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ABSTRACT

Detecting illicit cryptocurrency transactions is hampered by extreme class im-
balance, adversarial obfuscation, and a scarcity of reliable labels. While semi-
supervised learning (SSL) offers a promising solution by leveraging unlabeled
data, we show that its success is not guaranteed by data volume alone but is
contingent on data quality. We introduce an SSL framework for identifying il-
licit flows in Bitcoin’s Shared Send Mixers (SSMs) and make three contributions:
(1) The first complete historical dataset of 163 million Bitcoin transactions with
SSM classification; (2) Novel, high-fidelity features—KeyLinker address cluster-
ing and Shared Send Untangling (SSU) complexity metrics—designed to capture
mixing structures and improve data quality; (3) A demonstration that SSL effec-
tively leverages unlabeled data (F1-score: 0.84) precisely when guided by these
quality-focused features. Crucially, we prove that common heuristics like One-
Time Change (OTC), though abundant, introduce noise, while strategic reliance
on higher-fidelity features like KeyLinker is essential. Our work establishes that
in blockchain forensics, the path to better performance lies in smarter feature en-
gineering for data quality, not just larger datasets.
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1 INTRODUCTION

Bitcoin’s decentralized architecture provides users with pseudonymity through cryptographic ad-
dresses, enabling financial autonomy without intermediaries. While this design upholds privacy
principles, it has inadvertently facilitated illicit activities including money laundering, terrorist fi-
nancing, darknet markets, and scam operations. According to |Chainalysis| (2025) Crypto Crime
Report, illicit cryptocurrency addresses generated $40 billion in 2024, representing 0.14% of total
network transactions. This persistent misuse underscores the critical need for effective blockchain
forensic methods.

The Unspent Transaction Output (UTXO) model forms Bitcoin’s transactional backbone [Nakamoto
(2008)); |Delgado-Segura et al.| (2019); |Lipton & Treccani| (2021)), where each transaction consumes
existing outputs and creates new ones. Like physical banknotes, users must provide inputs cover-
ing both payment amount and miner fees, enabling privacy techniques while complicating tracing
efforts. This model enables privacy-enhancing techniques like CoinJoin Maxwell| (2013) while si-
multaneously complicating transaction tracing.

CoinJoin, a prominent transaction-mixing protocol introduced in 2013, exemplifies the dual-use
challenge of privacy technologies. By aggregating multiple payments into a single transaction, it
severs observable links between senders and receivers through input-output obfuscation. While
serving legitimate privacy needs, this Shared Send Mixer (SSM) technique is weaponized by crim-
inals to conceal illicit fund flows from wash trading, darknet markets, and ransomware operations
European Union Agency for Law Enforcement Cooperation| (2020;[2021). The computational hard-
ness of untangling these transactions |Atlas| (2014); [Yanovich et al.| (2016) creates analytical blind
spots for law enforcement.
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Existing detection methodologies show promise yet face fundamental limitations. While graph neu-
ral networks (GNNs) and ensemble methods achieve over 90% accuracy in conventional flows, these
supervised approaches require extensive labeled datasets—a critical barrier for analyzing mixed trans-
actions due to CoinJoin’s inherent complexity and the scarcity of reliable ground truth. This creates
a fundamental impasse for supervised learning: the most complex and consequential transactions
(mixed flows) have the least available reliable ground truth, making them a quintessential chal-
lenge for semi-supervised and weakly-supervised methods. This creates a paradox: the transactions
requiring the most scrutiny have the least reliable labels, suggesting that the prevailing focus on
acquiring more data must be complemented by a focus on improving the quality of the data we
have. We acknowledge that off-chain labeling sources may introduce inaccuracies in illicit transac-
tion classification (particularly for nuanced activities like scam operations), but prioritize transparent
replication through publicly verifiable data. Semi-supervised learning presents a compelling alter-
native by leveraging both limited labeled data and abundant unlabeled records, as demonstrated in
financial fraud detection|Yin & Vatrapu|(2017) and network anomaly analysis Zhang et al.| (2020).

This study advances CoinJoin transaction forensics through three primary contributions, reframing
the problem from one of data quantity to data quality:

1. The Foundation: A Comprehensive Dataset. We provide the raw quantity: the first
complete historical dataset of CoinJoin transactions through synergistic integration of on-
chain analysis and off-chain metadata spanning Bitcoin’s entire history.

