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ABSTRACT

Aligning large language models (LLMs) with diverse and competing human prefer-
ences remains a critical challenge for safe and effective deployment. While recent
work demonstrates that decoding-time alignment via weak preference models
achieves strong performance with minimal compute, existing methods optimize
for single objectives, severely limiting their adaptability to real-world scenarios
requiring multifaceted trade-offs (e.g., safety vs. helpfulness). We propose Multi-
Preference Alignment through Weak Model Collaboration (MPAW), a scalable
framework that aggregates guidance from heterogeneous weak preference models-
smaller LLMs aligned to distinct objectives-into a unified decoding strategy. By
dynamically integrating signals from specialized proxies (e.g., safety classifiers,
conciseness scorers), MPAW preserves the generalization capabilities of large base
models while enabling zero-shot adaptation to arbitrary preference weightings.
Empirical results demonstrate reliable alignment quality and nearly matching the
performance of computationally expensive multi-objective RLHF fine-tuning. Our
findings establish weak model collaboration as a promising pathway for efficient,
flexible LLM alignment without retraining.

1 INTRODUCTION

Recent advances in weak-to-strong decoding-time alignment have demonstrated the remarkable
potential for small, aligned models to guide larger language models (LLMs) towards human prefer-
ences with minimal computational overhead, effectively bypassing the need for costly fine-tuning
of the strong model (Burns et al., 2023). This paradigm—leveraging weak preference models as
proxies for human feedback—unlocks significant efficiency gains while preserving the generalization
capabilities of large foundation models. However, existing weak-to-strong methods operate under a
critical limitation: they rely on guidance from a single weak model (Rafailov et al., 2024a; Zhou et al.,
2024c;a; Mitchell et al., 2023; Liu et al., 2024a; Huang et al., 2024) , which inherently restricts their
adaptability to real-world scenarios where users demand alignment across multiple, often competing
objectives (e.g., harmlessness, helpfulness, and personalization).

While multi-objective alignment frameworks—including post-hoc interpolation (e.g., Reward
Soup (Rame et al., 2023), MOD (Shi et al., 2024), MORLHF (Wu et al., 2023), and dynamic
preference optimization MODPO (Zhou et al., 2024b) and RiC (Yang et al., 2024))—aim to address
diverse preferences, these methods face two critical limitations. First, existing approaches require
training or fine-tuning separate models for each preference P weighting configuration, incurring
O(P ) complexity where P grows combinatorially with the number of users or preference dimen-
sions (Wu et al., 2023). Second, parameter fusion techniques (e.g., Reward Soup (Rame et al., 2023),
MODPO (Zhou et al., 2024b)) mandate structural homogeneity (identical architectures, shared initial-
ization), precluding the integration of heterogeneous weak models or black-box APIs encountered in
real-world deployments.

Aligning large language models with multiple objectives requires more efficient and adaptable
methods. In a scenario with M distinct reward functions, a naive approach would involve training a
separate LLM for each combination of user preferences (e.g., safety, conciseness, creativity), leading
to a large number of models, which becomes computationally unfeasible. Instead, we propose using
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M pre-trained smaller models, each aligned with a specific reward function, to guide a larger LLM
towards the desired behavior without further fine-tuning.

Additionally, we can enhance alignment by adjusting the output probabilities at each decoding step
using logits tuning. Building on previous work that used a single weak model (Liu et al., 2024a), we
extend this approach to use multiple weak models to target different aspects of human preference.

In this work, we propose a novel multi-weak model collaborative framework (MPAW) that synergizes
the efficiency of weak-to-strong decoding with the expressiveness of multi-objective alignment. Our
method dynamically aggregates guidance from diverse weak models—each specialized in distinct
preference dimensions (e.g., safety, conciseness, creativity)—through a unified decoding-time scoring
mechanism. This enables:

▷ Zero-Shot Adaptability. Our method enables seamless adjustment to arbitrary user preference
weightings without retraining – achieving O(M) complexity for M fixed objectives compared to the
O(P ) scaling of traditional multi-objective alignment approaches, where P grows combinatorially
with user-defined preference combinations.

