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ABSTRACT

The prediction of quantum mechanical properties is historically plagued by a
trade-off between accuracy and speed. Machine learning potentials have previ-
ously shown great success in this domain, reaching increasingly better accuracy
while maintaining computational efficiency comparable with classical force fields.
In this work we propose TorchMD-NET, a novel equivariant Transformer (ET)
architecture, outperforming state-of-the-art on MD17, ANI-1, and many QM9 tar-
gets in both accuracy and computational efficiency. Through an extensive atten-
tion weight analysis, we gain valuable insights into the black box predictor and
show differences in the learned representation of conformers versus conforma-
tions sampled from molecular dynamics or normal modes. Furthermore, we high-
light the importance of datasets including off-equilibrium conformations for the
evaluation of molecular potentials.

1 INTRODUCTION

Quantum mechanics are essential for the computational analysis and design of molecules and materi-
als. However, the complete solution of the Schrödinger equation is analytically and computationally
not practical, which initiated the study of approximations in the past decades (Szabo & Ostlund,
1996). A common quantum mechanics approximation method is to model atomic systems accord-
ing to density functional theory (DFT), which can provide energy estimates with sufficiently high
accuracy for different application cases in biology, physics, chemistry, and materials science. Even
more accurate techniques like coupled-cluster exist but both still lack the computational efficiency
to be applied on a larger scale, although recent advances are promising in the case of quantum
Monte Carlo (Pfau et al., 2020; Hermann et al., 2020). Other methods include force-field and semi-
empirical quantum mechanical theories, which provide very efficient estimates but lack accuracy.

The field of machine learning molecular potentials is relatively novel. The first important contri-
butions are rooted in the Behler-Parrinello (BP) representation (Behler & Parrinello, 2007) and the
seminal work from Rupp et al. (2012). One of the best transferable machine learning potentials for
biomolecules, called ANI (Smith et al., 2017a), is based on BP. A second class of methods, mainly
developed in the field of materials science and quantum chemistry, uses more modern graph convo-
lutions (Schütt et al., 2018; Unke & Meuwly, 2019; Qiao et al., 2020; Schütt et al., 2021). SchNet
(Schütt et al., 2017b; 2018), for example, uses continuous filter convolutions in a graph network
architecture to predict the energy of a system and computes forces by direct differentiation of the
neural network against atomic coordinates. Outside of its original use case, this approach has been
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extended to coupled-cluster solvers (Hermann et al., 2020) and protein folding using coarse-grained
systems (Wang et al., 2019; Husic et al., 2020; Doerr et al., 2021). Recently, other work has shown
that a shift towards rotationally equivariant networks (Anderson et al., 2019; Fuchs et al., 2020;
Schütt et al., 2021), particularly useful when the predicted quantities are vectors and tensors, can
also improve the accuracy on scalars (e.g. energy).

Next to the parametric group of neural network based methods, a nonparametric class of approaches
exists. These are usually based on kernel methods, particularly used in materials science. In this
work, we will focus on parametric neural network potentials (NNPs) because they have a scaling
advantage to large amounts of data, while kernel methods usually work best in a scarce data regime.

Previous deep learning based work in the domain of quantum chemistry focused largely on graph
neural network architectures (GNNs) with different levels of handcrafted and learned features
(Schütt et al., 2017b; Qiao et al., 2020; Klicpera et al., 2020b; Unke & Meuwly, 2019; Liu et al.,
2020; Schütt et al., 2021). For example, Qiao et al. (2020) first perform a low-cost mean-field elec-
tronic structure calculation, from which different quantities are used as input to their neural network.
Recently proposed neural network architectures in this context usually include some form of atten-
tion (Luong et al., 2015) inside the GNN’s message passing step (Qiao et al., 2020; Unke & Meuwly,
2019; Liu et al., 2020).

In this work, we introduce TorchMD-NET, an equivariant Transformer (ET) architecture for the
prediction of quantum mechanical properties. By building on top of the Transformer (Vaswani
et al., 2017) architecture, we are centering the design around the attention mechanism, achieving
state-of-the-art accuracy on multiple benchmarks while relying solely on a learned featurization
of atomic types and coordinates. Furthermore, we gain insights into the black box prediction of
neural networks by analyzing the Transformer’s attention weights and comparing latent representa-
tions between different types of data such as energy-minimized (QM9 (Ramakrishnan et al., 2014)),
molecular dynamics (MD17 (Chmiela et al., 2017) and normal mode sampled data (ANI-1 (Smith
et al., 2017b)).

2 METHODS

The traditional Transformer architecture as proposed by Vaswani et al. (2017) operates on a sequence
of tokens. In the context of chemistry, however, the natural data structure for the representation of
molecules is a graph. To work on graphs, one can interpret self-attention as constructing a fully con-
nected graph over input tokens and computing interactions between nodes. We leverage this concept
and extend it to include information stored in the graph’s edges, corresponding to interatomic dis-
tances in the context of molecular data. This requires the use of a modified attention mechanism,
which we introduce in the following sections, along with the overall architecture of our equivariant
Transformer.