2. The Enabler: Novel Forensic Features. We introduce the tools to extract quality from
quantity: KeyLinker Smolenkova & Yanovich (2025), an address clustering technique
leveraging cryptographic key reuse patterns, and enhanced Shared Send untangling met-
rics |[Larionov & Yanovich| (2023) specifically designed to decode mixed transaction struc-
tures and generate high-fidelity signals.

3. The Proof: A Quality-Driven Semi-Supervised Framework. We demonstrate that a
semi-supervised learning framework outperforms supervised baselines by leveraging unla-
beled data strategically. Crucially, we show that its success is contingent on the quality of
features (e.g., KeyLinker vs. OTC) rather than the sheer volume of pseudo-labels, proving
that performance is driven by data quality.

The remainder of this paper is structured as follows: Section [2| examines Bitcoin’s UTXO trans-
action model and key anonymization techniques. Section [3] analyzes existing blockchain forensic
approaches and CoinJoin detection challenges. Section [ formally defines the illicit transaction
identification problem and evaluation framework. Section [5]details our three-phase approach com-
bining transaction clustering, feature engineering, and semi-supervised learning. Section [§] presents
comparative results across multiple detection paradigms. We conclude with policy implications and
future research directions in Section 7]

2 BACKGROUND: BITCOIN ANONYMIZATION TECHNIQUES

2.1 TRANSACTION MODEL

Bitcoin operates under a UTXO (Unspent Transaction Output) model, where each transaction con-
sumes previous outputs as inputs and produces new outputs. Each output is associated with a script
defining the conditions for spending. This design facilitates transaction chaining and allows for
flexible ownership and payment schemes. However, the visibility of all transactions on the public
blockchain also means that the flow of funds can be observed and analyzed.

As shown in Figure[I] the UTXO model’s inherent transparency enables three principal privacy leak-
age vectors: address reuse across transactions, wallet fingerprinting through deterministic address
generation patterns, and metadata exposure via spending timing analysis. These vulnerabilities have
spawned various obfuscation techniques, creating an ongoing arms race between privacy-seeking
users and blockchain analysts.
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Alice’s wallet . Bob's wallet
Transaction

oouie UTXON!  02BIC
UTXO Nel + UTXO Ne2
Total: 4.7 BTC

UTXO No2 3 BTC

Outputs
NEW UTXO: 4.2BTC — UTXON3 0.1 BTC
- NEW UTXO: 0.49 BTC
Fee: 0.01 BTC

Figure 1: Bitcoin UTXO transaction model. Each transaction consumes previous outputs and creates
new ones, enabling traceability but also exposing privacy leaks (e.g., address reuse, timing analysis).

2.2 ADDRESS CLUSTERING HEURISTICS

Despite the pseudonymous nature of Bitcoin addresses, certain heuristics make it possible to infer
when multiple addresses are likely controlled by the same entity (Figure [2). The most widely used
is the Common Spending (CS) heuristic, which assumes that if several addresses appear together
as inputs in a transaction with a single output, they must belong to one user—since signing requires
access to the corresponding private keys.

A second, equally influential method is the One-Time Change (OTC) heuristic. In a typical trans-
action, one output represents the actual payment while another returns change to the sender. If this
change address is used only once, it provides a strong clue about wallet ownership and behavior.

These heuristics underpin most clustering techniques and have been validated in academic literature
and blockchain analytics platforms.

Ist address 3rd address Ist address 3rd address

Transaction Transaction

Inputs Inputs
UTXO Nel + UTXO Ne2 UTXOXel  10BTC UTXO Nel
Total: 14 BTC Total: 10 BTC

Outputs

2nd address Outputs

UTXO Nel 4BTC

NEW UTXO: 8 BTC

2nd address
NEW UTXO: 13.9 BTC UEOEE BOEE il UTXON2 § BTC
Fee: 0.1 BTC | NEW UTXO: 1.9 BTC
UTXONal  19BTC Fee: 0.1 BTC

(a) Example of address clustering using CS heuristic. (b) Example of address clustering using OTC heuris-
Ist address and 2nd address are owned by a single wal- tic. 1st address and 2nd address are owned by a single
let. wallet.

