E · |C| rounds */

3 if t ≤ E · |C| then
4 Let i = t (mod |C|) + 1 be the index of the action that should be pulled.
5 return point mass at ci

/* Commit for the remaining rounds */
6 if t > E · |C| then

/* Discard history all but the first E · |C| rounds. */
7 H∗ = {(t′, ct′ , r) | ∃(t′, bt′ , r) ∈ H s.t. t′ ≤ E · |C|}

/* Choose highest empirical mean. */
8 for c ∈ C do
9 Set S(c) := {r | ∃(t′, ct′ , r) ∈ H∗ s.t. c = ct′} // observed rewards

10 v̂(c)← (
∑

r∈S(c) r)/|S(c)| // compute empirical mean

11 return point mass at argmaxc∈C v̂(c)

b1 b2
a1 (0.6, 0.4) (0.2, 0)
a2 (0.5, 0.3) (0.4, 0.2)

Table 8. A single instance, illustrating the γ-tolerant benchmark - variant of Table 2 with δ = 0.1

the empirical mean v̂1(a1) (this follows from the fact that v̂1(a1) − E[v̂1(a1)] is distributed as a Gaussian). This means
that:

P[v̂1(a1) > 0.4] = P[v̂1(a1) < 0.4] = 0.5.

(The probability P[v̂1(a1) = E[v̂1(a1)] = 0.4] is equal to 0.) Similarly, we see that:

P[v̂1(a2) > 0.45] = P[v̂1(a2) < 0.45] = 0.5.

Because the stochastic rewards have independent randomness, we know that with probability at least 0.25 we have v̂1(a1) <
0.4 and v̂1(a2) > 0.45. When this occurs, the leader commits to pulling arm a2.

Regardless of the follower’s choice of action (b1 or b2) in the commit phase, this means that the follower obtains reward
at most 0.3 and the leader obtains reward at most 0.5. However, recall that we found that the γ-tolerant benchmark (for
γ = 0.1) are βtol

1 = 0.6 and βtol
2 = 0.4. This leads to linear regret (at least 0.25 · 0.1 ·T ) for both players, even with respect

to the γ-tolerant benchmark.

D.2. Statement and Proof of Theorem D.1

We first state the algorithm formally.

ExploreThenCommitThrowOut(E,E′, C) (Algorithm 2). The algorithm ALG1 =
ExploreThenCommitThrowOut(E,E′, C) takes as input E,E′ ∈ [T ] and a set of arms C. It throws out the
first E′ · |C| rounds and then runs ExploreThenCommit(E, C).

We show that if the follower runs ExploreThenCommit and the leader runs ExploreThenCommitThrowOut, then
both players achieve sublinear regret.
Theorem D.1. Consider a StrongDSG where the follower runs a separate instantiation of
ExploreThenCommit(E2,B) for every a ∈ A, and the leader runs ExploreThenCommitThrowOut(E1, E2 ·
|B|,A). If E2 = Θ(|A|−2/3|B|−2/3 · (log T )1/3T 2/3), and E1 = Θ(|A|−2/3 · (log T )1/3T 2/3), then, the regret with
respect to the γ-tolerant benchmarks is bounded as:

max(R1(T ), R2(T )) = O
(
|A|1/3|B|1/3(log T )1/3T 2/3

)
.

25



Impact of Decentralized Learning on Player Utilities in Stackelberg Games

Algorithm 2: ExploreThenCommitThrowOut(E,E′, C) applied to history H

1 Fix an arbitrary ordering C =
{
c1, . . . , c|C|

}
. /* Explore for first E′ · |C| rounds */

2 if t ≤ E′ · |C| then
3 Let i = t (mod |C|) + 1 be the index of the action that should be pulled.
4 return point mass at ci

/* Run ETC for the remainder of time, throwing out first E′ · |C| rounds */
5 if t > E′ · |C| then
6 H∗ = {(t′ − E′ · |C|, ct′ , r) | ∃(t′, ct′ , r) ∈ H s.t. t′ > E′ · |C|} // Throw out first E′ · |C| rounds

of history
7 return ExploreThenCommit(E, C) applied to H∗

In this theorem, we will assume γ = ω
(
T−1/3 |A|1/3 |B|1/3 · (log(T )1/3)

)
(see Section F.1 for a discussion of γ) .

Notation. We will use the following notation in the proof. For a ∈ A and b ∈ B, let v̂2(a, b) denote the empirical mean of
observations that the follower has seen for arm a during the first E2 · |A| · |B| time steps. For a ∈ A, let v̂1(a) denote the
empirical mean of observations that the leader has seen for arm a during the first time steps t ∈ [E2 · |B| · |A|+1, E2 · |B| ·
|A|+E1 · |A|]. We denote by b̃(a) = argmaxb∈Bv̂2(a, b) the arm that follower has committed to for rounds t > E2 · |A|·|B|
onwards. We denote by ã = argmaxa∈Av̂1(a) the arm that the leader has committed to for rounds t > E1 · |A|.

Clean event. We define the clean event G := GL∩GF to be the intersection of a clean event GL for the leader and a clean
event GF for the follower. Informally speaking, the clean event for the leader is the event that for all arms, the empirical
mean reward v̂1(a) is close to the true reward v1(a, b̃(a)). The event GL is formalized as follows:

∀a ∈ A : |v̂1(a)− v1(a, b̃(a))| ≤
10
√
log T√
E1

.

Similarly, informally speaking, the clean event for the follower is the event that for all arms, the empirical mean reward
v̂2(a, b) is close to the true reward v2(a, b). The event GF is formalized as follows:

∀a ∈ A, b ∈ B : |v̂2(a, b)− v2(a, b)| ≤
10
√
log T√
E2

.

We prove that the clean event occurs with high probability.

Lemma D.2. Assume the notation above. Let the follower run a separate instantiation of
ExploreThenCommit(E2,B) for every a ∈ A, and let the leader run ExploreThenCommitThrowOut(E1, E2 ·
|B|,A). Then the clean event occurs with probability P[G] ≥ 1− (|A| · |B|+ |A|)T−3.

Proof. First, we consider the follower’s clean event GF . For each a ∈ A, b ∈ B, the follower has seen E2 samples, so by
a Chernoff bound, we have that

P

[
|v̂2(a, b)− v2(a, b)| ≥

10
√
log T√
E2

]
≤ T−3.

We union bound over a ∈ A and b ∈ B.

Next, we consider the leader’s clean event GL. Note that v̂1(a) estimate is derived from rewards only after the follower
has committed to a best response, so it is drawn from a distribution centered at v1(a, b̃(a)), with E1 samples. Again by
applying a Chernoff bound, we see that

P

[
|v̂1(a)− v1(a, b̃(a))| ≥

10
√
log T√
E1

]
≤ T−3.

We union bound over a ∈ A.

Finally, we apply another union bound which leads P[G] ≥ 1− (|A| · |B|+ |A|) · T−3).

26



Impact of Decentralized Learning on Player Utilities in Stackelberg Games

We also prove the following lower bounds on the leader’s utility and follower’s utility from the actions ã and b̃(ã) that they
commit to.

Lemma D.3. Assume the notation above. Let the follower run a separate instantiation of
ExploreThenCommit(E2,B) for every a ∈ A, and let the leader run ExploreThenCommitThrowOut(E1, E2 ·
|B|,A). Suppose that the clean event G holds. Then, for some ϵ∗ = Θ

(
max

(√
log T√
E1

,
√
log T√
E2

))
, it holds that:

v1(ã, b̃(ã)) ≥ max
a∈A

min
b∈Bϵ∗ (a)

v1(a, b)− ϵ∗

and that
v2(ã, b̃(ã)) ≥ min

a∈Aϵ∗
max
b∈B

v2(a, b)− ϵ∗.

Proof of Lemma D.3. We assume that the clean event G holds. We take ϵ∗ = Θ
(
(|A| · |B| · (log T ))1/3 · T−1/3

)
with

sufficiently high implicit constant.

First, we show that the follower chooses a near-optimal action for every a ∈ A: that is, v2(a, b̃(a)) ≥ maxb∈B v2(a, b)−ϵ∗.
Since GF holds, for every a ∈ A and b ∈ B, we know that |v̂2(a, b) − v2(a, b)| ≤ 10

√
log T√
E2

. Based on our setting of E2

and because b̃(a) = argmaxb∈Bv̂
2
a,b, it holds that:

v2(a, b̃(a)) ≥
(
max
b∈B

v2(a, b)

)
− 20

√
log T√
E2

≥
(
max
b∈B

v2(a, b)

)
− ϵ∗,

as desired.

Next, we show that the leader chooses a near-optimal action: that is, v1(ã, b̃(ã)) ≥ maxa∈A v1(a, b̃(a)) − ϵ∗. Since GL

holds, we know that |v̂1(a) − v1(a, b̃(a))| ≤ 10
√
log T√
E1

. Based on our setting of E2 and because ã = argmaxa∈Av̂1(a), it
holds that:

v1(ã, b̃(ã)) ≥
(
max
a∈A

v1(a, b̃(a))

)
− 20

√
log T√
E1

≥
(
max
a∈A

v1(a, b̃(a))

)
− ϵ∗.

as desired.

To bound the leader’s utility, observe that v2(a, b̃(a)) ≥ maxb∈B v2(a, b)− ϵ∗ implies that b ∈ Bϵ∗(a). This, coupled with
the other bound, means that:

v1(ã, b̃(ã)) ≥ max
a∈A

v1(a, b̃(a))− ϵ∗ ≥
(
max
a∈A

min
b∈Bϵ∗ (a)

v1(a, b)

)
− ϵ∗.

To bound the follower’s utility, observe that v1(ã, b̃(ã)) ≥ maxa∈A v1(a, b̃(a))−ϵ∗ and v2(a, b̃(a)) ≥ maxb∈B v2(a, b)−ϵ∗
together imply that

max
b∈Bϵ∗ (a)

v1(ã, b) ≥ v1(ã, b̃(ã)) ≥ max
a∈A

v1(a, b̃(a))− ϵ∗ ≥
(
max
a∈A

min
b∈Bϵ∗ (a)

v1(a, b)

)
− ϵ∗,

which implies that a ∈ Aϵ∗ . This means that

v2(ã, b̃(ã)) ≥
(
max
b∈B

v2(ã, b)

)
− ϵ∗ ≥ min

a∈Aϵ∗
max
b∈B

v2(a, b)− ϵ∗.

We now prove Theorem D.1.

Proof of Theorem D.1. Assume that the clean event G holds. This occurs with probability at least 1− (|A| · |B|+ |A|)T−3

(Lemma D.2), so the clean event not occuring counts negligibly towards regret.

27



Impact of Decentralized Learning on Player Utilities in Stackelberg Games

First, we consider the first E2 · |B| · |A|+E1 · |A| time steps. Each time step results in O(1) regret for both players. Based
on the settings of E1 and E2, these phases contribute a regret of:

E2 · |B| · |A|+ E1 · |A| = O
(
|A|1/3 · |B|1/3 · (log T )1/3 · T 2/3

)
.

We focus on t > E2 · |B| · |A|+ E1 · |A| for the remainder of the analysis. Our main ingredient is Lemma D.3. Note that
ϵ∗ = Θ

(
max

(√
log T√
E1

,
√
log T√
E2

))
= Θ

(
(|A| · |B| · (log T ))1/3 · T−1/3

)
based on the settings of E1 and E2. The regret of

the leader can be bounded as:

βtol
1 · (T − E2 · |B| · |A| − E1 · |A|)−

∑
t>E2·|B|·|A|+E1·|A|

v1(at, bt)

≤ (T − E2 · |B| · |A| − E1 · |A|) ·
(
max
a∈A

min
b∈Bϵ∗ (a)

v1(a, b) + ϵ∗
)
−

∑
t>E2·|B|·|A|+E1·|A|

v1(ã, b̃(ã))

= (T − E2 · |B| · |A| − E1 · |A|) · ϵ∗ + (T − E2 · |B| · |A| − E1 · |A|)
(
max
a∈A

min
b∈Bϵ∗ (a)

v1(a, b)− v1(ã, b̃(ã))

)
≤(A) 2 · T · ϵ∗

≤ O
(
T 2/3(log T )1/3|A|1/3|B|1/3

)
.

where (A) follows from Lemma D.3. The regret of the follower can similarly be bounded as:

βtol
1 · (T − E2 · |B| · |A| − E1 · |A|)−

∑
t>E2·|B|·|A|+E1·|A|

v2(at, bt)

≤ (T − E2 · |B| · |A| − E1 · |A|) ·
(

min
a∈Aϵ∗

max
b∈B

v2(a, b) + ϵ∗
)
−

∑
t>E2·|B|·|A|+E1·|A|

v2(ã, b̃(ã))

= (T − E2 · |B| · |A| − E1 · |A|) · ϵ∗ + (T − E2 · |B| · |A| − E1 · |A|)
(

min
a∈Aϵ∗

max
b∈B

v2(a, b)− v2(ã, b̃(ã))

)
≤(B) 2 · T · ϵ∗

≤ O
(
T 2/3(log T )1/3|A|1/3|B|1/3

)
.

where (B) follows from Lemma D.3. This proves the desired result.

D.3. Proof of Theorem 4.4

Theorem 4.4. Let E = Θ(|A|−2/3(|B| log T )1/3T 2/3). Consider a StrongDSG, where ALG2 is any algorithm with high-
probability instantaneous regret g(t, T,B) = O

(
(|A||B| log T )1/3T−1/3

)
for t > E and g(t, T,B) = 1 for t ≤ E, and

where ALG1 = ExploreThenUCB(E). Then, it holds that the regret with respect to the γ-tolerant benchmarks βtol
1 and

βtol
2 is bounded as:

max(R1(T ), R2(T )) = O
(
|A|1/3|B|1/3(log T )1/3T 2/3

)
.

