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Abstract

While recent large-scale neural codec language models have shown significant
improvement in zero-shot TTS by training on thousands of hours of data, they
suffer from drawbacks such as a lack of robustness, slow sampling speed similar
to previous autoregressive TTS methods, and reliance on pre-trained neural codec
representations. Our work proposes P-Flow, a fast and data-efficient zero-shot TTS
model that uses speech prompts for speaker adaptation. P-Flow comprises a speech-
prompted text encoder for speaker adaptation and a flow matching generative
decoder for high-quality and fast speech synthesis. Our speech-prompted text
encoder uses speech prompts and text input to generate speaker-conditional text
representation. The flow matching generative decoder uses the speaker-conditional
output to synthesize high-quality personalized speech significantly faster than in
real-time. Unlike the neural codec language models, we specifically train P-Flow
on LibriTTS dataset using a continuous mel-representation. Through our training
method using continuous speech prompts, P-Flow matches the speaker similarity
performance of the large-scale zero-shot TTS models with two orders of magnitude
less training data and has more than 20x faster sampling speed. Our results show
that P-Flow has better pronunciation and is preferred in human likeness and speaker
similarity to its recent state-of-the-art counterparts, thus defining P-Flow as an
attractive and desirable alternative. We provide audio samples on our

1 Introduction

Zero-shot TTS (Text-to-Speech) refers to the goal of generating text-conditioned speech with novel
speaker characteristics at inference without the need for additional training. The speaker charac-
teristics are provided by a short reference audio segment, which in recent works can be as short
as 3 seconds long [37, 19, 6]. Many recent advances have come at a cost: larger datasets, more
complicated training setups, additional quantization steps, additional pretraining tasks, and computa-
tionally expensive autoregressive formulations. Our work explores whether a more efficient solution
exists. By staying within the general framework of prompt continuation, as often seen in recent large
language model works, we demonstrate that similar results can be achieved with simpler training
pipelines, significantly less data, and faster inference.

Following recent successes in the zero-shot and few-shot capabilities of large scale language models
such as GPT [2], it has been generally accepted that an analogous approach will yield similar results
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in speech synthesis. However, it is not yet clear that recent approaches in large scale representation
learning have a significant advantage over existing and cheaper traditional representations such as
mel-spectrograms. Of note, recent works such as SPEAR-TTS and VALL-E make use of pretrained
quantized neural audio codec models such as Encodec and SoundStream [10, 40]. The costs of using
such a model are expensive. Feature extraction is significantly more computationally demanding than
extracting mel-spectrograms from audio. Encodec in particular contains autoregressive compontents
in both the encoding and decoding, which may be an issue where low-latency is necessary. Further,
having too many different versions of such a codec inhibit interoperability across models. While it is
likely that neural codecs may yet have significant advantages in the near future, our work demonstrates
competitive results with standard mel-spectrograms, suggesting that the costs of neural codecs in the
zero-shot TTS setting is not yet justified by any significant improvements in generalization.

Improving inference speed is the other focus of this work. Our work improves upon the latency of prior
approaches by reducing reliance on autoregressive formulations, and by employing recent advances
in ODE-based generative modeling such as Flow Matching [23, 24, 35]. In addition to autoregressive
components within the neural codec architectures, prior works such as SPEAR-TTS and VALL-E also
employ autoregressive decoders to infer audio token sequences. While autoregressive modeling is a
natural choice for sequential data such as audio signals, our work demonstrates that a lower-latency
non-autoregressive formulation is both viable and competitive. Another common computational
bottleneck is the incorporation of probabilistic generative models such as denoising diffusion models
in recent works. Such architectures exist in many recent state-of-the-art speech and audio synthesis
models, but come at the cost of requiring numerous function evaluations during inference. Distillation
techniques exist to reduce the number of function evaluations, but require additional training stages,
further complicating the training pipeline. In contrast, we experiment with recently proposed flow-
matching algorithms. These models are closely related to diffusion models, but actively encourage
simpler and straighter trajectories, which in turn require significantly fewer function evaluations
during inference — all without the need for additional distillation stages.

Our work proposes P-Flow, high-quality, data-efficient, and fast zero-shot TTS model with emergent
in-context learning capabilities for speaker adaptation. Inspired by recent success using language-
model prompting to achieve zero-shot TTS results, we introduce a speech-prompted text encoder
within a non-autoregressive TTS model. P-Flow combines this prompted text encoder with a
flow-matching generative decoder to efficiently sample high-quality mel-spectrograms. Our speech-
prompted text encoder incorporates a 3-second random segment of speech as a prompt along with the
text input and learns to predict the mel-spectrogram using the speech-prompted text input. Given the
speaker-conditional output from the text encoder, our flow-matching decoder is trained to predict a
vector field that models the probabilistic distribution of mel-spectrograms conditioned on the text
encoder’s output. Our prompting approach directly utilizes random segments of speech as input,
which poses a risk of P-Flow learning trivial solutions such as the identity function for the random
segment. We address the potential problem by masking the loss for the random segment during
training. Our contributions are as follows:

* We propose a speech prompt approach for the non-autoregressive zero-shot TTS model which
surpasses the speaker embedding approach and provides in-context learning capabilities for
speaker adaptation.