Figure 2: Comparison of address clustering heuristics.

2.3 SHARED SEND MIXER TRANSACTIONS

Shared Send refers to a class of anonymization techniques based on the CoinJoin concept. In Coin-
Join, multiple users collaboratively create a single transaction where inputs and outputs are pooled
together. This makes it difficult to determine which output belongs to which input, thus obfuscating
the flow of funds.

A Shared Send transaction typically features many inputs and multiple outputs of the same denom-
ination. These transactions are often constructed using special-purpose wallets or services (e.g.,
Wasabi Wallet) designed to facilitate anonymity.

Such transactions appear organically on the blockchain due to growing user adoption of privacy
tools. However, they can also be used by illicit actors to obfuscate traces of illegal activity, such as
darknet market payments or ransomware.

Despite their goal of anonymity, Shared Send transactions are subject to partial deanonymization.
For example, when not all output values are identical, it becomes easier to determine the relationship
between input and output data. Alternatively, users participating in multiple CoinJoins with similar
behavior may be grouped together.
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Within the SSU framework [Larionov & Yanovich|(2023), transactions fall into five categories. Some
are regular, with too few inputs or outputs (less than two) to require untangling. Others are simple,
where the mapping from inputs to outputs is uniquely identifiable. More complex cases may be
separable, neatly divided into separate, non-overlapping subgroups of senders and receivers. Still
others remain ambiguous, where multiple plausible mappings exist between inputs and outputs, or
even time-limited, where the computational effort required to untangle them is prohibitively high.

Understanding these patterns is crucial for robust detection of anonymization schemes and building
resilient forensic models.

3 RELATED WORK

Since its inception, privacy preservation has been one of the main advantages of the Bitcoin
blockchain [Nakamoto| (2008). This system allows its users the ability to carry out transactions
directly between participants without intermediaries, enhancing privacy. The participants of the net-
work are hidden behind pseudonymous addresses, which are not directly related to real identities.
However, these features also create a favorable environment for illicit activities, including money
laundering, terrorist financing, and illicit trade.

While user addresses are pseudonymous, the public availability of data on all transactions provides
an opportunity to analyze it, enabling its utilization for research. Early research in this sphere exam-
ined the privacy of Bitcoin network users |Androulaki et al.|(2013)) and the potential for conducting
deanonymization through topological analysis of the transaction graph |Vallarano et al.| (2020), thus
illustrating the complex balance between anonymity and transparency.

CoinJoin [Maxwell| (2013)) significantly enhances anonymity by combining transactions from mul-
tiple users into a single transaction, making it difficult to trace transaction inputs and outputs. How-
ever, this same feature can be exploited by criminals to obfuscate the origins and distribution of
illicit funds. Studies on CoinJoin and ’Shared Send’ transactions |Yanovich et al.| (2016); |[Larionov:
& Yanovich| (2023; 2024)) demonstrate the inherent complexities in deconstructing mixed transac-
tions, complicating differentiation between privacy-seeking users and criminals.

In parallel, address clustering—the process of linking pseudonymous blockchain addresses to real-
world entities—has evolved considerably, transitioning from early heuristic-based techniques to so-
phisticated machine learning-driven methodologies [Ermilov et al. (2017); [Moser & Narayanan
(2022); [Liu et alf (2023)), significantly improving the accuracy of detecting concealed links. Re-
cent advancements include semi-supervised graph neural networks (GNNs), trained on a dataset of
13 million transactions, have achieved a remarkable 92% accuracy in binary classification of illicit
activity |Nerurkar| (2022). Similarly, gradient-boosted ensemble models have demonstrated excep-
tional performance, successfully categorizing users into 16 distinct classes (e.g., darknet markets,
mixing services) with an accuracy of 91% Nerurkar et al.| (2021)).

