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Abstract

Numerous studies have demonstrated that the cognitive processes of the human
brain can be modeled using the Bayes theorem for probabilistic inference of the
external world. Spiking neural networks (SNNs), capable of performing Bayesian
computation with greater physiological interpretability, offer a novel approach
to distributed information processing in the cortex. However, applying these
models to real-world scenarios to harness the advantages of brain-like computation
remains a challenge. Recently, bio-inspired sensors with high dynamic range and
ultra-high temporal resolution have been widely used in extreme vision scenarios.
Event streams, generated by various types of motion, represent spatiotemporal
data. Inferring motion targets from these streams without prior knowledge remains
a difficult task. The Bayesian inference-based Expectation-Maximization (EM)
framework has proven effective for motion segmentation in event streams, allowing
for decoupling without prior information about the motion or its source. This
work demonstrates that Bayesian computation based on spiking neural networks
can decouple event streams of different motions. The Winner-Take-All (WTA)
circuits in the constructed network implement an equivalent E-step, while Spike
Timing Dependent Plasticity (STDP) achieves an equivalent optimization in the
M-step. Through theoretical analysis and experiments, we show that STDP-based
learning can maximize the contrast of warped events under mixed motion models.
Experimental results show that the constructed spiking network can effectively
segment the motion contained in event streams.

1 Introduction

Bayesian computation is a fundamental concept in statistics, machine learning, and computational

neuroscience [35, 3]. The Bayesian brain hypothesis suggests that the brain functions as a probabilistic
generative model, simultaneously inferring hidden causes of sensory inputs and refining its model
parameters [22, 8, 21]. Bayesian computation requires a generative model to predict observations,

formulated as the joint probability P(x, y) of observations 2 and hidden states y. This joint probability
can be decomposed into the prior P(y) and the likelihood P(z|y), which are combined using the
Bayes theorem to update the before a posterior probability P(y|x).

The brain’s inferential processes use probabilistic models to represent and update perceptions based
on new sensory input, framing perception as an active test of predictions against sensory data [1 1, 34].
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Figure 1: Comparison of EM-based Clustering and the proposed Spike-based Bayesian Computation
Methods for Event Decoupling.

Bayesian inference in the brain operates through neural circuits, where spikes encode activity, and
synaptic weights facilitate information integration. Soft-WTA circuits, found in cortical microcir-
cuits [7], support selective activation of neurons, allowing the most active neurons to suppress less
active ones, which improves computational efficiency. This competition-driven mechanism works
in tandem with STDP [4, O], which strengthens synapses based on precise spike timing, aligning
with Bayesian principles to refine predictions. This Bayesian framework has promising applications
in brain-machine interfaces and neuromorphic computing [25]. While existing frameworks demon-
strate feasibility, their application to complex, spatiotemporal tasks remains a rich area for further
exploration.

Recent advances in neuromorphic vision sensors [20, 13, 18] mimic retinal function, generating
asynchronous event streams based on light intensity changes. Unlike traditional RGB cameras, these
sensors capture motion effectively and reduce blur with high temporal resolution. Event cameras
generate events independently at each pixel, complicating data with various object movements and
camera motion. This “chicken-and-egg” problem of distinguishing and solving different motions can
be addressed using a Bayesian framework combined with the EM algorithm [1], iteratively updating
motion model probabilities.

Previous work [38, 44] has demonstrated that jointly optimizing motion parameters and updating
event-cluster membership probabilities in an EM fashion can solve motion segmentation problems.
This approach achieves per-event segmentation rather than rough region segmentation and supports
multiple motion models. The optimization of motion parameters is mainly achieved using the
Contrast Maximization (CM) algorithm [14], aligning events to a reference time similar to motion
compensation in video processing.

