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Abstract

Agents that can acquire diverse skills to solve the same task have a benefit over other
agents if e.g. unexpected environmental changes occur. However, Reinforcement
Learning (RL) policies mainly rely on Gaussian parameterization, preventing them
from learning multi-modal, diverse skills. In this work, we propose a novel RL
approach for training policies that exhibit diverse behavior. To this end, we propose
a highly non-linear Mixture of Experts (MoE) as the policy representation, where
each expert formalizes a skill as a contextual motion primitive. The context defines
the task, which can be for instance the goal reaching position of the agent, or
changing physical parameters like friction. Given a context, our trained policy
first selects an expert out of the repertoire of skills and subsequently adapts the
parameters of the contextual motion primitive. To incentivize our policy to learn
diverse skills, we leverage a maximum entropy objective combined with a per-
expert context distribution that we optimize alongside each expert. The per-expert
context distribution allows each expert to focus on a context sub-space and boost
learning speed. However, these distributions need to be able to represent multi-
modality and hard discontinuities in the environment’s context probability space.
We solve these requirements by leveraging energy-based models to represent the
per-expert context distributions and show how we can efficiently train them using
the standard policy gradient objective.

1 Introduction

Reinforcement Learning (RL) policies usually rely on Gaussian parameterization that are able to
discover only a single-mode solution to a task. While this limitation may suffice for tasks where
environmental changes are not expected as for instance in production lines, achieving robustness in the
face of dynamic environments, or learning adversarial strategies, such as playing table tennis against
an opponent, requires agents to acquire diverse skills akin to human adaptability. In this work, we
propose a new approach for training policies that exhibit multi-modality within the behavioral space
in the realm of RL. Our trained agents possess a diverse repertoire of skills from which they can select
to tackle a specific task in different ways. We consider Contextual Reinforcement Learning in which
a continuous-valued context defines the task [1]. A context can represent various scenarios, such as
the location a robot needs to reach. Our method employs highly non-linear mixtures of expert policies
to capture multi-modality within the action/behavior space of the agent. We also use automatic
curriculum learning, enabling each expert to focus on a specific sub-region of the context space it
favors. We introduce this curriculum shaping by optimizing for an additional per-expert context
distribution that is used to sample contexts from the preferred regions to train the corresponding expert.
Automatic curriculum learning has proven to increase performance by improving the exploration of
agents, particularly in sparse-rewarded environments [2]. In the case of continuous context spaces,
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these distributions are often parameterized as Gaussian [3, 4]. However, the agent is usually unaware
of the context bounds, which makes additional techniques necessary to constrain the distribution
updates to stay within the context region [4]. Instead, we employ energy-based per-expert context
distributions, which can be evaluated for any context and effectively represent multi-modality in the
context space. Importantly, our model is trained solely using context samples from the environment
that are inherently valid and within the defined bounds. This approach eliminates the need for
additional regularization of the context distribution and does not require prior knowledge about the
environment. Recent research in RL has explored mixture of experts policies, but often these methods
either train the mixture in unsupervised RL settings and then select the best-performing expert in the
downstream task [5, 6] or train linear experts, limiting their performance [7, 4].

To summarize, in this paper, we introduce Di-SkilL – Diverse Skill Learning, a novel RL method for
learning a mixture of experts model capable of representing multi-modal, and non-linear behaviors for
solving a task defined by a context. Importantly, our approach generalizes effectively to a continuous
range of contexts and operates without assumptions about the environment. We show how we can
learn multi-modal context distributions by training an energy-based model solely on context samples
obtained from the environment. We show on sophisticated simulated robotics task that we can learn
high-performing and diverse behaviors.