We assume γ = ω
(
A|1/3|B|1/3(log T )1/3T−1/3

)
.

Notation. We will use the following notation in the proof. Let ϵ∗ = maxt>E g(t, T,B). Let ã =
argmaxa∈A minBϵ∗ (a) v1(a, b) be the optimal action for the leader if the follower can worst-case ϵ∗-best-respond to any
action. Let v̂1,t(a) be the empirical mean specified in ExplorethenUCB at the beginning of time step t: this is the
empirical mean of all observations that the leader has seen for arm a prior to time step t during the UCB phase (i.e., after
time step E · |A| + 1 and prior to time step t). Moreover, for each arm a ∈ A, let S(a) = {t > E · |A| | at = a} be the
set of time steps where arm a is pulled during the UCB phase, and let nE·|A|,t(a) = | {E · |A| < t′ < t | at′ = a} | be the
number of times that a is pulled during the UCB phase prior to time step t′.

28



Impact of Decentralized Learning on Player Utilities in Stackelberg Games

Algorithm 3: ExploreThenUCB(E) applied to H

1 Fix an arbitrary ordering A =
{
a1, . . . , a|A|}.

2 Let t = |H|.
/* Explore for the first E · |A| rounds */

3 if t ≤ E · |A| then
4 Let i = ⌈ t

E ⌉ be the index of the action that should be pulled.
5 return point mass at ai

6 if t > E · |A| then
7 H∗ = {(t′ − E · |A|, at′ , r) | ∃(t′, at′ , r) ∈ H s.t. t′ > E · |A|} // Throw out first E · |A| rounds

of history
8 Initialize v̂1(a) = 1 for a ∈ A. // Initialize empirical means.
9 Initialize vUCB

1 (a) = 1 for a ∈ A. // Initialize UCB.
10 for a ∈ A do
11 Set S(a) := {r | ∃(t′, at′ , r1,t′(at′ , bt′)) ∈ H∗ s.t. a = at′ , r1,t′(at′ , bt′) = r} // Observed rewards
12 if S(a) ̸= ∅ then
13 v̂1(a)← (

∑
r∈S(a) r)/|S(a)| // Empirical mean

14 α(a)← 10 ·
√
log T√
|S(a)|

// confidence bound width

15 vUCB
1 (a)← min(1, v̂1(a) + α(a))

16 Let a∗ = argmaxa∈A
(
vUCB
1 (a)

)
. // arm with max upper confidence bound

17 return point mass at a∗

Clean event. We define the clean event G := GL∩GF to be the intersection of a clean event GL for the leader and a clean
event GF for the follower. Informally speaking, the clean event for the leader is the event that for all arms a ∈ A and for
all time steps t, the empirical mean v̂1,t(a) is close to the true average of the mean rewards across actions taken by b when
the leader has chosen action a. The event GL is formalized as follows:

∀a ∈ A, t ≤ T :

∣∣∣∣∣∣ 1

nE·|A|,t(a)

∑
E·|A|<t′<t|at′=a

v1(at′ , bt′)− v̂1,t(a)

∣∣∣∣∣∣ ≤ 10
√
log T√

nE·|A|,t(a)
.

The clean event GF for the follower is the event that the follower picks an item within the ϵ∗ best response set: ∀t >
E · |A| : bt ∈ Bϵ∗(at).

We first prove that the clean event G occurs with high probability.
Lemma D.4. Assume the notation above. Let ALG2 be any algorithm with high-probability instantaneous regret
g where g(t, T,B) = O(E−1/2|B|1/2(log T )1/2) for t > E and g(t, T,B) = 1 for t ≤ E, and let ALG1 =
ExploreThenUCB(E). Then, the event G occurs with high probability: P[G] ≥ 1− T−3(|A|+ 1).

Proof. We first show that P[GF ] ≥ 1− |A| · T−3. A sufficient condition for this event to hold is that:

∀t > E · |A| : v2(at, bt) ≥ max
b∈B

v2(at, b)−max
t>E

g(t, T,B).

Since the exploration phases pulls every arm a ∈ A a total of E times, the high-probability instantaneous regret assumption
guarantees that this event holds with probability at least 1− |A| · T−3, as desired.

We next show that P[GL] ≥ 1−T−3. This follows from a a Chernoff bound (and using the analogue of one of the canonical
bandit models in (Lattimore and Szepesvári, 2020)) combined with a union bound.

The lemma follows from another union bound over GL and GF .

Our main lemma provides, an upper bound on 1
nE·|A|,T (a′)−1

∑
t∈S(a′)\{max(S(a′))} v1(at, bt), which is the average of

the mean rewards obtained on a′ across all time steps t where a′ is pulled (except for the last round), for each arm
a′ ∈ A. In particular, we upper bound this quantity by the worst-case optimal reward under ϵ-best-responses by the
follower (maxa∈A minb∈Bϵ∗ (a) v1(a, b)) minus the twice the size of the confidence set of a.

29



Impact of Decentralized Learning on Player Utilities in Stackelberg Games

Lemma D.5. Assume the notation above. Suppose that the clean event G holds. Then it holds that:

1

nE·|A|,T+1(a′)− 1

∑
t∈S(a′)\{max(S(a′))}

v1(at, bt) ≥ max
a∈A

min
b∈Bϵ∗ (a)

v1(a, b)−
20
√
log T√

nE·|A|,T+1(a′)− 1
.

Proof. We assume that the clean event G = GL ∩GF holds. Note that t∗ = max(S(a′)) denotes the last time step during
which a′ is chosen. Recalling that ã = argmaxa∈A minBϵ∗ (a) v1(a, b), let S = S(ã) ∩ [E · |A| + 1, t∗ − 1] be the set of
time steps during the UCB phase prior to time step t∗ where arm ã is pulled. We see that at the beginning of time step t∗,
it holds that:

1

nE·|A|,T+1(a′)− 1

∑
t∈S(a′)\{t∗}

v1(at, bt) ≥(1) v̂1,t∗(a
′)− 10

√
log T√

nE·|A|,T+1(a′)− 1

≥ vUCB
1,t∗ (a

′)− 20
√
log T√

nE·|A|,T+1(a′)− 1

≥ vUCB
1,t∗ (ã)−

20
√
log T√

nE·|A|,T+1(a′)− 1

= v̂1,t∗(ã) +
10
√
log T√
|S|

− 20
√
log T√

nE·|A|,T+1(a′)− 1

≥(2)
1

|S|
∑
t∈S

v1(at, bt)−
20
√
log T√

nE·|A|,T+1(a′)− 1

≥(3) max
a∈A

min
b∈Bϵ∗ (a)

v1(a, b)−
20
√
log T√

nE·|A|,T+1(a′)− 1

where (1) and (2) use the clean event GL. Step (3) uses the clean event GF which guarantees that bt ∈ Bϵ∗(at) for all t,
which means that for any t ∈ S, it holds that:

v1(at, bt) = v1(ã, bt) ≥ min
b∈Bϵ∗ (a)

v1(ã, b) = max
a∈A

min
b∈Bϵ∗ (a)

v1(a, b)

as desired.

Now we are ready to prove Theorem 4.4.

Proof of Theorem 4.4. Assume that the clean event G holds. This occurs with probability at least 1−(1+|A|)T−3 (Lemma
D.4), so the clean event not occurring counts negligibly towards regret.

The regret in the explore phase is bounded by O(1) in each round, the total regret from that phase is
O(T 2/3|A|1/3|B|1/3(log T )1/3) for either player.

The remainder of the analysis boils down to bounding the regret in the UCB phase. We separately analyze the regret
of the leader and the follower. Observe that ϵ∗ = maxt>E g(t, T,B) = O

(
A|1/3|B|1/3(log T )1/3T−1/3

)
based on the

assumption on the follower’s algorithm.

30



Impact of Decentralized Learning on Player Utilities in Stackelberg Games

Regret for the leader. We bound the regret as:

βtol
1 · (T − E · |A|)−

T∑
t=E·|A|+1

v1(at, bt)

≤
T∑

t=E·|A|+1

(
ϵ∗ +max

a∈A
min

b∈Bϵ∗ (a)
v1(a, b)− v1(at, bt)

)

=
∑
a∈A

∑
t∈S(a)

(
ϵ∗ +max

a∈A
min

b∈Bϵ∗ (a)
v1(a, b)− v1(at, bt)

)

≤ |A|+
∑
a∈A

∑
t∈S(a)\{max(S(a))}

(
ϵ∗ +max

a∈A
min

b∈Bϵ∗ (a)
v1(a, b)− v1(at, bt)

)
≤ |A|+ ϵ∗ · T︸ ︷︷ ︸

(1)

+
∑
a∈A

(nE·|A|,T+1(a)− 1) ·

max
a∈A

min
b∈Bϵ∗ (a)

v1(a, b)−
1

nE·|A|,T+1(a)− 1

∑
t∈S(a)\{max(S(a))}

(v1(at, bt))


︸ ︷︷ ︸

(2)

The term |A| computes negligibly, term (1) is equal to Θ(A|1/3|B|1/3(log T )1/3T 2/3), and term (2) can be bounded by:

∑
a∈A

(nE·|A|,T+1(a)− 1) ·

max
a∈A

min
b∈Bϵ∗ (a)

v1(a, b)−
1

nE·|A|,T+1(a)− 1

∑
t∈S(a)\{max(S(a))}

(v1(at, bt))


≤
∑
a∈A

(nE·|A|,T+1(a)− 1) · 20
√
log T√

nE·|A|,T+1(a)− 1

≤ O

(√
log T ·

∑
a∈A

√
nE·|A|,T+1(a)− 1

)
≤ O

(√
|A|T log T

)
,

where the first inequality uses Lemma D.5 and the last inequality uses Jensen’s inequality.

Regret for the follower. Note that ∪a∈Aϵ∗S(a) denotes the set of time steps where an action in Aϵ∗ is chosen. We bound
the regret as:

βtol
2 · (T − E · |A|)−

T∑
t=E·|A|+1

v2(at, bt)

≤

 T∑
t=E·|A|+1

1[t ̸∈ ∪a∈Aϵ∗S(a)]


︸ ︷︷ ︸

(1)

+
∑

t∈∪a∈Aϵ∗ S(a)

(
min

a∈Aϵ∗
max
b∈B

v2(a, b)− v2(at, bt)

)
︸ ︷︷ ︸

(2)

+ ϵ∗ · | ∪a∈Aϵ∗ S(a)|︸ ︷︷ ︸
(3)

We first bound term (1), which can be rewritten as
∑T

t=E·|A|+1 1[t ̸∈ ∪a∈Aϵ∗S(a)] =
∑

a̸∈Aϵ∗
nE·|A|,T (a). This counts

the number of times that arms outside ofAϵ∗ are pulled during the UCB phase. The key intuition is when an arm at ̸∈ Aϵ∗ ,
it holds that:

v1(at, bt) ≤ max
b∈Bϵ∗ (a′)

v1(at, b) < max
a∈A

min
b∈Bϵ∗ (a)

v1(a, b)− ϵ∗,

where the first inequality uses the fact that bt ∈ Bϵ∗(at) (which follows from the clean event GF ) and the second inequality
uses the fact that at ̸∈ Aϵ∗ . This implies that for any a′ ̸∈ Aϵ∗ , the average reward across all time steps (except for the last

31



Impact of Decentralized Learning on Player Utilities in Stackelberg Games

b1 b2
a1 (1, 0) (1− x, y)
a2 (1− 2x, 2y) (1− 3x, 3y)

Table 9. Set x, y ∈ (0, 1/3) to obtain an example where both players have completely inverted ordered preferences over outcomes, but
for x, y > O(1/T ) have bounded continuity.

time step) where a′ is pulled satisfies:

1

nE·|A|,T+1(a′)− 1

∑
t∈S(a′)\{max(S(a′))}

v1(at′ , bt′) < max
a∈A

min
b∈Bϵ∗ (a)

v1(a, b)− ϵ∗.

However, by Lemma D.5, we can also lower bound the average reward across all time steps (except for the last time step)
where a′ is pulled in terms of nE·|A|,T+1(a

′) as follows:

1

nE·|A|,T+1(a′)− 1

∑
t∈S(a′)\{max(S(a′))}

v1(at′ , bt′) ≥ max
a∈A

min
b∈Bϵ∗ (a)

v1(a, b)−
10
√
log T√

nE·|A|,T+1(a′)− 1
.

Putting these two inequalities together, we see that:

10
√
log T√

nE·|A|,T+1(a′)− 1
≥ ϵ∗,

which bounds the number of times that a′ is pulled during the UCB phase as follows:

nE·|A|,T+1(a
′) ≤ Θ

(
log T

(ϵ∗)2

)
= Θ

(
(log T )1/3T 2/3|A|−2/3|B|−2/3

)
.

This means that:

T∑
t=E·|A|+1

1[t ̸∈ ∪a∈Aϵ∗S(a)] =
∑
a ̸∈Aϵ

nE·|A|,T+1(a) ≤ Θ
(
(log T )1/3T 2/3|A|1/3|B|−2/3

)

Next, we bound term (2):

min
a∈Aϵ∗

max
b∈B

v2(a, b)− E[v2(at, bt)] ≤
∑

t∈∪a∈Aϵ∗ S(a)

(
max
b∈B

v2(at, b)− E[v2(at, bt)]
)
≤ | ∪a∈Aϵ∗ S(a)| · ϵ∗

≤ T · ϵ∗

= Θ
(
(log T )1/3T 2/3|A|1/3|B|1/3

)
.