How can an SNN model implementing Bayesian computation decouple and segment event streams
generated by different motion patterns? Earlier spike-based EM algorithms primarily focused on
generating models for mixture distributions, such as Gaussian mixture models, where the probability
of each sample belonging to each sub-distribution is equal. In contrast, in motion segmentation, the
probability of each event stream belonging to a specific motion parameter distribution is variable.
Additionally, optimizing for mixture distributions involves maximizing the likelihood function of
each distribution given the observed samples, which differs from the objective of maximizing contrast
in event-based motion segmentation. Therefore, applying WTA circuits combined with STDP for
motion segmentation in event streams presents several challenges.

This work proposes a spike-based Bayesian computation framework for event segmentation. We
theoretically prove that the proposed framework is equivalent to previously implemented event-
based motion segmentation algorithms via motion compensation. Experimental results demonstrate
that the constructed spiking network can effectively segment motions in event streams. This work
provides a theoretical foundation for applying the Bayes theorem using spiking neural networks to
event stream decoupling tasks. We aim to provide a theoretical foundation for applying Bayesian
inference using SNNs for event stream decoupling tasks, leveraging the energy efficiency of SNNs.
This is particularly relevant for neuromorphic hardware (NMHW), e.g., Loihi [5], SpiNNaker [12]
and Tianjic [6], known for their low latency and power consumption. Neuromorphic computing
emulates the brain’s low-power yet complex visual task-processing capabilities. Previous research



validated the hypothesis that SNNs can implement Bayesian inference [29]. However, its application
to neuromorphic computing hardware remains unverified. Our work aims to validate the capability of
a spike-based Bayesian computation framework applied to neuromorphic sensors.

Contributions of this work can be summarized as follows:

* Develop a spiking Bayesian computation framework for continuous motion segmentation in
event streams, demonstrating its ability to perform similarly to previous EM algorithm-based
models.

* Show that the WTA circuit can implement the E-step and that STDP rules can achieve the
M-step for contrast maximization, validating these components’ theoretical and practical
efficacy.

* Verify the proposed network can effectively learn online from continuous input, enabling
accurate motion segmentation through the firing of output neurons.

2 Related Works

Spike-based Bayesian Computation. Spike-based Bayesian computation employs various methods
to achieve probabilistic inference and optimization in neural circuits, such as maximum likelihood or
posterior function. For example, SNNs implement Bayesian inference using belief propagation on
binary MRFs and tree-based reparameterization for exponential family distributions [3 1, 40, 41, 42],
which approximate the posterior probability. Spiking neuron-based neural sampling [2, 40] uses a
non-reversible process, like Markov chain Monte Carlo (MCMC) sampling. A particularly suitable
method for complex tasks like motion segmentation in event streams involves using WTA circuits
combined with STDP [29, 28] learning rules to implement the EM algorithm for decoupling mixture
distribution. This approach leverages the competitive dynamics of WTA circuits to estimate joint
probability distributions, offering high accuracy and robustness in learning and inference. The WTA-
STDP framework is well-suited for handling the asynchronous and event-driven nature of spiking
data, making it effective for segmenting complex motion patterns in event streams.

Event-based motion segmentation. Recent methods [26, 16, 39, 33, 27, 38] in event-based motion
segmentation leverage clustering, probabilistic models, motion compensation, and deep learning.
Cluster-based techniques group events by similar motion patterns and are simple to implement,
but may struggle with complex scenes. Probabilistic approaches, such as those using Bayesian
frameworks and the EM algorithm [38, 44], iteratively estimate motion parameters and provide
robust segmentation, though they can be computationally intensive. Motion compensation aligns
events to a reference frame to enhance sharpness (contrast) of warped events [38], offering high
accuracy, but may be sensitive to parameter initialization. Deep learning methods employ neural
networks to predict motion segments directly from raw event streams, providing high performance
and adaptability [19, 37, 27], but requiring large datasets for training. Some works [32, 43] also
attempt to use SNN for estimating motion in event streams, thereby achieving motion segmentation
or object detection. The main idea of these methods is to first convert the event stream into time-
event-like inputs, rather than directly distinguishing the event stream in the spatiotemporal dimension.
Consequently, these methods exhibit a certain lag and can easily be disturbed by camera self-motion,
which interferes with the analysis of moving objects.