The equivariant Transformer is made up of three main blocks. An embedding layer encodes atom
types Z and the atomic neighborhood of each atom into a dense feature vector xi. Then, a series of
update layers compute interactions between pairs of atoms through a modified multi-head attention
mechanism, with which the latent atomic representations are updated. Finally, a layer normalization
(Ba et al., 2016) followed by an output network computes scalar atomwise predictions using gated
equivariant blocks (Weiler et al., 2018; Schütt et al., 2021), which get aggregated into a single molec-
ular prediction. This can be matched with a scalar target variable or differentiated against atomic
coordinates, providing force predictions. An illustration of the architecture is given in Figure 1.

2.1 NOTATION

To differentiate between the concepts of scalar and vector features, this work follows a certain no-
tation. Scalar features are written as x ∈ RF , while we refer to vector features as ~v ∈ R3×F . The
vector norm ‖·‖ and scalar product 〈·, ·〉 of vector features are applied to the spatial dimension, while
all other operations act on the feature dimension. Upper case letters denote matrices A ∈ RN×M .
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Figure 1: Overview of the equivariant Transformer architecture. Thin lines: scalar features in RF ,
thick lines: vector features in R3×F , dashed lines: multiple feature vectors. (a) Transformer consist-
ing of an embedding layer, update layers and an output network. (b) Residual update layer including
attention based interatomic interactions and information exchange between scalar and vector fea-
tures. (c) Modified dot-product attention mechanism, scaling values (blue) by the attention weights
(red).

2.2 EMBEDDING LAYER

The embedding layer assigns two learned vectors to each atom type zi. One is used to encode infor-
mation specific to an atom, the other takes the role of a neighborhood embedding. The neighborhood
embedding, which is an embedding of the types of neighboring atoms, is multiplied by a distance
filter. This operation resembles a continuous-filter convolution (Schütt et al., 2017b) but, as it is
used in the first layer, allows the model to store atomic information in two separate weight matrices.
These can be thought of as containing information that is intrinsic to an atom versus information
about the interaction of two atoms.

The distance filter is generated from expanded interatomic distances using a linear transformation
WF . First, the distance dij between two atoms i and j is expanded via a set of exponential normal
radial basis functions eRBF, defined as

eRBF
k (dij) = φ(dij) exp(−βk(exp(−dij)− µk)2) (1)

where βk and µk are fixed parameters specifying the center and width of radial basis function k.
The µ vector is initialized with values equally spaced between exp(−dcut) and 1, β is initialized
as (2K−1(1 − exp(−dcut)))−2 for all k as proposed by Unke & Meuwly (2019). The cutoff dis-
tance dcut was set to 5Å. The cosine cutoff φ(dij) is used to ensure a smooth transition to 0 as dij
approaches dcut in order to avoid jumps in the regression landscape. It is given by

φ(dij) =

{
1
2

(
cos
(
πdij
dcut

)
+ 1
)
, if dij ≤ dcut

0, if dij > dcut.
(2)

The neighborhood embedding ni for atom i is then defined as

ni =

N∑
j=1

embednbh(zj)�WF eRBF(dij) (3)

with embednbh being the neighborhood embedding function and N the number of atoms in the
graph. The final atomic embedding xi is calculated as a linear projection of the concatenated intrin-
sic embedding and neighborhood embedding

[
embedint(zi), ni

]
, resulting in

xi = WC
[
embedint(zi), ni

]
+ bC (4)

with embedint being the intrinsic embedding function. The vector features ~vi are initially set to 0.
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2.3 MODIFIED ATTENTION MECHANISM

We use a modified multi-head attention mechanism (Figure 1c), extending dot-product attention, in
order to include edge data into the calculation of attention weights. First, the feature vectors are
passed through a layer normalization. Then, edge data, i.e. interatomic distances rij , are projected
into two multidimensional filters DK and DV , according to

DK = σ(WDK

eRBF(rij) + bD
K

)

DV = σ(WDV

eRBF(rij) + bD
V

)
(5)

The attention weights are computed via an extended dot product, i.e. an elementwise multiplication
and subsequent sum over the feature dimension, of the three input vectors: query Q, key K and
distance projection DK :

Q = WQxi and K = WKxi (6)

dot(Q,K,DK) =

F∑
k

Qk �Kk �DK
k (7)

The resulting matrix is passed through a nonlinear activation function and is weighted by a cosine
cutoff φ (see equation 2), ensuring that atoms with a distance larger than dcut do not interact.