Finally, we bound term (3) as ϵ∗ · |S| ≤ T · ϵ∗ = Θ
(
(log T )1/3T 2/3|A|1/3|B|1/3

)
.

Putting this all together yields the desired bound.

E. Proofs for Section 5
E.1. Alignment and Continuity Discussion

We note that constant L∗ still allows for a rich space of disagreement on values. We will formalize our discussion on
the distinction between requiring that the leader and the follower have the same relative ordering on every pair of (a, b)
outcomes (ordered alignment) and that they agree on which pairs of outcomes are sufficiently different (continuity). In
particular, our Lipschitz condition requires continuity, but still allows for arbitrarily misordered alignment. As an example,

32



Impact of Decentralized Learning on Player Utilities in Stackelberg Games

Table 9 gives an example where the leader and the follower have completely inverted preferences over every outcome, but
have utility that is max

(
x
y ,

y
x

)
Lipschitz continuous.

We also compare our continuity condition and results with those in other works. Our continuity condition bears resem-
blance to the restrictions on utilities in Camara et al. (2020); Collina et al. (2023b): in fact, our conditions are conceptually
stronger since we require Lipschitz continuity across all pairs of actions rather only for near-optimal actions. However,
Theorem 5.1 is not directly comparable with the results in Camara et al. (2020); Collina et al. (2023b) since we consider a
stronger benchmark (the original Stackelberg benchmark) and also restrict to stochastic rewards. An interesting direction
for future work would be to relax the Lipschitz continuity assumptions in our work, perhaps borrowing intuition from the
stable action requirement of Collina et al. (2023b).

E.2. Proofs and Examples for Section 5.1

We first state the algorithm formally.

Algorithm 4: LipschitzUCB(L,C) applied to H

1 Initialize v̂1(a) = 1 for a ∈ A. // Initialize empirical means for maxb∈B v1(a, b).
2 Initialize vUCB

1 (a) = 1 for a ∈ A. // Initialize UCB for maxb∈B v1(a, b)
3 for a ∈ A do
4 Set S(a) := {r | ∃(t′, at′ , r) ∈ H s.t. a = at′} // Observed rewards
5 if S(a) ̸= ∅ then
6 v̂1(a)← (

∑
r∈S(a) r)/|S(a)| // Empirical mean

7 α(a)← 10
√
B log T√
|S(a)|

+ C · L ·
√
log T√
|S(a)|

// confidence bound width

8 vUCB
1 (a)← min(1, v̂1(a) + α(a))

9 Let a∗ = argmaxa∈A
(
vUCB
1 (a)

)
. // arm with max upper confidence bound

10 return point mass at a∗.

We prove Theorem 5.1, restated below for convenience.

Theorem 5.1. Consider a StrongDSG where I = (A,B, v1, v2) has Lipschitz constant L∗. Let ALG2 be any algo-
rithm satisfying high-probability anytime regret h(t, T,B) = C ′

√
|B|t log T where C ′ is a constant, and let ALG1 =

LipschitzUCB(L,C ′
√
|B|) for any L ≥ L∗. Then both players achieve the following regret bounds with respect

to the original Stackelberg benchmarks βorig
1 and βorig

2 : that is, R1(T ; I) = O
(
L
√

T |A||B| log T
)

and R2(T ; I) =

O
(
L2
√

T |A| · |B| log T
)

.

Notation. Let v̂1,t(a) be the empirical mean specified in LipschitzUCB at the beginning of time step t, which
is the mean of the leader’s stochastic rewards {r1,t′(at′ , bt′) | at′ = a, 1 ≤ t′ < t}. We also define v̂1,t(a, b) to
be the mean of the leader’s stochastic rewards for the arm (a, b) up through time step t − 1 (the set given by
{r1,t′(at′ , bt′) | at′ = a, bt′ = b, 1 ≤ t′ < t}). Note that this quantity is not computable by the leader in a StrongDSG,
but we nonetheless find it convenient to consider in the analysis. Let nt(a) = |1 ≤ t′ < t | at = a| be the number of times
that a has been chosen prior to time step t. Let nt(a, b) = |1 ≤ t′ < t | at = a, bt = b| be the number of times that (a, b)
has been chosen prior to time step t. For each arm a ∈ A, let b∗(a) = argmaxb∈Bv2(a, b) be the follower’s best response.

Clean event. We define the clean event G = GL ∩GF to be the intersection of a clean event GL for the leader and a clean
event GF for the follower. Informally speaking, the clean event for the leader is the event that for all pairs of arms, the
empirical mean reward v̂1,t(a, b) is close to the true reward v1(a, b). The event GL is formalized as follows:

∀a ∈ A, t ≤ T : |v̂1,t(a, b)− v1(a, b)| ≤
10
√
log T√
nt(a)

.

Informally speaking, the clean event for the follower is the event that the follower satisfies high-probability anytime regret

33



Impact of Decentralized Learning on Player Utilities in Stackelberg Games

bounds. The event GF is formalized as follows:

∀a ∈ A, t ≤ T :
∑

1≤t′<t|at=a

(v2(a, b
∗(a))− v2(at, bt)) ≤ C ′

√
|B|nt(a) log T

We first prove that the clean event G occurs with high probability.

Lemma E.1. Assume the setup of Theorem 5.1 and the notation above. Then the clean event occurs with high probability:
P[G] ≥ 1− T−3(|A|+ 1).

Proof. We union bound over GL and GF . The analysis for GF follows from the high-probability anytime regret bound
assumption. The analysis for GL follows from a Chernoff bound (and using the analogue of one of the canonical bandit
models in (Lattimore and Szepesvári, 2020)) combined with a union bound.

The following lemma guarantees, for each arm a ∈ A, that the empirical mean v̂1,t(a) is close to the mean reward if the
follower were to best-respond maxb∈B v1(a, b). Conceptually speaking, this lemma guarantees that the confidence sets for
the leader are always “correct”.

Lemma E.2. Assume the setup of Theorem 5.1 and the notation above. Suppose that the clean event G holds. Then for
any t ≤ T and a ∈ A, it holds that:

|v̂1,t(a)− v1(a, b
∗(a))| ≤

10
√
|B| log T√
nt(a)

+ C ′ · L ·
√
|B| log T√
nt(a)

.

Proof. We observe that:

|v̂1,t(a)− v1(a, b
∗(a))| =

∣∣∣∣∣
(

1

nt(a)

∑
b∈B

nt(a, b) · v̂1(a, b)

)
− v1(a, b

∗(a))

∣∣∣∣∣
=

∣∣∣∣∣
(

1

nt(a)

∑
b∈B

nt(a, b) · v̂1(a, b)

)
− 1

nt(a)

(∑
b∈B

nt(a, b) · v1(a, b∗(a))

)∣∣∣∣∣
≤ 1

nt(a)

∑
b∈B

nt(a, b) · |v̂1(a, b)− v1(a, b
∗(a))|

≤ 1

nt(a)

∑
b∈B

nt(a, b) · |v̂1(a, b)− v1(a, b)|︸ ︷︷ ︸
(A)

+
1

nt(a)

∑
b∈B

nt(a, b) · |v1(a, b)− v1(a, b
∗(a))|︸ ︷︷ ︸

(B)

.

First, we will bound term (A), which relates the error of the estimate of v1(a, b). We see that:

1

nt(a)

∑
b∈B

nt(a, b) · |v̂1(a, b)− v1(a, b)| ≤(1)
1

nt(a)

∑
b∈B

nt(a, b) ·
10
√
log T√

nt(a, b)

=
10
√
log T

nt(a)

∑
∑

b∈B

√
nt(a, b)

≤(2)

10
√
|B| log T√
nt(a)

.

where (1) uses the clean event GL and (2) uses Jensen’s inequality.

34



Impact of Decentralized Learning on Player Utilities in Stackelberg Games

Term (B) represents represents the difference in the leader’s utility between the arm chosen by the follower and the fol-
lower’s best-response. We can bound this as:

1

nt(a)

∑
b∈B

nt(a, b) · |v1(a, b)− v1(a, b
∗(a))| ≤(1)

L∗

nt(a)

∑
b∈B

nt(a, b) · |v2(a, b)− v2(a, b
∗(a))|

=(2)
L∗

nt(a)

∑
b∈B

nt(a, b) · (v2(a, b∗(a))− v2(a, b)) ,

where (1) uses the Lipschitz property and (2) uses the fact that b∗(a) is the best arm for the follower, given that the leader
pulls arm a. Using the clean event GF and that L ≥ L∗, we see that:

L∗

nt(a)

∑
b∈B

nt(a, b) · (v2(a, b∗(a))− v2(a, b)) =
L∗

nt(a)

∑
1≤t′<t|at=a

(v2(a, b
∗(a))− v2(at, bt)) ≤ C ′ · L

√
|B| log T√
nt(a)

.

Taken together, these terms give the desired bound.

It will also be convenient to bound the following two quantities which surface in our regret analysis. At a conceptual level,
B1 captures the sum of the sizes of the confidence sets of the arms pulled by the leader, and the term B2 captures the
cumulative suboptimality of the follower relative to the action a that they are provided in each time step.

Lemma E.3. Assume the setup of Theorem 5.1 and the notation above. Suppose that the clean event G holds. Then it
holds that:

B1 :=

T∑
t=1

(
10
√
B log T√
nt(at)

+ C ′ · L ·
√
|B| log T√
nt(at)

)
≤ O

(
L
√
T |A||B| log T

)
B2 :=

T∑
t=1

(v2(at, b
∗(at))− v2(at, bt)) ≤ O

(√
T |A||B| log T

)

Proof. To bound B2, we see that:

B2 =

T∑
t=1

(v2(at, b
∗(at))− v2(at, bt))

=
∑
a∈A

∑
t∈T |at=a

(v2(a, b
∗(a))− v2(a, bt))

≤(A)

∑
a∈A

C ′ ·
√
|B| · nT (a) log T

= C ′ ·
√
|B| log T ·

∑
a∈A

√
nT (a)

≤(B) C
′ ·
√

T |A||B| log T ,

where (A) uses the event GF and (B) uses Jensen’s inequality.

To bound B1, we note that we must upper bound this both with a) the gap of the confidence interval, as well as b) the error

35



Impact of Decentralized Learning on Player Utilities in Stackelberg Games

on the leader’s estimates of their value for arm a. Taken together, this yields;

B1 =

T∑
t=1

(
10
√
|B| log T√
nt(at)

+ C ′ · L ·
√
|B| log T√
nt(at)

)

=

T∑
t=1

10
√
|B| log T√
nt(at)

+

T∑
t=1

C ′ · L ·
√
|B| log T√
nt(at)

≤ (10
√
|B| log T + C ′ · L

√
|B| log T )

T∑
t=1

1√
nt(at)

≤(A) (10
√
|B log T + C ′ · L

√
|B| log T ) · (2 ·

√
T |A|+ |A|)

= O
(
L
√
T |A||B| log T

)
.

where (A) follows from Lemma B.1

We now prove Theorem 5.1.

Proof of Theorem 5.1. Assume that clean event G holds. This occurs with probability at least 1 − (|A + 1)T−3 (Lemma
E.1), so the clean event not occurring counts negligibly towards regret.

Moreover, let (a∗, b∗(a∗)) be the Stackelberg equilibrium. Let αt(a) = 10
√
B log T√
nt(a)

+ C · L ·
√
log T√
nt(a)

be the confidence

bound size at time step t and let vUCB
1,t (a) = v̂1,t(a)+αt(a) denote the UCB estimate in LipschitzUCB(L,C) computed

during time step t prior to reward at time step t being observed.

We can bound the leader’s regret as:

R1(T ) =

T∑
t=1

(v1(a
∗, b∗(a∗))− v1(at, bt))

=

T∑
t=1

(v1(a
∗, b∗(a∗))− v1(at, b

∗(at))) +

T∑
t=1

(v1(at, b
∗(at))− v1(at, bt))

≤(A)

T∑
t=1

(v̂1(a
∗) + αt(a

∗)− v̂1(at) + αt(at)) +

T∑
t=1

|v1(at, b∗(at))− v1(at, bt)|

≤
T∑

t=1

(
vUCB
1,t (a∗)− vUCB

1 (at) + 2 · αt(at)
)
+ L ·

T∑
t=1

|v2(at, b∗(at))− v2(at, bt)|

≤ 2 ·
T∑

t=1

αt(at) + L ·
T∑

t=1

(v2(at, b
∗(at))− v2(at, bt))

= 2 ·
T∑

t=1

(
10
√
B log T√
nt(at)

+ C ′ · L ·
√
|B| log T√
nt(at)

)
+ L ·B2

= 2 ·B1 + L ·B2

≤(B) O
(
L
√

T |A||B| log T
)

where (A) uses Lemma E.2 and (B) uses Lemma E.3.