* We propose a flow matching generative model for a high-quality and fast zero-shot TTS that
significantly improves the synthesis speed and sample quality compared to the large-scale
autoregressive baseline.

* We demonstrate comparable speaker adaptation performance to the large-scale autoregressive
baseline using significantly fewer training data and a small transformer-based encoder,
highlighting the effectiveness of the proposed speech prompting approach.

* P-Flow achieves an average inference latency of 0.11 seconds on an NVIDIA A100 GPU.

2 Related work

Zero-Shot Speaker Adaptive TTS (Zero-Shot TTS): Instead of specifying speaker identity with
discrete embedding vectors as in the case of multi-speaker TTS models, zero-shot TTS formulations
assume the ability to extract speaker embedding equivalents on-the-fly from short audio samples.
Common approaches either use a separate audio-sample-to-embedding encoder to extract speaker



vectors on the fly [17, 27, 20, 7, 3, 38], or formulate the problem as a continuation task with language
model architectures and probabilistic generative models. Methods such as VALL-E and SPEAR-TTS
[37, 19] employ the prompting paradigm from large transformer-based language models. Notably,
they use the reference audio as the prompt, from which the model is expected to decode the most
likely continuation. The decoding procedure is further conditioned with the provided text transcript to
achieve a text-to-speech formulation. Relatedly, approaches such as [28, 9, 25] use the data inpainting
paradigm from generative probabilistic models, treating the speech-to-be-synthesized as the missing
data to continue the available data (prompted audio). Just as in the LM-based approach, the inpainting
is guided by conditioning on the target text sequence. Our work operates in the same prompt-based
zero-shot TTS setting as VALL-E and SPEAR-TTS, establishing competitive results with much less
data, and additionally providing faster inference speeds via flow-matching-based generative models
and non-autoregressive formulations.

Perhaps most architecturally related to our work is A3T [4], which similarly trains a transformer (A3T
uses a Conformer [12]) model to infer text-conditional mel spectrograms with a masked reconstruction
loss. However, A3T uses a forced aligner, requires a text transcript for the zero-shot audio prompt,
and focuses primarily on the pretraining task and audio reconstruction, with limited results in the
zero-shot TTS domain. In contrast, our proposed approach uses an end-to-end audio-text alignment
mechanism, uses short 3 second audio-only prompt, and focuses primarily on the zero-shot TTS task.

Generative Sampling with Fewer Steps: Generative models in the score matching and denoising
diffusion model family typically require hundreds of iterative steps. It is common to reduce the
number of steps required via approaches such as the DDIM [32] framework and distillation [31].
Notably, distillation will progressively map every two steps to a single step, halving the number
of total steps required with every iteration of the algorithm. Recent works such as flow matching
[24, 23, 35] and consistency training (from scratch) [33] offer a single-stage approach, encouraging
approximately straight, causal trajectories in the initial model, thereby reducing the need for further
distillation stages. Our work serves as a demonstration of the use of such approaches as flow matching
in large-scale practical audio applications.

3 Method

Our work aims to provide in-context learning capabilities for zero-shot speaker adaptation in a
high-quality and fast non-autoregressive TTS model. To avoid the potential bottleneck of speaker
embedding approaches to extract speaker information from the reference speech, we adopt a prompt-
ing approach that directly utilizes the reference speech as a prompt for speaker adaptation, similar to
neural codec language models. In addition to a speech prompting method, we use a flow matching
generative model as our decoder for efficient sampling. We provide an overview of our method in
Section 3.1, followed by a detailed explanation of our decoder in Section 3.2, and we describe the
remaining details in Section 3.3.

3.1 P-Flow

P-Flow training is similar to that of masked-autoencoders. Given <text, speech> paired data, we
denote the mel-spectrogram of the speech as z, and the text as c. Let m? be a indicator mask on the
sequence z, masking out a randomly positioned 3 second segment from z. We define 2 = (1—m?P)-z.
We use a p superscript here indicating that this variable will be replaced with arbitrary 3-second
prompts during zero-shot inference. The training objective for P-Flow is as follows: reconstruct the x
given ¢ and some segment xP. Note that even though we expect P-Flow to reconstruct the entirety of
x during training, including the provided P, the model does the exact positioning of xP within x.

P-Flow learns to model the conditional probability distribution of speech p(x|c, zP). Unlike many
zero-shot TTS models that compress all the information in the speech into a fixed-size vector, we
introduce a text encoder f.,., which takes the text ¢ and the random segment x? as a speech prompt
to generate a speaker-conditional text representation. We refer to our text encoder as a speech-
prompted text encoder. The output of this text-encoder is then mapped to mel-spectrograms using a
flow-matching generative model, and finally to waveform using an audio vocoder.