Mixing services specifically aim to obscure fund flows. Initial detection relied on statistical and
heuristic methods. With advancements in machine learning and graph analysis, identifying these
mixers became more efficient. A notable example includes decision trees that have been optimized
via reduced-error pruning, which can detect an impressive 97% of mixing services while relying
on just 8 key transaction features, such as activity frequency and UTXO age |[Rathore et al.| (2022).
Comparative studies of various classification algorithms (Decision Trees, Random Forest, SVM)
show that ensemble methods like Random Forest often achieve high accuracy (up to 90%) in de-
tecting suspicious transactions Alarab et al.| (2020). Systematic reviews report overall recognition
accuracies of up to 87% |Lin et al.| (2022]).

Deep neural networks also demonstrate high accuracy in detecting hidden patterns distinguishing
regular transactions from those involving mixing services|Yin & Vatrapu|(2017);|Nan & Tao| (2018)).
Recent innovations include metapath-aware graph neural networks that encode heterogeneous trans-
action features, demonstrated a 7% improvement in money laundering detection precision compared
to GNNs Song & Gu! (2023)), and hypergraph-based models like CENSor, hypergraph-based model
that integrates Cluster-GCN embeddings with Random Forest classifiers to achieve robust illicit
transaction detection |Lee et al.|(2024). Furthermore, advanced clustering techniques have proven
particularly valuable for uncovering organized criminal networks involved in money laundering op-
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erations. These methods can identify criminal communities within blockchain transaction graphs
and reveal key nodes that frequently interact with CoinJoin transactions |Wahrstitter et al.| (2023).

A particularly promising line of research in blockchain analytics has focused on enhancing the ef-
ficiency and accuracy of Bitcoin address classification through novel feature selection methodolo-
gies. Among recent innovations in this field, the paper |Sie et al.| (2024) proposes a feature selection
method that combines quantum computation principles with classical machine learning. By lever-
aging quantum-inspired algorithms, the authors achieve state-of-the-art results for classifying illicit
and licit addresses on large Bitcoin datasets, further underlining the value of feature engineering and
dimensionality reduction in transaction forensics.

4 PROBLEM STATEMENT

We formulate the illicit transaction detection task as a binary classification problem over Bitcoin
transactions. Let 7 denote the universe of all Bitcoin transactions. Our goal is to learn a classifier
f T — {0,1}, where f(t) = 1 indicates that transaction ¢t € T is illicit (e.g., associated with
mixing services, darknet markets, or scams), and f(¢) = 0 otherwise.

Each transaction ¢ € T is represented through its native UTXO structure:

s T, = {(an, A,)}N_;: Input UTXO multiset, where a,, € R> is the scalar input amount
and A,, € A is the source address

o Oy = {(by, By)}M_,: Output UTXO multiset, where b,,, € R> is the output amount
and B,, € A is the destination address.

Addresses carry semantic tags from external sources and clustering heuristics:
Tag: A— (LU{Ll}) x (CU{L}),

where £ = {exchange, mixer, darknet, gambling, . ..} are entity labels, C = {illicit, licit} are legiti-
macy labels, and | indicates missing labels. Tags propagate through clustering relationships (~):

VA, Ale A: A~ A" = Tag(A) = Tag(4")

The clustering relationship is established by KeyLinker public key associations, CS and OTC heuris-
tics.

Bitcoin transactions may contain repeated addresses in their inputs and outputs—a potentially useful
characteristic for classification. We preserve this raw UTXO structure while enabling complexity
analysis through strategic simplification [Yanovich et al.| (2016): ¢ — tgnm = Simplify(¢). This
mapping groups UTXOs by addresses and their clustering relationships exclusively to determine
the transaction’s untangling class x(t) € {regular, simple, separable, ambiguous, time-limit} and
untangling-related features. The x(t) classification feeds into the feature engineering pipeline as
critical SSU attributes, while the original address repetitions remain preserved in Z; and O, for
feature extraction.

5 METHODOLOGY

Our methodology is designed to identify illicit CoinJoin transactions in the Bitcoin blockchain by
leveraging both supervised and semi-supervised learning techniques, enhanced by heuristic clus-
tering and extensive feature engineering. Our methodological approach encompasses several key
stages: dataset collection, labeling, feature engineering and semi-supervised classification model-
ing.