36



Impact of Decentralized Learning on Player Utilities in Stackelberg Games

We also bound the follower’s regret as:

R2(T ) =

T∑
t=1

(v2(a
∗, b∗(a∗))− v2(at, bt))

=

T∑
t=1

(v2(a
∗, b∗(a∗))− v2(a

∗, b∗(at))) +

T∑
t=1

(v2(a
∗, b∗(at))− v2(at, bt))

=

T∑
t=1

L · |v1(a∗, b∗(a∗))− v1(at, b
∗(at))|+B2

=(A)

T∑
t=1

L · (v1(a∗, b∗(a∗))− v1(at, b
∗(at))) +B2

≤(B)

T∑
t=1

L · (v̂1,t(a∗) + αt(a
∗)− v̂1,t(at) + αt(a

∗)) +B2

=

T∑
t=1

L ·
(
vUCB
1,t (a∗)− vUCB

1,t (at) + 2 · αt(at)
)
+B2

≤
T∑

t=1

L · (2 · αt(at)) +B2

= 2L ·
T∑

t=1

(
10
√
B log T√
nt(at)

+ C ′ · L ·
√
|B| log T√
nt(at)

)
+B2

= 2L ·B1 +B2

≤(C) O
(
L2
√
T |A||B| log T

)
where (A) uses the fact that a∗ is the action chosen by the leader at the Stackelberg equilibrium where (B) uses Lemma E.2
and (C) uses Lemma E.3.

E.3. Proof of Theorem 5.3

We first state the algorithm formally.

PhasedUCB(M1, . . . ,MP ) (Algorithm 5). The algorithm ALG1 = PhasedUCB(M1, . . . ,MP ) takes as input the pa-
rameters M1, . . . ,MP ≥ 0. (The parameter Mi is intended to capture the number of times that an arm is pulled in
phase i by the instantiation of ActiveArmElimination specified by ALG2.) The algorithm ALG1 computes UCB
estimates vUCB

1 (a, b) for v1(a, b), computes the set of active arms B′(a) in the previous phase of ALG2’s instantiation of
ActiveArmElimination for each arm a (ComputeActiveArms, Algorithm 6), and chooses the arm with maxi-
mum UCB: at = argmaxa∈A maxb∈B′(a) v

UCB
1 (a, b). ComputeActiveArms computes the active arms B′(a) by iterat-

ing through H and keeping track of whenever a new phase is entered using the parameters M1, . . . ,MP .

We prove Theorem 5.3, restated below.

Theorem 5.3. Consider a WeakDSG, where for each a ∈ A, the algorithm ALG2 runs a separate instantiation of
ActiveArmElimination with parameters M1, . . . ,MP (where Mi = Θ(log T · 22i) denotes the number of times
that each arm is pulled in phase i). Let ALG1 = PhasedUCB(M1, . . . ,MP ). Then it holds that the regret with respect to
the self-γ-tolerant benchmarks βself-tol

1 and βself-tol
2 is bounded as:

max(R1(T ), R2(T )) = O
(√
|A| · |B| · T · log T

)
.

This theorem assumes that γ = Ω
(
T−1/4

√
|A||B| · log T

)
.

37



Impact of Decentralized Learning on Player Utilities in Stackelberg Games

Algorithm 5: PhasedUCB(M1, . . . ,MP ) applied to H

1 Let v̂1(a, b) = 0 for a ∈ A and b ∈ B. // initialize empirical mean of v1(a, b)

2 Let vUCB
1 (a, b) = 1 for a ∈ A and b ∈ B. // initialize UCB for v1(a, b)

3 Let B′(a) = ComputeActiveArms(M1, . . . ,MP , H). // active arms in previous phase for
ALG2

4 for a ∈ A do
5 for b ∈ B do
6 Set S(a, b) := {r | ∃(t′, at′ , bt′ , r) ∈ H s.t. a = at′ , b = bt′} // observed rewards
7 if S(a, b) ̸= ∅ then
8 v̂1(a, b)← (

∑
r∈S(a,b) r)/|S(a, b)| // compute empirical mean

9 α(a, b) := 10 ·
√

log T
|S(a,b)| // confidence bound width

10 vUCB
1 (a, b)← min (1, v̂1(a, b) + α(a, b)) // compute UCB

11 Let a∗ = argmaxa∈A maxb∈B′(a)

(
vUCB
1 (a, b)

)
. // arm with max upper confidence bound for any

valid b
12 return point mass at ai

Algorithm 6: ComputeActiveArms(M1, . . . ,MP , H)

1 Initialize s′(a) = 0 for a ∈ A. // Index of the last completed phase for ALG2 on arm a.
2 Initialize t′(a) = 1 for a ∈ A. // Time step marking beginning of phase s′ + 1 for ALG2 on

arm a.
3 Initialize B′(a) = B. // Active arms in phase s′ for ALG2 on arm a.
4 Initialize newphasea = False for a ∈ A. // Boolean for first time step in phase for ALG2

on a.
5 Let t = |H|.
6 for t′′ = 1 to t do
7 for a ∈ A do
8 for b ∈ B do
9 Let n(a, b) := |{(t′′, at′′ , bt′′ , r1,t′′(at′′ , bt′′)) ∈ H | at′′ = a, bt′′ = b, t′′ ≥ t′a}|.

10 if n(a, b) > Ms′a+1 then
11 newphasea = True.
12 if newphasea = True then
13 Update B′(a)← {b ∈ B | ∃(t′′, at′′ , bt′′ , r1,t′′(at′′ , bt′′)) ∈ H s.t. t′a ≤ t′′ < t, at′′ = a, bt′′ = b}
14 Update s′(a)← s′(a) + 1.
15 Update t′(a)← t.
16 newphasea = False.
17 return {B′(a)}a∈A.

38



Impact of Decentralized Learning on Player Utilities in Stackelberg Games

Notation. Let v̂1,t(a, b) denote the empirical mean of the leader’s observed rewards

{r1,t′(a, b) | 1 ≤ t′ < t, at = a, bt = b}

for (a, b) up to time step t. (The leader can observe this information in a WeakDSG.) Let vUCB
1,t (a, b) denote the UCB

estimate in PhasedUCB during time step t. Let nt(a) = | {1 ≤ t′ < t | at = a} | be the number of times that arm a
is pulled before time step t. Let nt(a, b) = | {1 ≤ t′ < t | at = a, bt = b} | be the number of times that arms (a, b) are
pulled before time step t. Let C be a constant such that ActiveArmElimination has high-probability instantaneous
regret g(t, T,B) = C ·

√
|B| log T/t) (such a constant C exists by Proposition G.2). Let Bt(a) be the computation of

the active set at line 3 of PhasedUCB during time step t. Let st(a) be the value of the variable s′(a) at the end of the
ComputeActiveArms algorithm, when it is called at the beginning of time step t in PhasedUCB. Let (a∗, b∗) be the
Stackelberg equilibrium.

Clean event. We define the clean event G := GL ∩ GF ∩ GL,F to be the intersection of a clean event GL for the leader,
a clean event GF for the follower, and a clean event GL,F for the follower (using the leader’s assessment of the follower).
Informally speaking, the clean event GL for the leader is the event that the empirical mean v̂1(a, b) is always sufficiently
close to the true mean reward v1(a, b). We formalize the clean event GL as follows:

∀t ∈ T, a ∈ A, b ∈ B : |v̂1,t(a, b)− v1(a, b)| ≤
10
√
log T√

nt(a, b)
.

The clean event GF for the follower is the event that the follower satisfies the high-probability instantaneous regret guar-
antee:

∀t ≤ T :

∣∣∣∣v2(at, bt)−max
b∈B

v2(at, b)

∣∣∣∣ ≤ C ·
√
|B| log T√
nt(a)

.

The final clean event GL,F is the event that the active arm set Bt(a∗) for the Stackelberg action always contains the
follower’s best-response:

∀t ∈ T, b ∈ B : argmaxb∈Bv2(a
∗, b) ∈ Bt(a∗).

Lemma E.4. Assume the setup of Theorem 5.3 and notation above. Then the clean event G occurs with high probability:
P[G] ≥ 1− (2 · |A|+ 1) · T−3.

Proof. We union bound for GF , GL, and GL,F . The analysis for GL follows from a Chernoff bound (and us-
ing the analogue of one of the canonical bandit models in (Lattimore and Szepesvári, 2020)) combined with a union
bound. The analysis for GF follows from Proposition G.2. The analysis for GL,F follows from standard properties of
ActiveArmElimination (e.g., see (Lattimore and Szepesvári, 2020)) combined with a union bound over A.

The first lemma shows that if the follower runs ActiveArmElimination, for every a ∈ A and b ∈ Bt(a), we can upper and
lower bound the number of pulls nt(a, b) in terms of the last phase that the follower has completed (as assessed by the
leader).

Lemma E.5. Assume the setup of Theorem 5.3 and notation above. Then for every time step t, and every a ∈ A and
b ∈ Bt(a), it holds that:

nt(a, b) ∈

st(a)∑
i=1

Mi,

st(a)+1∑
i=1

Mi + 1


Proof. This follows from the implementation of ComputeActiveArms combined with the specification of
ActiveArmElimination, which guarantees that the follower has finished phase st(a) by the end of round t − 2
and is at most one step into phase st(a) + 2.

The next lemma guarantees that at every time step t, the chosen pair of actions (at, bt) are in the ϵt-best-response sets for
each player, where ϵt depends on the number of times nt(at) that arm at has been chosen so far.

39



Impact of Decentralized Learning on Player Utilities in Stackelberg Games

Lemma E.6. Assume the setup of Theorem 5.3 and notation above. Suppose that the clean event G holds. Then for every
time step t, it holds that for

v1(at, bt) ≥ min
a∈A1

ϵt

min
b∈Bϵt (a)

v1(a, b)

v2(at, bt) ≥ min
a∈A1

ϵt

min
b∈Bϵt (a)

v2(a, b).

for ϵt = Θ(
√
|B| · log T/nt(at)).

Proof. It suffices to show that at ∈ Aϵt and bt ∈ Bϵt(at).

By the clean event GF , it immediately follows that bt ∈ Bϵt(at).

To show that at ∈ Aϵt , it suffices to show that maxb∈Bϵt (at) v1(at, b) ≥ maxa′∈A minb′∈Bϵ(a′) v1(a
′, b′)− ϵt, which can

be written as maxa′∈A minb′∈Bϵt (a
′) v1(a

′, b′) ≤ maxb∈Bϵt (at) v1(a, b) + ϵt. To see this, observe that:

max
a′∈A

min
b′∈Bϵt (a

′)
v1(a

′, b′) ≤ v1(a
∗, b∗)

≤(A) max
b∈B′(a∗)

vUCB
1,t (a∗, b)

≤ max
b∈B′

t(at)
vUCB
1,t (at, b)

≤(B) max
b∈B′

t(at)

(
v1(at, b) + 20 ·

√
log T

nt(at, b)

)

≤(C) max
b∈B′

t(at)

(
v1(at, b) + 20 ·

√
log T∑st(a)
i=1 Mi

)

≤(D) max
b∈B′

t(at)
(v1(at, b)) + Θ

(√
|B| log T
nt(at)

)
≤ max

b∈B′
t(at)

v1(at, b) + ϵt

≤(E) max
b∈Bϵt (at)

vUCB
1,t (at, b) + ϵt.

where (A) uses the event GL,F , (B) uses the event GL, (C) applies the lower bound in Lemma E.5, (D) uses the upper
bound in Lemma E.5 to see that:

nt(at) ≤
∑
b∈B

nt(at, b) ≤
∑
b∈B

st(a)+1∑
i=1

Mi

+ 1

 ≤ Θ

|B| · st(a)∑
i=1

Mi


since every arm is pulled and (E) uses the clean event GF .

Now, we prove Theorem 5.3.

Proof of Theorem 5.3. Assume that the clean event G occurs. This occurs with probability at least 1− (2 · |A|+ 1) · T−3

(Lemma E.4), so the clean event not occurring counts negligibly towards regret.

We apply Lemma E.6 to see that at time step t, it holds that for ϵt = Θ(
√
|B| · log T/nt(at)), it holds that

v1(at, bt) ≥ min
a∈Aϵt

min
b∈Bϵt (a)

v1(a, b)

v2(at, bt) ≥ min
a∈Aϵt

min
b∈Bϵt (a)

v2(a, b).

40



Impact of Decentralized Learning on Player Utilities in Stackelberg Games

For the leader, this implies that:

R1(T ) = βself-tol
1 · T −

T∑
t=1

v1(at, bt)

≤
T∑

t=1

(
ϵt + min

a∈Aϵt

min
b∈Bϵt (a)

v1(a, b)−
T∑

t=1

v1(at, bt)

)
+

T∑
t=1

1[ϵt > γ]

≤

(
T∑

t=1

ϵt

)
+

T∑
t=1

1[ϵt > γ].

For the follower, this similarly implies that:

R2(T ) = βself-tol
2 · T −

T∑
t=1

v2(at, bt)

≤
T∑

t=1

(
ϵt + min

a∈Aϵt

min
b∈Bϵt (a)

v2(a, b)−
T∑

t=1

v2(at, bt)

)

≤

(
T∑

t=1

ϵt

)
+

T∑
t=1

1[ϵt > γ].

To bound
∑T

t=1 ϵt, we observe that:

T∑
t=1

ϵt =

T∑
t=1

Θ

(√
|B| · log T
nt(at)

)

= Θ

(√
|B| · log T ·

T∑
t=1

1√
nt(at)

)
≤(A) O

(√
|B| · log T ·

√
|A| · T

)

where (A) follows from Lemma B.1. This gives the desired upper bound.

To bound
∑T

t=1 1[ϵt > γ], based on the setting of ϵt, we observe that ϵt ≤ γ when nat
= O

(
|B|·(log T )

ϵ2t

)
. This means

that 1[ϵt > γ] occurs in at most Θ
(

|A|·|B|·(log T )
γ2

)
time steps. As long as γ = Ω

(
T−1/4

√
|A||B| · log T

)
, this term

contributes O
(√
|B| · log T ·

√
|A| · T

)
to regret.