A = SiLU(dot(Q,K,DK)) · φ(dij) (8)

Traditionally, the resulting attention matrix A is passed through a softmax activation, however, we
replace this step with a SiLU function to preserve the distance cutoff. The softmax scaling factor
of
√
dk
−1

, which normally rescales small gradients from the softmax function, is left out. Work by
Choromanski et al. (2021) suggests that replacing the softmax activation function in Transformers
with ReLU-like functions might even improve accuracy, supporting the idea of switching to SiLU
in this case.

We place a continuous filter graph convolution (Schütt et al., 2017b) in the attention mechanism’s
value pathway. This enables the model to not only consider interatomic distances in the attention
weights but also incorporate this information into the feature vectors directly. The resulting repre-
sentation is split into three equally sized vectors s1ij , s

2
ij , s

3
ij ∈ RF . The vector s3ij is scaled by the

attention matrix A and aggregated over the value-dimension, leading to an updated list of feature
vectors. The linear transformation O is used to combine the attention heads’ outputs into a single
feature vector yi ∈ R384.

s1ij , s
2
ij , s

3
ij = split(Vj �DV

ij)

yi = O

 N∑
j

Aij · s3ij

 (9)

The attention mechanism’s output, therefore, corresponds to the updated scalar feature vectors yi
and scalar filters s1ij and s2ij , which are used to weight the directional information inside the update
layer.

2.4 UPDATE LAYER

The update layer (Figure 1b) is used to compute interactions between atoms (attention block) and
exchange information between scalar and vector features. The updated scalar features yi from the
attention block are split up into three feature vectors q1i , q

2
i , q

3
i ∈ RF . The first feature vector, q1i ,

takes the role of a residual around the scaled vector features. The resulting scalar feature update
∆xi of this update layer is then defined as

∆xi = q1i + q2i � 〈U1~vi, U2~vi〉 (10)

where 〈U1~vi, U2~vi〉 denotes the scalar product of vector features ~vi, transformed by linear projec-
tions U1 and U2.
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On the side of the vector features, scalar information is introduced through a multiplication between
q3i and a linear projection of the vector features U3~vi. The representation is updated with equivariant
features using the directional vector between two atoms. The edge-wise directional information
is multiplied with scalar filter s2ij and added to the rescaled vector features s1ij · ~vj . The result is
aggregated inside each atom, forming ~wi. The final vector feature update ∆~vi for the current update
layer is then produced by adding the weighted scalar features to the equivariant features ~wi.

~wi =

N∑
j

s1ij � ~vj + s2ij �
~ri − ~rj
‖~ri − ~rj‖

∆~vi = ~wi + q3i � U3~vi

(11)

2.5 TRAINING

Models are trained using mean squared error loss and the Adam optimizer (Kingma & Ba, 2017)
with parameters β1 = 0.9, β2 = 0.999 and ε = 10−8. Linear learning rate warm-up is applied as
suggested by Vaswani et al. (2017) by scaling the learning rate with ξ = step

nsteps
. After the warm-up

period, we systematically decrease the learning rate by scaling with a decay factor upon reaching a
plateau in validation loss. The learning rate is decreased down to a minimum of 10−7. We found that
weight decay and dropout do not improve generalization in this context. When training on energies
and forces, we apply exponential smoothing to the energy’s train and validation loss. New losses
are discounted with a factor of α = 0.05. See Appendix A for a more comprehensive summary of
hyperparameters.

3 EXPERIMENTS AND RESULTS

We evaluate the equivariant Transformer on the QM9 (Ramakrishnan et al., 2014), MD17 (Chmiela
et al., 2017) and ANI-1 (Smith et al., 2017b) benchmark datasets. QM9 comprises 133,885 small
organic molecules with up to nine heavy atoms of type C, O, N, and F. It reports computed geometric,
thermodynamic, energetic, and electronic properties for locally optimized geometries. As suggested
by the authors, we used a revised version of the dataset, which excludes 3,054 molecules due to
failed geometric consistency checks. The remaining molecules were split into a training set with
110,000 and a validation set with 10,000 samples, leaving 10,831 samples for testing.

Table 1 compares the equivariant Transformer’s results on QM9 with the invariant architectures
SchNet (Schütt et al., 2018), PhysNet (Unke & Meuwly, 2019) and DimeNet++ (Klicpera et al.,
2020a), the covariant Cormorant (Anderson et al., 2019) architecture and equivariant EGNN (Sator-
ras et al., 2021), LieTransformer (we compare to their best variant, LieTransformer-T3+SO3 Aug)
(Hutchinson et al., 2020) and PaiNN (Schütt et al., 2021). We use specialized output models for two
of the QM9 targets, which add certain features directly to the prediction. For the molecular dipole
moment µ, both scalar and vector features are used in the final calculation. The output MLP consists
of two gated equivariant blocks (Weiler et al., 2018; Schütt et al., 2021) with the same layer sizes as
in the otherwise used output network. The updated scalar features xi and vector features ~vi are then
used to compute µ as

µ =

∥∥∥∥∥
N∑
i

~vi + xi(~ri − ~r)