Speech-Prompted Text Encoder: As shown in Fig. 1a, we input the mel-spectrogram of a random
segment z” as a speech prompt along with the text input c¢. We then project both to the same
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Figure 1: The overall diagram of P-Flow. P-Flow is a model composed of a speech-prompted text
encoder, which outputs a representation containing speaker information from the speech prompt, and
a flow matching decoder generates high-quality speech significantly faster than real-time.

dimensions to use as inputs to the text encoder. The role of the speech-prompted text encoder is to
generate a speaker-conditional text representation h. = fe,.(zP, ¢) using the speaker information
extracted from the prompt xP. Similar to large-scale codec language models, we employ a non-
autoregressive transformer architecture that can attend to speech prompts at arbitrary text positions.

To train the speech-prompted text encoder to effectively extract speaker information from the speech
prompt, we use an encoder loss that directly minimizes the distance between the text encoder
representation and the mel-spectrogram. In addition to its original purpose in Grad-TTS [30] for
reducing sampling steps in a diffusion-based single-speaker TTS model, it also encourages the
encoder to incorporate speaker-related details into the generated text representation.

As speech-prompted encoder output /. and the mel-spectrogram z have different lengths, we align the
text encoder output with the mel-spectrogram using the monotonic alignment search (MAS) algorithm
proposed in Glow-TTS [21]. By applying MAS, we derive an alignment A = M AS(h.,x) that
minimizes the overall L2 distance between the aligned text encoder output and the mel-spectrogram.
Based on the alignment A, we determine the duration d for each text token and expand the encoder
output i, by duplicating encoder representations according to the duration of each text token. This
alignment process results in text encoder output h that aligns with mel-spectrogram x. The fairly
straightforward reconstruction loss is written as Lo,. = M SE(h, x).

In practice, even though the model is not given the exact positioning of x” within = during training,
we found the model to still collapse to a trivial copy-pasting of xP. To avoid this, we simply mask
out the reconstruction loss for the segment corresponding to x”. Despite this, the final model is still
capable of inferring a continuous mel-spectrogram sequence. We define the masked encoder loss
L . by using mP for the random segment z? in the mel-spectrogram x:

L2 .= MSE(h-mP, z-mP) (1)

enc
By minimizing this loss, the encoder is trained to extract speaker information as much as possible
from the speech prompt in order to generate an aligned output / that closely resembles the given
speech x, which results in enhancing in-context capabilities for speaker adaptation.

Flow Matching Decoders: To perform high-quality and fast zero-shot TTS, we use a flow-matching
generative model as the decoder for modeling the probability distribution p(z|c, zP) = p(x|h).
Our flow-matching decoder models the conditional vector field v;(-|h) of Continuous Normalizing
Flows (CNF), which represents the conditional mapping from standard normal distribution to data
distribution. The decoder is trained using a flow-matching loss L” #m that also applies a mask m? for
the random segment as in L, .. More details will be provided in Section 3.2.

enc*

Duration Predictor: To reproduce text-token durations during inference where MAS is unavailable,
we use a duration predictor trained in a manner similar to [21] . We use the hidden representation



of the speech-prompted text encoder as its input without additional speaker conditioning, given this
representation already contains speaker information. It is trained simultaneously with the rest of
the model with detached inputs to avoid affecting the text-encoder training. The duration predictor
estimates the log-scale duration log d for each text token, and the training objective for the duration
predictor L4, is to minimize the mean squared error with respect to log-scale duration log d obtained
via MAS during training.

The overall training loss for P-Flow is L = L?,, + L #m T Ldur. Zero-shot inference uses a random
chunk from a reference sample as the speech prompt along with the desired transcript as inputs to

the speech-prompted text encoder to obtain h.. We do not provide a transcript corresponding to the

speech prompt. Then, using the predicted duration d from the duration predictor, we expand the
encoder output h, to obtain i and generate the personalized speech using the flow-matching decoder.

3.2 Flow Matching Decoder

We use Flow Matching to model the mel-
spectrogram decoder task’s conditional distribu-
tion: p(z|h). We first provide a brief overview
of flow matching, followed by describing our
sampling procedure and additional qualitative 1 Conditional Flow Matching
improvements through a guidance-related tech- ODE trajectory

nique. , \
Flow Matching Overview: Flow Matching ( \
[23, 35, 24] is a method for fitting to the time-
dependent probability path between our data
density p1 () and our simpler sampling density
po(x) (assumed to be the standard normal). It Figure 2: Conditional Flow Matching [23] can be
is closely related to Continuous Normalizing supervised with linear conditional trajectories dur-
Flows, but is trained much more efficiently in ing training when mapping between the complex
a simulation-free fashion, much like the typical pg,, and the sampling Gaussian, leading to simpler
setup for Diffusion and Score Matching mod- marginal trajectories during inference. Simpler tra-
els [13, 16, 34]. We adopt Conditional Flow jectories require fewer function evaluations.
Matching as specified in [23] as their formu-

lation encourages simpler and often straighter

trajectories between source and target distributions. Simpler trajectories allow for test-time sampling
in fewer steps without the need for additional distillation. We will ignore the conditional variable i
for notational simplicity in this overview.