F. Discussion of Benchmark Parameters: The Maximum Tolerance and the Regularizer
Our relaxed benchmarks—the γ-tolerant benchmarks (Definition 4.1) and the self-γ-tolerant benchmarks (Definition
5.2)—depend on two parameters: (1) the maximum tolerance γ and (2) the ϵ-regularizer. In this section, we discuss
the role of each parameter and describe extensions of our results to alternate settings of these parameters.

F.1. Maximum Tolerance γ

The value γ intuitively captures the players’ maximum tolerance for suboptimality. Taking γ to be small makes our
benchmarks more challenging, because it reduces the space of permissible suboptimality levels ϵ over which the infimum
is taken. In contrast, taking γ to be large can make our benchmarks too easy: for example, consider Table 10, which shows
a case where setting γ = 0.05 reduces the benchmark for the follower, but the instance has rewards that are sufficiently far
apart that for large T the Stackelberg equilibrium should intuitively be learnable.

41



Impact of Decentralized Learning on Player Utilities in Stackelberg Games

b1 b2
a1 (0.6, 0.05) (0.2, 0.1)
a2 (0.5, 0.2) (0.4, 0.15)

Table 10. Taking γ to be too small makes the benchmark too easy: for γ = 0, we have βtol
1 = 0.5, βtol

2 = 0.2, but for γ = 0.05 we have
βtol
1 = 0.5 and βtol

2 = 0.15 (see Section F.1)

We briefly discuss how our results extend to different maximum tolerances γ. First, we prove our lower bounds (Theorem
4.5, Proposition C.5) for the “hardest case” of γ = 1, which means that these lower bounds hold for all maximum tolerances
γ.

On the other hand, our upper bounds require sufficiently large γ. For some intuition, all of our analyses require that γ =
ω(1/

√
T ), since followers with high-probability instantaneous regret rates of Θ(

√
|B| · log(T )/t) require Ω(T ) rounds to

find a O(1/
√
T )-optimal solution. As to what specific values of γ that each result requires, Theorems D.1 and 4.4 hold for

any γ = ω
(
T−1/3 |A|1/3 |B|1/3 · (log(T )1/3)

)
, while Theorem 5.3 assumes that γ = Ω

(
T−1/4

√
|A||B| · log T

)
.

F.2. ϵ-Regularizer

Since the ϵ-regularizer adds an implicit penalty for increasing ϵ in the benchmark, a natural question is how our benchmark
would change if we changed the regularizer from ϵ to other functional forms f(ϵ). To provide some preliminary intuition
for this, we consider f(ϵ) = c · ϵd regularizer, which leads to the following generalized γ-tolerant benchmarks.

Definition F.1 (Generalization of Definition 4.1). Given a maximum tolerance γ > 0 and parameters c > 0, and d > 0,
we define the generalized (c, d, γ)-tolerant benchmarks βtol

1 and βtol
2 to be:

βtol
1 = inf

ϵ≤γ

(
max
a∈A

min
b∈Bϵ(a)

v1(a, b)︸ ︷︷ ︸
ϵ-relaxed Stackelberg utility

+ c · ϵd︸︷︷︸
ϵ-regularizer

)

βtol
2 = inf

ϵ≤γ

(
min
a∈Aϵ

max
b∈B

v2(a, b)︸ ︷︷ ︸
ϵ-relaxed Stackelberg utility

+ c · ϵd︸︷︷︸
ϵ-regularizer

)
.

At a conceptual level, different settings of c and d capture different levels of tolerance that a player has for sub-optimality in
the other player. Higher values of c and smaller values of d capture greater intolerance, and thus lead to harsher penalties.
The resulting changes in the benchmarks capture that if a player is less tolerant, we might expect them to experience a
higher regret for a given suboptimality level of the other player.

We show how our two main upper bounds in Section 5 generalize to these new benchmarks, focusing on the case of c ≥ 1
and d ≤ 1 (where the benchmark becomes harder). We first show the following generalization of Theorem D.1 by adjusting
the explore phase length to depend on c and d.

Theorem F.2. Suppose that c ≥ 1 and d ≤ 1, and let η := 2/(2 + d). Consider a StrongDSG where the
follower runs a separate instantiation of ExploreThenCommit(E2,B) for every a ∈ A, and the leader runs
ExploreThenCommitThrowOut(E1, E2 · |B|,A). If E2 = Θ(|A|−η|B|−η · (log T )1−η(c · T )η), and E1 =
Θ(|A|−η · (log T )1−η(c · T )η), then the leader and follower regret with respect to the generalized (c, d, γ)-tolerant bench-
marks are both at most:

max(R1(T ), R2(T )) = O
(
(|A| · |B| · (log T ))1−η · (c · T )η

)
.

We next show the following generalizations of Theorem 4.4 by again adjusting the explore phase length to depend on c and
d. Like in Theorem 4.4, the assumptions on the follower’s algorithm in this result are satisfied by standard algorithms such
as ActiveArmElimination (Algorithm 7; Proposition G.2) and ExploreThenCommit (Algorithm 1; Proposition
G.3).

Theorem F.3. Suppose that c ≥ 1 and d ≤ 1, and let η := 2/(2+d). Let E = Θ(|A|−η(|B| log T )1−η(c ·T )η). Consider
a StrongDSG where ALG2 is any algorithm with high-probability instantaneous regret
g(t, T,B) = O

(
(|A| · |B| · log T )η/2 · (c · T )−η/2

)
for t > E and g(t, T,B) = 1 for t ≤ E, and where ALG1 =

42



Impact of Decentralized Learning on Player Utilities in Stackelberg Games

ExploreThenUCB(E). Then, then the leader and follower regret with respect to the generalized (c, d, γ)-tolerant bench-
marks are both bounded as:

max(R1(T ), R2(T )) = O((|A| · |B| · (log T ))1−η · (c · T )η).

The proofs of Theorem F.2 and Theorem F.3 follows from the same arguments as the proof of Theorem D.1 and Theorem
4.4, respectively, but with the values of E1, E2 modified, as we describe in the next subsection. Note that as d decreases,
the regret bound worsens: this aligns with the intuition that smaller values of d capture greater intolerance. Similarly, the
regret increases with c.

We defer a more extensive treatment of these generalized benchmarks to future work. Moreover, another interesting for
future work would be to extend our model and results to more general functions f(ϵ) and also allow the two players to
have different regularizers.

F.3. Proof of Theorem F.2

Theorem F.2. Suppose that c ≥ 1 and d ≤ 1, and let η := 2/(2 + d). Consider a StrongDSG where the
follower runs a separate instantiation of ExploreThenCommit(E2,B) for every a ∈ A, and the leader runs
ExploreThenCommitThrowOut(E1, E2 · |B|,A). If E2 = Θ(|A|−η|B|−η · (log T )1−η(c · T )η), and E1 =
Θ(|A|−η · (log T )1−η(c · T )η), then the leader and follower regret with respect to the generalized (c, d, γ)-tolerant bench-
marks are both at most:

max(R1(T ), R2(T )) = O
(
(|A| · |B| · (log T ))1−η · (c · T )η

)
.

The proof follows a similar argument to the proof of Theorem D.1 and borrows some lemmas from Appendix D.2

Proof of Theorem F.2. Assume that the clean event G holds. This occurs with probability at least 1− (|A| · |B|+ |A|)T−3

(Lemma D.2), so the clean event not occuring counts negligibly towards regret.

First, we consider the first E2 · |B| · |A|+E1 · |A| time steps. Each time step results in O(1) regret for both players. Based
on the settings of E1 and E2, these phases contribute a regret of:

E2 · |B| · |A|+ E1 · |A| = O
(
|A|1−η · |B|1−η · (log T )1−η(c · T )η

)
.

We focus on t > E2 · |B| · |A| + E1 · |A| for the remainder of the analysis. Our main ingredient is Lemma D.3. Note
that ϵ∗ = Θ

(
max

(√
log T√
E1

,
√
log T√
E2

))
= Θ

(
(|A| · |B| · (log T ))η/2 · (c · T )−η/2

)
based on the settings of E1 and E2. The

regret of the leader can be bounded as:

βtol
1 · (T − E2 · |B| · |A| − E1 · |A|)−

∑
t>E2·|B|·|A|+E1·|A|

v1(at, bt)

≤ (T − E2 · |B| · |A| − E1 · |A|) ·
(
max
a∈A

min
b∈Bϵ∗ (a)

v1(a, b) + c · (ϵ∗)d
)
−

∑
t>E2·|B|·|A|+E1·|A|

v1(ã, b̃(ã))

= (T − E2 · |B| · |A| − E1 · |A|) · c · (ϵ∗)d + (T − E2 · |B| · |A| − E1 · |A|)
(
max
a∈A

min
b∈Bϵ∗ (a)

v1(a, b)− v1(ã, b̃(ã))

)
≤(A) T · c · (ϵ∗)d + T · ϵ∗

≤(B) T · c · (ϵ∗)d

≤ Θ
(
(c · T )1−(η·d/2) · (|A| · |B| · (log T ))η·d/2

)
= Θ

(
(c · T )η · (|A| · |B| · (log T ))1−η

)
.

where (A) follows from Lemma D.3 and (B) uses the fact that c ≥ 1 and d ≤ 1. The regret of the follower can similarly be

43



Impact of Decentralized Learning on Player Utilities in Stackelberg Games

bounded as:

βtol
1 · (T − E2 · |B| · |A| − E1 · |A|)−

∑
t>E2·|B|·|A|+E1·|A|

v2(at, bt)

≤ (T − E2 · |B| · |A| − E1 · |A|) ·
(

min
a∈Aϵ∗

max
b∈B

v2(a, b) + c · (ϵ∗)d
)
−

∑
t>E2·|B|·|A|+E1·|A|

v2(ã, b̃(ã))

= (T − E2 · |B| · |A| − E1 · |A|) · c · (ϵ∗)d + (T − E2 · |B| · |A| − E1 · |A|)
(

min
a∈Aϵ∗

max
b∈B

v2(a, b)− v2(ã, b̃(ã))

)
≤(B) T · c · (ϵ∗)d + T · ϵ∗

≤ O
(
T 2/3(log T )1/3|A|1/3|B|1/3

)
.

where (B) follows from Lemma D.3. This proves the desired result.

F.4. Proof of Theorem F.3

Theorem F.3. Suppose that c ≥ 1 and d ≤ 1, and let η := 2/(2+d). Let E = Θ(|A|−η(|B| log T )1−η(c ·T )η). Consider
a StrongDSG where ALG2 is any algorithm with high-probability instantaneous regret
g(t, T,B) = O

(
(|A| · |B| · log T )η/2 · (c · T )−η/2

)
for t > E and g(t, T,B) = 1 for t ≤ E, and where ALG1 =

ExploreThenUCB(E). Then, then the leader and follower regret with respect to the generalized (c, d, γ)-tolerant bench-
marks are both bounded as:

max(R1(T ), R2(T )) = O((|A| · |B| · (log T ))1−η · (c · T )η).

The proof follows a similar argument to the proof of Theorem D.1 and borrows some lemmas from Appendix D.3

Proof of Theorem F.3. Assume that the clean event G holds. This occurs with probability at least 1−(1+|A|)T−3 (Lemma
D.4), so the clean event not occurring counts negligibly towards regret.

The regret in the explore phase is bounded by O(1) in each round, the total regret from that phase is E · |A| = O((|A| ·
|B| · (log T ))1−η · (c · T )η) for either player.

The remainder of the analysis boils down to bounding the regret in the UCB phase. We separately analyze the regret of
the leader and the follower. Observe that ϵ∗ = maxt>E g(t, T,B) = O

(
(|A| · |B| log T )η/2 · (c · T )−η/2

)
based on the

assumption on the follower’s algorithm.

44



Impact of Decentralized Learning on Player Utilities in Stackelberg Games

Regret for the leader. We bound the regret as:

βtol
1 · (T − E · |A|)−

T∑
t=E·|A|

v1(at, bt)

≤
T∑

t=E·|A|+1

(
c · (ϵ∗)d +max

a∈A
min

b∈Bϵ∗ (a)
v1(a, b)− v1(at, bt)

)

=
∑
a∈A

∑
t∈S(a)

(
c · (ϵ∗)d +max

a∈A
min

b∈Bϵ∗ (a)
v1(a, b)− v1(at, bt)

)

≤ |A|+
∑
a∈A

∑
t∈S(a)\{max(S(a))}

(
c · (ϵ∗)d +max

a∈A
min

b∈Bϵ∗ (a)
v1(a, b)− v1(at, bt)

)
≤ |A|+ c · (ϵ∗)d · T︸ ︷︷ ︸

(1)

+
∑
a∈A

(nE·|A|,T+1(a)− 1) ·

max
a∈A

min
b∈Bϵ∗ (a)

v1(a, b)−
1

nE·|A|,T+1(a)− 1

∑
t∈S(a)\{max(S(a))}

(v1(at, bt))


︸ ︷︷ ︸

(2)

The term |A| computes negligibly and term (1) is equal to O((|A| · |B| · (log T ))η·d/2 · (c · T )1−η·d/2) = O((|A| ·
|B| · (log T ))1−η · (c · T )η). Term (2) can be bounded by by the same argument as Theorem 4.4, which we repeat for
completeness:

∑
a∈A

(nE·|A|,T+1(a)− 1) ·

max
a∈A

min
b∈Bϵ∗ (a)

v1(a, b)−
1

nE·|A|,T+1(a)− 1

∑
t∈S(a)\{max(S(a))}

(v1(at, bt))


≤
∑
a∈A

(nE·|A|,T+1(a)− 1) · 20
√
log T√

nE·|A|,T+1(a)− 1

≤ O

(√
log T ·

∑
a∈A

√
nE·|A|,T+1(a)− 1

)
≤ O

(√
|A|T log T

)
,

where the first inequality uses Lemma D.5 and the last inequality uses Jensen’s inequality.