∥∥∥∥∥ (12)

where ~r is the center of mass of the molecule. For the prediction of the electronic spatial extent〈
R2
〉
, scalar features are transformed using gated equivariant blocks as described above, yielding

scalar atomic predictions xi, and multiplied by the squared norm of atomic positions

〈
R2
〉

=

N∑
i

xi‖~ri‖2 (13)

The MD17 dataset consists of molecular dynamics (MD) trajectories of small organic molecules,
including both energies and forces. In order to guarantee conservation of energy, forces are predicted
using the negative gradient of the energy with respect to atomic coordinates ~Fi = −∂Ê/∂~ri. To
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Table 1: Results on all QM9 targets and comparison to previous work. Scores are reported as mean
absolute errors (MAE). LieTF refers to the best performing variant of LieTransformers (Hutchinson
et al., 2020), i.e. LieTransformer-T3+SO3 Aug.

Target Unit SchNet EGNN PhysNet LieTF DimeNet++ Cormorant PaiNN ET
µ D 0.033 0.029 0.0529 0.041 0.0297 0.038 0.012 0.011
α a30 0.235 0.071 0.0615 0.082 0.0435 0.085 0.045 0.059
εHOMO meV 41 29 32.9 33 24.6 34 27.6 20.3
εLUMO meV 34 25 24.7 27 19.5 38 20.4 17.5
∆ε meV 63 48 42.5 51 32.6 61 45.7 36.1〈
R2
〉

a20 0.073 0.106 0.765 0.448 0.331 0.961 0.066 0.033
ZPV E meV 1.7 1.55 1.39 2.10 1.21 2.027 1.28 1.84
U0 meV 14 11 8.15 17 6.32 22 5.85 6.15
U meV 19 12 8.34 16 6.28 21 5.83 6.38
H meV 14 12 8.42 17 6.53 21 5.98 6.16
G meV 14 12 9.4 19 7.56 20 7.35 7.62
Cv

cal
mol K 0.033 0.031 0.028 0.035 0.023 0.026 0.024 0.026

Table 2: Results on MD trajectories from the MD17 dataset. Scores are given by the MAE of
energy predictions (kcal/mol) and forces (kcal/mol/Å). NequIP does not provide errors on energy,
for PaiNN we include the results with lower force error out of training only on forces versus on
forces and energy. Benzene corresponds to the dataset originally released in Chmiela et al. (2017),
which is sometimes left out from the literature. ET results are averaged over three random splits.

Molecule SchNet PhysNet DimeNet PaiNN NequIP ET

Aspirin energy 0.37 0.230 0.204 0.167 - 0.123
forces 1.35 0.605 0.499 0.338 0.348 0.253

Benzene energy 0.08 - 0.078 - - 0.058
forces 0.31 - 0.187 - 0.187 0.196

Ethanol energy 0.08 0.059 0.064 0.064 - 0.052
forces 0.39 0.160 0.230 0.224 0.208 0.109

Malondialdehyde energy 0.13 0.094 0.104 0.091 - 0.077
forces 0.66 0.319 0.383 0.319 0.337 0.169

Naphthalene energy 0.16 0.142 0.122 0.116 - 0.085
forces 0.58 0.310 0.215 0.077 0.097 0.061

Salicylic Acid energy 0.20 0.126 0.134 0.116 - 0.093
forces 0.85 0.337 0.374 0.195 0.238 0.129

Toluene energy 0.12 0.100 0.102 0.095 - 0.074
forces 0.57 0.191 0.216 0.094 0.101 0.067

Uracil energy 0.14 0.108 0.115 0.106 - 0.095
forces 0.56 0.218 0.301 0.139 0.173 0.095

evaluate the architecture’s performance in a limited data setting, the model is trained on only 1000
samples from which 50 are used for validation. The remaining data is used for evaluation and is
the basis for comparison with other work. Separate models are trained for each molecule using a
combined loss function for energies and forces where the energy loss is multiplied with a factor of
0.2 and the force loss with 0.8. An overview of the results and comparison to the invariant models
SchNet (Schütt et al., 2017b), PhysNet (Unke & Meuwly, 2019) and DimeNet (Klicpera et al.,
2020b), as well as the equivariant architectures PaiNN (Schütt et al., 2021) and NequIP (Batzner
et al., 2021) can be found in Table 2.

To evaluate the architecture’s capabilities on a large collection of off-equilibrium conformations,
we train and evaluate the equivariant Transformer on the ANI-1 dataset. It contains 22,057,374
configurations of 57,462 small organic molecules with up to 8 heavy atoms and atomic species H,
C, N, and O. The off-equilibrium data points are generated via exhaustive normal mode sampling
of the energy minimized molecules. The model is fitted on DFT energies from 80% of the dataset,
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while 5% are used as validation and the remaining 15% of the data make up the test set. Figure 2
compares the equivariant Transformer’s performance to previous methods DTNN (Schütt et al.,
2017a), SchNet (Schütt et al., 2017b), MGCN (Lu et al., 2019) and ANI (Smith et al., 2017a).