▷ Heterogeneous Model Compatibility. MPAW can integrate a diverse set of weak models, including
those that are black-box APIs or have different architectures. This makes it highly scalable and
compatible with real-world deployment constraints.

▷ Efficient Multi-Objective Alignment. By leveraging multiple weak preference models, MPAW
eliminates the need for computationally expensive fine-tuning of large models for each preference
configuration. The complexity of our method is reduced to O(Models) instead of O(Preferences).

▷ Enhanced Control with Logits Tuning. We extend the concept of logit-level tuning by leveraging
multiple small preference models, each specializing in different aspects of human preference. This
approach provides granular control over the generated text, achieving a more nuanced and robust
alignment across diverse criteria, reaching close to full fine-tuning of strong models.

2 PRELIMINARIES

Modeling of Reward Function Let πref be a reference LLM to align with human feedback. For
each sampled question x, πref is prompted to produce pairs of answers (y1, y2); in particular, y1
is preferred than y2, the information of which is provided by human feedback. This procedure
yields a preference dataset D = {(x, y1, y2)}. The underlying preference is assumed to follow a
Bradley-Terry (Bradley & Terry, 1952). Precisely,

R∗ = argmin
Rϕ

E(x,y1,y2)∼D[σ(R(y1|x)−R(y2|x))], (1)

where σ refers to sigma function andR∗ is considered a ground-truth reward function.

Reinforcement Learning from Human Feedback (Bai et al., 2022; Schulman et al., 2017) After
obtainingR∗, the task of alignment is performed by optimizing

argmax
πθ

E(x,y)∼πθ
[R∗(y|x)]− βDf (πθ, πref), (2)

where πθ is initialized as πref and Df is any f -divergence defined as

Df (πθ, πref) = E(x,y)∼πreff

(
πθ(y|x)
πref(y|x)

)
. (3)

Recall that f : [0,∞) → R is assumed to be convex and f(1) = 0. If f(x) = x log x − x + 1,1
which corresponds to the reverse KL divergence, Df (πθ, πref) = DKL(πθ|πref).

Generalized Direct Preference Optimization (Rafailov et al., 2024b; Wang et al., 2023) Assume
that f ′(z)→ −∞ as z → 0 and f is strongly convex, the problem Eq. 2 can be solved analytically as

π∗(y|x) = πref(y|x)(f ′)−1

(
R∗(y|x)− Z(x,R∗(·|x))

β

)
, (4)

1Note that x log x− x+ 1 and x log x produce the same divergence.
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where Z(x,R∗(·|x)) is a normalization factor ensuring that∑
y

πref(y|x)(f ′)−1

(
R∗(y|x)− Z(x,R∗(·|x))

β

)
= 1. (5)

In particular, we have

R∗(y|x) = βf ′
(

π∗(y|x)
πref(y|x)

)
+ Z(x,R∗(·|x)). (6)

Substituting this equality into the problem Eq. (1), an objective that is considered more stable to
optimize can be expressed as

argmin
πθ

E(x,y1,y2)∼Dσ

(
βf ′

(
πθ(y1|x)
πref(y1|x)

)
− βf ′

(
πθ(y2|x)
πref(y2|x)

))
. (7)

Multi-Objective Alignment (Wu et al., 2023) In this scenario, there are M reward functions
(R∗

1,R∗
2, . . . ,R∗

M ), each of them is built upon a preference dataset denoted by Di. Each user may
have their own preferences w ∈ ∆M−1 = {w ∈ RM |

∑
i wi = 1 and wi ≥ 0}.