3 Preliminaries

3.1 Event Cameras.

Dynamic Vision Sensors (DVS) [23] in event cameras detect brightness changes independently at
each pixel, generating events instead of capturing images at fixed intervals. An event e, = (2, tx, qr)
occurs when the intensity change AL(xy,tx) at pixel xj exceeds a threshold ©. The change in
intensity is expressed as:

AL(zy, ty) = L(wg, ty) — Lz, tp — Aly) = @0, )

where L(x,t) is the logarithmic intensity at pixel x, tj, is the event timestamp, Aty is the interval
since the last event at the same pixel, and ¢ € {—1,+1} indicates the polarity of the intensity
change. Since our work does not use event polarity, this property will not be referenced further. This



asynchronous mechanism enables event-based cameras to capture dynamic scenes with high temporal
resolution and low latency, making them ideal for real-time applications.

3.2 Event-based Motion Segmentation in EM Fashion.

In previous event-based motion segmentation algorithms, the probability that an event stream e
belongs to different motion models z is denoted as P. The motion model that generates the event is
then used to warp the event positions, resulting in a sharp Image of Warped Events IWE). The IWE
I;(x) for a given motion parameter 0; is.typically calculated by Warping events onto a specific time
plane, where x represents the pixel location, and j refers to the j-th motion model:

Ne
L) = prjd(a — ahy), ©)
k=1

where d(-) denotes the Dirac function, and py; represents the probability that event ey, belongs to
motion model z;. The Dirac function can also be replaced by a smoother kernel function, such as the
Gaussian function. z, ; 1s the transformed event position obtained using motion parameters 0;:

Ty = W(wg, te; 05). 3
The objective of the entire model is to find the motion parameters §* and the event-cluster probability

P* that maximize the variance of all IWEs corresponding to different motions:
Ny

0*,P*) = argmax » Var(l;). %)
0P = s> V)

In EM fashion, we first perform the E-step to calculate the posterior probabilities of the samples
belonging to the distribution based on the assumed model and parameters. The initial motion
parameters are used to calculate the IWE for different motions. The responsibility py; for each event
belonging to a motion model is then computed using the formula:

1 (73,(05))

~ .
>t Iz(»% (6:))
Next, in the M-step, these responsibility values are used to optimize the motion parameters, maximiz-

ing the objective function f(6). In this work, we use a different variance form to [38], but the effect
is the same. The objective function is computed as:

Prj = &)

Nz Ng
£0) = Var(l;) = > E;l2%] - Ej[a)?, ©6)
j=1 j=1
where E[z] represents the expectation process as:
1
E;lz] = — | I;(x)dxz, @)
il =y | @)
1
E;[2?] = —/ I(z)* dz. (8)
9] Jo

(2 denotes the image plane. The gradient of the variance Var([;) is given by:

OVar(I;)  OE;[x?] OE;[x]
AH == J = J —_ 2IE . J
J a6 00 T
This method effectively distinguishes event streams generated by different motions and produces a
sharp IWE. Other optimization strategies, such as the conjugate gradient method [30], can be applied
to update the motion parameters ;.

©))

4 Spike-based Bayesian Computation for Motion Segmentation

The main procedure for event-based motion segmentation involves three key steps: 1) obtaining
the IWE, 2) assigning probabilities for events corresponding to different motion models, and 3)
optimizing the motion parameters to maximize the contrast of the IWE. In our model, we use a
network with a WTA circuit to compute the IWE and the probabilities P, and we update the motion
parameters using the STDP rule. Below, we will demonstrate that our constructed model and learning
method approximates the event-based motion segmentation approach.
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Figure 2: Architecture of the spike-based motion-segmentation network.

4.1 Model Construction and Learning

E-step. The first step of event-based motion segmentation involves obtaining the IWE for different
motion parameters and then determining the event-cluster responsibility values py; by comparing the
contrast of the IWE at the corresponding positions after event warping. This operation is analogous
to a neuron competition, where the motion model that produces the highest contrast gains ownership
of the events mapped to that location. This process can be implemented using a WTA circuit, which
is how our proposed network updates the responsibility values for different events.