Regret for the follower. Note that ∪a∈Aϵ∗S(a) denotes the set of time steps where an action in Aϵ∗ is chosen. We bound
the regret as:

βtol
2 · (T − E · |A|)−

T∑
t=E·|A|

v2(at, bt)

≤

 T∑
t=E·|A|

1[t ̸∈ ∪a∈Aϵ∗S(a)]


︸ ︷︷ ︸

(1)

+
∑

t∈∪a∈Aϵ∗ S(a)

(
min

a∈Aϵ∗
max
b∈B

v2(a, b)− v2(at, bt)

)
︸ ︷︷ ︸

(2)

+ c · (ϵ∗)d · | ∪a∈Aϵ∗ S(a)|︸ ︷︷ ︸
(3)

Term (1) can be bounded by a similar argument to Theorem 4.4, which we repeat for completeness. This term can be
rewritten as

∑T
t=E·|A| 1[t ̸∈ ∪a∈Aϵ∗S(a)] =

∑
a̸∈Aϵ∗

nE·|A|,T (a). This counts the number of times that arms outside of
Aϵ∗ are pulled during the UCB phase. The key intuition is when an arm at ̸∈ Aϵ∗ , it holds that:

v1(at, bt) ≤ max
b∈Bϵ∗ (a′)

v1(at, b) < max
a∈A

min
b∈Bϵ∗ (a)

v1(a, b)− ϵ∗,

45



Impact of Decentralized Learning on Player Utilities in Stackelberg Games

where the first inequality uses the fact that bt ∈ Bϵ∗(at) (which follows from the clean event GF ) and the second inequality
uses the fact that at ̸∈ Aϵ∗ . This implies that for any a′ ̸∈ Aϵ∗ , the average reward across all time steps (except for the last
time step) where a′ is pulled satisfies:

1

nE·|A|,T (a′)− 1

∑
t∈S(a′)\{max(S(a′))}

v1(at′ , bt′) < max
a∈A

min
b∈Bϵ∗ (a)

v1(a, b)− ϵ∗.

However, by Lemma D.5, we can also lower bound the average reward across all time steps (except for the last time step)
where a′ is pulled in terms of nE·|A|,T (a

′) as follows:

1

nE·|A|,T (a′)− 1

∑
t∈S(a′)\{max(S(a′))}

v1(at′ , bt′) ≥ max
a∈A

min
b∈Bϵ∗ (a)

v1(a, b)−
10
√
log T√

nE·|A|,T (a′)− 1
.

Putting these two inequalities together, we see that:

10
√
log T√

nE·|A|,T (a′)− 1
≥ ϵ∗,

which bounds the number of times that a′ is pulled during the UCB phase as follows:

nE·|A|,T (a
′) ≤ Θ

(
log T

(ϵ∗)2

)
= Θ

(
(|A| · |B|)−η · (log T )1−η · (c · T )η

)
.

This means that:

T∑
t=E·|A|

1[t ̸∈ ∪a∈Aϵ∗S(a)] =
∑
a̸∈Aϵ

nE·|A|,T (a) ≤ Θ
(
(|A| · log T )1−η · (|B|)−η · (c · T )η

)
Next, we bound term (2):

min
a∈Aϵ∗

max
b∈B

v2(a, b)− E[v2(at, bt)] ≤
∑

t∈∪a∈Aϵ∗ S(a)

(
max
b∈B

v2(at, b)− E[v2(at, bt)]
)
≤ | ∪a∈Aϵ∗ S(a)| · ϵ∗

≤ T · ϵ∗

≤ T · c · (ϵ∗)d

= O((|A| · |B| · (log T ))η·d/2 · (c · T )1−η·d/2)

≤ O((|A| · |B| · (log T ))1−η · (c · T )η).

Finally, we bound term (3) as

ϵ∗ · |S| ≤ T · ϵ∗ ≤ T · c · (ϵ∗)d ≤ O((|A| · |B| · (log T ))η·d/2 · (c · T )1−η·d/2) = O((|A| · |B| · (log T ))1−η · (c · T )η).

G. Discussion of Assumptions on the Follower’s Algorithm
Our algorithms for the leader placed assumptions on the fine-grained performance of the follower’s algorithm. More
specifically, the regret bound for ExploreThenUCB required an high-probability instantaneous regret bound g for the
follower (Theorem 4.4), and the regret bound for LipschitzUCB required an high-probability anytime regret bound h
for the follower (Theorem 5.1).

In this section, we examine these two conditions in more detail. First, we relate these two conditions and show that many
standard algorithms satisfy the conditions on g and h in Theorem 4.4 and Theorem 5.1. Then, we extend our analysis of
ExploreThenUCB and LipschitzUCB to more general conditions on g and h, respectively (Section G.2).

46



Impact of Decentralized Learning on Player Utilities in Stackelberg Games

G.1. Algorithms Satisfying These Fine-Grained Regret Guarantees

As a warmup, we first observe that high probability instantaneous regret bounds immediately translate to high-probability
anytime regret bounds.

Observation G.1. Suppose that ALG2 satisfies a high-probability instantaneous regret bound of g. Then it holds that ALG2

satisfies an anytime regret bound of h defined as h(t, T ) :=
∑t

t′=1 g(t
′, T ).

As a consequence, if ALG2 satisfies the high-probability instantaneous regret bound in Theorem 4.4 (i.e., g(t, T,B) =
O
(
(|A||B| log T )1/3T−1/3

)
for t > E := Θ(|A|−2/3(|B| log T )1/3T 2/3) and g(t, T,B) = 1 for t ≤ E), then ALG2 also

satisfies an anytime regret bound of h defined for t > E as:

h(t, T ) :=

t∑
t′=1

g(t′, T ) = E +

t∑
t′=E

O
(
(|A||B| log T )1/3T−1/3

)
= O

(
(|A||B| log T )1/3T 2/3

)
.

However, this naive high-probability anytime regret bound is not strong enough for Theorem 5.1. We can nonetheless
achieve the desired regret bound with additional assumptions on ALG2 as we describe below.

Algorithm 7: ActiveArmElimination(M1, . . . ,MP ) applied to (a,H) (adapted from (Even-Dar et al., 2002;
Lattimore and Szepesvári, 2020))

1 Initialize s′ = 0, t′ = 1, B′ = B // Index of the last completed phase, time step marking
beginning of phase s′ + 1, active arms in phase s′.

2 Initialize newphase = False. // Boolean for first time step in phase.
3 Let t = |H|.
4 for t′′ = 1 to t do
5 for b ∈ B′ do
6 Let n(a, b) := |{(t′′, at′′ , bt′′ , r) ∈ H | at′′ = a, bt′′ = b, t′′ ≥ t′}|.
7 if n(a, b) = Ms′+1∀b ∈ B′ then
8 newphase = True.
9 if newphase = True then

10 for b ∈ B′ do
11 Set S(a, b) := {r | ∃(t′′, at′′ , bt′′ , r) ∈ H s.t. at′′ = a, b = bt′′ , t

′′ ≥ t′} // observed rewards
12 v̂2(a, b)← (

∑
r∈S(a,b) r)/|S(a, b)| // compute empirical mean

13 Update B′ ← {b | v̂2(a, b) + 20·
√
log T√
Ms′

≥ maxb∈B′ v̂2(a, b)}.

14 Update s′ ← s′ + 1.
15 Update t′ ← t.
16 newphase = False.
17 i = ((t− t′) mod (|B′|)) + 1. // Calculate next arm to be pulled
18 return point mass at bi.

By leveraging the structural properties of specific algorithms, we show that many standard algorithms achieve high-
probability instantaneous regret g and/or high-probability anytime regret h, where g and h are specified according to
the functional forms in Theorem 4.4 and Theorem 5.1. First, we show that ActiveArmElimination (Even-Dar et al.,
2002) (Algorithm 7, see Lattimore and Szepesvári (2020) for a textbook treatment) satisfies both the high-probability in-
stantaneous regret bound required for Theorem 4.4 and the high-probability anytime regret bound required for Theorem
5.1.

The follower algorithms ALG2 that we analyze in this section run a separate instantation of a standard bandit algorithm for
every a ∈ A. We show that if ALG satisfies a high-probability instantaneous (resp. anytime) regret bound, the same high-
probability instantaneous (resp. anytime) regret bound is inherited for ALG2 (recall that in Section 2.3 we defined high-
probability instantaneous regret and high-probability anytime regret for both single-bandit learners which act in isolation
and follower algorithms).

Lemma G.1. Suppose that the follower algorithm ALG2 runs a separate instantation, for every a ∈ A, of an single-bandit
learning algorithm ALG operating on the arms B. If ALG satisfies high-probability instantaneous regret g, then ALG2

47



Impact of Decentralized Learning on Player Utilities in Stackelberg Games

satisfies high-probability instantaneous regret g. Similarly, if ALG also satisfies high-probability anytime regret h, then
ALG2 also satisfies high-probability anytime regret h.

Proof. We use the following notation in the proof. Let nt(a) be the number of times that arm a has been pulled up prior to
time step t. Following Appendix B.4, the follower’s history can be represented as:

H2,t := {(t′, at′ , bt′ , r2,t′(at′ , bt′)) | 1 ≤ t′ < t, at′ = a} ,

and the follower’s history on the arm a ∈ A can be represented as:

H2,t,a := {(nt′+1(a), bt′ , r2,t′(at′ , bt′)) | 1 ≤ t′ < t, at′ = a} .

Using this notation and by the definition of ALG2, we see that ALG2(at, H2,t) = ALG(H2,t,at
). We use this relationship to

analyze the high-probability instantaneous regret and high-probability anytime regret of ALG2.

High-probability instantaneous regret. Let the time horizon be T , and suppose that ALG satisfies high-probability in-
stantaneous regret g(t, T,B) for every 1 ≤ t ≤ T . Using this combined with the fact that ALG2(at, H2,t) = ALG(H2,t,at),
we see that for each a ∈ A:

P
[
∀t ∈ [T ] | v2(at, bt) ≥ max

b∈B
v2(at, b)− g(nt+1(a), T )

]
≥ 1− T−3.

Taking a union bound over a ∈ A demonstrates that:

P
[
∀t ∈ [T ], a ∈ A | v2(at, bt) ≥ max

b∈B
v2(at, b)− g(nt(a) + 1, T )

]
≥ 1− |A| · T−3,

so ALG2 satisfies high-probability instantaneous regret g.

High-probability anytime regret. Let the time horizon be T , and suppose that ALG satisfies high-probability anytime
regret h(t, T,B) for every 1 ≤ t ≤ T . Using this combined with the fact that ALG2(at, H2,t) = ALG(H2,t,at), we see that
for each a ∈ A:

P

∀t ∈ [T ] |
∑

t′≤t|at′=a

max
b∈B

v2(a, b)−
∑

t′≤t|at′=a

v2(a, bt′) ≤ h(nt+1(a), T )

 ≥ 1− T−3.

Taking a union bound over a ∈ A demonstrates that:

P

∀t ∈ [T ], a ∈ A |
∑

t′≤t|at′=a

max
b∈B

v2(a, b)−
∑

t′≤t|at′=a

v2(a, bt′) ≤ h(nt+1(a), T )

 ≥ 1− |A| · T−3,

so ALG2 satisfies high-probability anytime regret h.

Using Lemma G.1, it suffices to analyze the high-probability instantaneous regret and high-probability anytime regret of
the following standard bandit algorithms as single-bandit learners with arms B, mean rewards v2(b), and stochastic rewards
r2,t(b). In the proofs, we let nt(b) denote the number of times that arm b has been pulled prior to time step t.

Proposition G.2. Suppose that for every a ∈ A, the follower runs a separate instantiation of
ActiveArmElimination(M1, . . . ,MP ) (Algorithm 7) with Mi = Θ(log T · 22i). Then the follower satisfies high-
probability instantaneous regret g(t, T,B) = O(

√
|B| · log(T )/t, which implies g(t, T,B) = O

(
(|A||B| log T )1/3T−1/3

)
for t ≥ Θ(|A|−2/3(|B| log T )1/3T 2/3). Moreover, the follower satisfies high-probability anytime regret
h(t, T,B) = O(

√
|B| · log(T ) · t).

Proof of Proposition G.2. We first show the high-probability instantaneous regret bound and then deduce the high-
probability anytime regret bound.

48



Impact of Decentralized Learning on Player Utilities in Stackelberg Games

High-probability instantaneous regret bound. By Lemma G.1, it suffices to show the bound for
ActiveArmElimination (using phase lengths Mi = Θ(log(T ) · 22i)) as a single-bandit learner with arms B, mean
rewards v2(b), and stochastic rewards r2,t(b). We let nt(b) denote the number of times that arm b has been pulled prior to
time step t in the current phase. Let v̂2,t(b) denote the empirical mean reward for arm b over the rewards observed prior to
time step t in the previous (last completed) phase. Let B′t,curr be the set of arms active in the current phase, and let B′t,prev
be the set of arms active in the previous (last completed) phase. For each time step t, let s′t denote the index of the previous
(last completed) phase at time step t.