3 METHODS

3.1 PROBLEM

Let a user preference w ∈ ∆M−1 be given, a naive approach to align models using multiple reward
functions is: i)R∗

w ←
∑

i wiR∗
i , and then replaceR∗ byR∗

w in the problem equation 2. However,
the drawback is clear: if there are P user preferences (typically, P ≫ M ), we have to finetune
models P times. Note that the most time-consuming step in RLHF is the finetuning process. To
be more computationally efficient, we focus on the scenario where there are only M finetuned
small/weak models, each of them was aligned using individual reward functions, and our goal is
to align large/strong models in a finetuning-free manner. Precisely, we perform alignment while
generating answers to any given prompt x. Therefore, the complexity of our method is O(M) instead
of O(P ).

Suppose we have a set of policies {(π∗
i , π

ref
i )}Mi=1. Each aligned policy π∗

i is initialized as πref
i and

the alignment was done using a reward functionR∗
i under f -divergence regularization. These aligned

policies are supposed to be small and thus weak. Our goal is to align a stronger model πbase using
{(π∗

i , π
ref
i )}Mi=1 for every user preference w ∈ ∆M−1 to optimize Eq. (2). Given a user preference

w, a weighted reward is defined asR∗
w =

∑
i wiR∗

i . Inspired by Shi et al. (2024), integrating Eqs.
(6) into (4), we have

π∗
w(y|x) = πbase(y|x)(f ′)−1

(
−Z∗

w(x,R∗
w(·|x))

β
+

1

β

M∑
i=1

wiR∗
i

)

= πbase(y|x)(f ′)−1

(
−Z(x,w, {R∗

i (·|x)}Mi=1)

β
+

M∑
i=1

wif
′
(

π∗
i (y|x)

πref
i (y|x)

))
,

(8)

where

Z(x,w, {R∗
i (·|x)}Mi=1) = Z∗

w(x,R∗
w(·|x))−

M∑
i=1

wiZ
∗
i (x,R∗

i (·|x)). (9)

3.2 DECODING ALGORITHM

Based on beam search, we employ πbase to generate a list of candidate answers for each question x,
where π∗

w(y|x) in (8) is treated as a score function that select the top-K candidates at each iteration.
In general, Z(x,w, {R∗

i (·|x)}Mi=1) is intractable to evaluate. Nevertheless, such an issue can be
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Algorithm 1: MPAW
Input: input x, beam width W , expansion factor κ, chunk length L, model to align πbase,

alignment pairs {(π∗
i , π

ref
i )}Mi=1, weights {wi}Mi=1

Output: Optimal answer y to x
1 Initialize beam B ← {(x, y′ = ∅)i}Wi=1
2 while ∃(x, y′) ∈ B incomplete do
3 C ← ∅
4 foreach (x, y′) ∈ B incomplete do
5 Y ← Sampleκ(yL)i

i.i.d.∼ πbase(·|x, y′) (|yL| = L, independent and identically distributed)
C ← C ∪ {(x, cat(y′, yL) : yL ∈ Y}

6 B ← SelectTop-W
(x,y′)∈C

[
πbase(y

′|x) exp
(∑M

i=1 wi log
π∗
i (y

′|x)
πref
i (y′|x)

)]
7 return argmax(x,y)∈H πbase(y|x) exp

(∑M
i=1 wi log

π∗
i (y

′|x)
πref
i (y|x)

)

Table 1: Overall comparison with other baselines. The number of user preferences (same amount as
weights) is much larger than the number of objectives.

Algorithms Free from Number of RequirementRM trained models

MORLHF (Wu et al., 2023) ✗ # preferences
MODPO (Zhou et al., 2024b) ✔ # preferences
RS (Rame et al., 2023; Jang et al., 2023) ✔ # objectives same arch. & init.
DPA (Wang et al., 2024a), CPO (Guo et al., 2024), RiC (Yang et al., 2024) ✗ 1 SFT
MOD (Shi et al., 2024) ✔ # objectives same tokenizer
MPAW ✔ # objectives

circumvented if we use KL divergence, which corresponds to f(x) = x log x− x+ 1. In this case,

π∗
w(y|x) = πbase(y|x) exp

(
−Z(x,w, {R∗

i (·|x)}Mi=1) +

M∑
i=1

wi log
π∗
i (y|x)

πref
i (y|x)

)

∝ πbase(y|x) exp

(
M∑
i=1

wi log
π∗
i (y|x)

πref
i (y|x)

)
.