2 Prelimanaries

Contextual episode-based Policy Search (CEPS). CEPS is a black-box approach to reinforcement
learning (RL). In this framework, the search distribution is the agent’s policy that is optimized for
the mapping of contexts c to policy parameters, typically represented as motion primitives [8, 9, 10]
parameterized by θ. The policy π(θ|c) is optimized by the optimization problem

max
π(θ|c)

Ep(c)

[
Eπ(θ|c)[R(c,θ)]

]
, (1)

where R(c,θ) is the return. Given context samples from the environment’s context distribution
p (c), the policy π(θ|c) chooses the controller’s parameters θ once in the beginning of the episode.
One of the noteworthy advantages of contextual episode-based RL lies in the independence of
assumptions such as the Markovian property in common MDPs. This characteristic renders it a
versatile methodology, particularly well-suited for addressing a diverse array of intricate tasks where
the formulation of a Markovian reward function proves elusive. For instance, it demonstrates particular
efficacy in scenarios demanding the retrospective evaluation of an agent’s performance, such as in
tasks involving the rewarding of an agent based on its maximum achieved height, as encountered in
jumping tasks [11]. The field of CEPS has been thoroughly explored by numerous researchers who
have applied various optimization techniques, including Policy Gradients [12], Natural Gradients
[13], stochastic search strategies [14, 15, 16], and trust-region optimization techniques [17, 7, 18],
particularly in the non-contextual setting. Researchers have expanded the scope of these settings by
incorporating linear contextual adaptation [18, 16] as well as non-linear adaptation [11], leveraging
the recently introduced trust-region layers for neural networks [19]. However, all of the previously
mentioned methods focus on learning single-mode policies and do not address acquiring diverse
skills leveraging automatic curriculum learning, which are key aspects that distinguish our research.

Curriculum Reinforcement Learning. CRL has the potential to significantly increase the perfor-
mance of RL agents, especially in sparse-rewarded environments in which exploration is fundamen-
tally difficult. Adapting the environment based on the agent’s learning process has been proposed by
several works already, e.g. automatically generating sets of tasks or goals to increase the learning
speed of the agent [20, 21, 22, 23], or generating a curriculum by interpolating an auxiliary task
distribution and a known distribution of target tasks [2, 3, 24]. Non of the aforementioned methods
apply automatic curriculum learning on a RL problem with an MoE policy, except for the work in
[4]. They, however, parameterize the curriculum distribution as a Gaussian where we consider an
energy-based model which has many benefits as we show in Section 3.

Mixture of Experts (MoE) Policy for Curriculum Learning. The MoE policy is formalized as

π(θ|c) =
∑
o

π(o|c)π(θ|c, o), (2)

where the gating distribution π(o|c) assigns an expert o to the given context c. The expert π(θ|c, o)
adapts the parameters θ of the motion primitive for c. The corresponding motion primitive is then
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executed in the environment. While this form of the MoE is suitable in inference time where the
context is assigned by the environment and the agent needs to propose a skill, it does not allow
to automatically learn a curriculum during training. This drawback is caused by the lack of a
parameterized distribution π (c) that is part of the MoE and allows to explicitly choose and set
context samples for the model itself such that each expert can decide on which contexts it favors
training. Introducing a generative model in the context space is a small, but necessary distinction to
enable automatic curriculum learning for each single expert o. We can easily reparameterize the MoE
without any assumption as

π(θ|c) =
∑
o

π(c|o)π(o)
π (c)

π(θ|c, o). (3)

The per-expert context distribution π(c|o) can now be optimized and allows the expert o to choose
contexts c it favors. Note that π (c) =

∑
o π(c|o)π(o). The prior π(o) is assumed to be a uniform

distribution throughout this work.