DTNN SchNet MGCN ANI ET0.00

0.02

0.04

0.06

0.08

0.10

M
A

E
 (e

V
)

0.113 0.108

0.078

0.057

0.012

Figure 2: Comparison of testing
MAE on the ANI-1 dataset in eV.
Results for DTNN, SchNet and
MGCN are provided by Lu et al.
(2019). The ANI method refers
to the ANAKIN-ME (Smith et al.,
2017a) model used for constructing
the ANI-1 dataset.

3.1 ATTENTION WEIGHT ANALYSIS

Neural network predictions are notoriously difficult to interpret due to the complex nature of the
learned transformations. To shed light into the black box predictor, we extract and analyze the
equivariant Transformer’s attention weights. We run inference on the ANI-1, QM9, and MD17 test
sets for all molecules and extract each sample’s attention matrix from all attention heads in all layers.
Attention rollout (Abnar & Zuidema, 2020) under the single head assumption is applied during the
extraction, resulting in a single attention matrix per sample. Figure 4 visualizes these attention
weights for random QM9 molecules (see Appendix F for further examples).

To analyze patterns in the interaction of different chemical elements, we average the attention
weights over each unique combination of interacting atom types (hydrogen, carbon, oxygen, ni-
trogen, fluorine). This generates two attention scores for each pair of atom types, one from the
perspective of atom type z1 attending z2 and vice versa. The attention scores are compared to the
probability of this bond occurring in the respective dataset, making sure the network’s attention is
not simply proportional to the relative frequency of the interaction. Figure 3 presents a summary of
these bond probabilities and attention scores for QM9, ANI-1, and the average attention scores for
all MD17 models. For further details, see Appendix H.

Since the equivariant Transformer is trained to predict the energy of a certain molecular conforma-
tion, we expect it to pay attention to atoms that are displaced from the equilibrium conformation, i.e.
the energy-minimized structure, of the molecule. We test this hypothesis by comparing the attention
weights of displaced atoms to those of the equilibrium conformation. Using the QM9 test set as the
source of equilibrium conformations, we displace single atoms by 0.4Å in a random direction and
compare the absolute magnitude of attention weights involving the displaced atom to the remaining
attention weights. We find increased attention for displaced carbon and oxygen atoms in all models,
however, only the model trained on ANI-1 attends more to displaced hydrogen atoms than to hydro-
gen in its equilibrium position. Attention for displaced hydrogen atoms even decreases in the model
trained on QM9, which suggests that the energy labels in QM9 do not depend strongly on the exact
location of hydrogen atoms. For a detailed overview of the results, see Appendix C.

It is interesting to see that the training dataset influences attention. For static structures, like in QM9,
attention analysis shows that very little importance is attributed to hydrogens, while core structural
atoms like carbons are very important. For datasets which have dynamical data like ANI-1 and
MD17, we see that hydrogen attended strongly. This is consistent with the fact that hydrogens are
important for hydrogen bond-type interactions and therefore important for dynamics. This suggests
that the network is not only learning meaningful chemical representation but also that training on
dynamical datasets is important.

3.2 ABLATION STUDIES

We quantify the effectiveness of the neighbor embedding layer by the change in accuracy when
ablating this architectural component. The neighbor embedding layer is replaced by a regular atom
type embedding, which we evaluate by comparing the testing MAE on U0 from QM9. The ablation
causes a drop in accuracy of roughly 6% (from 6.24 to 6.60 meV). We also try replacing the neighbor
embedding by an additional update layer as the neighbor embedding resembles a graph convolution
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Figure 3: Depiction of bond probabilities and attention scores extracted from the ET model of
TorchMD-NET using QM9 (total energy U0), MD17 (average over 8 discussed molecules) and ANI-
1 testing data. Attention scores are given as zi attending zj , bond probabilities follow the same idea,
showing the conditional probability of a bond between zi and zj , given zi. Darker colors correspond
to larger values, element pairs without data are grayed out. See Appendix G for an overview of
elemental composition in the respective datasets.

operation, which is the equivalent operation to an update layer in graph convolutional networks such
as SchNet. Here, the drop in accuracy is even more pronounced with a decrease of around 10%
(from 6.24 to 6.85 meV). However, this may also be the result of overfitting as each update layer has
about 4.6 times more parameters than a neighbor embedding layer.

The hyperparameter set used for MD17 and ANI-1 results in a model size of 1.34M trainable param-
eters, which is significantly more than recent similar architectures such as PaiNN (600k) or NequIP
(290k). To rule out the possibility that the ET results are simply caused by an increased number
of parameters, we train smaller versions of the ET, which are comparable to the size of PaiNN
and NequIP. We find that smaller versions of the ET are still competitive and outperform previous
state-of-the-art results on MD17. See Appendix D for details on the results, hyperparameters and
computational efficiency.

