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Abstract

We aim for image-based novelty detection. Despite considerable progress, existing
models either fail or face a dramatic drop under the so-called “near-distribution"
setting, where the differences between normal and anomalous samples are subtle.
We first demonstrate existing methods experience up to 20% decrease in perfor-
mance in the near-distribution setting. Next, we propose to exploit a score-based
generative model to produce synthetic near-distribution anomalous data. Our model
is then fine-tuned to distinguish such data from the normal samples. We provide
a quantitative as well as qualitative evaluation of this strategy, and compare the
results with a variety of GAN-based models. Effectiveness of our method for
both the near-distribution and standard novelty detection is assessed through ex-
tensive experiments on datasets in diverse applications such as medical images,
object classification, and quality control. This reveals that our method considerably
improves over existing models, and consistently decreases the gap between the
near-distribution and standard novelty detection performance.

1 Introduction

In novelty detection (ND)1, the goal is to learn to identify test-time samples that unlikely come from
the training distribution, without having access to any class label data of the training set [1]. Such
samples are called anomalous, while the training set is referred to as normal. One has access to only
normal data during training in ND. Recently, PANDA [2] and CSI [3] have considerably pushed
state-of-the-art and achieved more than 90% the area under the receiver operating characteristics

1In the literature novelty detection and anomaly detection are used interchangeably. We use the term novelty
detection (ND) throughout this paper.
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(AUROC) on the CIFAR-10 dataset [4] in the ND task, where one class is assumed to be normal and
the rest are considered anomalous. However, as we will show empirically, these methods struggle
to achieve a similar performance in situations where outliers are semantically close to the normal
distribution, e.g. instead of distinguishing dog vs. car, which is the regular ND, one desires to
distinguish dog vs. fox in such settings. That is, they experience a performance drop when faced with
such near-anomalous inputs. In this paper, our focus is on such scenarios, which we call near novelty
detection (near-ND). We note that near-ND is a more challenging task and has been explored to a
smaller extent. Near novelty detection has found several important practical applications in diverse
areas such as medical imaging, and face liveness detection [5].

Our first contribution is to benchmark eight recent novelty detection methods in the near-ND setting,
which consists of ND problems whose normal and anomaly classes are either naturally semantically
close, or else synthetically forced to be close. Appendix2 compares the performance of PANDA [2]
and CSI [3] in an instance of the near-ND, and the standard ND setups, which shows roughly a 20%
AUROC drop in near-ND compared with the ND. Furthermore, while MHRot [6] performs relatively
comparable to PANDA and CSI in ND, it is considerably worse in near-ND, highlighting the need for
near novelty detection benchmarking.

A similar problem setup has recently been investigated in the out-of-distribution (OOD) detection
domain, known as “near out-of-distribution” detection [7], where the in-distribution and out-of-
distribution samples are semantically similar. OOD detection and ND are closely related problems
with the primary difference being that unlike OOD detection, the labels for sub-classes of the normal
data are not accessible during training in ND, i.e. if the normal class is car, the type of car is given
for each normal sample during training in OOD detection, while being unknown in ND. This makes
anomaly detection a more challenging problem than the OOD detection, as this side information
turns out to be extremely helpful in uncertainty quantification [8]. To cope with the challenges in the
near-OOD detection, [7], [6], and [9] employ outlier exposure techniques, i.e., exposing the model to
the real outliers, available on the internet, during training. Alternatively, some approaches [10, 11]
utilized GANs to generate outliers. Such real or synthetic outliers are used in addition to the normal
data to train the OOD detection, and boost its accuracy in the near-OOD setup.

In spite of all these efforts, the issue of nearly anomalous samples has not been studied in the context
of ND tasks (i.e., the unsupervised setting). Furthermore, the solutions to the near-OOD problem are
not directly extendable to the near-ND, as the sub-class information of the normal data is not available
in the ND setup. Furthermore, the challenge in the case of ND is that in most cases, the normal data
constitutes less conceptual diversity compared with the out-of-distribution detection setup, making
the uncertainty estimation challenging, especially for the nearly abnormal inputs. One has to note that
some explicit or implicit form of uncertainty estimation is required for ND and out-of-distribution
detection. This makes near-ND an even more difficult task than near-OOD detection.

Apart from these obstacles in extending near-OOD solutions to the near-ND problem, we note that
elements of these solutions, which are outlier exposure, and generating anomalous samples adaptively
through GANs are both less effective for near-ND. It is well known that the performance of outlier
exposure (OE) techniques significantly depends on the diversity and distribution shift of the outlier
dataset that is used for the training. This makes it difficult for OE to be used in the domains such as
medical imaging, where it is hard to find accessible real outliers. In addition, unfortunately, most
GAN models suffer from (1) instability in the training phase, (2) poor performance on high-resolution
images, and (3) low diversity of generated samples in the context of ND [12]. These challenges have
prevented their effective use in ND.