Self-Paced Diverse Skill Learning with Mixture of Experts (MoE). Discovering different skills
in the same context-defined task is called learning diverse skills. MoE models (see Eq. 3) are
specifically suitable for skill discovery due to their ability to represent multi-modality and the per-
expert context distribution π(c|o) for automatic curriculum learning which allows the experts to
specialize in a sub-set of the context space. For explicit optimization of the aforementioned properties,
the KL-regularized Maximum Entropy Reinforcement Learning objective [4]

max
π(θ|c),π(c)

Eπ(c)

[
Eπ(θ|c) [R(c,θ)] + αH [π(θ|c)]

]
− βKL (π (c) ∥ p (c)) (4)

is a natural choice. The KL-term in the objective allows for curriculum learning in which the context
distribution π (c) is optimized to match the environment’s distribution p (c). This part of the objective
can be prioritized during optimization by choosing the scaling parameter β appropriately. The entropy
of the mixture model incentivizes learning versatile solutions [4] and can be prioritized with a high
scaling parameter α. It is well-known that this objective is difficult to optimize for MoE [4] policies
and requires further steps to obtain a per-component lower-bound

max
π(θ|c,o)

Eπ(c|o),π(θ|c,o) [R(c,θ) + α log π̃(o|c,θ)] + αEπ(c|o) [H [π(θ|c, o)]] (5)

for the expert updates and a per-component lower-bound for the per-expert context updates

max
π(c|o)

Eπ(c|o) [Lc(o, c) + (β − α) log π̃(o|c)] + βH (π(c|o)) , (6)

where Lc(o, c) = Eπ(θ|c,o)
[
R(c,θ) + α log π̃(o|c)

]
+ αH [π(θ|c, o)]. The variational distributions

π(o|c,θ) = πold(o|c,θ) and π̃(o|c) = πold(o|c) arise through the decomposition and are responsible
for learning diverse solutions and concentrating on context regions with small, or no support by π (c).
In each iteration, the variational distributions are updated to tighten the bounds [4].

Diverse Skill Learning. Diverse Skill Learning with MoE models has also been explored in the works
by [7, 25]. They, however, consider learning an MoE model with linear experts without automatic
curriculum learning and need to add additional constraints to enforce diversity in the experts. The
work by [4] also relies on the maximum entropy objective as we do, however, their method only
considers linear experts with Gaussian per-expert distributions which limits the performance and
consequently requires many experts to solve a task. Moreover, it requires environment knowledge to
hand-tune a punishment term to keep the optimization of the per-expert context distributions within
the context bounds.

Unsupervised Reinforcement Learning. Another field of research that considers learning diverse
policies is unsupervised reinforcement learning (URL). In URL the agent is first trained solely with
an intrinsic reward to acquire a diverse set of skills from which the most appropriate is picked to solve
a downstream task. More related to our work is a group of algorithms that obtain their intrinsic reward
based on information-theoretic formulations [5, 6, 26, 27, 28]. However, their resulting objective is
based on the mutual-information and differs from the objective we maximize. The learned skills in
the pre-training aim to cover distinct parts of the state-space during pre-training in the absence of
an extrinsic task reward which implies that skills are not explicitly trained to solve the same task in
different ways. Those methods operate within the step-based RL setting which differs from CEPS.
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Figure 1: The Sampling procedure for Di-SkilL (a)). During Inference the agent observes contexts
c sampled from the environment’s unknown context distribution p (c). The agent calculates the gating
probabilities π(o|c) for each context and samples an expert o resulting in (o, c) samples marked in
blue. During Training we first sample a batch of contexts c from p (c). We use this batch to calculate
the distribution π(c|o) for each individual expert o = 1, ...,K. The per-expert context distribution
π(c|o) provides higher probability for contexts that are preferred by the expert π(θ|c, o). To enable
curriculum learning, we provide each expert the contexts sampled from its corresponding per-expert
distribution π(c|o). This results in the samples (o, c) marked in orange. For both procedures, the
chosen expert π(θ|c, o) samples motion primitive parameters θ for each c resulting in a trajectory
τ that is subsequently executed on the environment. Before execution, the corresponding context
c, e.g., goal position of a box needs to be set in the environment. This is illustrated by the dashed
arrows with the corresponding context in blue for inference and orange for training. Performance
curves on the b) TT and c) BP tasks with five dimensional context space. While BBRL converges
faster, Di-SkilL achieves a higher success rate on the TT task. The multi-modality introduced by the
obstacle in the box pushing task leads to poor performance for BBRL, only achieving around 50%,
while Di-SkilL achieves a success rate of around 70% due to its ability to represent multi-modality in
the context c and parameter θ space.