As shown in Fig. 2, in our network, neurons y representing different motions j are responsible for
warping events and transmitting them to the output neurons z. There is a one-to-one correspondence
between y and z. The output neuron z; follows an integrate-and-fire (IF) model [15], with the
membrane potential u; expressed as:

Ne

u;(t) = ZWj(ek,pkj;Qj), 10)
k=1

where W; represents the operation of the motion neuron y;. It is evident that by accumulating the
warped event streams, equivalent to obtaining the IWE in Eq. 2.

The output neuron z; receives feedback from a global inhibition neuron H. The value of the global
inhibition neuron is the sum of all IWE values, i.e., H(t) = >_, u;(t). Here, we use a stochastic
firing model for z;, where the firing probability depends on the membrane potential in conjunction

with the inhibition neuron H. This computation can be formulated as:

u,(t)
H(t)

p(z; fire at time t) = (11)

Unlike the WTA circuits constructed by Nessel et al. [29, 28], our output neurons form a tensor
corresponding to the event space dimensions. The synaptic parameters updated by STDP do not
represent the connection weights between scalar neurons but rather the coefficients of functions
representing the receptive fields of different motion neurons (e.g., functions that linearly transform
along the direction of motion). The concept of neurons representing tensor values has also been
applied in various works, such as in capsule networks [36].

M-step. After obtaining the network’s output, we can update the network parameters using the
STDP rule based on the relationship between the firing of z; and the input events. In our previous
definitions, the network parameters include only the motion parameters 6;. The probability py; is
derived from the firing probability of the output neurons and is also used as the input for the next step
in the network training process.

According to the STDP rule, if the firing of the presynaptic neuron leads to the firing of the post-
synaptic neuron, their synaptic weight is increased, corresponding to long-term potentiation (LTP).
Otherwise, the synaptic weight is decreased, corresponding to long-term depression (LTD). The
synaptic weight is updated as follows:

6 — p(presynaptic neuron fired within [t' — o, '] | postsynaptic neuron fires at t').  (12)
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Figure 3: llustration of learning through STDP. (a). Learning curves of STDP for motion parameters
6. (b). Optimization trajectory of parameters during STDP learning. The heat map shows the gradient
of f(0) in Eq. 6 as motion parameters change.

In this context, the probability of firing between the presynaptic event e and the postsynaptic neuron
z is positively correlated with their association probability py;. Consequently, the update direction
of the motion parameter 6; is also positively correlated with pj;. Combining this with the concept
of motion compensation, the goal of updating §; is to maximize contrast Var(I;), so the gradient
direction is related to the contrast of u;(t) (where u;(t) is equivalent to IWE I;). Therefore, in our
proposed network, the gradient update for the motion parameter 6, is given by:

ow;

A8; =1 Var(u; (1) - pi; - 55
J

(13)
Fig. 3(a) shows the learning curve of STDP. We do not explicitly show the use of LTD for updates
because the presence of py; in the update formula ensures that if the event stream does not belong to
the motion model, it will not significantly affect the update of its motion parameters. This approach
is reasonable, as a low py; value indicates that the current input event stream does not maximize
the contrast for the motion model. Hence, it should not influence the learning of the motion neuron
parameters, thereby preventing interference with the detection of other motion patterns in the event
stream.

Our objective is to maximize the sum of the variances of the IWE across different motion parameter
distributions (Eq. (4)). As described in Fig. S7 of the Appendix, the variance indicates that correct
motion patterns concentrate the event flow distribution along the object’s edges, resulting in higher
variance. In contrast, incorrect motion patterns disperse the event flow, leading to lower variance. In
the network we designed, which includes a WTA mechanism, the parameters of the motion neurons,
denoted as 6, are optimized using the STDP rule to achieve this goal. As shown in Eq. (12) and
Fig. 3, when P(z; = 1le; = 1), only event streams that match motion pattern j will activate the
corresponding motion neuron to adjust its parameters, thereby maximizing the variance of IWE
(encoded by w) associated with motion pattern j.