To address the mentioned challenges, we propose to use a “non-adversarial” diffusion-based anomaly
data generation method, which can estimate the true normal distribution accurately and smoothly
over the training time. Here, our contribution is to shed light on the capabilities of the recently
proposed diffusion models [13], in making near-distribution synthetic anomalies to be leveraged
in the training of ND models. By providing comprehensive experiments and visualizations, we
show that a prematurely trained SDE-based model can generate diverse, high quality, and non-noisy
near-outliers, which considerably beat samples that are generated by GANs or obtained from the
available datasets for tuning the novelty detection task. The importance of artifact- and noise-free
anomalous samples in fine tuning is due to the fact that deep models tend to learn such artifacts as
shortcuts, preventing them from generalization to the true essence of the anomalous samples. Finally,
our last contribution is to show that fine-tuning simple baseline ND methods with the generated
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samples to distinguish them from the normal data leads to a performance boost for both ND and
near-ND. We use nine benchmark datasets that span a wide variety of applications and anomaly
granularity. Our method achieves state-of-the-art results in the ND setting, and is especially effective
for the near-ND setting, where we improve over existing work by a large margin of up to 8% in
AUROC.

2 Proposed Near-Novelty Detection Method

We introduce a two-step training approach, which even can be employed to boost the performance of
most of the existing SOTA models. Following the current trend in the field, we start with a pre-trained
feature extractor as [14, 15, 2] have shown their effectiveness. We use a ViT [16] backbone since
[7] has demonstrated its superiority on the near out-of-distribution detection. In the first step, a
fake dataset of anomalies is generated by a SDE-based diffusion model. We quantitatively and
qualitatively show that the generated fake outliers are high-quality, diverse, and yet show semantic
differences compared to the normal inputs. In the second step, the pre-trained backbone is fine-tuned
by the generated dataset and given normal training samples through optimizing a binary classification
loss. Finally, all the normal training samples are passed to the fine-tuned feature extractor, and their
embeddings are stored in a memory, which is further used to obtain the k-NN distance of each test
input sample. This distance could serve as an anomaly score. The method is summarized visually in
Appendix 1.

2.1 Proposed Pipeline

Step 1 : Near Anomaly Generation In order to generate near anomalous samples, a basic diffusion
model, called Stochastic Differential Equation (SDE) [13] is adopted. The main benefit of using a
score-based generative model is that in the backward process (Eq. 2), the score function denoises the
input gradually that results in a relatively smooth decline in the Fréchet Inception Distance (FID)
[17] across training epochs. This enables us to stably produce near anomalous samples based on the
FID score of the generated outputs, which could be achieved by stopping the training process earlier
than the stage where the model achieves its maximum performance. This is empirically assessed in
Appendix3 left. Note that a totally different training trajectory is obtained in GANs, where the FID
oscillates and premature training does not necessarily produce high-quality anomalous samples. That
is why methods like OpenGAN rely on a validation outlier dataset to determine where to stop. In
addition, Appendix3 right, shows that the quality and closeness of the samples that are generated by
the diffusion model are visually more appealing that the SOTA GAN-based models. We explored
SDEs vs GANs in both a theoretical and practical way in Appendix7 and Appendix9

Step 2 : Feature Fine-tuning and Collection Having generated a high-quality fake dataset, a
lightweight projection head is added to the feature extractor, and the whole network is trained to
solve a binary classification task between the given normal and generated abnormal inputs. This
way, normal class boundaries are tightened and adjusted according to the abnormal inputs. After
the training, all the normal embeddings are stored in the memory M that is used at the test time for
assigning abnormality score to a given input.

Step 3 : Testing Phase At the test time, for each input x, its k nearest neighbours are found in the
M, which are denoted by m1

x, m2
x,..., mk

x. Finally, the novelty score is found as follows:

Novelty Score(x) =
k∑

n=1

∥x−mn
x∥2 (1)

The sensitivity of our method to backbone replacements , k-NNs and stopping points (different FIDs)
is examined in Appendix9 .

3 Experimental Results

3.1 Comparison on Standard Datasets

In this section, we compare our method against SOTA in the ND and near-ND setups. All the
experiments are performed 10 times and the average is reported. The model architecture and training

3



details are provided in the Appendix8. We compare our approach with current top self-supervised
and pre-trained feature adaptation methods in the ND [3, 2, 18, 19, 6],Table1(c) provides the results.
Results that were reported in the original papers were copied. When the results were not reported
in the original papers, we ran the experiments (where possible). To evaluate the performance on
near-ND benchmark, at first, we use 4 different datasets that naturally show slight differences between
their class distributions. Table 1 (a) shows that our method outperforms state-of-the-art (SOTA) by
roughly 8% in the mentioned near-ND setup. Note that except CSI, all the other SOTA approaches
employ a pre-trained architecture, particularly Transformaly [19], that utilizes a ViT backbone. Note
that due to the feature fine-tuning phase of our approach, the borders of the normal samples become
well-structured, thus better representing the normal semantic features.