5.1 DATA COLLECTION, LABELING AND FEATURE ENGINEERING

The dataset includes Bitcoin blockchain data collected from the Bitcoin Core up to block 882,421
(dated February 6, 2025). To enhance our analysis, we integrated address labels from services
including WalletExplorer, Elliptic++ Dataset, MBAL Dataset, and Kaggle datasets (ChainToolAlL;
Garin| categorizing addresses by service type (exchanges, mixers, gambling, services, and mining
pools) and their legality.
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Table 1: Comprehensive dataset statistics.

Transactions Addresses
Total 1,150.9M Total 1,370.1M
Labeled 161.2M Labeled 39.0M
CoinJoin 163.4M KeyLinker 131.4K
Labeled CJ 4.6M CS Heuristic 859.0M
OTC Tx 188.9M OTC Heuristic 472.3M

SSU complexity classification (transactions)

Simple (SSU_1) 99.1IM Separable (SSU_2) 24.2M

Ambiguous (SSU_3) 10.5M Time-limit (SSU_4) 5.4M

Regular (SSU.S) 24.3M

Legality labels Service categories

licit 33.2K Service 18.2M

Legal 251.1K Exchange 114.7M
Gambling 13.2M
Mixer 11.5M
Mining 1.IM

Our dataset comprises approximately 1.15 billion transactions, out of which 163 million are Coin-
Join transactions, with 4.6 million explicitly labeled (Table [I)). The dataset contains 1.37 billion
unique Bitcoin addresses, includes 33,229 illegal and 251,083 legal addresses.

We manually resolved duplicates and conflicting labels, addressing ambiguities such as addresses
tagged simultaneously as mixers and exchanges. Addresses were grouped using basic heuristic
methods such as CS and OTC. However, a clustering approach based on the reuse of public keys,
KeyLinker Smolenkova & Yanovich| (2025)), was also used. Upon acceptance, we will release our
dataset.

For models training, we designed four groups of features. The first captures UTXO attributes, such
as the average lifetime of outputs and the number of inputs and outputs. The second group focuses
on transaction values, from basic sums and fees to more nuanced indicators like the market con-
centration index. The third group measures address-level behavior, for instance, whether addresses
repeat across inputs and outputs. Finally, we extend the feature set with specialized attributes: SSU
complexity labels and off-chain service associations (exchanges, miners, mixers, gambling and ser-
vice).

Continuous features were normalized via StandardScaler, categorical features were represented by
one-hot coding, and class imbalances were compensated using class weighting in the models.

5.2 THE DATA QUALITY PRINCIPLE FOR PSEUDO-LABELING

Contrary to the standard SSL approach of labeling all high-confidence predictions, we adopt a strate-
gic approach informed by our feature analysis. We hypothesize that not all pseudo-labels are equally
valuable; the quality of a pseudo-label is intrinsically linked to the quality of the features used to
generate it. Specifically, we prioritize pseudo-labels derived from two sources of high-fidelity signal:

1. Transaction Structural Quality: Transactions that are more easily untangled (e.g., SSU
Simple and Separable classes) provide cleaner structural patterns for the model to learn
from, compared to Ambiguous or Time-Limited transactions.

2. Clustering Heuristic Quality: Pseudo-labels associated with addresses clustered by high-
fidelity methods like KeyLinker (based on cryptographic proof) are more reliable than those
from noisier heuristics like OTC.

This principle ensures our expanded training set is not just larger, but better, with a higher proportion
of high-quality, reliable examples that enhance learning rather than introducing noise.

5.3 CLASSIFICATION FRAMEWORK

We partitioned the labeled dataset of 4.62 million CoinJoin transactions into training (80%), valida-
tion (10%), and test sets (10%), maintaining class proportions.
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Given the high class imbalance illicit CoinJoin transactions constitute only about 12% of the labeled
dataset—accuracy is not an appropriate performance measure. A trivial classifier that always predicts
“legal” achieves high accuracy but no utility for forensic analysis.

Models trained included Random Forest, XGBoost, and CatBoost. Model performance was assessed
using ROC AUC, Precision-Recall AUC, Fl-score, precision, and recall metrics. We optimized for
the F1-score to balance precision and recall.

We used stratified 5-fold cross-validation on the training set, with class weights set to balanced in
all classifiers. Oversampling methods such as SMOTE or ADASYN were deliberately not applied,
as pseudo-labeling later introduces new positive examples.