3.3 COMPUTATIONAL EFFICIENCY

To assess the computational efficiency of the equivariant Transformer, we measure the inference
time of random QM9 batches comprising 50 molecules (including computing pairwise distances)
on an NVIDIA V100 GPU (see Table 3). We report times for different sizes of the model, differing
in the number of update layers, the feature dimension, and the size of the RBF distance expansion.
ET-large uses the QM9 hyperparameter set, while ET-small is constructed using MD17/ANI-1 hy-
perparameters (see Table 4). The measurements were conducted using just-in-time (JIT) compiled
models. The JIT-compiled versions of ET-small and ET-large are 1.5 and 1.8 times respectively more
efficient than the raw implementation. We only measure the duration of the forward pass, excluding
the backward pass required to predict forces. The force prediction decreases inference speed by
approximately 75.9%, resulting in 39.0ms per batch using ET-small and 48.5ms using ET-large.
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Figure 4: Visualization of five molecules from the QM9 dataset with attention scores corresponding
to models trained on ANI-1, MD17 (uracil) and QM9. Blue and red lines represent negative and
positive attention scores respectively.

Table 3: Comparison of computational efficiency between PaiNN, DimeNet++ and different sizes
of TorchMD-NET ET. The time is measured at inference using random batches of 50 molecules
from QM9. Speed of ET models of TorchMD-NET is reported as mean ± standard deviation over
1000 calls. Values for PaiNN and DimeNet++ are taken from Schütt et al. (2021) so differences in
efficiency may to some degree originate from different implementations.

PaiNN DimeNet++ ET-small ET-large
time per batch 13 ms 45 ms 9.4ms ± 3.4ms 11.7ms ± 4.0ms
no. parameters 600k 1.8M 1.34M 6.87M

4 DISCUSSION

In this work, we introduce a novel attention-based architecture for the prediction of quantum me-
chanical properties, leveraging the use of rotationally equivariant features. We show a high degree
of accuracy on the QM9 benchmark dataset, however, the architecture’s effectiveness is particu-
larly clear when looking at the prediction of energies and atomic forces in the context of molec-
ular dynamics. We set a new state-of-the-art on all MD17 targets (except force prediction of the
molecule Benzene) and demonstrate the architecture’s ability to work in a low data regime. As de-
scribed in previous work (Schütt et al., 2021; Fuchs et al., 2020), the model’s vector features and
equivariance can be utilized in the prediction of variables beyond scalars. Here, only the dipole
moment is predicted in this fashion, however, the architecture is capable of predicting tensorial
properties. By extracting and analyzing the model’s attention weights, we gain insights into the
molecular representation, which is characterized by the nature of the corresponding training data.
We show that the model does not pay much attention to the location of hydrogen when trained only
on energy-minimized molecules, while a model trained on data including off-equilibrium conforma-
tions focuses to a large degree on hydrogen. Furthermore, we validate the learned representation by
analyzing attention weights involving atoms displaced from their equilibrium location. We demon-
strate that off-equilibrium conformations in the training data play an important role in the accurate
prediction of a molecule’s energy. This highlights the importance of configurational diversity in the
evaluation of neural network potentials.
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After the final review of this paper, NequIP’s preprint (Batzner et al., 2021) updated the results with
better accuracy for MD17. However, it requires using high order spherical harmonics which are
likely substantially slower than Transformer models.

SOFTWARE AND DATA

The equivariant Transformer is implemented in PyTorch (Paszke et al., 2019), using PyTorch Geo-
metric (Fey & Lenssen, 2019) as the underlying framework for geometric deep learning. Training is
done using pytorch-lightning (Falcon & The PyTorch Lightning team, 2019), a high-level interface
for training PyTorch models. The datasets QM91, MD172 and ANI-13 are publicly available and
all source code for training, running and analyzing the models presented in this work is available at
github.com/torchmd/torchmd-net.
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A ARCHITECTURAL DETAILS AND HYPERPARAMETERS

All models in this work were trained using distributed training across two NVIDIA RTX 2080 Ti
GPUs, using the DDP training protocol. This leads to training times of 16h for QM9, 10h for
MD17 and 83h for ANI-1.

Table 4: Comparison of various hyperparameters used for QM9, MD17 and ANI-1.

Parameter QM9 MD17 ANI-1
initial learning rate 4 · 10−4 1 · 10−3 7 · 10−4

lr patience (epochs) 15 30 5
lr decay factor 0.8 0.8 0.5
lr warmup steps 10,000 1,000 10,000
batch size 128 8 2048
no. layers 8 6 6
no. RBFs 64 32 32
feature dimension 256 128 128
no. parameters 6.87M 1.34M 1.34M

While the ET model follows a similar idea as the SE(3)-Transformer introduced by Fuchs et al.
(2020), there are significant architectural differences. The SE(3)-Transformer relies heavily on ex-
pensive features, such as Clebsch-Gordan coefficients and spherical harmonics while the ET model
only requires interatomic distances. Additionally, we split scalar and equivariant features into two
pathways, which exchange information inside the update layer while the SE(3)-Transformer com-
putes message passing updates for each type of feature vector (scalar or equivariant). Finally, our
modified attention mechanism and update step differ significantly from the SE(3)-Transformer’s
message passing layer, which, for example, does not handle self-interactions in the attention mech-
anism and applies only linear transformations to distance features.