Comparison on a stricter near-ND setup. To further show the effectiveness of our approach, we
propose the evaluation procedure represented in the first row of Table 1 (b) in which the normal
distribution is selected from CIFAR-10 and its closest distribution in CIFAR-100, which is selected as
the anomaly class with worst test AUROC, forms the abnormal distribution. We also proposed CIFAR-
10-FSDE and CIFAR-10-FSGAN as benchmark datasets for near novelty detection, respectively,
generated by SDE and StyleGan-ADA[20]. We evaluated the performance of the most outstanding
methods when the generated datasets are considered as anomalous at the test time. As it is shown,
almost all the methods considerably lag behind our method by a large margin of roughly 4% to
8% of AUROC score across different experiments. As Table 1 (b) represents, most of the methods
significantly fail to detect our fake samples, which is particularly the case for PANDA [2] with 40%
performance drop. Surprisingly, DeepSAD with roughly 30% performance decrease does not work
decently despite being exposed to real outliers during the training process.

4 Conclusion

In this paper, we revealed a key weakness of existing SOTA novelty detection methods, where they
fail to identify anomalies that are slightly different from the normal data. We proposed to take a
non-adaptive generative modeling that allows controllable generation of anomalous data. It turns out
that SDEs fit this specification much better compared to other SOTA generative models such as GANs.
The generated data levels up pre-trained distance-based novelty detection methods not only based on
their AUROCs in the standard ND setting but also in the near-ND setting. The improvements that
are made by our method are consistent across wide variety of datasets, and choices of the backbone
model.
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Appendix
5 Proposed Pipeline

Near Anomaly Generation Feature Fine-Tuning

Training Set 

Feature Bank

K-Nearest Neighbor Search

Novelty  Score

Early Stopped

SDE-based

Generator

Normal / Anomaly

Training Set

Training Testing

Test Samples

Encoded Inputs:

Normal Training Samples

Generated Anomaly Data

Feature Extractor

Binary Classifier

BCE  Loss

Feature Collection

Normal Training Samples

. . . .

Extracted Features:

Fine-tuned  Feature Extractor

[Collecting]

Fine-tuned  Feature Extractor

KNN Distance:

Training Set 

Feature Bank

Before Fine-Tuning :

After Fine-Tuning :

Figure 1: Overview of our framework for near distribution novelty detection. In the first step, the
SDE diffusion model generates semantically close outliers, after its training is early-stopped. As it
is shown, they have very subtle yet semantic differences with the normal data distribution (down-
left). After that, using a linear layer, a pre-trained feature extractor is fine-tuned to solve a binary
classification between the normal and abnormal inputs. This modifies the normal boundaries toward
including more distinctive features. Finally, normal embeddings are stored and used to compute the
k-NN distance at the test time as the novelty score.
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6 Models Performance Drop
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Figure 2: Sensitivity of state-of-the-art anomaly detectors when differences between normal and
anomalous samples are subtle. For each model, its performance in detecting far (Blue) and near
(Orange) outliers has been reported. A single class of CIFAR-10 is considered as normal, the rest
of the classes are considered far anomalies, and the semantically nearest class of CIFAR-100 to
the normal class is the source of near anomalies. This is the class that corresponds to the lowest
test AUROC in anomaly detection. A considerable performance drop happens for the most recent
methods, which means the learned normal boundaries are not tight enough and need to be adapted.
For instance, while some might be able to distinguish a cat image from a car, they are still unable to
detect tiger or lion images as anomalies. We can also select semantically nearest classes using the
Confusion Log Probability (CLP) criteria, which has already been introduced in [21] for multi-class
settings, and we adapt it to our setup, which can be found in the appendix11. Both approaches yield
similar results, and the appendix12.1 indicates a reasonable correlation between them.

9



7 Diffusion Models vs. GANs
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Figure 3: Left: Unlike GAN-based models, the diffusion SDE model performs much better in
consistently improving the fidelity and diversity of the generated samples along the training. The
metrics “density” and “coverage” [22] are used to reliably measure these concepts. Thus, obtaining
high-quality and diverse anomalous samples is feasible by early stopping in the SDE model. Right:
Some generated samples by various methods in different datasets as well as their corresponding
normal samples are shown. As can be seen SDE samples, in the third row, are authentic (differ
from the normal class), high-quality, and have minimal differences to the normal class, while other
methods produce low quality samples that are far away from the normal distribution.

In the diffusion models, the gradient of the logarithmic probability density of the data with respect
to the input is called the score. A SDE model considers a continuum of distributions that develop
over time in accordance with a diffusion process, to corrupt a sample and turn it into pure noise. This
is called the forward process. The model is trained to learn how to gradually transform the noisy
image back to its original form through the score fucntion (backward process). Running the backward
process allows us to seamlessly transform a random noise into the data that could be used for sample
generation as follows:

xn−1 − xn = [f(x, t)− g2(t)sθ(x, t)]dt+ g(t)dŵ, xT ∼ N(0, 1), (2)

where xn is the data sample at time n, f = 0 and g = σt are called the drift and diffusion coefficients,
respectively. sθ(x, t) is called the score function, as is expected to estimate ∇x log pt(x). ŵ represents
a Brownian motion. The score function sθ(x, t) is usually modeled by a U-Net, whose weights are θ,
in case x is an image. The loss function to train this network is typically set to enforce s to estimate
∇x log pt(x):

min
θ

Et∼U(0,T )Ex0∼DExt|x0
λ(t)∥sθ(xt, t)−∇xt

log pt(xt|x0)∥22, (3)

where λ(t) is a positive weighting function to account for change in scale of the loss across different
values of t. One has to note that the conditional likelihood pt(xt|x0) takes the form of a Gaussian
distribution, as a result of accumulation of normal noises over time in the forward process. For more
details, see [13].