In our network, applying STDP to optimize the parameters of motion neurons does not strictly
follow the gradient of the objective function for each parameter. However, the angle between the
update direction and the gradient of the objective function is less than 90 degrees. Previous work has
demonstrated that synaptic updates need only maintain an angle less than 90 degrees with the error
function to achieve optimization [24]. We will also show that under this update rule, the contrast of
the IWE can gradually increase.

4.2 Equivalence of STDP-Rule Updates to M-Step in Event-Based Motion Segmentation

In the M-step of event-based motion segmentation, the goal is to optimize the parameter values by
maximizing the contrast of the IWNE. The objective is to increase the contrast of all IWE values during
the optimization process, and various optimization strategies can be employed. Our proposed STDP
rule effectively increases the value of Var(u;).
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Figure 4: Initialization of parameters 6 through sampling parameters with the contrast of IWE as the
objective function. (a). SVD components of parameters of different patches. (b). Sampling process
of parameters of different patches. (c). Warping events with the best sampling parameters 6*.

The variance formula is expanded as follows:

1 & 1 & ’
Var(u;) = N Z u;(k)? — (N Zu](k)> , (14)
k=1 k=1
where N = [(2|. Assume that after the STDP update, the parameter becomes 0’; = 0; + Af;, resulting

in a new output u’; with variance Var(u’).

The updated variance formula:
1 & 1 & ’
Var(u}) = =N g <N E uQ(k)) . (15)

The updated output is :

w (k) = u;(k) + Auy(k), (16)
where Au; (k) is the change induced by A6;. The change in variance is calculated as:
1 1 & ’
Var(u}) - Var(u;) = + > (u;(k)+Auy (k) - <N > (uy(k) + Auj(k))> —Var(u;). (17)
k=1 k=1

Since Au,(k) is a small change relative to §;, we can use a first-order approximation:

du, (k)

Au]'(k) ~ 90,
J

A, (18)

The parameter update increases the variance. According to the STDP update rule, the direction of
Af; is consistent with OVar(u;)/06;. Therefore, the variance will increase after the update.

Fig 3(b) illustrates the optimization trajectory of the motion parameters when applying STDP to
maximize the objective function Var(u;(¢)) for motion segmentation. The results show that under
the STDP learning rule, influenced by the WTA circuit, the input events e most relevant to the motion
are used for optimization. This allows 67 to progress in a direction that maximizes the contrast of the
corresponding event stream. Additionally, this process does not interfere with the learning of other
motion patterns 6. The WTA circuit combined with the STDP rule ensures that the contrast of event
streams not belonging to the motion pattern is not forcefully maximized.



5 Experiments

5.1 Implementation Details.

Parameter Initialization. The proposed spike-based Bayesian Computation framework and its
corresponding event-based clustering framework are both locally convergent algorithms. The STDP
rule adjusts the weights based on the firing patterns of pre- and post-synaptic neurons, and it does not
guarantee convergence to a global solution. To ensure both algorithms converge to a better solution,
we adopt a strategy similar to the event-based layered algorithm for initializing 6 and P. The number
of motion models N, and the type of motion models (e.g., linear motion, affine, or rotation) are
hyperparameters that need to be predefined. Considering the ultra-high temporal resolution advantage
of event cameras, we primarily set the motion model to linear motion, i.e., 8 = {v,, vy}. After
setting the number of motion models N, and the form of 8, we take a subset of events for parameter
initialization.

Specifically, we divide the events into different patches and use the specified motion parameters to
maximize the contrast of the IWE corresponding to these patch events. To search for parameters
more efficiently instead of using brute force methods (e.g., grid search), we employ a combination of
random sampling and Bayesian optimization using the Tree-structured Parzen Estimator (TPE) [10].
After completing the parameter search, we obtain a parameter set corresponding to the number of
patches IN,,,, (N, > Np). Since different patches may have similar motion parameters, we use
Singular Value Decomposition (SVD) [17] to analyze the components of the returned parameter set
and select the top N, parameters with the most significant differences as the initialization parameters
for the algorithm.

