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Figure 1: Our method generates spatially plausible and visually realistic pairwise compositions.
Each row illustrates two examples, consisting of (from left to right) the objects, the masked back-
ground, and two exemplar composite results. Additional comparative results appear in the appendix.

ABSTRACT

Despite strong single-turn performance, diffusion-based image compositing of-
ten struggles to preserve coherent spatial relations in pairwise or sequential ed-
its, where subsequent insertions may overwrite previously generated content and
disrupt physical consistency. We introduce PICS, a self-supervised composition-
by-decomposition paradigm that composes objects in parallel while explicitly
modeling the compositional interactions among (fully-/partially-)visible objects
and background. At its core, an Interaction Transformer employs mask-guided
Mixture-of-Experts to route background, exclusive, and overlap regions to ded-
icated experts, with an adaptive α-blending strategy that infers a compatibility-
aware fusion of overlapping objects while preserving boundary fidelity. To further
enhance robustness to geometric variations, we incorporate geometry-aware aug-
mentations covering both out-of-plane and in-plane pose changes of objects. Our
method delivers superior pairwise compositing quality and substantially improved
stability, with extensive evaluations across virtual try-on, indoor, and street scene
settings showing consistent gains over state-of-the-art baselines.

1 INTRODUCTION

The purpose of image compositing is to seamlessly integrate objects or regions, sourced from differ-
ent images, into a unified and visually plausible image. This fundamental task has recently garnered
considerable attention, particularly in film production and photo retouching, where it facilitates the
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Inputs ObjectStitch AnyDoor OursPbE ControlCom FreeCompose OmniPaint InsertAnything

Figure 2: Visual comparison of pairwise support relations across Paint-by-Paint, ControlCom, Ob-
jectStitch, AnyDoor, FreeCompose, OmniPaint and InsertAnything. Left: backgrounds and two
objects; right: compositing results. The first row shows composites with the basket, and the second
row shows subsequent composites obtained by adding the bread on top. Unlike prior methods that
suffer from contact artifacts and fidelity loss, our approach performs parallel compositing and yields
consistent results with preserved structure.

seamless blending of diverse visual elements (Mortensen & Barrett, 1995). In the film industry,
advanced compositing techniques, often coupled with digital manipulation, enable the realistic inte-
gration of vintage footage into modern scenes (Brinkmann, 2008; Wright, 2017).

Earlier compositing methods, including image blending (Smith & Blinn, 1996; Pérez et al., 2003),
harmonization (Tsai et al., 2017; Guerreiro et al., 2023), and GAN-based models (Chen & Kae,
2019; Azadi et al., 2020), refine the appearance of inserted regions but generalize poorly across
diverse backgrounds. Recent diffusion models (Ho et al., 2020; Dhariwal & Nichol, 2021) offer
stronger generative capability and flexible conditioning, substantially advancing image compositing.
Building on this, several approaches encode objects as visual prompts, enabling diffusion-based
compositing across varied contexts (Song et al., 2023; Yang et al., 2023; Lu et al., 2023; Chen et al.,
2024b; Song et al., 2024; Canet Tarrés et al., 2024; Chen et al., 2024c; 2025; Tian et al., 2025; Yu
et al., 2025; Song et al., 2025). Despite these gains, such methods remain vulnerable in multi-turn1

settings: sequential compositing often disrupt prior content, degrading compositional consistency
and visual fidelity, as shown in Figure 2.

We posit that instability in multi-turn compositing arises from the lack of explicit modeling of object-
object interactions. In real-world scenes, objects rarely occur in isolation; fundamental pairwise re-
lations such as support (Jiang et al., 2012), containment (Shamsian et al., 2020), occlusion (Lazarow
et al., 2020), and deformation (Romero et al., 2022) structure spatial plausibility. These relations
define the basic unit for compositional reasoning (Patel et al., 2024; Mishra et al., 2025), enabling
systematic evaluation of the limitations of existing diffusion-based compositing methods.

To address these challenges, we introduce PICS, a parallel image compositing model that performs
pairwise compositing in a single pass while preserving both object-object and object-background
consistency. Built on a latent diffusion backbone with ControlNet conditioning on the masked
background, PICS employs Interaction Transformer Blocks with mask-guided Mixture-of-Experts
(MoE): background, per-object exclusive regions, and overlaps are deterministically routed to ded-
icated experts. The background expert is identity-preserving; exclusive-region experts apply cross-
attention from scene to individual object; and the overlap expert employs an adaptive attention-gated
α-blending strategy that dynamically mediates object presence conditioned on background, yielding
spatially coherent interactions in the intersection region. Additionally, we incorporate geometry-
aware augmentations to handle both in-plane and out-of-plane pose variations of objects.

Our contributions are summarized as follows:
Parallel Compositing. By modeling pairwise image compositing in parallel, our approach effec-

tively avoids the artifacts inherent to step-wise compositing.
Interaction Transformer Block. We propose mask-guided Mixture-of-Experts for region-aware
modeling, together with an adaptive α-blending module that achieves boundary-consistent and
spatially coherent pairwise composites.

1We use “turn” to denote a composition or editing round, to avoid confusion with diffusion sampling steps.
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Comprehensive Evaluation. Extensive experiments demonstrate that PICS significantly improves
pairwise compositing quality across various scenarios.