Here, we provide some rationale on the preference of diffusion models over GANs for the the task
of near-ND. Although diffusion models showed great promise in image-based generative models in
recent years, some flavors of GANs, like StyleGAN-XL [23], still outperform diffusion models even
in small datasets such as CIFAR-10. Therefore, it is not immediately clear, which class of generative
models should be applied for the near-ND task.

We note that in diffusion models, such as DDPM, the model is trained by optimizing the Evidence
Lower Bound (ELBO) [24]. That is, the objective function is to minimize an upper bound on the
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negative evidence:

Ex∼q[− log pθ(x)], (4)

where q and pθ are the original and estimated distribution of the data, respectively. Here, θ stands for
the denoiser parameters in the DDPM. But, we note that maximizing the evidence is equivalent with
minimizing the Kullback-Leibler (KL) divergence between q and pθ:

Ex∼q[− log pθ(x)] = Ex∼q

[
− log

(
pθ(x)

q(x)

)]
+H(q) = D(q ∥ pθ) + C (5)

Therefore, if the gap in the ELBO bound is small, minimizing the DDPM loss is equivalent with
making the estimated generative distribution pθ close to the original data distribution q. Hence,
we expect the estimated generative distribution pθ ends up sufficiently close to q if the training is
prematurely stopped, and therefore generates “near-distribution” patterns. It should be noted that
variational autoencoders (VAEs) also follow the same logic, but because of their limited capacity,
which stems from their low dimensional latent space, fail to make the KL-divergence D(q ∥ pθ)
small enough (see Table 3 for the comparisons).

One may also wonder why GANs do not exhibit the same property. It is also well-known that if one
uses an optimal discriminator for a given generator, the generator loss becomes proportional to the
Jensen-Shannon divergence of the original and estimated distributions [25]. However, this does not
happen in GANs, due to practical considerations, as the discriminator and generator are alternatively
updated through SGD. Hence the discriminator is not necessarily optimal in each step. Therefore,
early stopping does not necessarily lead to near-distribution generators. Our empirical results also
confirm that various quality metrics, such as coverage and density, which were previously proposed
to evaluate synthetic images’ fidelity and diversity [26] either decline or fluctuate significantly for
GANs along the training. However, such metrics exhibit a steady and consistent increase till the
estimated distribution pθ gets sufficiently close to the true distribution q (see Fig. 3 left).

8 Experimental Settings

8.1 Implementation Details

We use a ViT-B_16 as the feature extractor (pretrained on ImageNet 21k), learning rate = 4e-4, weight
decay = 5e-5, batch size = 16, optimizer = SGD, and a linear head with 2 output neurons. We freeze
the first six layers of the network, and the rest is fine-tuned till convergence for all the experiments.
For the data generation phase, we use the SDE-based model explained in [13] with exactly the same
setup. The inputs are resized to 224×224, and as a rule of thumb, the data generation is stopped on
FID ≈ 40 and FID ≈ 200 for low and high-resolution datasets. All the results in our tables are either
reported from the reference papers or run by us using their official repositories.

8.2 Datasets

Following previous works, we evaluate the methods on standard datasets CIFAR-10 [4], CIFAR-
100 [4] and extend the results on small and fine-grained datasets FGVC-Aircraft [27], Birds [28],
Flowers [29], Stanford-Cars [30], MVTecAD [31], WBC [32], and Weather [33]. For the full dataset
descriptions and details see the Appendix8. Following the standard ND protocol, multi-class datasets
are converted into an anomaly detection task by setting a class as normal and all other classes as
anomalies. This is performed for all classes, in practice turning a single dataset with C classes into C
datasets [14, 18, 2]. We note that some of the mentioned datasets, such as WBC, FGVC-Aircraft,
Stanford-Cars, and Weather, naturally correspond to the near-ND setup. Also, in an alternative
near-ND setup, each class of CIFAR-10 (C10

i ) and its closest class in CIFAR-100 (C100
i ) are selected.

Then, the model is trained on the training samples of (C10
i ) and tested against the aggregation of

(C100
i ) and (C10

i ) test sets. Finally, the average AUROC results across datasets is reported.

CIFAR-10-FSDE Benchmark. To show the quality of the proposed generated dataset, we evaluate
the performance of some of the most outstanding ND methods when the generated dataset is consid-
ered as anomalous at the test time. We call the dataset CIFAR-10-FSDE. For the ND methods such as
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[2, 9, 3], one class of CIFAR-10 is randomly sampled as normal and the test set is made using the
corresponding test samples of the normal class and a random subset of the fake dataset with the same
size as anomalies.

CIFAR-10-FSGAN Benchmark. The anomalous data that are generated by StyleGAN contain
lots of artifact-full and distorted samples that a practical novelty detector is expected to detect. Table
1 (b) compares our method with other SOTA methods in detecting such samples. Due to learning
more distinguishing features, we pass the SOTA by 12% in AUROC score, showing the applicability
of our approach in detecting a wide range of anomalies.