PSEUDO-LABELING

We exploit the pool of unlabeled CoinJoin transactions through a selective pseudo-labeling scheme.
The trained classifier is applied to the unlabeled transaction pool, and in each batch only the most
confident predictions are retained. Rather than relying on fixed thresholds, we select the top fraction
of samples on both sides of the decision boundary, adjusting the share of positives and negatives.

After collection, the pseudo-labeled dataset is merged with the original training data. The final ex-
panded dataset is then used to retrain the model, extending its control without introducing excessive
noise.

6 NUMERICAL EXPERIMENTS

6.1 EXPERIMENTAL PLATFORM

All experiments were conducted on a high-performance server configured with 200 GB RAM and
Intel® Core™ i9-14900KF x 32 CPUs.

6.2 SUPERVISED TRAINING PHASE

We first assess the effectiveness of our feature engineering and modeling approach in a fully super-
vised setting. The goal at this stage is to establish how well the available labeled data can distinguish
illicit from licit CoinJoin transactions, and to benchmark a set of classifiers before incorporating un-
labeled examples via pseudo-labeling.

Three model types were evaluated: XGBoost, CatBoost and Random Forest. To ensure fair compari-
son and optimal performance, we conducted stratified cross-validation for hyperparameter selection.
This systematic model selection is the basis for all following experiments.

We evaluated each model on validation and hold-out datasets. Metrics included ROC AUC, preci-
sion, recall, Fl1-score values for classification (Table 2)).

All models demonstrate a strong balance between true positive and true negative detection, with
relatively low false positive rates.

The inclusion of REUSE (key reuse), CS (common spending) features leads to measurable gains in
all performance metrics, confirming their critical importance for transaction forensics. Adding OTC
features reduced metrics, while combining all features without OTC yielded the best results.

XGBoost achieves the best supervised performance with an Fl-score of 0.845 (de-
fault+reuse+cs+ssu) and ROC-AUC = 0.970, closely followed by CatBoost (F1-score up to 0.830).

Recall is of great importance in this context: missing an illegal transaction is fraught with undetected
criminal flows, while high accuracy is necessary to avoid overloading analysts due to false positives.
The excellent Fl-scores and balanced confusion matrices for the most efficient ensemble models
demonstrate their ability to find this balance.
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Table 2: Metrics by feature set for all models.

Model Features Metrics

DEFAULT REUSE CS OTC SSU Precision Recall Fl-score ROC AUC

v 0.929 0.689 0.791 0.958
v v 0.929 0.730 0.818 0.966
v v v 0.930 0.740 0.824 0.969
CatBoost v v v v 0.928 0.740 0.823 0.967
v v 0.926 0.705 0.800 0.960
v v v v 0.936 0.746 0.830 0.970
v v v v v 0.930 0.745 0.827 0.968
v 0.875 0.762 0.814 0.959
v v 0.888 0.790 0.837 0.967
v v v 0.897 0.796 0.844 0.970
XGBoost v v v v 0.895 0.792 0.841 0.968
v 0.882 0.767 0.821 0.961
v v v v 0.900 0.792 0.842 0.970
v v v v 0.901 0.788 0.840 0.969
v 0.883 0.739 0.804 0.957
v v 0.906 0.743 0.816 0.962
v v v 0.899 0.769 0.829 0.967
RandomForest v v v v 0.908 0.739 0.825 0.960
v 0.893 0.731 0.805 0.957
v v v v 0.901 0.769 0.830 0.967
v v v v 0.907 0.744 0.818 0.962

6.3 SEMI-SUPERVISED LEARNING WITH PSEUDO-LABELING

While supervised models performed robustly, the vast pool of unlabeled CoinJoin transactions
presents an opportunity for further improvement. Informed by our analysis that data quality is
paramount (Section [5.2), we employ a selective pseudo-labeling scheme. The trained classifier is
applied to the unlabeled transaction pool, and we retain only the most confident predictions, which
are disproportionately found in the more tractable SSU complexity classes. This ensures the ex-
panded training dataset has a higher proportion of ’quality’ examples. Rather than relying on fixed
thresholds, we select the top fraction of samples on both sides of the decision boundary, adjusting
the share of positives and negatives.