3 Diverse Skill Learning

High-Level Overview of Di-SkilL. The common learning loop in CEPS [1] with a MoE observes
a context c, selects an expert o that subsequently adjusts the controller parameters θ given (c, o).
We consider the same process during testing time as shown in blue color in Fig. 1a. However, the
procedure changes during training for Di-SkilL as automatic curriculum learning requires that the
agent can determine which context regions it prefers to focus on. In this case, we observe a batch
of context samples from the environment’s context distribution p (c). For each of these samples,
every per-expert context distribution π(c|o) calculates a probability, which results in a categorical
distribution. We use these probabilities to sample contexts for each expert π(θ|c, o) resulting in (c, o)
samples since this sampling is repeated for each expert o. The training is illustrated in orange color
in Fig. 1a and shown in the graphical model in Fig. 3b. Each chosen expert o provides a Gaussian
distribution over the motion primitive parameters θ by mapping the context c to a mean vector µθ
and a covariance matrix Σθ. A trajectory τ is generated and subsequently executed by a trajectory
following controller on the environment by providing the motion primitive generator a sampled
parameter θ. The trajectory generation and execution process is visualized in green color in Fig. 1a.

Energy-Based Model For Automatic Curriculum Learning Learning its curriculum π(c|o) within
the valid context space is challenging for the RL agent due to several reasons. Hard discontinuities
such as steps often naturally arise in p (c) due to the environment’s finite support, e.g. the constrained
surface of a table as goal position locations, which implies that a large subset of the context space has
no probability mass. Therefore, exploration in these regions might be difficult if there is no guidance
encoded in the reward. Even if it is guaranteed that π(c|o) only samples valid contexts, it still needs
to be able to represent multi-modal distributions, (e.g. Fig. 3d, as this can easily occur if experts
π(θ|c, o) prefer spatially apart context regions. Because of these reasons we require π(c|o) to be
able to represent i) complex distributions, ii) multi-modality and iii) only explore within the valid
context bounds of p (c). We propose parameterizing π(c|o) as an energy-based model (EBM)

π(c|o) = exp(ϕo(c))

Z
(7)

to address the issues i) and ii). EBMs have shown to be capable of representing sharp discontinued
functions and multi-modal distributions [29]. Yet, they are hard to train and sample from due to the
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(a) Strike from left to right. (b) Forehand counter strike. (c) Backhand backspin strike.

Figure 2: Fig. a) - c): different strikes to the same context in time laps. The expert in c) strikes
the ball from the left to the right, the expert in d) smashes the ball in a forehand counter stroke like
movement and the expert in e) serves a backhand backspin stroke.

intractable normalizing constant Z =
∫
c
exp(ϕo(c))dc. However, we can easily circumvent these

issues and additionally address issue iii) by approximating the normalizing constant with contexts
c ∼ p (c) as Z ≈ 1

N

∑N
i=1 exp(ϕo(ci)). This approximation is justified as we can easily sample

from p (c) by simply resetting the environment without execution. Additionally, by resampling a
large enough batch of contexts c ∼ p (c) in each iteration, the EBM will encounter important parts
of the context space during the training. Each expert can therefore sample preferred contexts from
the current batch of valid contexts by simply calculating the probability for each of the contexts
using π(c|o) as parameterized in Eq. 7. Note that this sampling procedure is not straightforwardly
applicable to explicit models such as Gaussians, or Normalizing Flows [30]. Those methods would
need additional techniques like importance sampling that might destabilize learning if not carefully
calibrated by enforcing overlapping support regions of the sampling and the actual distribution. We
can easily update each EBM based on the objective in Eq. 6 using PPO [31]. We update the experts
using the objective in Eq. 5 and the recently introduced trust-region layers for deep policies [19].