SDE trajectory -

Xo

Pdata N(.1)

Following Lipman et al. [23], we define the flow ¢ : [0, 1] x R? — R< as the mapping between our
two density functions using the following ODE:

d
%Qﬁt(z) =vi(Pe(2)); do(z) =2 )

Here, v.(x) is the time-dependent vector field and specifying the trajectory of the probability flow
through time. v;(x) is also our learnable component, henceforth denoted as v;(¢p(x); 6). To sample
from the distribution, we sample from the sampling distribution py as our initial condition at ¢ = 0
and solve the ODE in Eq. (2). Notably, the formulation [23] encourages straighter trajectories,
ultimately allowing us to cheaply approximate the ODE solution with 10 Euler steps with minimal
loss in quality.

It turns out that determining the marginal flow ¢;(z) is difficult in practice. Lipman thus formulates
it as marginalizing over multiple conditional flows ¢; ,, () as follows:

Otz () = op(x1)x + pe(x1) 3)

Here, o4(x1) and p¢(z1) are time-conditional affine transformations for parameterization the trans-
formation between Gaussian distributions p; and py. Finally, let g(x1) be the true but likely non-
Gaussian distribution over our data. We define p; as a mixture-of-Gaussian approximation of ¢ by
perturbing individual samples with small amounts of white noise with o, (empirically set to 0.01).
We can specify our trajectories without complications from stochasticity as in SDE formulations.



Taking advantage of this, Lipman et al. recommend simple linear trajectories, yielding the following
parameterization for ¢;:

pi(x) = txy, op(x) =1 — (1 — omin)t %)
Training the vector field is performed using the conditional flow matching objective function:

d
Lery(0) = Evov0,1],010~q(21),20~p(0) |Vt (Dt,2, (20); 0) — $¢t,z1($0)||2 )
Plugging Eq. (4) in to Eq. (3) and (5), we get our final CFM objective:
LCFM(e) = Et,q(xl),p(xo) ||vt(¢t,:v1 (fo); 9) - (xl - (]- - Umin)x())”2 (6)

Masked Flow Matching Loss: Recall that our flow matching decoder models the distribution
p(z|h). Because h is the output of the text encoder which was provided by the subsegment z? € ,
we found it again necessary to mask out the loss for parts of the output corresponding to ? to prevent
trivial solutions. Let the generic v;(x;; #) be parameterized in our setup as Ug(x¢, h, t) to account for
the conditional. Here, ¢ is represented with a continuous sinusoidal embedding. This gives us the
masked CFM objective:

L2 i (0) = By g(a1) o) [P - (90(dt,0, (20), hyt) — (31 — (1 — omin)z0)) || @)

Sampling: The conditional flow matching loss marginalizes over conditional vector fields to achieve
the marginal vector field, the latter of which is used during sampling. While the linearly interpolated
conditional trajectories as specified in Eq. (4) do not guarantee the same degree of straightness
in the resulting marginal, we still get something fairly close. Within the context of this work, we
found the conditional flow matching formulation to result in simple enough trajectories such that
it is sufficient to use the first-order Euler’s method with around 10 steps to solve the ODE during
inference. Sampling with N Euler steps is performed with the following recurrence relation:

1.
xo ~ N(0,I); Tyl zxt—l—ﬁvg(xt,h,t) 8

Guided Sampling: We find that pronunciation clarity can be further enhanced by applying techniques
from a classifier-free guidance method [14]. In a related work, GLIDE [29] amplifies their text-
conditional sampling trajectory by subtracting the trajectory for an empty text sequence. We employ a
similar formulation, guiding our sampling trajectory away from the average feature vector computed
from h, denoted as h. h is computed by averaging the expanded representation h along the time axis
to obtain a fixed-size vector and then duplicated along the time axis. Let v be our guidance scale.
Our guidance-amplified Euler formulation is as follows:

1 A R R —
Tyl =T+ N(vg(mt, hyt) + ~v(0g(x, hyt) — Vg(xs, h, t)) 9)

3.3 Model Details

The high-level model architecture is shown in Fig. 1. Our model comprises 3 main components: the
prompt-based text encoder, a duration predictor to recover phoneme durations during inference, and a
Wavenet-based flow matching decoder. Experiments demonstrate strong zero-shot results despite
our text-encoder comprising only a small transformer architecture of 3M parameters. We provide
additional architectural details for each component in Section B.

4 Experiments

Training and Inference Settings: P-Flow is trained on a single NVIDIA A100 GPU for 800K
iterations, using a batch size of 64. We utilize the AdamW optimizer [26] with a learning rate of
0.0001. A G2P model [5] preprocesses the text into the International Phonetic Alphabet (IPA) format.
During inference, we generate mel-spectrograms using 10 Euler steps in the flow matching decoder
with a guidance scale of 1. Mel-spectrogram to waveform is performed using the pre-trained universal
Hifi-GAN, available in the HiFi-GAN repository®. To be compatible with Hifi-GAN, our audio
representation is 22kHz audio represented with an 80-bin mel-spectrogram, with FFT parameters:

*Hifi-GAN: https://github.com/jik876/hifi-gan


https://github.com/jik876/hifi-gan

window size 1024 and hog lengtoh 256. In this setup, a 3-second mel-spectrogram is fed as a speech

prompt with a length of | *ggg 1 =259.