2 RELATED WORK

Image compositing. Image compositing is the task of inserting an image-based object into a back-
ground image while maintaining visual and contextual consistency. Early approaches fall into three
categories: image blending, which focuses on smoothing boundaries for seamless transition be-
tween the inserted object and the background (Smith & Blinn, 1996; Pérez et al., 2003), image
harmonization, which adjusts color and illumination to achieve visual compatibility (Tsai et al.,
2017; Guerreiro et al., 2023; Chen et al., 2024d), and GAN-based models (Chen & Kae, 2019; Zhan
et al., 2019; Azadi et al., 2020), which targets geometry consistency by adversarial training. Re-
cent work represents objects as visual prompts and conditions diffusion models (Ho et al., 2020;
Dhariwal & Nichol, 2021) to support more general, adaptive compositing (Song et al., 2023; Yang
et al., 2023; Lu et al., 2023; Chen et al., 2024b; Song et al., 2024; Canet Tarrés et al., 2024; Chen
et al., 2024c; 2025; Tian et al., 2025; Yu et al., 2025; Song et al., 2025). Despite these advances,
most frameworks remain essentially single-turn: each composite is generated from a single prompt,
without support for iterative composition. In complex scenes where multiple objects are added se-
quentially and may overlap or contact (Zhan et al., 2024; Ao et al., 2025; Liu et al., 2025), models
trained only on foreground-background pairs often produce artifacts, especially near overlaps and
contacts, due to the absence of explicit object-object relation modeling. A related line, multi-object
image customization, personalizes images with multiple objects by jointly generating foreground
and background layouts simultaneously (Bao et al., 2024; Chefer et al., 2023; Dahary et al., 2024;
Gu et al., 2023; Wang et al., 2024). In contrast, we directly target pairwise object compositing,
yielding spatially coherent and visually faithful composition.

Multi-turn image editing. Diffusion models have significantly advanced image editing, produc-
ing results that are both realistic and diverse. However, most methods operate in a single-turn
regime: each edit is generated from an isolated prompt without carrying state across rounds (Saharia
et al., 2022; Chen et al., 2024a; Cai et al., 2025). As a result, they preserve local fidelity but struggle
to maintain global coherence over a sequence of edits. To address this, recent work introduces multi-
turn editing that conditions each round on prior outputs and instructions (Zhou et al., 2025; Gupta
et al., 2025; Avrahami et al., 2025), which aligns with our setting: each new instruction must respect
previously composed content and preserve cross-turn consistency. This dependency on past edits, in
turn, makes the task prone to error propagation and semantic drift, an issue analogous to multi-turn
dialogue in language models (Wang et al., 2018; Kwan et al., 2024; Duan et al., 2023; Laban et al.,
2025). Notably, sustaining coherence in practice hinges on how compositions handle pairwise ob-
ject interactions. Without explicit modeling, methods that perform well in single-turn settings often
fail to manage occlusions and preserve boundary consistency, as illustrated in Figure 5.

Projected object relations. A 3D scene encodes rich spatial relations among objects that, once
rendered to 2D, appear as projected interactions between instances. For example, 2D occlusion
arises from 3D depth ordering, while support and containment persist through contact and enclo-
sure cues. Prior work has leveraged such projected relations for scene understanding, composi-
tional reasoning, and image synthesis. Building on this perspective, we study how explicitly mod-
eling these relations yields more realistic and spatially consistent 2D object compositing. Rea-
soning about occluded objects is a long-standing challenge in spatial understanding. Occlusion-
annotated datasets (Martin et al., 2001; Zhu et al., 2017; Zhan et al., 2024) and self-supervised
approaches (Zhan et al., 2020) establish the foundations for occlusion handling from a perceptual
standpoint, and subsequent methods further advance amodal completion/de-occlusion (Ling et al.,
2020; Ke et al., 2021; Zhou et al., 2021; Liu et al., 2024). On the generative side, LaRender (Zhan
& Liu, 2025) introduces explicit occlusion control in image generation.

3 METHODOLOGY

We begin with the parallel pairwise image compositing pipeline in Subsection 3.1, followed by
the interaction transformer in Subsection 3.2 that models interactions among objects and the back-
ground. Finally, we introduce two geometry-aware augmentations in Subsection 3.3.

3
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Figure 3: Overview of PICS. Input data are constructed by decomposing the target image into a
background and pairwise objects with their designated regions. (a) The interaction diffusion network
composites the objects into the background. (b) The interaction transformer block, shared across
both branches, models interactions among objects and with the background. (c) Expert blocks focus
on distinct spatial regions. All notations are defined in the main text for clarity.

3.1 PAIRWISE IMAGE COMPOSITING

Exploring two-turn compositing. Object-to-object contact is a pervasive phenomenon in the
physical world. When a 3D scene is projected onto a 2D image, objects tend to (partially-)occlude
each other, leading to what we term interdependent objects. This poses a central challenge for pair-
wise image compositing: how can synthesized images with occlusions remain visually realistic, and
to what extent do existing methods effectively model such occlusion and spatial interactions? To
investigate this, we systematically examine the strengths and weaknesses of current single-object
compositing approaches when extended to scenarios where inserted objects interact spatially.

A straightforward baseline composes objects in sequence. For the compositing order, we adopt the
classical Painter’s Algorithm (Newell et al., 1972): objects are ranked by a depth proxy, estimated
from the vertical position of their 2D bounding boxes, and composited farther first, nearer last,
ensuring that later insertions occlude earlier ones. In Figure 2, existing methods often degrade at
interaction boundaries, largely due to foreground-background partitioning in data construction that
ignores cross-object contacts. While adequate for single-object compositing, this bias makes the first
insertion in two-turn compositing prone to being interpreted as background, causing partial removal,
distortion, over-blending, and inconsistent interactions with the subsequent compositing object.

Parallel image-prompted compositing. Building on these observations, we adopt a parallel strat-
egy that simultaneously composes pairwise objects into the background, thereby preserving realistic
interactions among objects and with the background. To explicitly distinguish overlap and exclusive
regions, we construct the following masks from two object segments {xp}p∈{a,b} with binary masks
{mp}p∈{a,b} representing the bounding boxes of the objects:

mu = ma∨mb, mab = ma∧mb, mex
a = ma∧(1−mb), mex

b = mb∧(1−ma). (1)

The masked background is obtained by erasing pixels covered by the union mask,

xbg = (1−mu)⊙ x. (2)

4
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As illustrated in Figure 3(a), our parallel compositing model Fθ takes xbg together with the objects
and their masks to produce x̂ = Fθ(xbg, {xp}, {mp}). Following latent diffusion models, each
object segment xp and the background xbg are encoded into latent codes:

cp = Eshape(xp), zbg = EVAE(xbg), p ∈ {a, b}, (3)

which are then fused via cross-attention so that zbg is conditioned on {cp}; the updates are spa-
tially guided by mex

a , mex
b , and mab, as detailed in Subsection 3.2. Following prior single-object

compositing, we train Fθ with a self-supervised recomposition objective to reconstruct image x.