9 Ablation Studies

Sensitivity to Backbone Replacements. Table 2 shows our method sensitivity to the backbone
replacements. All the backbones are obtained and used from [7]. The results are provided for both the
ND and near-ND evaluation setups. For each backbone, the performance with and without the feature
fine-tuning phase based on the generated data is reported (denoted as “Pre-trained” and “Fine-tuned”
in the table), showing a consistent improvement across different architectures. The performance boost
is surprisingly large for some backbones such as ResNet-152, ViT-B_16, and R50+ViT-B_16 with
roughly 16%, 25%, and 36% boosts in AUROCs in the near-ND setting. Moreover, ViT-B_16 and
R50+ViT-B_16 perform roughly 8% and 16% better after the fine-tuning in the ND setup, showing
the generality of our approach regardless of the setting or backbone. This mainly happens because of
the diverse yet semantically close generated outliers that are used to modify the learned normal class
boundaries.

Table 2: The effectiveness of our approach over different backbones (in AUROC %) in the ND and
near-ND settings. The results show consistent improvements regardless of the backbone or setting
that is used.

Setting Dataset Training Models

ResNet-152 ViT-B_16* ViT-B_32† R50+ViT-B_16* ConvNeXt-B†

ND CIFAR-10 Pre-trained 92.5 91.0 95.3 82.2 97.1
Fine-tuned 95.3 99.1 98.3 98.8 97.8

near-ND CIFAR-10vs100 Pre-trained 58.5 65.5 66.3 50.0 71.5
Fine-tuned 74.7 90.0 78.9 85.9 81.1

* Pretrained on ImageNet 21K.
† Pretrained on ImageNet 21K and fine-tuned on ImageNet 1K.

SDE vs. GAN. In this experiment, the effect of using different generative models is explored. All the
experiments are done in the one-vs-all setting. Table 3 shows clear superiority of using a SDE-based
model compared to the well-known GANs [20, 23, 34] with 2% to 20% better AUROCs based on
the chosen dataset. Evidently, employing our fake samples generated by the SDE is almost always
beneficial as opposed the ones generated by the other models. Interestingly, other models generated
samples are harmful to the performance in Weather and MvTecAD datasets. Having artifacts,
mode-collapse, and undiversified generated samples could be the reasons behind this observation,
which are shown in Appendix13. This highlights that not all the generative models are beneficial for
the ND and near-ND tasks, and they need to be carefully selected based on the constraints defined in
such domains.

Sensitivity to k-NN and Stopping Point. Table 4 shows the performance stability with respect to
the number of nearest neighbours for both the ND and near-ND setups. Clearly, the method is barely
sensitive to this parameter. DN2 [35] has provided extensive experiments on the effectiveness of
applying k-NN to the pre-trained features for the AD task, claiming k = 2 is the best choice. We
also observe that the same trend happens in our experiments. Similarly, the method is robust against
the stopping point with at most 2% variation for reasonable FID scores, making it practical for the
real-world applications.
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Table 3: Comparison of our model performance (in AUROC %) upon using different generative
models for each class of the CIFAR-10, Weather, WBC and MvTecAD dataset. The performance of
the base backbone is also included to measure the effectiveness of the training process. Diffusion-
based data generation considerably passes the GAN-based SOTAs in the novelty detection task.
Coverage&Density metrics are calculated according to the dataset and generative model. These
metrics measure the diversity and fidelity of the samples that are generated by generative models.

Dataset Metric Base Backbone Generative Model

(without fake data) Baseline-VAE Baseline-Gan BigGAN StyleGAN-ADA StyleGAN-XL SDE

CIFAR10 AUROC 91.0 93.8 94.5 96.9 97.8 96.5 99.1
Density&Coverage - (0.537/0.473) (0.660/0.581) (0.732/0.769) (0.814/0.885) (0.786/0.638) (0.872/0.944)

Weather AUROC 86.5 69.6 83.7 85.3 82.4 76.8 97.0
Density&Coverage - (0.583/0.463) (0.642/0.681) (0.640/0.438) (0.782/0.765) (0.658/0.514) (0.737/0.796)

WBC AUROC 83.1 75.2 80.4 84.6 85.3 77.2 91.2
Density&Coverage - (0.607/0.384) (0.719/0.483) (0.535/0.684) (0.810/0.761) (0.632/0.578) (0.856/0.873)

MvTecAD AUROC 82.5 68.8 71.8 76.4 80.5 73.2 86.4
Density&Coverage - (0.598/0.402) (0.641/0.678) (0.684/0.587) (0.826/0.641) (0.428/0.364) (0.908/0.835)

Table 4: The sensitivity of the proposed method to the k-NN parameter and training stopping point
based on the FID score.

Setting Dataset KNN Stopping Point

k=1 k=2 k=5 k=10 k=50 300<FID 100<FID<200 30<FID<50 FID<20

ND CIFAR-10 99.0 99.1 98.9 98.9 98.7 96.8 97.7 99.1 92.6

near-ND CIFAR-10vs100 89.8 90.0 90.0 90.0 89.7 82.7 87.1 90.0 68.2

10 Related Work

Outlier Exposure Based Approaches Utilizing the fake data for the novelty detection task has
previously been considered. The general idea is to employ synthetic images, which may be generated
by GANs, to augment the training set [36, 37, 38, 39, 40]. In the case of open-set recognition, [10]
proposed OpenGAN, which adverserially generates fake open-set images. The discriminator is then
utilized at the test time for the novelty detection. The key point in OpenGAN is that a tiny additional
dataset, containing both in- and outliers, is used as a validation set for the model selection. This, also
known as outlier exposure, is necessary due to the GAN unstable training. Even though these models
can work well on simple datasets, they cannot handle more complex datasets and cannot detect hard
near-distribution anomalies.