B IMPORTANCE OF HYDROGEN

While the ET model trained on QM9 mostly attends to carbon atoms, models trained on molecular
dynamics trajectories show a strong focus on carbon-hydrogen interactions. This highlights the
different nature of datasets containing only energy minimized conformations in contrast to datasets
containing MD data. We further support this hypothesis by comparing the reduction in accuracy
for models, which are trained without hydrogen, on the datasets QM9 (total energy U0) and MD17
(aspirin). We show that the loss in accuracy when predicting the energy using the model trained on
MD17 is one order of magnitude larger than when training only on molecules in the ground state.
Furthermore, the accuracy of force predictions drops by another 1.5x compared to MD17 energy
predictions when excluding hydrogen. A summary of the results is given in Table 5.

Table 5: Test MAE of the TorchMD-NET ET on QM9 and MD17 (aspirin), trained with and without
hydrogen.

Dataset with hydrogen without hydrogen relative change
QM9 6.37 meV 20.83 meV 227.0%

MD17 energy 5.33 meV 137.59 meV 2481.4%
forces 10.67 meV/Å 433.99 meV/Å 3966.5%

C ATOM DISPLACEMENT

Figure 5 shows averaged absolute attention scores for molecules where a single atom has been
displaced from the equilibrium structure. This reiterates the idea that the model trained only on
equilibrium structures (QM9) focuses on carbon and neglects hydrogen. The models trained on
off-equilibrium conformations show a higher degree of attention for displaced hydrogen atoms. We
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restrict the molecules to only contain hydrogen, carbon, and oxygen in order to compare results
between models trained on QM9, MD17 (aspirin), and ANI-1.
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Figure 5: Averaged attention weights extracted from the ET on the QM9 test set (molecules con-
sisting of H, C, and O only) with a displacement of 0.4Å in single atoms. Blue bars show attention
towards atoms in equilibrium locations, orange bars correspond to attention weights involving the
displaced atom. Attention scores are normalized inside each molecule. The black bars show the
attention weights’ standard deviation.

D EQUIVARIANT TRANSFORMERS WITH REDUCED PARAMETER COUNT

We compare the ET model with a reduced number of parameters, matching those of PaiNN (600k)
and NequIP (290k), to state-of-the-art models on the MD17 benchmark. This ensures that our results
are not solely a consequence of a larger model size but correspond to an improved architecture.
The smaller ET models are still competitive and outperform state-of-the-art on most MD17 targets.
Table 6 provides an overview of the adjusted architectural hyperparameters and Table 7 summarizes
the results on MD17.

Table 6: Hyperparameter set of the full ET model compared to PaiNN- and NequIP-sized variants.
This table only includes hyperparameters that were changed.

Hyperparameter full ET PaiNN-sized ET NequIP-sized ET
no. layers 6 3 3
no. RBFs 32 16 16
feature dimension 128 120 80
no. parameters 1.34M 593k 273k
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Table 7: Energy (kcal/mol) and force (kcal/mol/Å) MAE of the PaiNN- and NequIP-sized ET mod-
els. The ”full ET” column is equal to the results in Table 2 and is meant for comparison with the
smaller ET variants. Values in bold indicate the best result out of the two models in direct compari-
son.

Molecule full ET PaiNN-sized NequIP-sized
ET (594k) PaiNN (600k) ET (273k) NequIP (290k)

Aspirin energy 0.124 0.138 0.167 0.143 -
forces 0.255 0.334 0.338 0.337 0.348

Benzene energy 0.056 0.057 - 0.063 -
forces 0.201 0.197 - 0.189 0.187

Ethanol energy 0.054 0.053 0.064 0.053 -
forces 0.116 0.112 0.224 0.123 0.208

Malondialdehyde energy 0.079 0.080 0.091 0.080 -
forces 0.176 0.209 0.319 0.218 0.337

Naphthalene energy 0.085 0.084 0.116 0.085 -
forces 0.060 0.080 0.077 0.080 0.097

Salicylic Acid energy 0.094 0.095 0.116 0.097 -
forces 0.135 0.175 0.195 0.184 0.238

Toluene energy 0.074 0.075 0.095 0.075 -
forces 0.066 0.088 0.094 0.091 0.101

Uracil energy 0.096 0.094 0.106 0.096 -
forces 0.094 0.122 0.139 0.128 0.173

E ABLATION OF EQUIVARIANT FEATURES

We perform an ablation of the TorchMD-NET ET’s equivariance and compare the performance of
the resulting rotationally invariant model to that of the equivariant Transformer. Without equivari-
ance, the MAE in total energy U0 in QM9 increases from 6.24 to 6.64 meV (6%). On aspirin inside
the MD17 benchmark, removing the equivariance causes the energy MAE to rise from 5.37 to 13.23
meV (146%), while force errors go up from 11.05 to 30.27 meV/Å (174%). As, without equivari-
ance, the error increases much more drastically on dynamical data, we hypothesize that equivariant
features are particularly useful when dealing with non-zero forces.