3.2 INTERACTION TRANSFORMER

As illustrated in Figure 3(b), each interaction transformer block applies self-attention to capture
global dependencies, then employs a mask-guided Mixture-of-Experts (MoE) to route background,
exclusive, and overlap regions to dedicated experts. Their outputs are gated by partition masks,
merged through a residual update, and refined with a feed-forward network (FFN), ensuring spatially
grounded, region-consistent updates across the image.

Feature-space routing masks. Object masks are originally defined in image space, while our
computations are performed in feature space. We therefore downsample masks to the feature-map
resolution using bilinear interpolation,

m = DH,W (m), (4)

where H,W denote the spatial dimensions at each layer. From these, we obtain background masks
mbg = 1−mu, exclusive masks mex

a ,mex
b , and overlap masks mab.

Spatially-aware Mixture-of-Experts. Given features zl−1 and masks, the MoE applies region-
specific experts to the same input and aggregates their outputs residually to yield zl. Here fQ, fK , fV
denote 1×1 projections for attention. Figure 3(c) illustrates the structure of each expert block.

Background expert. The background is left unchanged, i.e., hbg = z l−1.

Exclusive-region experts. For non-overlapping regions of object p, we inject object-specific appear-
ance by cross-attending background queries to object codes:

hp = CrossAttn
(
fQ(z

l−1), fK(cp), fV (cp)
)
, p ∈ {a, b}, (5)

with the updates applied under the mask mex
p .

Overlap expert. In overlap regions, directly fusing two object codes with an MLP may cause blurred
boundaries or inconsistent dominance. To overcome this, we introduce an attention-gated expert
that adaptively favors either object, or their blend, conditioned on the background context.

We first construct a gating query from the background code:

qg = gQ
(
z l−1

)
, (6)

where gQ is a 1×1 projection analogous to fQ. This query acts as a position-wise referee, deciding
at each spatial location whether object a or b should dominate.

Each object code is then aggregated into the background space via attention:

c̃p = CrossAttn
(
qg, fK(cp), fV (cp)

)
, p ∈ {a, b}. (7)

yielding c̃p, a per-location summary of how object p aligns with the background query.

To determine the context-conditioned preference, we first score how well each aggregated object
code matches the gating query and then convert the two scores into a mixing weight:

sp =
⟨qg, c̃p⟩√

d
, α =

esa/τ

esa/τ + esb/τ
. (8)

Here d = dim(qg) and τ > 0 is a temperature controlling the sharpness of the selection; the gating
query thus favors the object whose aggregated code best explains the local observation.

5
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The pairwise context is then obtained by adaptive α-blending of the aggregated object codes,

cab = α c̃a + (1−α) c̃b, (9)

providing a position-wise compatibility representation of both objects while preserving boundaries.

Finally, we inject this context into the background code through cross-attention:

hab = CrossAttn
(
fQ(z

l−1), fK(cab), fV (cab)
)
, (10)

and use hab as the overlap expert output, yielding an order-agnostic, attention-based mechanism that
adaptively selects between objects while enforcing boundary consistency.

A key property of this design is that the gating query qg carries learned occlusion semantics rather
than appearance cues, as it is derived from the deep background representation zl−1. Consequently,
the gating in Equation (8) performs context-guided, pairwise arbitration between the two objects:
the softmax jointly normalizes their responses, inducing an implicit object–object interaction that
determines which object should dominate at each spatial location.

Region-gated updates and aggregation. Expert outputs are masked by corresponding regions:

∆zbg = mbg ⊙ hbg, ∆zp = mex
p ⊙ hp, p∈{a, b}, ∆zov = mab ⊙ hab. (11)

The regional updates are then aggregated and added residually:

∆z = ∆zbg +∆za +∆zb +∆zov, zl = zl−1 +∆z, (12)

after which an FFN refines zl before it is passed to the next block.

3.3 AUGMENTATIONS

Robust compositing requires handling both out-of-plane viewpoint changes and in-plane rotations.
We adopt two geometry-aware augmentations during training.

Multi-view shape prior. To capture viewpoint variations beyond standard 2D augmentations, we
employ an off-the-shelf single-view reconstruction model to render K auxiliary views. Each view
is encoded by a frozen shape encoder Eshape into latent codes {ckp}Kk=1. These codes are randomly
permuted, concatenated, normalized, and fused with a lightweight MLP V:

pp = V
(
LN([c1p; · · · ; cKp ])

)
, (13)

producing a compact multi-view descriptor that is shape-preserving.

In-plane rotation. To improve robustness against in-plane misalignment, we apply random rota-
tions θ ∼ U(−π/6, π/6) to object images and their masks, and encode them with Eshape. This
enhances alignment with background context and increases robustness to in-plane transformations.

4 EXPERIMENTS

Datasets. PICS is trained on a mixture of image datasets. For validating pairwise recompositing,
we use the LVIS benchmark, and for testing, we adopt DreamBooth (Ruiz et al., 2023) together with
a set of in-the-wild images. Comprehensive descriptions of the datasets, as well as implementation
details including network architecture, training and inference settings, are provided in the appendix.

Evaluation metrics. We evaluate recompositing quality both on the entire images and on bound-
ing box intersection regions using PSNR, SSIM, and LPIPS. To further assess the realism of the
generated images, we employ CLIP-Score (Hessel et al., 2021), DINOv2-Score (Oquab et al., 2024),
and DreamSim (Fu et al., 2023). For the image compositing task, we specifically adopt CLIP-Score,
DINOv2-Score, and DreamSim for evaluating the compositing quality.

6
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Table 1: Quantitative comparison of object recompositing against prior methods on the LVIS vali-
dation set. The prefix “m-” indicates evaluation restricted to the intersection regions. Bold numbers
denote the best performance, and underlined numbers indicate the second best.