Self-supervised learning Many studies have shown that self-supervised methods can extract
meaningful features that could be exploited in the anomaly detection tasks such as MHRot [6]. GT
[41] uses geometric transformations including flip, translation, and rotation to learn normal features
for anomaly detection. Alternatively, puzzle solving [42], and Cut-Paste [43] are proposed in the
context of anomaly detection. It has recently been shown that contrastive learning can also improve
anomaly detection [3], which encourages the model to learn normal features by contrasting positive,
and certain negative samples. The authors claim that negative samples should be made by applying
certain transformations that tend to drastically change the data distribution (e.g. rotation).

Pre-trained Methods Several works used pre-trained networks as anomaly detectors. Intuitively,
abnormal and normal data do not overlap in the feature space because many features model high-level
and semantic image properties. So, in the pre-trained feature space, one may classify normal vs.
anomaly. [35] used the k-nearest neighbors distance between the test input and training set features
as an anomaly score. [44] trained a GMM on the normal sample features, which could then identify
anomalous samples as low probability areas. PANDA [2] attempts to project the pre-trained features
of the normal distribution to another compact feature space employing the DSVDD [45] objective
function. In [19, 15, 14], the pre-trained model is a teacher and the student is trained to mimic the
teacher’s behavior solely on the normal samples. Then, the discrepancy between the teacher and
student networks reveal anomalies.

We use a ViT-B_16 as the feature extractor (pretrained on ImageNet 21k), learning rate = 4e-4, weight
decay = 5e-5, batch size = 16, optimizer = SGD, and a linear head with 2 output neurons. We freeze
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the first six layers of the network, and the rest is fine-tuned till convergence for all the experiments.
For the data generation phase, we use the SDE-based model explained in [13] with exactly the same
setup. The inputs are resized to 224×224, and as a rule of thumb, the data generation is stopped on
FID ≈ 40 and FID ≈ 200 for low and high-resolution datasets. All the results in our tables are either
reported from the reference papers or run by us using their official repositories.

11 Near Novelty Detection Definition

To provide a standard benchmark for the near-ND task there is a need to define a one-class distribution
closeness score. Suppose a K-class training dataset is given from which a normal class Ci is randomly
sampled and used to train the model M. The closest abnormal distribution with respect to the selected
normal class for M can be defined as Cj ̸= Ci that minimizes the test time performance when it
is considered as the abnormal distribution. We call the performance in the mentioned scenario the
bottom-1 score of class Ci with the backbone M. However, this score depends on the choice of M,
making it specific for every problem setup and method. Therefore, inspired by the CLP criterion
introduced in [21] as a measurement of dataset distance, we could use CLP as an alternative closeness
score for the novelty detection task.

Given a K-class training dataset, one category is randomly selected as the normal distribution. Then,
a supervised classifier P is trained on the rest K − 1 abnormal categories. Assume x to be a training
sample of the selected normal class. The closeness score of each abnormal class i with respect to the
normal class is obtained as follows:

Closeness scorei =
∑

x∈Normal Class

P(ŷ = i|x). (6)

The higher the closeness score of an abnormal category, the more similar it is to the normal class. The
same situation also holds when abnormal categories are selected from another dataset. Fig. 1 in the
Appendix indicates a decent correlation between the bottom-1 score and closeness score, implying
that our proposed criterion can be considered as a proxy for the ideal score.

12 Near-ND

12.1 Comparison between bottom-1 and CLP

In section 11, we proposed the closeness score (CLP) to find the closest abnormal class for each class
of the normal dataset. In our experiments, we used the ViT-B_16 (pretrained on ImageNet-21K) as
the backbone used for extracting the closest abnormal classes based on this criterion. The bottom-1
abnormal class is the class that has the lowest novelty detection performance during the testing phase.
Note that the abnormal classes chosen based on the CLP criterion do not necessarily have the worst
novelty detection performance; therefore, it is expected for the novelty detection methods to perform
better on the CLP criterion. This section aims to investigate how well these two criteria match each
other. In the Table 5, for each novelty detection model and every class of the CIFAR-10 dataset,
the bottom-1 class is shown. Furthermore, the last row indicates the closest abnormal class selected
based on the CLP criterion. As shown in the Table 5, the extracted classes based on the CLP criterion
are the same or conceptually similar to the respected bottom-1 classes. Figure 4 also shows a decent
correlation between the bottom-1 score and the CLP score, which means both these criteria could
be used to extract near-distribution abnormal classes, and that the CLP could be used as a proxy to
the bottom-1 criterion. Also, The Pearson correlation coefficient between these two results is 0.843,
indicating a strong positive relationship.