4 Experiments

For analyzing the performance and diversity of the learned skills we consider more complex variants
of the table tennis (Fig. 4a) and box pushing environments (Fig. 4b) as suggested in [11]. We show
the performances of Di-SkilL and BBRL[11], and additionally analyze the diversity of the learned
skills. We have conducted 24 seeds for each algorithm and report the interquartile mean (IQM) with
a 95% stratified bootstrap confidence interval as suggested by [32]. An ablation on the automatic
curriculum learning is provided in the Appendix B. We use ProDMPs [10] to generate trajectories.

Table Tennis (TT) Environment. In the TT environment the ball is served with varying velocities to
varying positions on the agent’s table side. The 7DoF robot has to smash the ball on a goal position
on the opponent’s side. This results in a 5 dim. context space. The performances can be seen in Fig.
1b. Di-SkilL achieves similar performance as BBRL, but eventually surpasses BBRL’s success rate.
Di-SkilL simultaneously learns diverse skills to the same or similar contexts, as visualized in Fig. 2.

Box Pushing (BP) Environment. In BP a 7DoF Robot has to push a box to a target position and
rotation on a table while avoiding a varying obstacle. This results in a 5 dim. context space. Fig. 1c
shows the success rate of BBRL and Di-SkilL. Di-SkilL outperforms BBRL with a success rate of
around 70% to 50%. The obstacle introduces multi-modality in the behavior space which can not be
captured by a single-mode policy, explaining BBRL’s low success rate. Fig. 5 shows different box
trajectories resulting from the diversity in the parameter space θ of the robot.

5 Conclusion

We proposed a novel method for learning diverse skills using contextual Mixture of Deep Experts.
Each expert automatically learns its curriculum by explicitly optimizing for a per-expert context
distribution where we have proposed to use energy-based models (EBMs) to represent the per-expert
context distributions. Additionally, we provided a methodology to efficiently optimize these EBMs.
Moreover, on sophisticated and complex robot simulation environments, we have shown that our
method outperforms the baseline and learns diverse and versatile skills. We plan to conduct more
experiments and compare to more methods in the future.
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Figure 3: a) + b) Probabilistic Graphical Models (PGMs) describing the inference and the training
process. Note that the order does not matter. During Inference (a)) the model observes the contexts
c from the environment. An appropriate expert o is sampled from π(o|c), which subsequently
leads to an adjustment of the motion primitive parameters by π(θ|c, o). We iterate over each expert
during Training (b), sample the contexts c and the motion primitive parameter θ from the per-expert
distribution π(c|o) and π(θ|c, o) respectively. Sampling from π(c|o) allows shaping the expert’s
curriculum. c) + d) illustrate the environment’s context distribution p (c) (c)) and a possibly optimal
π(c|o) (d)) in two-dimensional space. Yellow areas indicate high and purple areas zero probability.
Both illustrations show that optimizing a π(c|o) requires dealing with i) step-like non-linearities, ii)
multi-modality, iii) bounded within the red rectangle support of p (c), complicating exploration.
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Figure 4: a) In the Table Tennis (TT) environment a 7DoF robot has to return a ball to a desired
ball landing position. The context consists of the two-dimensional ball serving position and the two-
dimensional desired goal position. In the more complex version we increase the context dimension
to five by including varying initial ball velocities. b) In the Box Pushing (BP) environment a 7DoF
robot has to push the red box -while avoiding the obstacle– to the target position (green box), where
the blue sides of the boxes need to align. The context space consists of the three-dimensional target
box position and the orientation and the two-dimensional obstacle position. c) Ablation studies,
showcasing the need of automatic curriculum learning for Di-SkilL. BBRL and Di-SkilL can solve
the four-dimensional table tennis task, the versions without the curriculum (Di-SkilLwoCurV1,
Di-SkilLwoCurrV2) struggle to achieve a good performance. SVSL needs many components and
much more samples to achieve around 80% success rate, suffering under the linear experts.