Method mPSNR ↑ mSSIM ↑ mLPIPS ↓ PSNR ↑ FID ↓ LPIPS ↓ CLIP-score ↑ DINOV2-score ↑ DreamSim ↓
PbE (CVPR’23) 10.24 0.4241 0.4535 15.29 34.93 0.4138 81.42 0.4320 0.4896
ControlCom (arXiv’23) 11.82 0.3185 0.3986 17.61 26.93 0.3375 85.39 0.5264 0.3248
ObjectStitch (CVPR’23) 10.84 0.3471 0.4203 16.55 29.68 0.3572 85.01 0.5574 0.3458
AnyDoor (CVPR’24) 11.62 0.5283 0.4185 17.12 27.17 0.3302 84.99 0.6089 0.2820
OmniPaint (ICCV’25) 12.20 0.3096 0.4618 16.09 26.25 0.3542 83.11 0.5673 0.2774

PICS (ours) 13.88 0.5823 0.3221 18.27 24.99 0.2530 85.25 0.5713 0.2659

Objects Backgrounds ObjectStitch AnyDoor OursPaint-by-Example ControlComSource images OmniPaint

Figure 4: Qualitative comparison on the LVIS validation set. Source images, backgrounds, and the
two decomposed objects are shown on the left. On the right are the recompositing results from
different methods. Our approach is the only one that produces composites with realistic spatial
interactions between scene objects while maintaining scene consistency and object identity.

4.1 OBJECT RECOMPOSITING

Qualitative comparison. Object recompositing refers to compositing objects and backgrounds
from the same source image, which serves as our evaluation setting. We compare our method with
four prior approaches, namely PbE (Yang et al., 2023), ControlCom (Zhang et al., 2023), Object-
Stitch (Song et al., 2023), AnyDoor (Chen et al., 2024b) and OmniPaint (Yu et al., 2025). The
baselines adopt a two-step compositing protocol, where the red region is placed first and the green
region second, whereas our method performs parallel pairwise compositing. As illustrated in Fig-
ure 4, existing methods primarily designed for single-object compositing struggle to generate clear
features in occluded regions. While the objects may appear harmonized with the background, these
methods often fail to handle occlusion order correctly and may introduce artifacts by improperly lay-
ering one object over another. In contrast, PICS consistently generates recompositions that preserve
object identity while maintaining coherent and spatially plausible connectivity across interacting
regions.

Quantitative comparison. As reported in Table 1, our method delivers consistent improvements
over competing approaches in PSNR, SSIM, FID, and LPIPS, including evaluations on intersection
regions, demonstrating its ability to faithfully capture the data distribution. While AnyDoor achieves
slightly higher DINO-v2 scores, this advantage is partly attributable to its use of additional edge
maps as input, which aids semantic preservation but limits flexibility when the structural alignment

7
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Objects AnyDoor AnyDoor OursObjectStitch ObjectStitchBackgrounds

Figure 5: Qualitative comparison of different composition orders on the DreamBooth test set. Left:
backgrounds and two objects. Right: results from different methods. Our approach better preserves
natural contacts and occlusions, while implicitly learning the correct occlusion order.

Table 2: Quantitative comparison of pairwise object com-
positing on the DreamBooth testing set. Bold numbers de-
note the best performance, and underlined numbers indi-
cate the second best.

Method FID ↓ CLIP-score ↑ DINOV2-score ↑ DreamSim ↓
PbE (CVPR’23) 262.4 51.95 0.2383 0.4321
ControlCom (arXiv’23) 273.4 52.38 0.2414 0.3194
ObjectStitch (CVPR’23) 260.4 51.35 0.3203 0.3374
AnyDoor (CVPR’24) 274.1 51.24 0.3401 0.2733
FreeCompose (ECCV’24) 299.6 51.71 0.2157 0.3521
OmniPaint (ICCV’25) 260.4 50.32 0.3741 0.2632
InsertAnything (arXiv’25) 266.0 50.54 0.3612 0.2934

PICS (ours) 255.5 54.02 0.3631 0.3054

Table 3: User study (%). “Quality”,
“Fidelity”, and “Consistency” evaluate
image realism, identity preservation,
and object coherence, respectively.

Method Quality ↑ Fidelity ↑ Consistency ↑
PbE 5.13 2.53 8.70
ControlCom 12.2 15.2 13.0
ObjectStitch 12.8 7.59 15.9
AnyDoor 14.1 18.4 12.3
FreeCompose 2.56 1.27 4.35
OmniPaint 17.3 19.0 10.9
InsertAnything 16.0 18.4 12.3

PICS (ours) 17.7 17.7 22.5

between the input and background is poor, often resulting in inferior scene consistency. Other
baselines also struggle to preserve object identity, leading to overall weaker performance.

4.2 OBJECT COMPOSITING

Qualitative comparison. We compare our pairwise object compositing results with ObjectStitch
and AnyDoor, using their default settings and pretrained models to sequentially compose objects
into backgrounds using the DreamBooth testing set. As shown in Figure 5, both ObjectStitch and
AnyDoor exhibit boundary artifacts when a newly inserted object partially occludes a previously
composed one. AnyDoor often causes the current object to either completely cover, entangle with,
or shrink parts of the previous composed object, while ObjectStitch struggles to preserve object
identity. In comparison, our method produces more boundary-consistent compositions.

Quantitative comparison. Table 2 reports the quantitative comparisons across various evaluation
metrics. Our method achieves the best overall performance. On DreamSim, both of AnyDoor and
OmniPaint attain higher scores, where AnyDoor leverages high-frequency object features as addi-
tional guidance, which helps preserve object structure but at the cost of consistent compositing with
the background, and OmniPaint, on the other hand, is built upon a flow-matching FLUX backbone
whose generative prior is stronger than standard diffusion.

8
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Table 4: Ablation study on in-the-wild test set to ver-
ify key components of our method. “ITB” denotes
the interaction transformer block, “SV” single-view,
“Rot.” the rotation augmentation, “MV” the multi-
view augmentation, and “Comb.” the combined data.

No. MLP ITB SV Rot. MV LVIS Comb. FID ↓ CLIP-score ↑
1 ✓ ✓ ✓ 173.1 74.6
2 ✓ ✓ ✓ 165.2 76.3
3 ✓ ✓ ✓ ✓ 162.5 74.9
4 ✓ ✓ ✓ ✓ 158.2 77.3
5 ✓ ✓ ✓ ✓ ✓ 151.3 79.1

Early Mid Late

Figure 6: ∆s across denoising stages. Top:
a→ sofa, b→ human; bottom: swapped.