12.2 Bottom-i Classes as the Abnormal Distribution

The Bottom-i means averaging the AUROCs for the i abnormal classes that have the lowest AUROCs,
e.g. bottom-100 in the case of CIFAR-100 denotes averaging the AUROC results for all 100 classes.

14



Figure 4: The performance of novelty detection methods (AUROC %) in the near-ND and ND
settings. In the near-ND setting, results are reported according to both criteria, i.e. CLP and bottom-1.

Table 5: For each model and every class of the CIFAR-10, the anomalous class that minimizes the
anomaly detection performance among 100 classes of the CIFAR-100 dataset is reported. The last
row is the CIFAR-100 class that achieves the highest CLP score. Note that the latter does not depend
on the anomaly detection method.

Method Airplane Automobile Bird Cat Deer Dog Frog Horse Ship Truck

DeepSVDD Plain Plain Plain Cloud Plain Mountain Plain Plain Plain Plain

GT Mountain Pickup_Truck Camel Fox Elephant Bear Crocodile Elephant Train Bus

MHRot Plain Pickup_Truck Camel Fox Cattle Fox Crocodile Elephant Sea Pickup_Truck

one_class OpenGan Plain Plain Plain Wardrobe Forest Telephone Aquarium_Fish Oak_Tree Whale Plain

CSI Pickup_Truck Pickup_Truck Camel Fox Cattle Cattle Dinosaur Cattle Pickup_Truck Pickup_Truck

DN2 Plain Pickup_Truck Willow_Tree Fox Forest Fox Forest Cattle Sea Pickup_Truck

PANDA Dolphin Pickup_Truck Kangaroo Fox Kangaroo Raccoon Crocodile Cattle Bridge Pickup_Truck

MSAD Cloud Pickup_Truck Kangaroo Fox Kangaroo Fox Beaver Cattle Sea Pickup_Truck

Transformaly Cloud Pickup_Truck Kangaroo Rabbit Kangaroo Wolf Lizard Cattle Sea Pickup_Truck

Ours Tank Pickup_Truck Camel Wolf Kangaroo Wolf Lizard Camel Streetcar Pickup_Truck

CLP Rocket Pickup_Truck Shrew Leopard Cattle Rabbit Lizard Cattle Bridge Bus

Bottom-i
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(%

)

1

Figure 5: By increasing i, the AUROCs of the models improve due to the presence of more anomalies
that are further from the boundary. As expected, in most cases, the gap between the performance of
models has become smaller. Furthermore, in the case of i = 1, in which anomalies constitute the near
distribution ones, the models’ performances vary greatly. In this case, our proposed method achieves
SOTA results by a large margin.
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Table 6: The performance of novelty detection methods (AUROC %) in the near-ND setting. For each
method and every normal class, both results have been reported according to the CLP and bottom-1
metrics.

Method Metric Airplane Automobile Bird Cat Deer Dog Frog Horse Ship Truck Mean

DeepSVDD bottom-1 17.2 24.0 22.1 34.0 21.5 25.1 25.8 27.1 32.7 20.4 50.0
CLP 52.1 52.3 53.9 64.7 53.0 39.9 57.5 55.6 61.7 54.5 54.5

GT bottom-1 39.2 61.8 61.0 54.2 60.1 65.1 71.0 70.4 80.5 62.9 62.6
CLP 85.6 61.8 81.4 58.7 61.6 80.2 78.8 76.1 80.6 62.9 72.8

MHRot bottom-1 34.1 62.4 65.2 57.6 61.9 69.3 77.8 73.1 75.0 54.3 63.1
CLP 77.4 62.4 81.5 60.4 61.9 82.1 82.3 73.3 79.9 64.7 72.6

one_class OpenGan bottom-1 11.4 18.1 10.0 15.3 19.2 29.8 16.9 20.9 40.4 6.2 50.0
CLP 66.3 92.2 94.9 64.7 51.7 63.7 93.3 66.5 85.7 85.0 76.4

CSI bottom-1 73.4 68.4 81.3 65.0 71.8 78.1 88.3 85.9 91.1 57.5 76.1
CLP 94.2 68.4 93.7 79.9 71.9 90.6 91.5 87.1 91.0 74.6 84.3

DN2 bottom-1 57.5 61.8 43.8 54.0 51.5 66.2 59.4 74.6 54.9 61.0 58.5
CLP 87.5 61.8 61.7 66.5 84.4 83.5 74.3 74.6 77.0 69.8 74.1

PANDA bottom-1 89.8 70.0 81.7 50.0 77.0 74.8 83.8 80.3 88.7 72.1 76.8
CLP 94.5 70.0 89.1 66.7 91.7 88.8 86.5 80.3 88.7 75.3 83.2

MSAD bottom-1 90.4 72.0 87.5 52.9 81.1 80.5 85.3 83.0 83.8 78.3 79.5
CLP 94.0 72.0 89.8 75.3 87.3 94.5 90.2 83.0 88.6 79.0 85.4

Transformaly bottom-1 82.1 67.5 88.3 78.4 80.9 89.8 85.3 93.1 84.0 73.5 82.3
CLP 90.1 67.5 89.0 79.1 90.1 93.6 85.3 93.1 90.2 74.7 85.3

Ours bottom-1 95.6 83.5 93.4 86.9 92.3 84.5 94.8 97.8 93.7 77.0 90.0
CLP 96.3 83.5 99.2 89.4 97.0 95.8 94.8 98.0 93.8 79.9 92.8
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12.3 Per-Class Results

In this section, we provide our model’s performance for every class of the CIFAR-10 and CIFAR-100
datasets.