Data: We train P-Flow on LibriTTS [41]. LibriTTS training set consists of 580 hours of data from
2,456 speakers. We specifically use data that is longer than 3 seconds for speech prompting, yielding
a 256 hours subset. For evaluation, we follow the experiments in [37, 19] and use LibriSpeech
test-clean, assuring no overlap exists with our training data. We resample all datasets to 22kHz.

Evaluation: We compare P-Flow with two zero-shot speaker-adaptive TTS models, YourTTS [7]
and VALL-E [37]. YourTTS is a VITS-based multi-speaker TTS, which performs zero-shot speaker
adaptation through speaker embedding extracted from a pre-trained speaker encoder. VALL-E
achieves zero-shot speaker adaptation through prompting, resulting in much higher speaker similarity
than YourTTS. We compare our model with the two models in the same way as described in [37],
and the objective metrics for each model were directly taken from [37].

Replicating the experiment in [37, 19], we evaluate samples ranging from 4 to 10 seconds from the
LibriSpeech test-clean dataset, resulting in a total of 2.2 hours of data. For each paired data (z;, ¢;),
we extract a 3-second reference speech xf from a different sample x; spoken by the same speaker

and generate the synthesized speech 2:/°" for the text ¢;.

Objective Metrics: We measure the inference latency and two objective metrics from [37], word
error rate (WER), and speaker embedding cosine similarity (SECS). Inference latency of P-Flow
and the autoregressive baseline, VALL-E are evaluated on an NVIDIA A100 GPU. To compute
inference latency for P-Flow, we average the text-to-mel generation time for all the samples used in
our evaluation for LibriSpeech. Because VALL-E is not open-sourced, we use a PyTorch transformeri
of the same size as used in [37] and feed random tensors repeatedly corresponding to the duration of
x; to obtain a proxy for the inference latency.i

We evaluate pronunciation accuracy with WER, using the HuBERT [15] ASR model to measure
transcription errors from generated samples. Speaker similarity is measured with SECS between
the generated sample 7" and the re-synthesized output of the 3-second reference speech 27 as
in [37]. We compute the speaker embedding using the pre-trained WavLM-TDNN [8] used in [37].
We also measure the WER and SECS for the re-synthesized output of the ground truth audio z; as an
upper bound, reported as “GT (HIFI-GAN)” in Table 2. Note that the final mapping to waveform is
different between models: P-Flow uses Hifi-GAN [22] while VALL-E uses EnCodec [11], necessarily
influencing automatic metrics. We partially address this with our user study setup for speaker
similarity.

User Study: We measure user preference score between VALL-E and P-Flow. Qualified evaluators
must first pass hearing test where they count the number of short sinusoidal audio segments within an
audio clip. We obtain evaluation scores for 8 samples from each evaluator with a minimum of 30
evaluators per comparison experiment. We evaluate the preference for naturalness, acoustic quality,
and human likeness using comparative mean opinion score (CMOS). Preference for speaker similarity
is reported using comparative speaker similarity mean opinion score (SMOS). SMOS evaluators are
provided with a 3-second reference audio, which is the ground truth audio rather than re-synthesized
audio to avoid being influenced by vocoder artifacts. Each preference score ranges from -2 to 2, using
pairwise comparisons between the LibriSpeech samples from the VALL-E demo page.

4.1 Prompting v.s. Separate Speaker Encoder

This ablation study demonstrates the effectiveness of speaker conditioning through speech prompting.
For the baseline, instead of directly inputting the speech prompt into the text encoder, we encode
a random segment of speech z? to a fixed-size speaker embedding using a speaker encoder with
the same architecture as the text encoder. The speaker embedding is obtained by averaging the last
hidden representations of the speaker encoder along the time axis and normalizing it. This speaker
embedding is concatenated with the text input of the text encoder. The speaker encoder is jointly
trained with the model and follows the same training objective, except for excluding the loss mask

*https://pytorch.org/docs/stable/generated/torch.nn. TransformerEncoder.html

>Following [37], we measure inference on a 12-layer transformer with a hidden size of 1024 and 16 heads.
Given that VALL-E’s neural audio codec representation is at 75Hz, we approximate the inference latency of
VALL-E by measuring the latency required for 75 % n + 7 forward passes to generate n seconds of audio.
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Table 1: Objective metrics for ablation study. “P-Flow (w/o Prompt)” refers to the baseline condition-
ing on a fixed-size speaker embedding.

MODEL | WER| | SECS?
GT (HiFI-GAN) | 24 | 0.64

P-FLOW (W/O PROMPT) 2.9 0.373
P-FLow 2.6 0.544

for the speech prompt. For evaluation, we also sample using 10 Euler steps with a guidance scale of
1, similar to P-Flow.