User study. We conducted a user study with 20 participants to evaluate object compositing qual-
ity, focusing on realism, object fidelity, and intersection quality. Using the same objects and back-
grounds from the challenging DreamBooth dataset, participants were asked to rank and score results
from different methods. As shown in Table 3, our approach outperforms prior methods in terms
of realism and consistency, underscoring its effectiveness. On the fidelity criterion, our method
performs comparably to AnyDoor, as both leverage the DINOv2 model to encode identity features.

4.3 ABLATION STUDIES

Module choices. Table 4 summarizes ablations on the in-the-wild test set over three factors: model
architecture, geometry-aware augmentation, and training data scale. In the MLP baseline, the two
object codes are concatenated and passed through an MLP to model their interaction, and the re-
sulting representation is then fused with the background via cross-attention. Moving from Setting 1
to Setting 2, replacing the MLP with the proposed interaction transformer block for intersection
modeling consistently improves all metrics, reflecting stronger reasoning over inter-object cues in
overlapping regions. Introducing geometry-aware augmentations further enhances robustness: in-
plane rotation (Setting 3) mitigates misalignment within the image plane, while the multi-view prior
(Setting 4) improves robustness to viewpoint variation. Expanding the training set from LVIS-only
to the full 1M-image collection (Setting 5) provides the most significant gain, improving generaliza-
tion to unseen object-background pairings.

α-blending. We evaluate whether the overlap expert learns spatially resolved mixing weights in
the multi-scale feature spaces. The coefficient α is derived from the score difference ∆s = sa − sb,
where positive values favor object a, negative values favor object b, and values close to zero lead to a
balanced blend, with α = σ(∆s/τ) (Equation 8) ensuring that ∆s and α vary consistently. Figure 6
shows ∆s under two indexing choices: in the top row, a corresponds to the sofa and b to the human,
while in the bottom row the roles are swapped but their compositing regions remain unchanged. The
sign of ∆s is consistently aligned with visibility, being positive where the human remains visible
and negative elsewhere, and it reverses accordingly when the indices are exchanged. This confirms
that the gating mechanism encodes actual visibility relationships rather than relying on the arbitrary
order of inputs, thereby realizing the intended logistic blending at each spatial location. Furthermore,
across denoising steps during inference (early, mid, late), the maps evolve in a progressive manner:
they begin coarse and noisy, become spatially decisive mid-way, and ultimately sharpen into fine-
grained boundaries, reflecting the refinement dynamics characteristic of diffusion models.

4.4 GENERALIZATION TO MULTI-OBJECT COMPOSITING

To assess the scalability of our approach beyond the pairwise setting, we additionally train two
models for 3-object and 4-object compositing using samples constructed entirely from the LVIS
dataset. Representative results are shown in Figures 7 and 8. In the 3-object setting, the composite
results reflect consistent occlusion ordering and contact relations, and object identities remain well
preserved even where multiple masks intersect, indicating that our interaction module distributes
appearance features without collapsing fine details. The 4-object setting presents more entangled
configurations, including multi-level occlusions. The model remains stable: as shown in the bottom
example of Figure 8, the backpack is almost fully occluded and is correctly omitted in the final
composite, indicating that the model respects visibility rather than hallucinating hidden content.

9
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Objects Backgrounds Ours

Figure 7: 3-object compositing.

Objects Backgrounds Ours

Figure 8: 4-object compositing.

Objects & backgrounds Composite Objects & backgrounds Composites

Figure 9: Applications. Virtual try-on; novel-view compositing.

Objects CompositesBackground
s

Twin bells

Yellow furry patch

Figure 10: Failure cases.

4.5 APPLICATIONS

Virtual try-on. PICS supports pairwise try-on of an upper-body garment and a lower-body gar-
ment. As shown in Figure 9 (left), it maintains a clean, well-aligned seam between the two garments
and handles overlap robustly, avoiding color bleeding and double edges even under moderate pose
changes. Additional side-by-side comparisons with recent methods are provided in appendix K.2.

Novel-view composition. Our approach also supports novel-view composition, which generates a
previously unseen viewpoint of an object and harmonizing it with the background to ensure visual
coherence; see Figure 9 (right). For example, when the bounding box is horizontally elongated,
the model correctly generates a side view of the elephant. This demonstrates the ability of our
framework to capture spatial priors and to contextually compose objects.

5 CONCLUSION AND OUTLOOK

We presented PICS, a parallel paradigm for pairwise image compositing that explicitly models
spatial interactions among objects and the background. Central to the method is an Interaction
Transformer with mask-guided experts and an adaptive α-blending mechanism that enables region-
aware composition with boundary fidelity. Robustness to geometric variation is further improved by
geometry-aware augmentations that address both out-of-plane and in-plane pose changes.

While PICS yields high-quality pairwise composites, it is currently restricted to two objects, lim-
iting applicability in complex multi-object scenes. In addition, as shown in Figure 10, we observe
occasional geometry and texture degradation, attributable to the limited capacity of the shape en-
coder. Future work will extend the routing and fusion mechanisms to multi-object compositing
while preserving semantic fidelity and stylistic consistency.

Ethics statement. This work is conducted on publicly available datasets and is intended solely for
scientific research.

Reproducibility statement. We have made our best effort to ensure reproducibility, including but
not limited to: 1) dataset description in appendix A and implementation details in appendix B; 2)
detailed graphic illustrations of model architectures, training and inference in Figures 3, 14, 13; and
3) source code and checkpoints to be released upon acceptance.
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Figure 11: Examples of pairwise object relations from the LVIS validation set, with object instances
visualized alongside their bounding boxes.

A DATASET

A.1 PAIRWISE OBJECTS VISUALIZATION

As discussed in the main paper, pairwise object interactions are ubiquitous and pervasive across di-
verse real-world datasets. Here, we present several illustrative examples in Figure 11. For each type
of interaction, including support, containment, occlusion, deformation, and an additional category
that encompasses less canonical or atypical cases, we provide a few representative examples with
object instances visualized alongside their bounding boxes.