Let the clean event G denote the event that at every time step t, it holds that:

∀t ∈ [T ], b ∈ B′t,prev : |v2(b)− v̂2,t(b)| ≤
10
√
log T√
Ms′t

.

Applying a Chernoff bound and a union bound, it holds that P [G] ≥ 1− T−3.

We condition on the clean event G for the remainder of the analysis. Let b∗ = argmaxb∈Bv2(b). Using the elimination
rule, we can bound the suboptimality of each arm b ∈ B′t,curr:

|v2(b∗)− v2(b)|
≤ |v̂2,t(b∗)− v2(b

∗)|+ |v̂2,t(b)− v2(b)|+ |v̂2,t(b∗)− v̂2,t(b)|

≤ 40

√
log(T )√
Ms′t

≤ Θ(2−s′t).

It suffices to lower bound 2−2·s′t . We observe that:

t ≤ |B|

Ms′t+1 +

s′t∑
s=1

Ms

 ≤ Θ(|B| · log(T ) · 22·s
′
t),

where the last expression uses the geometric rate of increase of Mi = Θ(log(T ) · 22i). This implies that

2−s′t = O(
√
|B| · log T/t).

Altogether, this implies that:

v2(bt) ≥ max
b∈B

v2(b)−O(
√
|B| · log T/t),

as desired.

High-probability anytime regret bound. Using Observation G.1, it holds that the high-probability anytime regret can be
bounded as:

t∑
t′=1

O

(√
log(T ) · |B|

t′

)
=
√
log(T ) · |B| ·O

(
t∑

t′=1

1√
i

)
≤(A) Θ(

√
log(T ) · t · |B|)

where (A) follows from an integral bound and Jensen’s inequality. This proves the desired bound.

Next, we show that ExploreThenCommit (Algorithm 1, see Slivkins (2019); Lattimore and Szepesvári (2020) for a
textbook treatment) satisfies the high-probability instantaneous regret bound required for Theorem 4.4.

Proposition G.3. Suppose that the follower runs a separate instantiation of ExploreThenCommit(E,B) (Algorithm
1) for every a ∈ A. Then, the follower satisfies high-probability instantaneous regret g(t, T,B) = O(

√
log T/E) for

all time steps t ≥ E · |B|. If E = Θ((|A · |B|)−2/3(log T )1/3T 2/3), then g(t, T,B) = O
(
(|A||B| log T )1/3T−1/3

)
for

t ≥ Θ(|A|−2/3(|B| log T )1/3T 2/3).

49



Impact of Decentralized Learning on Player Utilities in Stackelberg Games

Proof of Proposition G.3. By Lemma G.1, it suffices to show the instantaneous regret bound for ExploreThenCommit
as a single-bandit learner with arms B, mean rewards v2(b), and stochastic rewards r2,t(b). We let nt(b) denote the number
of times that arm b has been pulled prior to time step t. Let v̂2,t(b) denote the empirical mean reward for arm b over the
rewards observed prior to time step t.

Let the clean event G capture the event that the empirical mean of every arm is close to the true mean whenever t > E · |B|
time steps, that is:

∀b ∈ B, t > E · |B| : |v̂2,t(b)− v2(b)| ≤ 10 ·
√

log(T )√
E

Applying a Chernoff bound (and using the analogue of one of the canonical bandit models in (Lattimore and Szepesvári,
2020)), it holds that P [G] ≥ 1− T−3.

Now, conditioning on the clean event G, we see that after time step t > E · |B|, it holds that:

|v̂2,t(b)− v2(b)| ≤ 10

√
log(T )√
E

.

Since the algorithm chooses the arm with highest empirical mean from the first E · |B| time steps is selected, this means
that:

max
b∈B

v2(b)− v2(b) ≤ 20 ·
√

log(T )√
E

for any t > E · |B|.

Note that ExploreThenCommit does not satisfy the high-probability anytime regret bound required for Theorem 5.1
due to the uniform exploration phase at the beginning of the algorithm means.

Finally, we show that UCB (Auer et al., 2002) (see Slivkins (2019); Lattimore and Szepesvári (2020) for a textbook
treatment) satisfies the high-probability anytime regret bound required in Theorem 5.1.

Proposition G.4. Suppose that the follower runs a separate instantiation of UCB for every a ∈ A. Then, the follower
satisfies high-probability anytime regret bound h(t, T,B) = O(

√
|B| · t · log(T )).

Proof of Proposition G.4. By Lemma G.1, it suffices to show the anytime regret bound for UCB as a single-bandit learner
with arms B, mean rewards v2(b), and stochastic rewards r2,t(b). We let nt(b) denote the number of times that arm b has
been pulled prior to time step t. Let v̂2,t(b) denote the empirical mean reward for arm b over the rewards observed prior to
time step t.

We define the clean event G as the true mean being contained within the upper and lower confidence bounds for each arm
a, that is:

∀b ∈ B, t ≤ T : |v̂2,t(b)− v2(b)| ≤ 10 ·

√
log(T )

nt(b)
.

By a Chernoff bound (and using the analogue of one of the canonical bandit models in (Lattimore and Szepesvári, 2020))
followed by a union bound, we have that P [G] ≥ 1− T−3.

We condition on G for the remainder of the analysis. Since the arm with highest upper confidence bound is always chosen

and since G holds, the selected arm bt’s true mean v2(bt) falls within the 2 ·
√

log(T )
nt(bt)

bound. By Lemma B.1, this means
that the regret at any time step t for any arm a ∈ A is upper bounded by:

10 ·
t∑

t′=1

√
log(T )

nt′(bt′)
≤ 10 ·

√
log(T ) · |B| · t

as desired.

We do not expect that UCB satisfies the high-probability instantaneous regret bound required for Theorem 4.4, using the
intuition that UCB does not provide final-iterate convergence guarantees.

50



Impact of Decentralized Learning on Player Utilities in Stackelberg Games

G.2. Generalized Analysis of ExploreThenUCB and LipschitzUCB

While the specific instantations of g and h in Theorem 4.4 and Theorem 5.1 are tailored to standard algorithms, we
generalize our analysis of ExploreThenUCB and LipschitzUCB to a richer class of functions g and h, respectively.

We generalize Theorem 4.4 to functions g(t, T ) = O(E−c1 |B|c2(log T )c3) for t > E, where c1 ∈ (0, 1) and c2, c3 > 0
are arbitrary parameters and where E = Θ(|A|−1/(1+c1)|B|c2/(1+c1) log(T )c2/(1+c1) · T 1/(1+c1)).

Theorem G.5. Let c1 ∈ (0, 1) and c2, c3 > 0. Let E = Θ(|A|−1/(1+c1)|B|c2/(1+c1)(log T )c3/(1+c1) · T 1/(1+c1)).
Consider a StrongDSG where ALG2 is any algorithm with high-probability instantaneous regret g(t, T,B) =
O (E−c1 |B|c2(log T )c3) for t > E and g(t, T,B) = 1 for t ≤ E, and where ALG1 = ExploreThenUCB(E). Then, it
holds that the regret with respect to the γ-tolerant benchmarks βtol

1 and βtol
2 is bounded as:

max(R1(T ), R2(T )) = O
(
T 1/(1+c1) · |A|c1/(1+c1) · |B|c2/(1+c1) · (log T )c3/(1+c1)

)
+Θ

(√
T |A| log T

)
.

Note that the special case of c1 = c2 = c3 = 1/2 recovers the functional form of g in Theorem 4.4. The proof follows
similarly to the proof of Theorem 4.4.

We assume γ = ω
(
|A|c1/(1+c1)|B|c2/(1+c1)(log T )c3/(1+c1)T−1/(1+c1)

)
.

Notation and Clean Event. We use the same notation as in the proof of Theorem 4.4. We also define the clean event
G := GL ∩GF to be the same as in the proof of Theorem 4.4.

We prove that the clean event G occurs with high probability, generalizing Lemma D.4.

Lemma G.6. Assume the notation above. Let ALG2 be any algorithm with high-probability instantaneous regret g where
g(t, T,B) = O(E−c1 |B|c2(log T )c3) for t > E and g(t, T,B) = 1 for t ≤ E, and let ALG1 = ExploreThenUCB(E).
Then, the event G occurs with high probability: P[G] ≥ 1− T−3(|A|+ 1).

Proof. We first show that P[GF ] ≥ 1− |A| · T−3. A sufficient condition for this event to hold is that:

∀t > E · |A| : v2(at, bt) ≥ max
b∈B

v2(at, b)−max
t>E

g(t, T,B).

Since the exploration phases pulls every arm a ∈ A a total of E times, the high-probability instantaneous regret assumption
guarantees that this event holds with probability at least 1− |A| · T−3, as desired.

We next show that P[GL] ≥ 1−T−3. This follows from a a Chernoff bound (and using the analogue of one of the canonical
bandit models in (Lattimore and Szepesvári, 2020)) combined with a union bound.

The lemma follows from another union bound over GL and GF .

Now we are ready to prove Theorem G.5.

Proof of Theorem G.5. Assume that the clean event G holds. This occurs with probability at least 1 − (1 + |A|)T−3

(Lemma G.6), so the clean event not occurring counts negligibly towards regret.

The regret in the explore phase is bounded by O(1) in each round, the total regret from that phase is
O(T 1/(1+c1)|A|c1/(1+c1)|B|c2/(1+c1)(log T )c3/(1+c1)) for either player.

The remainder of the analysis boils down to bounding the regret in the UCB phase. We separately analyze the
regret of the leader and the follower. Observe that ϵ∗ = maxt>E g(t, T,B) = O (|B|c2(log T )c3E−c1) =
O
(
|A|c1/(1+c1)|B|c2/(1+c1)(log T )c3/(1+c1)T−c1/(1+c1)

)
is based on the assumption on the follower’s algorithm.

51



Impact of Decentralized Learning on Player Utilities in Stackelberg Games

Regret for the leader. We use a similar analysis as in the proof of Theorem 4.4, repeating the full analysis for completeness.

βtol
1 · (T − E · |A|)−

T∑
t=E·|A|+1

v1(at, bt)

≤
T∑

t=E·|A|+1

(
ϵ∗ +max

a∈A
min

b∈Bϵ∗ (a)
v1(a, b)− v1(at, bt)

)

=
∑
a∈A

∑
t∈S(a)

(
ϵ∗ +max

a∈A
min

b∈Bϵ∗ (a)
v1(a, b)− v1(at, bt)

)

≤ |A|+
∑
a∈A

∑
t∈S(a)\{max(S(a))}

(
ϵ∗ +max

a∈A
min

b∈Bϵ∗ (a)
v1(a, b)− v1(at, bt)

)
≤ |A|+ ϵ∗ · T︸ ︷︷ ︸

(1)

+
∑
a∈A

(nE·|A|,T+1(a)− 1) ·

max
a∈A

min
b∈Bϵ∗ (a)

v1(a, b)−
1

nE·|A|,T+1(a)− 1

∑
t∈S(a)\{max(S(a))}

(v1(at, bt))


︸ ︷︷ ︸

(2)

The term |A| computes negligibly, term (1) is equal to Θ(A|c1/(1+c1)|B|c2/(1+c1)(log T )c3/(1+c1)T 1/(1+c1)), and term (2)
can be bounded by:

∑
a∈A

(nE·|A|,T (a)− 1) ·

max
a∈A

min
b∈Bϵ∗ (a)

v1(a, b)−
1

nE·|A|,T+1(a)− 1

∑
t∈S(a)\{max(S(a))}

(v1(at, bt))


≤
∑
a∈A

(nE·|A|,T+1(a)− 1) · 20
√
log T√

nE·|A|,T+1(a)− 1

≤ O

(√
log T ·

∑
a∈A

√
nE·|A|,T+1(a)− 1

)
≤ O

(√
|A|T log T

)
,

where the first inequality uses Lemma D.5 and the last inequality uses Jensen’s inequality.

Regret for the follower. We modify the analysis from the proof of Theorem 4.4. We bound the regret as:

βtol
2 · (T − E · |A|)−

T∑
t=E·|A|+1

v2(at, bt)

≤
T∑

t=E|A|+1

(
min
a∈Aϵt

max
b∈B

v2(a, b)− v2(at, bt)

)
︸ ︷︷ ︸

(1)

+

T∑
t=E|A|+1

ϵt︸ ︷︷ ︸
(2)

where

ϵt =

1 if nE·|A|,t(at) = 1

max

(
ϵ∗, 20

√
log T√

nE·|A|,t(at)

)
else .

52



Impact of Decentralized Learning on Player Utilities in Stackelberg Games

We bound term (1). We first show that at ∈ Aϵt :

max
b∈Bϵt (at)

v1(at, b) ≥ max
b∈Bϵ∗ (at)

v1(at, b)

≥(A)
1

nE·|A|,t(at)

∑
E·|A|<t′<t|at′=at

v1(at′ , bt′)

≥(B) v̂1,t(at)−
10
√
log T√

nE·|A|,t(at)

= vUCB
1,t (at)−

20
√
log T√

nE·|A|,t(at)

= max
a∈A

(
vUCB
1,t (a)

)
− 20

√
log T√

nE·|A|,t(at)

≥(C) max
a∈A

 1

nE·|A|,t(at)

∑
E·|A|<t′<t|at′=a

v1(at′ , bt′)

− 20
√
log T√

nE·|A|,t(at)

≥(D) max
a∈A

min
b∈Bϵ∗ (a)

v1(a, b)−
20
√
log T√

nE·|A|,t(at)

≥ max
a∈A

min
b∈Bϵt (a)

v1(a, b)− ϵt.

where (A) and (D) uses the event GF , and (B) and (C) use the event GL. Applying GF again, this implies that:

min
a∈Aϵt

max
b∈B

v2(a, b)− v2(at, bt) ≤ v2(at, b)− v2(at, bt)

≤ ϵ∗.