In Table 1, we compare the objective metrics of P-Flow and the baseline for the fixed-size speaker
embedding approach. Despite having similar WER values, it can be observed that introducing speech
prompt-based speaker conditioning significantly enhances SECS compared to the baseline. This
confirms that even without changing other aspects, the use of speech prompts leads to a substantial
enhancement in speaker similarity. Through this ablation study, we demonstrate that the speech
prompt-based approach in P-Flow, which utilizes the speech prompt as direct input and adapts it
through the self-attention mechanism to optimize the loss for the remaining segment, is more effective
for zero-shot TTS compared to encoding all the speaker information into a fixed-size vector.

Table 2: The amount of training data and objective metrics for zero-shot TTS models. The SECS of
“GT (HIFI-GAN)” is computed between the re-synthesized output of 3-second reference speech and
that of ground truth. WER and SECS for the baselines are taken from [37]. The inference latency for
VALL-E is approximated using the same size of transformer architecture, as mentioned in Section 4.

MODEL | DATA (HOURS) | WER| | SECS?T | INFERENCE LATENCY(S))
GT (HIFI-GAN) 2.4 0.64

YOURTTST 500+ 7.7 0.337

VALL-Ef 60,000 5.9 0.580 2.515 +0.040
VALL-E CONTINUAL' 60,000 3.8 0.508 2.515 + 0.040
P-FLOW (PROPOSED) 260 2.6 0.544 0.115 + 0.004

4.2 Model Comparison

Samples for each model can be accessed through the demo page.® We highly encourage reviewers to
listen to the samples.

Pronunciation Accuracy and Sample Quality: Our results in Table 2 show that P-Flow offers
similar WER to GT (HIFI-GAN) and demonstrates significantly better pronunciation accuracy
compared to other baselines while being trained on two orders of magnitude less data. This indicates
that with training on the more accurately transcribed LibriTTS dataset, we can achieve pronunciation
accuracy close to the ground truth.

Table 3: Zero-Shot Speech Synthesis Subjective Metrics. Preference scores > 0 indicate preference
for P-Flow.

MODEL | CMOStT | SMOSt
P-FLOW VS VALL-E | 0.27+0.10 | 0.23 +£0.13

Speaker Similarity Metrics: Compared to the previous speaker embedding-based zero-shot TTS
model, YourTTS, P-Flow demonstrates more effective speaker adaptation through speech prompting
using a similar amount of training data. Considering our model text-encoder only has 3M parameters,
competitive performance with large-scale autoregressive baselines suggests achieving high SECS
does not require tens of thousands of hours of audio data, quantization, neural codec models, or

% Demo: https://research.nvidia.com/labs/adlr/projects/pflow
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large autoregressive models. Further, combining our speaker conditioning ablation study with these
results and the fact that our decoder does not have any additional speaker conditioning beyond what
is provided by the text encoder, we believe that prompting is one of the most important factors in
obtaining high SECS. Finally, we see higher preference scores for P-Flow than for previous SOTA
zero-shot models in the human evaluation of speaker similarity with the ground truth audio in Table
3. This indicates that our speech-prompted text encoder enhances the in-context learning capabilities,
similar to large-scale autoregressive transformers.

CMOS: In Table 3, we can observe the CMOS results of pairwise comparisons between samples
from VALL-E and P-Flow, evaluating naturalness, prosody, and audio quality. Table 3 demonstrates
that P-Flow exhibits significantly better sample quality compared to VALL-E. This CMOS result
shows that generative modeling using continuous representation, which has been widely used in TTS,
exhibits superior performance compared to generation using discrete tokens. We attribute this result
not only to the performance difference between the models but also to the additional performance
degradation introduced during the encoding-decoding process using neural codec representation. It
highlights the advantages of continuous representation and showcases its effectiveness.

Inference Latency: Defaulting to 10 Euler steps for P-Flow’s decoder, we measure inference
latency for audio samples from LibriSpeech with an average length of 5.6 seconds. Tables 2 and
3 show our model achieves an inference latency of 0.1 seconds, more than 20 times faster than
VALL-E, while maintaining high speaker similarity, sample quality, and pronunciation accuracy.
While the autoregressive baseline has a generation time proportional to the duration of the audio, the
non-autoregressive P-Flow maintains nearly constant latency regardless of the length. A 20-second
audio sample would take P-Flow 0.12 seconds in our experimental setup.

Table 4: Effect of guidance scale v and Euler steps IV for our flow matching generative decoder. Our
experiments find that automatic metric numbers plateau quickly after 5 steps, but we continue to hear
qualitative improvements up to 10. Significant improvements are also seen due to the guidance.