Specifically, support relations include cases such as a bear standing on a ball, a toy placed on a
chair, and a bouquet supported by a vase; containment is exemplified by donuts arranged in a box,
fruit in a bowl, and flowers inside a vase; occlusion is demonstrated through an elephant obscured
by another elephant, and a vehicle blocked by another vehicle; deformation is shown by wrinkles
formed between overlapping clothes and pants, toys compressed against each other, and a soft bag
deformed under weight. The others category includes diverse interactions such as a dog holding
a plate in its mouth, objects leaning against each other, or items stacked closely together, which
are not easily assigned to the primary relation types. These examples highlight that modeling pair-
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Table 5: Statistics and description of our training datasets for pairwise object compositing.

Datasets #Training Type

LVIS (Gupta et al., 2019) 34,160 General
VITON-HD (Choi et al., 2021) 11,647 Try-on
Objects365 (Shao et al., 2019) 940,764 General
Cityscapes (Cordts et al., 2016) 536 Street
Mapillary Vistas (Neuhold et al., 2017) 603 Street
BDD100K (Yu et al., 2020) 1,012 Street

wise object interactions is essential for realistic scene compositing, ensuring consistent boundaries,
plausible occlusion, and physically coherent interactions.

A.2 PAIRWISE SPATIAL RELATION

Figure 12: Heatmap of spatial relations of
pairwise bounding boxes.

To analyze the spatial relationships between pairwise
bounding boxes, we construct a single aggregated
heatmap over their overlapping regions, as visualized
in Figure 12. For each pair of intersecting boxes ran-
domly sampled from the LVIS training set (10k sam-
ples), we normalize one bounding box to the canonical
[0, 1] × [0, 1] heatmap coordinate frame, and project
the other box accordingly. The overlapping region di-
rectly contributes to the heatmap values, and aggre-
gating over all samples produces the final distribution
of overlap regions. The heatmap peaks near the im-
age center (0.5, 0.5), clearly indicating that a major-
ity of bounding box pairs exhibit significant overlap in
this region (approximately 90%). Even in peripheral
regions with minimal overlap, nearly 50% of bound-
ing boxes still intersect, further highlighting the preva-
lence of spatial interactions across the training data.

A.3 TRAINING DATASET PREPARATION

To effectively train our model for pairwise object compositing, we curated a large-scale dataset con-
sisting of nearly 1 million diverse samples by combining real-world datasets originally designed
for object-centric scene understanding and visual try-on; see Table 5. Since not every image nat-
urally contains multiple bounding boxes with intersections, we filtered the dataset to retain only
samples with at least two intersecting boxes. Furthermore, to better facilitate effective modeling of
overlapping regions, we preferentially select bounding box pairs with the highest IoU. The detailed
implementation procedure is elaborated in Algorithm 1. For datasets such as Objects365 (Shao et al.,
2019), which do not provide segmentation masks, we use the existing bounding box annotations as
prompts for SAM2 (Ravi et al., 2024) to obtain sufficiently accurate object masks. For TF-ICON (Lu
et al., 2023), we discard bounding boxes corresponding to background segments.

A.4 TESTING DATASET

We curate a 110-case test set: 80 cases use backgrounds from the LVIS validation set with object
exemplars from DreamBooth, and 30 cases use Internet backgrounds with in-the-wild object images.
Target insertion regions are manually annotated.

B IMPLEMENTATION DETAILS

Our models are implemented using PyTorch, with details of the model architecture, training, and
inference provided below.
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Algorithm 1 Pseudocode of pairwise bounding boxes selection algorithm in a PyTorch-like style.

"""
Select a pair of bounding boxes with the highest IoU
"""
def select_boxes(bbox_xyxy):

"""
bbox_xyxy: list of bounding boxes in [x0, y0, x1, y1] format
return: tuple of two bounding boxes with highest IoU, or -1 if none exist
"""
if len(bbox_xyxy) <= 2:

return -1

# Compute pairwise IoU matrix
iou_matrix = compute_iou_matrix(bbox_xyxy) # assume this function exists

# Find the pair with maximum IoU
index0, index1 = np.unravel_index(np.argmax(iou_matrix), iou_matrix.shape)
max_iou = iou_matrix[index0, index1]

if max_iou <= 0:
return -1

return bbox_xyxy[index0], bbox_xyxy[index1]

B.1 MODEL ARCHITECTURE

Our framework builds upon the publicly available implementations of Stable Diffusion v2.1 and
ControlNet v1.0. In particular, we adopt the U-Net backbone of Stable Diffusion as the generative
model and augment it with a ControlNet branch to enable spatially guided compositing. The control
scale is fixed to 1.0 throughout training and inference to ensure a balanced contribution from both
the generative and control pathways. To enhance interaction modeling, we systematically replace
the original residual blocks with our proposed Interaction Transformer blocks. Specifically, all 25
blocks of the U-Net including 12 encoder blocks, 1 middle block, and 12 decoder blocks are substi-
tuted with IT blocks. In parallel, the ControlNet branch also undergoes the same replacement, where
all 13 blocks (12 encoder and 1 middle block) are re-implemented using our IT design. This consis-
tent replacement ensures that both the generative and control pathways benefit from the improved
modeling capacity of IT blocks, thereby strengthening cross-object reasoning and compositing fi-
delity. Additionally, similar to the original ControlNet, the connections from the control model to
the generation model are initialized by zero-convolutions, which prevents the generative capabilities
of the controlled U-Net from diminishing at the beginning of training.
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Figure 13: Details of multi-view shape prior.

As shown in Figure 13, for the multi-view shape
encoder, we render six novel views of each ob-
ject using the single-view reconstruction model
Zero123++(Shi et al., 2023). Each view is encoded
into a latent representation by a pretrained DINOv2
image encoder(Oquab et al., 2024), which provides
strong semantic and structural features. The result-
ing per-view codes are aggregated by our fusion
module to form a compact multi-view descriptor, en-
riching the object representation with both global
shape priors and fine-grained texture details. Both
the fusion MLP in the Interaction Transformer block
and the MLP used for the multi-view shape prior are
implemented as two-layer feedforward networks.