A Energy-Based Model For Automatic Curriculum Learning

B Ablation Studies – Do we need Automatic Curriculum Learning?

An important feature of Di-SkilL is that each expert is able to shape its own curriculum by explicitly
sampling from preferred context regions and gradually increasing the covered context space with
increasing performance. We show the importance of this feature by disabling the automatic curriculum
learning, by setting the log of the variational distribution log π̃(o|c) in Eq. 6 to zero and setting the
entropy scaling parameter β = 2000 to a very high value such that π(c|o) is uniformly distributed
over the context space. Setting log π̃(o|c) to zero eliminates the intrinsic motivation of each per-expert
distribution π(c|o) to focus on sub-regions in the context space that are not, or only partially, covered
by any other per-expert distribution.

We evaluate two variants of Di-SkilL, where in both variants, the auxiliary distribution is set to zero
and beta is kept the same to β = 2000. However, for Di-SkilL, we provide the same number of
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50 context-parameter samples per expert as in Di-SkilL, whereas Di-SkilLwoCurV2 receives 260
samples per expert in each iteration. All variants of our method consist of five experts. Note that
we set β = 0.5 for Di-SkilL as it showcases our method with all its inherent features. We run all
variants and the baselines on the table tennis environment, in which a 7DoF robot has to learn fast
and precise motions to smash the ball on the desired position on the opponent’s side (see Fig. 4a)
[11]. A strike is considered as successful if the distance of the ball landing position and desired
landing position is smaller than 0.2m. The four-dimensional continuous context space consists of the
two-dimensional ball serving position on the robot’s side and of the two-dimensional desired ball
landing position on the opponent’s table side. We use three basis functions per DoF resulting in a
21 dimensional space for θ. The table tennis environment requires good exploratory behavior and
has a non-markovian reward structure, which makes state of the art step-based approaches infeasible
to learn useful skills [11]. Fig. 4c shows the achieved mean success rates and the 95% confidence
interval for each method on at least four seeds. BBRL and Di-SkilL achieve a very high success rate,
where BBRL is slightly better than Di-SkilL. However, we can clearly see that Di-SkilLwoCurV1
converges to a much smaller success rate and Di-SkilLwoCurV2 needs much more samples to reach
the level of Di-SkilL. Interestingly, SVSL also shows worse performance compared to BBRL and
Di-SkilL, even though the model has 20 experts. From this experiment we conclude that automatic
curriculum learning is a necessary feature for Di-SkilL even though only one expert is able to solve
the task (BBRL) and that linear experts are not capable of receiving a satisfying performance.

C Experiment Details

C.1 Hyperparameters and Environment Details

C.1.1 Ablation Studies

Environment. We use the same environment as presented in [11].

SVSL. SVSL requires designing a punishment term for context samples that are not in a valid
region. We use the same punishment term from their proposed paper [4] as we also use the same
reward function for the table tennis task.

All hyperparameters for are summarized in the Table 1 following table

add component every iteration 1000
fine tune all components every iteration 50

number component adds 1
number initial components 1
number total components 20

number traj. samples per component per iteration 200
α 0.0001
β 0.5

expert KL-bound 0.01
context KL-bound 0.01

Table 1: Hyperparameters for SVSL
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Di-SkilL BBRL
critic activation tanh tanh

hidden sizes critic [8,8] [32, 32]
initialization orthogonal orthogonal

lr critic 0.0003 0.0003
optimizer critic adam adam

ciritc epochs 100 100
activation context distribution tanh –

epochs context distribution 100 –
hidden sizes context distr [16,16] –

initialization orthogonal –
lr context distribution 0.0001 –
optimizer context distr adam –

batch size per component 50 209
number samples from environment distribution 5000 –

number samples per component 50 209
normalize advantages True True

expert activateion tanh tanh
epochs 100 100

hidden sizes expert [64] [32]
lr policy 0.0003 0.0003

covariance type full full
alpha 0.001 –
beta 0.5 –

number components 5 –
covariance bound 0.005 0.001

mean bound 0.05 0.05
projection type KL KL

trust region coefficient 100 25
Table 2: Hyperparameters for Di-SkilL and BBRL for the ablations.