F MOLECULAR REPRESENTATION BY DATASET

Figures 6a, 6b and 6c show a three dimensional visualization of three random molecules from the
datasets QM9, MD17 (aspirin) and ANI-1 respectively. We extract the attention weights from the
best performing equivariant Transformer on the test sets of the three datasets respectively to make
sure that no model has seen a visualized conformation during training. The red and blue lines be-
tween atoms depict the 10 largest absolute attention weights where the line width and alpha value
represent the absolute attention weight. Red lines show positive attention weights, blue lines cor-
respond to negative attention weights, which occur due to using SiLU activations inside the atten-
tion mechanism. While the model trained on QM9 focuses largely on carbon-carbon interactions,
it is clear that models trained on MD17 and ANI-1 have a strong focus on hydrogen-carbon and
hydrogen-oxygen interactions. This corresponds to the results found in the attention weights aver-
aged over pairwise interactions between elements. The attention weights are normalized inside each
molecule.
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(a) Random molecules from the QM9 test set.
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(b) Random conformations from the MD17 test set of aspirin trajectories.
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(c) Random molecules from the ANI-1 test set.

Figure 6: Visualization of 10 largest attention weights by absolute value on random molecules from
QM9 (a), MD17-aspirin (b) and ANI-1 (c). Each column shows the same molecule, rows correspond
to the same ET model trained on QM9, MD17-uracil and ANI-1 respectively.

G FREQUENCY OF ELEMENTS

Figure 7 shows the distribution of elements in the datasets QM9, MD17 and ANI-1 where MD17
corresponds to the combination of all target molecules. It aims to assist with the interpretation of
attention scores where certain pairs of elements are largely underrepresented in the model’s attention.
This corresponds predominantly to nitrogen and fluorine as MD17 contains only a single molecule
with nitrogen (uracil) and fluorine is only found in QM9.

H C N O F
0

20

40

A
to

m
 o

cc
ur

an
ce

 (%
)

ANI-1

H C N O F

MD17

H C N O F

QM9

Figure 7: Distribution of elements in the datasets QM9, MD17 (combination of all target molecules)
and ANI-1.
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H MD17 ATTENTION WEIGHTS

Figures 8a and 8b contain the extracted rolled out attention weights for the MD17 target molecules
aspirin, benzene, ethanol, malondialdehyde, naphthalene, salicylic acid, toluene and uracil. While
the molecules show different attention patterns, a high degree of attention for hydrogen atoms is
common for most of the molecules. However, models trained on aspirin, malondialdehyde and
uracil additionally exhibit a strong focus on oxygen.

The sum over each row equals one, meaning that the probabilities represent the conditional proba-
bility

Pzi(bondzm,zn |zm = zi) =
Nbonded(zm, zn)∑

zk∈Z Nbonded(zm, zk)
(14)

where Nbonded(zi, zj) is the total number of bonds between atom types zi and zj found in the
collection of molecules.
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(a) Attention scores and bond probabilities from aspirin, benzene, ethanol and malondialdehyde.
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(b) Attention scores and bond probabilities from naphthalene, salicylic acid, toluene and uracil.

Figure 8: Bond probabilities and attention scores extracted from the ET using testing data from all
individual molecules in the MD17 dataset. Attention scores are given as zi attending to zj , bond
probabilities follow the same principle, showing the conditional probability of a bond between zi
and zj , given zi. The rightmost subfigure displays the total number of atoms for each type in the
data.

I PERFORMANCE ON REVISED MD17 TRAJECTORIES

On top of the MD17 dataset, trajectories with higher numerical accuracy were published for some
MD17 molecules. This includes aspirin at CCSD and benzene, malondialdehyde, toluene and
ethanol at CCSD(T) level of accuracy (Chmiela et al., 2018). Here, we present ET results on these
trajectories with the same training protocol as used for the original MD17 dataset (950 training
samples, 50 validation samples).

Table 8: ET results on CCSD/CCSD(T) trajectories from Chmiela et al. (2018). Scores are given by
the MAE of energy predictions (kcal/mol) and forces (kcal/mol/Å). Results are averaged over two
random splits.

Aspirin Benzene Ethanol Malondialdehyde Toluene
energy 0.068 0.002 0.016 0.024 0.011
forces 0.268 0.008 0.103 0.168 0.062
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