B.2 TRAINING DETAILS

For the objective loss function, we adopt the standard denoising diffusion objective, defined as the
mean squared error between the predicted noise and the ground-truth Gaussian noise:

L(θ) = Exbg,{xp,mp}, t, ε∼N (0,1)

[∥∥Fθ

(
xbg, {xp,mp}p∈{a,b}, t

)
− ε

∥∥2
2

]
. (14)
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Figure 14: Inference process of PICS. The background and object embeddings, together with their
masks, are fused in latent space and decoded by the VAE to produce the final composite xcomp.

The temperature parameter is set to τ = 0.5 for all experiments. Our model is implemented in
PyTorch Lightning and trained with mixed-precision (fp16) on NVIDIA H100 GPUs with 80GB
memory. We train for 5 epochs with a batch size of 8, using Adam (Kingma, 2014) with a learning
rate of 1×10−5 and gradient accumulation of 1.

B.3 INFERENCE DETAILS

As illustrated in Figure 14, during inference our model takes the background embedding zbg , ob-
tained by encoding the background image xbg with the VAE encoder, and the object codes ca and
cb, extracted from the object images xa and xb using shape encoders, together with their corre-
sponding compositing masks ma and mb. These components are fused to form a latent composite,
which is subsequently decoded by the VAE decoder to generate the final composite image xcomp.
Specifically, the DDIM sampler generates the composite image after 50 denoising steps, with a
classifier-free guidance scale of 5.0 (Ho & Salimans, 2022).

C MULTI-OBJECT COMPOSITING

C.1 MATHEMATICAL FORMULATION

We extend the pairwise overlap expert to the case of M composed objects.

Multi-object overlap expert. Given object codes {c1, . . . , cM} and the background feature zl−1, the
gating query is computed as

qg = gQ(z
l−1). (15)

Each object code is aligned to the background query via cross-attention:

c̃p = CrossAttn
(
qg, fK(cp), fV (cp)

)
, p = 1, . . . ,M. (16)

A compatibility score is computed for every aggregated object:

sp =
⟨qg, c̃p⟩√

d
, p = 1, . . . ,M, (17)

and normalized via a softmax:

αp =
exp(sp/τ)∑M
j=1 exp(sj/τ)

, p = 1, . . . ,M. (18)

The fused multi-object context is obtained by an attention-weighted combination:

c1:M =

M∑
p=1

αp c̃p. (19)

We then calculate a unified overlap response using background-guided cross-attention:

h1:M = CrossAttn
(
fQ(z

l−1), fK(c1:M ), fV (c1:M )
)
. (20)
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Objects Backgrounds CFG=9CFG=1 CFG=5Source images

Figure 15: Effect of different classifier-free guidance (CFG) scales on image recompositing, com-
paring CFG values of 1, 5, and 9.

This produces an order-agnostic, attention-based overlap expert that synthesizes multi-way interac-
tion patterns among all objects.

Region-gated updates and aggregation. For M objects, each expert output is masked by its corre-
sponding spatial region:

∆zbg = mbg ⊙ hbg, ∆zp = mex
p ⊙ hp, p = 1, . . . ,M, ∆z1:M = m1:M ⊙ h1:M . (21)

All regional updates are aggregated via a residual update:

∆z = ∆zbg +

M∑
p=1

∆zp +∆z1:M , z l = z l−1 +∆z, (22)

after which a feed-forward network refines z l before passing it to the next block. This formulation
reduces to the two-object case in the main text when M = 2.

C.2 DATASET PREPARATION

For each image, we first discard very small instances and keep only objects above an area threshold.
We then convert all remaining bounding boxes into a consistent format and compute the pairwise
IoU among them. To select a set of overlapping objects, we identify the anchor, defined as the
object that overlaps the most with the others. We then take the anchor’s top overlapping neighbors
(those with positive IoU) and choose as many as needed for the target setting. For example, the top
two neighbors for a 3-object sample, or the top three neighbors for a 4-object sample. This ensures
that all selected objects overlap with the anchor, although they are not required to overlap with one
another. For each selected object, we extract its binary mask and the corresponding cropped RGB
patch. These masks and patches are saved together with the original image to form a structured
multi-object sample.

D EFFECT OF CLASSIFIER-FREE GUIDANCE

In our experiments, we systematically evaluate the effect of the classifier-free guidance (CFG) scale
on image compositing quality by comparing three representative values: 1, 5, and 9. As shown in
Figure 15, when the CFG is set to 1, the model behaves almost unconditionally, leading to noisy and
blurry synthesis in the compositing regions. Interestingly, although the fidelity of the inserted objects

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Figure 16: Four exemplars for (non-)partial 3D reconstruction. From left to right: source image,
image with object bounding boxes, 6-view reconstructed object images.

is poor, the color distribution tends to match the background more naturally, resulting in better
chromatic consistency. In contrast, a large CFG value such as 9 enforces strong adherence to the
object condition, thereby producing composites that better preserve the identity and fine details of the
reference objects. However, this often comes at the cost of visual harmony, as the object colors may
deviate noticeably from the background, leading to less coherent integration. A mid-range CFG of
5 provides a favorable balance between these two extremes, ensuring that object identity is retained
while maintaining reasonable consistency with the background. This observation is consistent with
prior findings in guided diffusion, where overly low scales reduce conditional fidelity and overly
high scales overfit the conditioning signal, thereby compromising overall realism. Hence, we adopt
5 as the default setting in all our experiments.

E 3D RECONSTRUCTION

As shown in Figure 16, we evaluate a pretrained 3D reconstruction model, Zero123++ on occluded
2D segments from LVIS and find that, despite occlusion, it reliably reconstructs coherent partial
3D shapes. The partial 3D shape formed from such multi-view images provides compact features
of the objects that guide the modeling of intersection regions, leading to geometrically consistent
interactions and improving compositing quality.

F CHOICES OF OBJECT MASK

We further assess the robustness of our method to segmentation masks of varying quality, as il-
lustrated in Figure 17. Specifically, we compare pairwise compositing results using coarse masks
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Manually segmented SAMBounding boxInputs

Figure 17: Four exemplars for (non-)partial 3D reconstruction. From left to right: source image,
image with object bounding boxes, 6-view reconstructed object images.