Putting this all together, term (1) is bounded by

T∑
t=E|A|+1

(
min
a∈Aϵt

max
b∈B

v2(a, b)− v2(at, bt)

)
≤ ϵ∗ · T = Θ(A|c1/(1+c1)|B|c2/(1+c1)(log T )c3/(1+c1)T 1/(1+c1)),

as desired.

We next bound term (2) as follows:

T∑
t=E|A|+1

ϵt = |A|+
∑
a∈A

∑
t∈S(a)\min(S(a))

max

(
ϵ∗, 20

√
log T√

nE·|A|,t(a)

)

≤ |A|+ ϵ∗ · T + 20
√
log T ·

∑
a∈A

∑
t∈S(a)\min(S(a))

1√
nE·|A|,t(a)

≤(A) |A|+ ϵ∗ · T +O
(√

T |A| log T
)

≤ Θ(A|c1/(1+c1)|B|c2/(1+c1)(log T )c3/(1+c1)T 1/(1+c1)) +O
(√

T |A| log T
)
,

where (A) uses Lemma B.1.

Putting this all together yields the desired bound.

We similarly generalize Theorem 5.1 to functions h(t, T ) = C ′ · tc1 · |B|c2 · (log(T ))c3 for t > E, where c1, c2, c3 ∈ (0, 1)
are arbitrary parameters. This result requires the leader to instead run LipschitzUCBGen (Algorithm 8), a generalized
version of LipschitzUCB which adjusts the confidence set size based on the parameters c1, c2, and c3.

53



Impact of Decentralized Learning on Player Utilities in Stackelberg Games

Theorem G.7. Let c1 ∈ (0, 1), c2, c3 > 0, and C ′ > 0 be arbitrary constants. Consider a StrongDSG where
I = (A,B, v1, v2) has Lipschitz constant L∗. Let ALG2 be any algorithm satisfying high-probability anytime re-
gret h(t, T,B) = C ′ · tc1 · |B|c2 · (log(T ))c3 . Let ALG1 = LipschitzUCBGen(L,C ′Bc2 , c1, c3) for any
L ≥ L∗. Then both players achieve the following regret bounds with respect to the original Stackelberg bench-
marks βorig

1 and βorig
2 : that is, R1(T ; I) = O

(√
T |A||B| log T + L|A|1−c1 |B|c2(log T )c3T c1

)
and R2(T ; I) =

O
(
L
√
T |A||B| log T + L2|A|1−c1 |B|c2T c1(log T )c3

)
.

Again, note that the special case of c1 = c2 = c3 = 1/2 recovers the functional form of g in Theorem 5.1. The proof
follows similarly to the proof of Theorem 5.1.

Algorithm 8: LipschitzUCBGen(L,C, c1, c3) applied to H

1 Initialize v̂1(a) = 1 for a ∈ A. // Initialize empirical means for maxb∈B v1(a, b).
2 Initialize vUCB

1 (a) = 1 for a ∈ A. // Initialize UCB for maxb∈B v1(a, b)
3 for a ∈ A do
4 Set S(a) := {r | ∃(t′, at′ , r) ∈ H s.t. a = at′} // Observed rewards
5 if S(a) ̸= ∅ then
6 v̂1(a)← (

∑
r∈S(a) r)/|S(a)| // Empirical mean

7 α(a)← 10
√
B log T√
|S(a)|

+ C · L · (log T )c3T c1−1 // confidence bound width

8 vUCB
1 (a)← min(1, v̂1(a) + α(a))

9 Let a∗ = argmaxa∈A
(
vUCB
1 (a)

)
. // arm with max upper confidence bound

10 return point mass at a∗.

Notation. We use the same notation as in the proof of Theorem 5.1.

Clean event. We again define the clean event G = GL ∩GF to be the intersection of a clean event GL for the leader and
a clean event GF for the follower. The event GL is the same as in the proof of Theorem 5.1. The event GF is formalized
as follows:

∀a ∈ A, t ≤ T :
∑

1≤t′<t|at=a

(v2(a, b
∗(a))− v2(at, bt)) ≤ C ′(nt(a))

c1 |B|c2(log T )c3

We first generalize Lemma E.1.

Lemma G.8. Assume the setup of Theorem 5.1 and the notation above. Then the clean event occurs with high probability:
P[G] ≥ 1− T−3(|A|+ 1).

Proof. We union bound over GL and GF . The analysis for GF follows from the high-probability anytime regret bound
assumption. The analysis for GL follows from a Chernoff bound (and using the analogue of one of the canonical bandit
models in (Lattimore and Szepesvári, 2020)) combined with a union bound.

The following lemma generalizes Lemma E.2.

Lemma G.9. Assume the setup of Theorem G.7 and the notation above. Suppose that the clean event G holds. Then for
any t ≤ T and a ∈ A, it holds that:

|v̂1,t(a)− v1(a, b
∗(a))| ≤

10
√
|B| log T√
nt(a)

+ C ′ · L · (nt(a))
c1−1 · |B|c2(log T )c3 .

54



Impact of Decentralized Learning on Player Utilities in Stackelberg Games

Proof. The proof follows similarly to the proof of Lemma E.2. We observe that:

|v̂1,t(a)− v1(a, b
∗(a))| =

∣∣∣∣∣
(

1

nt(a)

∑
b∈B

nt(a, b) · v̂1(a, b)

)
− v1(a, b

∗(a))

∣∣∣∣∣
=

∣∣∣∣∣
(

1

nt(a)

∑
b∈B

nt(a, b) · v̂1(a, b)

)
− 1

nt(a)

(∑
b∈B

nt(a, b) · v1(a, b∗(a))

)∣∣∣∣∣
≤ 1

nt(a)

∑
b∈B

nt(a, b) · |v̂1(a, b)− v1(a, b
∗(a))|

≤ 1

nt(a)

∑
b∈B

nt(a, b) · |v̂1(a, b)− v1(a, b)|︸ ︷︷ ︸
(A)

+
1

nt(a)

∑
b∈B

nt(a, b) · |v1(a, b)− v1(a, b
∗(a))|︸ ︷︷ ︸

(B)

.

The bound of term (A) proceeds the same as before, and repeat the proof for completeness:

1

nt(a)

∑
b∈B

nt(a, b) · |v̂1(a, b)− v1(a, b)| ≤(1)
1

nt(a)

∑
b∈B

nt(a, b) ·
10
√
log T√

nt(a, b)

=
10
√
log T

nt(a)

∑
∑

b∈B

√
nt(a, b)

≤(2)

10
√
|B| log T√
nt(a)

.

where (1) uses the clean event GL and (2) uses Jensen’s inequality.

The bound of term (B) proceeds similarly, with some minor modifications:

1

nt(a)

∑
b∈B

nt(a, b) · |v1(a, b)− v1(a, b
∗(a))| ≤(1)

L∗

nt(a)

∑
b∈B

nt(a, b) · |v2(a, b)− v2(a, b
∗(a))|

=(2)
L∗

nt(a)

∑
b∈B

nt(a, b) · (v2(a, b∗(a))− v2(a, b)) ,

where (1) uses the Lipschitz property and (2) uses the fact that b∗(a) is the best arm for the follower, given that the leader
pulls arm a. Using the clean event GF and that L ≥ L∗, we see that:

L∗

nt(a)

∑
b∈B

nt(a, b) · (v2(a, b∗(a))− v2(a, b)) =
L∗

nt(a)

∑
1≤t′<t|at=a

(v2(a, b
∗(a))− v2(at, bt))

≤ C ′ · L · (nt(a))
c1−1|B|c2(log T )c3 .

Taken together, these terms give the desired bound.

We next generalize Lemma E.3.

Lemma G.10. Assume the setup of Theorem G.7 and the notation above. Suppose that the clean event G holds. Then it
holds that:

B1 :=

T∑
t=1

(
10
√
B log T√
nt(at)

+ C ′ · L · |B|
√
|B| log T√
nt(at)

)
≤ O

(√
|A||B|T log T + L · |A|1−c1 |B|c2(log T )c3T c1

)
B2 :=

T∑
t=1

(v2(at, b
∗(at))− v2(at, bt)) ≤ O

(
|A|1−c1 |B|c2 · (log T )c3T c1

)

55



Impact of Decentralized Learning on Player Utilities in Stackelberg Games

Proof. To bound B2, we see that:

B2 =

T∑
t=1

(v2(at, b
∗(at))− v2(at, bt))

=
∑
a∈A

∑
t∈T |at=a

(v2(a, b
∗(a))− v2(a, bt))

≤(A)

∑
a∈A

C ′(nT (a))
c1 |B|c2 · (log T )c3

= C ′|B|c2 · (log T )c3 ·
∑
a∈A

(nT+1(a))
c1

≤(B) O
(
|A|1−c1 |B|c2 · (log T )c3T c1

)
where (A) uses the event GF and (B) uses Jensen’s inequality.

To bound B1:

B1 =

T∑
t=1

(
10
√
|B| log T√
nt(at)

+ C ′ · L · |nt(at)|c1−1|B|c2(log T )c3
)

=(A) O
(√
|A||B|T log T

)
+ C ′ · L · |B|c2(log T )c3 ·

T∑
t=1

|nt(at)|c1−1

=(A) O
(√
|A||B|T log T

)
+ C ′ · L · |B|c2(log T )c3 ·

∑
a∈A

∑
t|at=a

|nt(at)|c1−1

≤(B) O

√|A||B|T log T + L · |B|c2(log T )c3 ·
∑

t|at=a

|nT+1(a)|c1


≤(C) O
(√
|A||B|T log T + L · |A|1−c1 |B|c2(log T )c3T c1

)
.

where (A) follows from Lemma B.1, (B) follows from an integral bound, and (C) follows from Jensen’s inequality.

We now prove Theorem 5.1.

Proof of Theorem G.7. Assume that clean event G holds. This occurs with probability at least 1− (|A+ 1)T−3 (Lemma
G.8), so the clean event not occurring counts negligibly towards regret.

Moreover, let (a∗, b∗(a∗)) be the Stackelberg equilibrium. Let

αt(a) =
10
√
B log T√
nt(a)

+ C ′ · L · |nt(a)|c1−1|B|c2(log T )c3

be the confidence bound size at time step t and let vUCB
1,t (a) = v̂1,t(a) + αt(a) denote the UCB estimate in

LipschitzUCBGen(L,C) computed during time step t prior to reward at time step t being observed.

56



Impact of Decentralized Learning on Player Utilities in Stackelberg Games

We can bound the leader’s regret as:

R1(T ) =

T∑
t=1

(v1(a
∗, b∗(a∗))− v1(at, bt))

=

T∑
t=1

(v1(a
∗, b∗(a∗))− v1(at, b

∗(at))) +

T∑
t=1

(v1(at, b
∗(at))− v1(at, bt))

≤(A)

T∑
t=1

(v̂1(a
∗) + αt(a

∗)− v̂1(at) + αt(at)) +

T∑
t=1

|v1(at, b∗(at))− v1(at, bt)|

≤
T∑

t=1

(
vUCB
1,t (a∗)− vUCB

1 (at) + 2 · αt(at)
)
+ L ·

T∑
t=1

|v2(at, b∗(at))− v2(at, bt)|

≤ 2 ·
T∑

t=1

αt(at) + L ·
T∑

t=1

(v2(at, b
∗(at))− v2(at, bt))

= 2 ·
T∑

t=1

(
10
√
B log T√
nt(at)

+ C ′ · L · |nt(at)|c1−1|B|c2(log T )c3
)

+ L ·B2

= 2 ·B1 + L ·B2

≤(B) O
(√
|A||B|T log T + L · |A|1−c1 |B|c2(log T )c3T c1

)
where (A) uses Lemma G.9 and (B) uses Lemma G.10.

We also bound the follower’s regret as:

R2(T ) =

T∑
t=1

(v2(a
∗, b∗(a∗))− v2(at, bt))

=

T∑
t=1

(v2(a
∗, b∗(a∗))− v2(a

∗, b∗(at))) +

T∑
t=1

(v2(a
∗, b∗(at))− v2(at, bt))

=

T∑
t=1

L · |v1(a∗, b∗(a∗))− v1(at, b
∗(at))|+B2

=(A)

T∑
t=1

L · (v1(a∗, b∗(a∗))− v1(at, b
∗(at))) +B2

≤(B)

T∑
t=1

L · (v̂1,t(a∗) + αt(a
∗)− v̂1,t(at) + αt(a

∗)) +B2

=

T∑
t=1

L ·
(
vUCB
1,t (a∗)− vUCB

1,t (at) + 2 · αt(at)
)
+B2

≤
T∑

t=1

L · (2 · αt(at)) +B2

= 2L ·
T∑

t=1

(
10
√
B log T√
nt(at)

+ C ′ · L · |nt(at)|c1−1|B|c2(log T )c3
)

+B2

= 2L ·B1 +B2

≤(C) O
(
L
√
|A||B|T log T + L2 · |A|1−c1 |B|c2(log T )c3T c1

)
where (A) uses the fact that a∗ is the action chosen by the leader at the Stackelberg equilibrium where (B) uses Lemma
G.9 and (C) uses Lemma G.10.

57



Impact of Decentralized Learning on Player Utilities in Stackelberg Games

58