C.1.2 Extended Table Tennis Task.

Environment. We use the same environment with the same non-markovian reward function and
the definition for the success rate as for the four dimensional case as presented in [11]. However, we
also vary the ball’s initial velocity ranging from 1.5m

s to 4m
s .
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Di-SkilL BBRL
critic activation tanh tanh

hidden sizes critic [8,8] [32, 32]
initialization orthogonal orthogonal

lr critic 0.0003 0.0003
optimizer critic adam adam

ciritc epochs 100 100
activation context distribution tanh –

epochs context distribution 100 –
hidden sizes context distr [16,16] –

initialization orthogonal –
lr context distribution 0.0001 –
optimizer context distr adam –

batch size per component 50 209
number samples from environment distribution 5000 –

number samples per component 50 209
normalize advantages True True

expert activateion tanh tanh
epochs 100 100

hidden sizes expert [128] [32,32]
lr policy 0.0003 0.0003

covariance type full full
alpha 0.001 –
beta 0.5 –

number components 10 –
covariance bound 0.005 0.0005

mean bound 0.05 0.05
projection type KL KL

trust region coefficient 100 25
Table 3: Hyperparameters for Di-SkilL and BBRL for the extended Table Tennis Task.

C.1.3 Extended Box pushing Task.

Environment. We use the same environment with the same sparse-in-time reward function and the
definition for the success rate as for the original environment presented in [11]. However, we also
additionally add an obstacle within the x-range [0.3, 0.6] and the y-range [−0.3, 0.15]. Additionally,
we increase the possible target box position to the x-range [0.3, 0.6] and to the y-range [−0.7, 0.45].
All values in meters. Additionally we add the constraint that the obstacle is between the box initial
position and the target and always at least has a distance of 0.15 meters in x direction to both, the
initial box position and the target box position.

Learned Diverse Solutions by Di-SkilL.
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Di-SkilL BBRL
critic activation tanh tanh

hidden sizes critic [32,32] [32, 32]
initialization orthogonal orthogonal

lr critic 0.0003 0.0003
optimizer critic adam adam

ciritc epochs 100 100
activation context distribution tanh –

epochs context distribution 100 –
hidden sizes context distr [16,16] –

initialization orthogonal –
lr context distribution 0.0001 –
optimizer context distr adam –

batch size per component 50 399
number samples from environment distribution 5000 –

number samples per component 50 399
normalize advantages True True

expert activateion tanh tanh
epochs 100 100

hidden sizes expert [32,32] [64,64]
lr policy 0.0003 0.0003

covariance type diagonal diagonal
alpha 0.01 –
beta 64 –

number components 10 –
covariance bound 0.001 0.005

mean bound 0.05 0.05
projection type KL KL

trust region coefficient 25 25
Table 4: Hyperparameters for Di-SkilL and BBRL for the extended Box Pushing task.

Figure 5: Diverse Skills for the Box Pushing Task. The figures visualize diverse solutions to
the same contexts c learned by Di-SkilL. The black rectangle visualized the table surface, whereas
the red, thick edged rectangle represents the obstacle. The 7DoF robot is tasked to push the box
–shown in different colors for each found solution– to the goal box position visualized as red rectangle
with a green dot and align the blue edges such that the orientation matches. We visualized the
box trajectories for each sampled skill that lead to a successful push. The diversity learned in the
parameter space results in different box trajectories ranging in the position and the orientations.
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