MODEL | v | N | WER] | SECST | INFERENCE LATENCY(S)|
P-FLow (DEFAULT) | 1 | 10 2.6 0.544 0.115 + 0.004
P-FLow 01 10 3.7 0.492 0.115 + 0.004
P-FLow 2 110 2.6 0.546 0.115 £ 0.004
P-FLow 1 1 2.7 0.420 0.028 £ 0.004
P-FLow 1 2 2.9 0.522 0.037 + 0.004
P-FLow 1 5 2.6 0.549 0.067 £ 0.004
P-FLow 1] 20 2.7 0.540 0.210 + 0.005

4.3 Effect of Guidance Scale and Euler Steps

Table 4 demonstrates how the guidance scale v and number of Euler steps N affects objective
metrics. As shown in Table 2 and 4, P-Flow outperforms YourTTS even without the guidance method,
showing the effectiveness of the speech-prompting method for speaker adaptation. Applying the
guidance method improves pronunciation accuracy and brings our SECS metric closer to that of the
state-of-the-art zero-shot TTS model without explicit training for guidance. These results confirm
that the guidance method applied to P-Flow further boosts the effectiveness of speech prompting.
Both guidance scales v = {1, 2} perform well. (We default to v = 1)

Regarding the Euler steps, P-Flow demonstrates low WER even with very few Euler steps, indicating
that the flow matching generative model generates speech that can be accurately recognized by the
ASR model regardless of audio quality. We default to 10 Euler steps for external comparisons because
SECS values plateau roughly after 5 Euler steps and we notice that good audio quality is achieved at
around 10 steps. In Table 4, the ASR metrics and SECS metrics do not directly represent the acoustic
quality of the samples according to the Euler steps. Therefore, we provide mean opinion scores
(MOS) for the acoustic quality based according to the Euler steps in Section A.1. We further provide
audio samples corresponding to our default inference settings in our demo page.



5 Discussion and Limitations

P-Flow is a fast and data-efficient flow matching model for zero-shot TTS that achieves comparable
naturalness and speaker adaptation performance to its large-scale and autoregressive counterparts.
The core of the approach is the use of the prompt-continuation setup in recent LLM applications while
avoiding complex and expensive setups from recent works in zero-shot TTS. In some ways, our work
serves as a strong yet simple baseline for future approaches, as we demonstrate that state of the art
performance in this task can be achieved without super large-scale datasets, complex training setups,
representation quantization steps, pretraining tasks, and expensive autoregressive formulations.

The focus of this work is primarily on zero-shot capabilities with respect to text-encoding and audio
decoding, whereas zero-shot capabilities of the duration predictor remain limited and the subject
of future work. Furthermore, high-quality zero-shot TTS can yield negative social impact through
applications such voice impersonation of public figures and non-consenting individuals, which we
raise awareness for as a potential misuse of this technology.
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A Additional Results

A.1 Effect of Euler Steps for Acoustic Quality

We present the objective metrics according to the Euler steps in the result section of the main paper.
Since these objective metrics have limitations in representing acoustic quality with respect to the
Euler step, we also evaluate the sample quality based on the Euler steps and provide it as an additional
metric. We measure the acoustic quality using 5-scale Mean Opinion Scores (MOS). We inquire
each human evaluator to assess the acoustic quality of each sample, and we evaluate it with the
participation of more than 50 human evaluators.

Table 5 presents MOS along with SECS and inference latency shown in the results section, based on
the Euler step N. The table demonstrates that as the number of Euler steps increases, the acoustic
sample quality improves. We choose Euler step 10 as the default, as it ensures a high speaker
similarity while providing a good balance between inference latency and sample quality.

Table 5: Mean Opinion Scores (MOS) for the acoustic quality and Objective Metrics according to the
Euler steps V.

MODEL | N | MOStT | SECS | INFERENCE LATENCY(S)|
1 | 3.55£0.16 | 0.420 0.028 £ 0.004
2 | 3.71£0.12 | 0.522 0.037 £ 0.004
P-FLow | 5 | 4.01 £0.10 | 0.549 0.067 + 0.004
10 | 4.08 £0.10 | 0.544 0.115 4+ 0.004
20 | 4.14£0.10 | 0.540 0.210 4= 0.005

A.2 Model Comparison on VCTK Dataset

Considering the training dataset LibriTTS and the test set of LibriSpeech as in-domain data, it appears
important to demonstrate results for out-of-domain prompting data. Accordingly, we compare P-Flow
and VALL-E samples using the VCTK dataset [39]. We generate samples using the same prompts
and sentences that were used for the VCTK samples on the VALL-E demo page. We provide our
generated samples on our demo page.

As in the main section, we use 10 ODE steps and a guidance scale of 1. We measure WER and
SECS for these VCTK samples and calculate the average values for each metric. To measure WER,
we utilize the same ASR model as in Section 4. For SECS measurement, in the interest of a fair
comparison, unlike what we did in other sections of our paper, we measure the SECS between
generated and ground truth samples, rather than using the re-synthesized or encoded and decoded
samples. Due to long leading and trailing silences in VCTK prompts, we measure SECS with the
reference speech trimmed at 20dB.