(10)

Therefore, sticking to KL divergence, we can discard Z(x,w, {R∗
i (·|x)}Mi=1) without losing any

information in decoding πbase. Our proposed method is summarized in Algorithm ??. Plus, we outline
the comparison with the baselines in Table 1.

Proxy Decoding: Logits-based Alignment While the previous section focused on optimizing the
entire generation process at the trunk level, we can further refine alignment by adjusting the output
probabilities at each decoding step, known as logits-based alignment. This offers granular control
over text generation. Building on the observation that even a single small preference model can
effectively guide a large language model via logits tuning (Liu et al., 2024a), we explore leveraging
multiple small preference models for enhanced multi-objective alignment.

Take model alignment as a model state transfer from πref to πref∗. Let’s explore to study the pattern
for another model πbase. From Eq. (4), we can get

πref∗(y|x)︸ ︷︷ ︸
transferred

= πref(y|x)(f ′)−1

(
R∗(y|x)

β
− Z(x,R∗(·|x))

β

)
,

To transfer this alignment to πbase (or multi-objective πw), we can apply a similar transformation:
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πbase* = πbase
πref*

πref︸ ︷︷ ︸
transferred

= πbase(f
′)−1

(
R∗(y|x)

β
− Z(x,R∗(·|x))

β

)
,

πw∗ ∝ πbase(

∑
i wiR∗

i

β
) = πbase

∏
i

(
πi

ref∗
πi

ref

)wi

,

(11)

Take softmax as the activation function, π(yi|x) = softmax(logitsi) =
exp(logitsi)∑
j exp(logitsj)

. Then

logitsw* = logitsbase + β(
∑
i

wi(logitsref* − logitsref)), (12)

Specifically, when using KL divergence (where f(x) = x log x − x + 1), the equation can be
simplified to:

πref∗(y|x) = πref(y|x) exp
(∑

i wiR∗
i

β

)
·

(∑
y

(πref(y|x) exp(

∑
i wiR∗

i

β
))

)
. (13)

During decoding, πref(y|x), R∗(y|x), β are fixed for a given context and preference model. This
allows the validity of logits-based alignment.

4 EXPERIMENT
Method Code pass@1 Math Acc.

Base 46.31 1.52
Directly Tuned 65.7 72.02

MPAW (1,0) 43.69 67.32
MPAW (0.5,0.5) 45.49 68.99
MPAW (0.2,0.8) - 70.58
MPAW (0.8,0.2) 44.91 -
MPAW (0,1) 46.10 69.60

Table 1: Multi-task alignment performance with
varying code:math weight ratios. The weak
model is Qwen2-0.5B (Qwen, 2024) fine-tuned
on code/math. The strong model is Qwen2-7B.

Following the protocol established in Shi et al.
(2024), we evaluate the proposed logits-based
alignment method on two distinct reasoning
tasks: GSM8K-COT (denoted as math) and
Codex@1 (denoted as code). Our optimization
adopts a weighting mechanism where wcode :
wmath ratios provide the alignment focus.

As shown in Figure 1, our method achieves
70.58% mathematical accuracy under 0.2:0.8
weighting configuration, surpassing the proxy
tuning baseline (69.60%) while approaching full
fine-tuning performance (72.02%).

Discussion MPAW achieves multi-preference/multi-domain generalization through dynamic integra-
tion of multiple reward models during the decoding phase, and can naturally extend to accommodate
any number of optimization objectives. It is worth noticed that MPAW, a decoding-time method, can
closely approach the performance of computationally intensive full fine-tuning methods is particularly
noteworthy. This highlights the efficiency of weak model collaboration in guiding strong models
towards desired behaviors without the need for extensive retraining. Furthermore, the observed
trade-off between code and math performance as weights are adjusted provides empirical evidence
for MPAW’s ability to navigate and optimize for competing objectives, a crucial aspect for real-world
applications where user preferences are often multifaceted and complex.