Table 7: Performance of our method in AUROC (%) for each class of the CIFAR-10 dataset in the
one-vs-all setting.

Method 0 1 2 3 4 5 6 7 8 9 Mean

Ours 99.2 99.4 99.2 98.1 99.5 98.1 99.8 99.5 99.2 98.8 99.1

Table 8: Performance of our method in AUROC (%) for each class of the coarse-grained CIFAR-100
dataset in the one-vs-all setting.

Method 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Mean

Ours 98.0 99.0 99.1 98.2 98.2 97.7 98.8 98.7 99.0 96.6 96.5 98.1 98.4 96.3 98.1 97.1 98.5 98.8 98.8 97.9 98.1

12.4 CIFAR-10 vs. CIFAR-100

In this section, we compare images of the CIFAR-10 dataset, images of respective classes selected
from the CIFAR-100 dataset based on the CLP criterion, and the corresponding anomalies generated
by our SDE model.
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Figure 6: For each class of CIFAR-10, nearest class from CIFAR-100 has been provided, according
to the closeness score. In each 3-row panel, the first row is assumed as normal, the second one is
assumed the nearest abnormal class, and the third row indicates the corresponding generated fake
images using the SDE model.
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Figure 7: For each class of CIFAR-10, nearest class from CIFAR-100 has been provided, according
to the closeness score. In each 3-row panel, the first row is assumed as normal, the second one is
assumed the nearest abnormal class, and the third row indicates the corresponding generated fake
images using the SDE model.
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13 The SDE-based Generative Model

13.1 SDE vs. Other Generative Models

In this section, according to our main setting, we have replaced the SDE with other generative models,
and sampled the images generated by these models before convergence. Because in our setup, only
one class (the normal class) is available for the training of the generative model. As the sample size
becomes limited in such a setting, model convergence and generation of high quality real samples
become a challenge. Even under such circumstances, the SDE-based models converge. Furthermore,
such models can eventually generate high quality real images. However, other generative models do
not converge properly, and the images that are sampled using the early stopped model are often noisy
and contain artifacts. As opposed to other generative methods, the proposed premature training of
the SDE yields authentic, near-distribution, diverse, and artifact-free images. This makes it a better
choice for the near-ND setup.
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Figure 8: Generated anomalous samples by different generative models on the FGVC-Aircraft dataset.
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Figure 9: Generated anomalous samples by different generative models on the WBC dataset.
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13.2 CIFAR-10-FSDE

These images are randomly plotted for each of the classes in the proposed dataset, CIFAR-10-FSDE,
generated through an early stopped SDE. As can be seen, the images are clearly different semantically
from the normal class. Despite this semantic difference, most novelty detection models have a poor
performance in the detection of these images as anomalous.
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Figure 10: An overview images in the synthetic CIFAR10-FSDE dataset.
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13.3 Overview of Generated Anomaly Images on Various Datasets

Each row is a class on which the SDE model is trained. The SDE model is trained on higher number
of iterations in moving from the left to the right columns. The rightmost column contains a real
images.

Figure 11: Generated anomaly images on 102 category of the Flowers dataset. The images highlighted
in green are normal samples.

22



Figure 12: Generated anomaly images on the StanfordCars dataset. The images highlighted in green
are normal samples.
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Figure 13: Generated anomaly images on the Caltech-UCSD Birds 200 dataset. The images high-
lighted in green are normal samples.
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Figure 14: Generated anomaly images on the MVTecAD dataset. The images highlighted in green
are normal samples.
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14 Dataset Descriptions

The setting is reported from [18].

Standard Datasets We evaluate our method on a set of commonly used datasets: CIFAR-10
consists of RGB images of 10 object classes. CIFAR-100: we use the coarse-grained version that
consists of 20 classes.

Small datasets To further extend our results, we compared the methods on a number of small
datasets from different domains: 102 Category Flowers and Caltech-UCSD Birds 200. For each of
these datasets, we evaluated the methods using only each of the first 20 classes as normal, and using
the entire test set for the evaluation. For FGVC-Aircraft, due to the extreme similarity of the classes
to each other, we randomly selected a subset of ten classes from the entire dataset, such that no two
classes have the same Manufacturer. Following are the selected classes: [91,96,59,19,37,45
,90,68,74,89].

MvTecAD: This dataset contains 15 different industrial products, with normal images of the proper
products for training and 1 to 9 types of manufacturing errors as anomalies. The anomalies in
MvTecAD are in-class, i.e. the anomalous images come from the same class of the normal images
with subtle variations.

Symmetric datasets We evaluated our method on datasets that contain symmetries, such as images
that have no preferred angle (microscopy, aerial images): WBC : we used the 4 big classes in “Dataset
1” of the microscopy images of white blood cells, with a 80%/20% train-test split.
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