As shown in Table [3] performance remained stable across models with Fl-scores around 0.81—
0.84 and ROC AUC values near 0.97. Crucially, the best results were consistently achieved with
the Default+REUSE+CS+SSU feature set—the same combination identified as high-quality in
supervised experiments. In contrast, adding the noisier OTC features degraded performance, even
though it increased the number of pseudo-labels. This confirms that SSL gains depend not on dataset
expansion alone, but on the quality of the features guiding pseudo-label selection.

XGBoost remained the most robust across both supervised and SSL settings, showing the small-
est precision drop and stable F1-scores. CatBoost exhibited similar trends but with slightly lower
precision, while Random Forest benefited least from pseudo-labeling, sometimes showing small
degradations.

Pseudolabeling slightly increased recall (up to +0.03) while reducing precision (from -0.04 to -0.05).
In practice, this means that the model detected more illegal transactions, but at the cost of introducing
additional false positives. For forensic analysis, this compromise is often acceptable: recall is crucial
to identify hidden illegal flows, while a small increase in the number of false positives can be handled
by analysts.

The semi-supervised phase did not produce dramatic metric gains, but it reinforced our central
claim that quality-focused features determine the effectiveness of SSL. When guided by reliable
signals (KeyLinker, SSU), pseudo-labeling improves robustness; when expanded with noisy heuris-
tics (OTC), additional data harms performance.
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Table 3: Metrics by feature set for semi-supervised learning with pseudo-labeling.

Model Features Metrics

DEFAULT REUSE CS OTC SSU Precision Recall Fl-score ROC AUC

v 0.848 0.759 0.801 0.956
v v 0.873 0.775 0.821 0.964
v v v 0.866 0.795 0.829 0.966
CatBoost v v v v 0.866 0.788 0.825 0.964
v v 0.856 0.764 0.807 0.958
v v v v 0.868 0.803 0.834 0.968
v v v v v 0.874 0.788 0.829 0.966
v 0.865 0.757 0.807 0.957
v v 0.891 0.779 0.832 0.966
v v v 0.887 0.796 0.839 0.969
XGBoost v v v v 0.892 0.787 0.836 0.966
v 0.873 0.763 0.814 0.959
v v v v 0.897 0.797 0.845 0.969
v v v v 0.890 0.787 0.836 0.967
v 0.853 0.757 0.802 0.955
v v 0.875 0.762 0.814 0.961
v v v 0.877 0.781 0.826 0.965
RandomForest v v v v 0.870 0.765 0.814 0.959
v 0.858 0.751 0.801 0.955
v v v v 0.882 0.777 0.826 0.965
v v v v 0.872 0.768 0.817 0.960

7 CONCLUSION

This work demonstrates that effective detection of illicit cryptocurrency transactions requires prior-
itizing data quality over data quantity. We have shown that simply acquiring more labeled data is
insufficient—successful detection depends on strategic feature engineering to enhance data quality,
particularly in complex domains like blockchain forensics where reliable labels are scarce.

Our novel features, including the KeyLinker clustering technique based on cryptographic key reuse
patterns and the Shared Send Untangling complexity metrics, provided the means to measure and
improve data quality. These high-fidelity features significantly outperformed traditional heuristics,
confirming that feature quality substantially outweighs feature quantity in illicit transaction detec-
tion. Our semi-supervised learning framework further proved that models trained on strategically
expanded high-quality data outperform those trained on larger, noisier datasets.

These findings advance blockchain forensic methodology by establishing that gradient-boosted
models, particularly XGBoost, provide the most robust performance for capturing Bitcoin’s com-
plex transaction patterns. More importantly, we demonstrated that quality-aware semi-supervised
learning successfully leverages Bitcoin’s inherent pseudonymity to overcome label scarcity, but only
when guided by high-fidelity features rather than simple confidence thresholds.

This work establishes a foundation for next-generation blockchain forensics that balances effective
illicit flow detection with respect for legitimate privacy interests. Future work should develop more
advanced quality assessment metrics, explore noise-resistant learning architectures, and implement
real-time quality evaluation systems for blockchain-scale analysis. By shifting the focus from data
quantity to data quality, our approach opens new pathways for effective analysis in challenging,
adversarial domains.
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