Objects Backgrounds CLIP encoder DINOv2 encoder

Figure 18: CLIP encoder vs DINOv2 encoder. Models are separately trained on LVIS dataset.

including bounding boxes and manually annotated masks2 against results obtained with high-quality
SAM masks. Our findings show a clear trend: better segmentation masks lead to better compositing.
In contrast, coarse or inaccurate masks tend to introduce undesired background cues from the object
image, ultimately degrading the compositing quality.

G CHOICES OF OBJECT ENCODER

We conduct an ablation study to evaluate how the choice of object encoder influences the fidelity of
composed objects, as exemplified in Figure 18. Specifically, we replace our default object encoder
with CLIP, while keeping all other components unchanged, and both of the two models are trained

2https://pixlab.io/annotate
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Figure 19: Additional visualization of our pairwise compositing with unoccluded inputs.

only on the LVIS dataset. The comparison reveals a clear degradation in appearance preservation
when using CLIP: the composed objects exhibit diminished fine-grained details, such as the subtle
skin-tone differences between the two elephants, the striped patterns on the T-shirt, and the features
of the motorcyclist. These observations highlight the importance of using a stronger encoder for
capturing high-frequency object textures that are crucial for identity-preserving compositing.

H VISUALIZATION OF UNOCCLUDED INPUTS

Our model is trained exclusively on occluded object instances, without ever seeing intact objects
during training. To evaluate robustness beyond this training regime, we conduct additional evalua-
tion experiments using fully visible (unoccluded) objects as inputs, as demonstrated in Figure 19.
Our method demonstrates strong generalization to this setting, where it is able to accurately generate
pairwise spatial relations while preserving the identity of composed objects.

I VISUALIZATION OF 3D AUGMENTATION

In Figure 20, we compare results generated with and without the proposed 3D augmentation strat-
egy. Incorporating 3D augmentation enables the model to synthesize a broader range of viewpoint
variations for the composed objects. For instance, in the first row, the inserted donut exhibits clear
geometric changes; in the second row, the flower is rendered from a novel orientation relative to its
input view; and in the last row, the doll also appears under a noticeably different facing direction.
These examples illustrate that coupling our model with 3D augmentation substantially improves
viewpoint diversity, leading to richer and more flexible compositional generations.

J COMPUTATION AND TIME COST

Our model exhibits competitive computational efficiency relative to existing methods, requiring ap-
proximately 20 seconds per sample for pairwise image compositing, as shown in Table 6. While
integrating the plug-and-play 3D reconstruction module introduces additional computational over-
head, the overall inference-time cost remains practical.

K MORE QUALITATIVE RESULTS

K.1 IN-THE-WILD PAIRWISE COMPOSITING

We provide comparison results on the in-the-wild images in Figure 21. Typical artifacts observed
for each sample are listed in Table 7.
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Objects Backgrounds w/o 3D w 3DSource image

Figure 20: Additional visualization of w vs w/o 3D augmentation of our method.

Table 6: Comparison of inference-time computation cost for different methods.

Methods Params Time (min) GFLOPs GPU Memory

PbE (Yang et al., 2023) 1.31 G 0.722 1048 8.70 G
ControlCom (Zhang et al., 2023) 1.37 G 0.684 1123 21.5 G
ObjectStitch (Song et al., 2023) 1.31 G 0.241 852 7.04 G
AnyDoor (Chen et al., 2024b) 2.45 G 0.342 2450 15.8 G
FreeCompose (Chen et al., 2024c) 1.07 G 1.912 678 5.79 G
OmniPaint (Yu et al., 2025) 12.1 G 1.516 33035 23.1 G
InsertAnything (Song et al., 2025) 0.52 G 1.379 20955 9.62 G

Ours 2.74 G 0.316 2685 18.1 G
Ours (with 3D reconstruction) 4.66 G 0.491 4512 23.1 G

K.2 VIRTUAL TRY-ON

We provide comparison results on the VITON-HD testing set in Figure 22. Zoom-in insets of the
waistline highlight that our method maintains boundary fidelity under occlusions and nonrigid defor-
mations, whereas competing methods exhibit seam breakage, color bleeding and ghosting artifacts.

K.3 IMAGE RECOMPOSITING

We provide additional comparison results on the LVIS validation set in Figure 23.

L LLM USAGE

We used ChatGPT 5 solely as a general-purpose writing assistant for minor phrasing as well as
grammar and spelling corrections. The LLM did not contribute to research ideation, dataset design,
model architecture, experiments, analyses, or conclusions, and it was not used to generate code,
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ObjectStitch AnyDoorPbE ControlCom FreeCompose OmniPaint InsertAnything

Figure 21: Qualitative comparisons for in-the-wild compositing, highlighting spatial relations: sup-
port, containment, occlusion, and deformation, corresponding to the teaser figure.

Table 7: Typical artifacts observed in the pairwise compositing results of Figure 21.

Sample Paint-by-Example ControlCom ObjectStitch AnyDoor

1 Seat surface missing Seat distorted, fused
with backpack

No physical placement
supported Seat surface disappeared

2 Holder shortened,
pen style changed

Pen attached on side
of holder

Pen attached on side
of holder

Pen attached on side
of holder

3 Artifacts between
backpacks

Back one occludes
front one

Right backpack shows
left backpack’s color

Back one occludes
front one

4 Toy style changed,
backpack deformed

Contact region
distorted

Toy style changed,
contact region unrealistic

Toy not physically
touching blanket

5 Vase shape altered Vase not placed
upright

Vase not placed
upright

Vase and flowers both
tilted

6 Banana turned into apple,
no basket shadow

Banana fused with
basket front

Banana placement
caused basket gap

Banana partly fused
with basket

7 Features of both human
and sofa not preserved

Strange artifacts in
occluded sofa region Human leg splits sofa Both human and sofa

shapes unrealistic

8 Distorted leg Fair Distorted leg Fair

figures, or results. All technical content, equations, and claims were written and verified by the
authors, who accept full responsibility for the paper. No confidential data were shared with the
LLM, and any suggested text was reviewed and revised by the authors. The LLM is not an author.
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Figure 22: Qualitative comparison on the VITON-HD.
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Figure 23: Additional qualitative comparison on the LVIS validation set.
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