Fig. 4 shows the parameter initialization process in a sequence from the Extreme Event Dataset
(EED) [26], which includes both camera self-motion and a moving object. The initial parameter
search identifies two significantly different motion parameters corresponding to the event streams
from the 1st- and 11th- patches, respectively.

Network Learning and Inference. After initializing the parameters, we select a fixed number

of events in chronological order, dividing all events into different packets {e”}gil as inputs to the
network over time. During online learning, we also split the n-th events packet {e™} into different
patches and feed them into the network. After optimizing the parameters 6 for several epochs, we
obtain the optimized motion parameters 8*, and then input all events into the network to get the
responsibilities P of all events belonging to different motion parameters. The motions estimated
by clustering {e™} can be propagated in time to predict an initialization for the clusters of the next
packet {e"*1}. All steps of the proposed method are summarized in Algorithm. 1.

Algorithm 1 Spike-based Bayesian Computation for Event Motion Segmentation

Input: Events packet {eZ}ivil, number of clusters Ny.
Output: Cluster parameters 6 = { Oj}i-vél, event-cluster assignments P.
1: procedure

2: Initialize the unknowns (6, P) by sampling potential motion patterns of different patches of
events based on the TPE [10] and SVD [17].
3: while not converged do
4: E-step Compute the event-cluster assignments py,; based on the WTA circuit using Eq. 10
and Eq. 11.
5: M-step Update the motion parameters of all clusters using Eq. 13 based on the STDP rule.

6: end while
7: end procedure

Network Learning and Inference:

: Divide events into packets {e" gil based on fixed event count.

. for each packet e” do
Split events into patches and feed into the network.
Optimize parameters ¢ for several epochs to obtain optimized motion parameters 6*.
Feed all events into the network to obtain event responsibilities P.

end for

SARANE S S N
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Figure 5: Examples of motion segmentation through the proposed spike-based EM models.

Our model is event-driven and operates with parallel computations across different patches. The
primary focus is on CPU-based verification due to minimal graphical operations, ensuring fast
processing as an online learning algorithm. Additionally, the speed on both GPU and CPU is
comparable. Our network structure is compact, resulting in low memory consumption.

5.2 Evaluation on Event Motion Segmentation Datasets

Fig. 5 shows the optimized motion parameters §* and the spike firing rates pj; of the output neurons
z for the scene described in Fig. 4. The figure also presents the IWEs and the events warped and fused
according to the corresponding motion parameters. After training with the proposed network, the
IWEs for different motion parameters show higher contrast compared to before learning. This allows
for effective separation of the camera’s self-motion from the motion of the ball. The Spike-inference
Events in Fig. 5 are accumulated based on the spike activity of different neurons represented by
colors. To verify that the proposed spiking neural network can learn the parameters of motion neurons
online from continuous input, we continuously feed the event stream into the network and observe
the firing state of the output neurons z.

Fig. 6 shows the network’s performance in segmenting three scenarios in the EED that involve mixed
camera self-motion and high-speed moving objects. In these scenes, the background event streams
vary in density and shape. Despite these varying backgrounds, the output neurons can still distinguish
the motion parameters of moving objects. This demonstrates that the proposed network can learn
to suppress irregular input spike patterns and, through local plasticity learning, identify the motion
parameters that maximize contrast in specific regions, thereby accurately locating different moving
objects.

6 Conclusions & Discussions

This paper proposes a spike Bayesian computation framework for continuous motion segmentation in
event streams. We demonstrate that the constructed network can achieve the same effect as previous
event-based motion segmentation models using the Expectation-Maximization (EM) algorithm.
Specifically, the WTA circuit in the network implements the equivalent E-step, and the STDP rule
for adjusting network parameters realizes the equivalent M-step for contrast maximization. Both
theoretical analysis and experimental results show that STDP-based learning can optimize the contrast
of mapped images under a mixture motion parameter model. Using the Extreme Event Dataset, we
validate the network’s ability to learn online from continuous input and perform motion segmentation
through the firing of output neurons.
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Figure 6: Motion segmentation results for continuous event streams. Different colors represent the
firing of different output neurons z of the proposed spike-based network.