We provide objective metrics for each model on the VCTK dataset in Table 7. Table 7 demonstrates
that P-Flow achieves better WER and SECS compared to VALL-E. These results are similar to the
LibriSpeech test clean results in Section 4.2.

In addition, we collect comparative mean opinion scores (CMOS) and comparative speaker similarity
mean opinion score (SMOS) for VCTK samples, using a -2 to +2 scale. More than 50 human raters
evaluate all the generated samples given 3-second reference data. Table 6 shows that human raters
prefer P-Flow over VALL-E in terms of sample quality including acoustic quality, prosody and human
likeness, and speaker similarity. These results show that P-Flow can achieve performance similar to
or better than VALL-E on in-domain and out-of-domain data, in addition to providing users with an
inference latency of 0.1 seconds using 10 ODE steps.

Table 6: Zero-Shot Speech Synthesis Subjective Metrics for VCTK dataset. Preference scores > 0
indicate preference for P-Flow.

MODEL | CMOSt | SMOS?T
P-FLOW VS VALL-E | 0.188 +0.10 | 0.267 +0.166
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Table 7: Objective metrics for zero-shot TTS evaluated on the VCTK dataset. We compare WER and
SECS using all the VCTK samples from the VALL-E demo page.

MODEL | WER| | SECS?
VALL-E 4.3 0.452
P-FLOW (PROPOSED) 2.4 0.465

A.3 Analysis on ODE sampling methods

We measure the pronunciation accuracy (WER) and speaker similarity (SECS) for two second-order
ODE methods: midpoint and Heun’s method, detailed in [18]. We evaluate these two second-order
methods for sampling steps NV, which have a similar number of function evaluations as 10 Euler steps.
Table 8 shows that the midpoint method with N' = 4 produces WER= 2.7 and SECS= 0.540, not
better than the Euler method. On the other hand, Heun’s method improves upon Euler’s method with
a similar number of function evaluations as described in [18].

Table 8: Objective metrics for P-Flow with different ODE sampling methods.

MODEL | WER| | SECSt
P-FLow (EULER METHOD, N = 10) 2.6 0.544
P-FLow (HEUN’S METHOD, N = 4) 2.6 0.552
P-FLOW (MIDPOINT METHOD, N = 4) 2.7 0.540

A4 Zero-shot TTS with Emotional Reference Speech

We provide generated samples using emotional reference samples, where each sample exhibits
distinct prosody, as demonstrated in [37]. We extract reference speech samples from EmoV-DB [1],
representing five different emotions. From each reference speech, we utilize a 3-second segment to
perform zero-shot TTS. On our demo page, we present generated samples for the same sentence given
the speech prompts for these five emotions. P-Flow, similar to VALL-E, utilizes a speech-prompted
text encoder composed of an autoregressive transformer, enabling the generation of samples with
different prosody based on the reference speech.

B Model Architectures

We provide explanations for each module in this section and detailed hyperparameters and architecture
of P-Flow are shown in Table 9.

Speech-prompted Text Encoder Our text-encoder consists of several linear projection layers, a pre-
network with 3 convolutional layers, and a 6-layer transformer with 2 attention heads of 192 hidden
dimensions. The input to the text encoder is the speech prompt and text embeddings projected into the
same dimensions. For the input of the speech-prompted text encoder, we project the speech prompt
and text embeddings into the same dimension and input to the same pre-network. The resulting
representation is then split into prompt and text parts, to which positional encodings are added. We
define each positional encoding as the sum of absolute positional encoding and a learnable fixed-size
embedding so that the transformer can differentiate the speech prompt and text through learnable
embeddings. The representations of the speech prompt and text are then fed into a transformer
architecture that allows each text position to attend to the speech prompt.

Duration predictor Our duration predictor is a shallow convolution-based model used in [21]. Since
our text encoder output already provides speaker-conditional hidden representation, we use the hidden
representation before linear projection to h. as the input of the duration predictor.

Flow matching Decoder Our flow matching decoder utilizes 18 layers of WaveNet-like architecture
[36] with 512 hidden dimensions. We use the global conditioning method in WaveNet for condi-
tioning ¢ and concatenate the aligned encoder output h with the input z; along the channel axis for
conditioning the speaker-conditional text representation.
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Table 9: Hyperparameters of P-Flow

| Hyperparameter
Phoneme Embedding Dim 192
PreNet Conv Layers 3
PreNet Hidden Dim 192
PreNet Kernel Size 5
PreNet Dropout 0.5
Transformer Layers 6
Speech-prompted Text Encoder Transformer Hidden Dim 192
Transformer Feed-forward Hidden Dim 768
Transformer Attention Heads 2
Transformer Dropout 0.1
Prompt Embedding Dim 192
Number of Parameters 3.3
Conv Layers 3
Conv Hidden Dim 256
Duration Predictor LayerNorm Layers 2
Dropout 0.1
Number of Parameters 0.36M
WaveNet Residual Channel Size 512
WaveNet Residual Blocks 18
Flow Matching Decoder WaveNet Dilated Layers 3
WaveNet Dilation Rate 2
Number of Parameters 40.68M
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