5 RELATED WORK

Multi-objective LMs alignment In order to meet diverse human needs, various approaches have
been proposed to simultaneously align language models (Bai et al., 2022) with multiple objectives,
addressing trade-offs between different dimensions (Rame et al., 2023; Jang et al., 2023; Ji et al.,
2023; Wang et al., 2024b; Badrinath et al., 2024; Khaki et al., 2024; Lee et al., 2024; Han et al.,
2024). Learning-based algorithms align through gradient descent and optimize model parameters.
MORLHF (Wu et al., 2023) use fine-grained reward models to personalize language models for
diverse user needs. MODPO (Zhou et al., 2024b) introduces a novel multi-objective alignment
framework by integrating learned reward representations, enabling the model to align with multiple
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objectives on the initial preference dataset. Additionally, parameter merging offers a training-free
solution, such as reward soup (Lin et al., 2024; Rame et al., 2023; Jang et al., 2023), which achieves
multi-objective alignment by linearly combining model weights trained for individual objectives.
Preference-conditioned prompting (Yang et al., 2024; Wang et al., 2024a; Guo et al., 2024), which
directly incorporates preference weightings into prompts after a fine-tuning process, and search-based
algorithms (Cui et al., 2024; Dong et al., 2023; Gao et al., 2022; Guo et al., 2024; Huang et al., 2024),
which use graph-based methods, optimize multiple objectives at inference time. Search-based method
can neglect KL diverge in Eq. (2) because the results of search only determines by order. While these
methods are relatively efficient, they often rely on reducing the mis-specification hypothesis (Rame
et al., 2023) or struggle with out-of-distribution generalization ability (Zhou et al., 2024d), posing
challenges in interpretability and robustness.

Controllable Decoding Controllable decoding focuses on steering language model outputs in
a direction that aligns with specific goals or constraints, including token-level and response-level
control techniques. Response-level methods often treat the entire generated text as a sample from
a probability distribution. To solve this, energy-based optimization approaches (Qin et al., 2022;
Kumar et al., 2022) continuously optimize LLMs through gradients. Token-level methods, fine-tune
output generation at each timestep to increase control and ensure the generated sequence aligns with
desired outcomes. (Mudgal et al., 2024; Liu et al., 2024b) align through value models, while (Khanov
et al., 2024; Zhou et al., 2024c) treat it as a search problem. (Liu et al., 2024c) introduce a distribution
approximation per token. (Huang et al., 2024; Liu et al., 2024a; Zhao et al., 2024) operate token
logits to control decoding.

Weak-to-Strong Generalization Weak-to-strong generalization (Burns et al., 2023) showcase
a phenomenon that naively finetune superintelligence models by a weak model, they consistently
perform better than their weak supervisors. For example, (Rafailov et al., 2024a; Zhou et al., 2024c)
propose token-level weak-to-strong alignment. (Zhou et al., 2024a; Mitchell et al., 2023; Liu et al.,
2024a; Huang et al., 2024) raise proxy or emulated fine-tuning strategies, which use the distributional
differences between small tuned and untuned models to adjust the output of large language models, or
even black-box ones. However, these learning-based approaches rely on shared vocabularies between
small and large models, limiting their practical applications. Searching-based approach (Zhou et al.,
2024c; Zhao et al., 2024) are not restricted by vocabularies.

6 CONCLUSION

We introduced MPAW, a framework for multi-objective alignment of LLMs. By leveraging weak
models aligned with distinct reward functions and integrating them through a collaborative decoding
strategy, MPAW efficiently adapts to user-defined preferences without the need for costly retrain-
ing. The ability to integrate heterogeneous weak models, coupled with the zero-shot adaptability
to different preference weightings, offers significant advantages over to MPAW. Our experiments
show that MPAW achieves high-quality alignment with multiple objectives while maintaining the
generalization power of the base model. Future work could explore further optimizations to the
framework, as well as its applicability to even more complex, real-world scenarios. The code is
released at https://github.com/NuoJohnChen/MPAW.
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