Limitations. This work primarily aims to demonstrate that a biologically inspired network frame-
work implicitly does Bayesian computation can decouple spatiotemporal data, proposing a prototype
framework applicable to neuromorphic cameras. The validation focuses on motion segmentation in
event streams rather than pursuing state-of-the-art performance. Therefore, there is limited quan-
titative performance evaluation and comparison with existing event-based motion segmentation
algorithms. This limitation arises because the network relies on local learning rules and may not
converge to the optimal solution, being highly dependent on parameter initialization.
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A Appendix

A.1 Explanation of Var(I;)

As shown in Fig. S7, correct motion models concentrate event distributions at object edges, resulting
in higher variance, while incorrect models disperse events, leading to lower variance. This helps in
validating the accuracy of motion pattern detection.

Event Stream in Space-Time Variance: 582.87 Variance: 55.18
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Figure S7: Explanation of Var([;). From left to right: events, IWEs of different motion patterns.

A.2 Joint probability density

From the perspective of a probabilistic model, we can consider that events conforming to different
motion patterns emerge over time. However, in the task of dividing event streams based on motion
patterns, it is hard to directly generate a model (e.g., a mixture distribution model) using a generative
model. In previous work [34], the authors adopted a method based on Eq. (2), which is more suitable
for traditional mixture distribution models (e.g., fuzzy mixture models and k-means clustering) to
divide event streams by motion.

In fuzzy mixture density and k-means methods, the motion-compensated IWEs do not include the
event cluster associations P, which means that sharper object boundaries appear in some IWEs
compared to others. The key difference between the EM model in this paper and traditional mixture
distribution models lies in the fact that not all motion parameters are mixed. Instead, a specific
one-to-one relationship is established between the event ej, and the motion neuron z;, resulting in a
more precise correspondence.

Therefore, we can define the joint probability distribution as:

where the definition of P(ey, | zx, 0) relates to the IWE value.

Specifically, we can define the conditional probability of event e;, belonging to motion pattern z; as:
Ple | 2, 0) o< Ij(z}, | 6;)

where I;(z), | 0;) represents the IWE value calculated based on the position and time of event ey,
using the parameters §; corresponding to motion pattern z;.

A.3 Motion parameter initialization

In our work, we were inspired by the layered method for event stream motion segmentation described
in the EM-based approach and the SOFADS algorithm [s1]. The SOFADS method iteratively refines
optical flow estimates through the Track Plane and Flow Plane modules. The Track Plane contains
projections of different flow hypotheses, updated based on incoming events. Similarly, we adopted
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Figure S8: Comparison of selection methods for parameter initialization (SVD vs. KMeans).

a patch-based approach to perform importance sampling on the event stream to identify potential
motion parameters based on the optimization objective (contrast of IWE).

Our method involves a search process, with Fig. 4 illustrating this search method combined with SVD
analysis. We select the N, representative parameters with the highest variance as initial values. It is
essential to note that the parameter search process is crucial, and the use of SVD can be substituted
with K-means for initial parameter selection. As shown in Fig. S8, the parameter points obtained
using K-means clustering are similar to those obtained with SVD.
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nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
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authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:
Justification: We will release the code and testing data after the paper is accepted.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We describe the implementation details and experimental settings for all the
results.
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* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:
Justification: The experimental results of this paper are not related to the error bars.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
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* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We have detailed the computational resources used in our experiments within
the relevant sections of the paper.

Guidelines:

¢ The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conforms, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The paper has no societal impacts. Our work shows Bayesian computation
based on spiking neural networks can decouple event streams of different motions, which is
foundational research.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.
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* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We cite all the referenced assets and use them properly.
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e The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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New Assets
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» The answer NA means that the paper does not release new assets.
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asset is used.
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