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Abstract

Fine-tuning large language models (LLMs)
is computationally expensive, and Low-Rank
Adaptation (LoRA) provides a cost-effective
solution by approximating weight updates
through low-rank matrices. In real-world sce-
narios, LLMs are fine-tuned on data from mul-
tiple domains to perform tasks across various
fields, embodying multi-task learning (MTL).
LoRA often underperforms in such complex
scenarios. To enhance LoRA’s capability
in multi-task learning, we propose R-LoRA,
which incorporates Multi-Head Randomiza-
tion. Multi-Head Randomization diversifies the
head matrices through Multi-Head Dropout and
Multi-Head Random Initialization, enabling
more efficient learning of task-specific features
while maintaining shared knowledge represen-
tation. Our approach not only improves perfor-
mance in MTL but also reduces GPU memory
usage and training time. Experiments show that
R-LoRA’s gains stem from increased diversity
in the head matrices, demonstrating its effec-
tiveness for multi-task learning. The code will
be open-sourced after the revision.

1 Introduction

In recent years, large language models (LLMs)
have manifested unprecedentedly superior per-
formance in various natural language processing
(NLP) tasks (Brown, 2020; Zhao et al., 2023;
Chang et al., 2024). Due to its impressive capa-
bilities in language understanding and generation,
LLMs have gained extensive interest from both
academia and industry. Despite their high general-
izability, LLMs still require fine-tuning for specific
domains or updating the knowledge base (Agiza
et al., 2024; Xin et al., 2024).

Supervised fine-tuning (SFT) is crucial for align-
ing large language models (LLMs) with human
instructions, which trains the model with a small
yet high-quality set of labeled data (Hu et al., 2021;

Xia et al., 2024). The vast number of parameters
in LLMs poses significant challenges regarding
computational efficiency and memory consump-
tion during full fine-tuning (FT), which updates all
parameters.

To address the issue of hardware requirements
for LLM adaptation, a solution called parameter ef-
ficient fine-tuning (PEFT) has been proposed (Han
et al., 2024). PEFT methods reduce VRAM us-
age of cached optimizer states by only optimizing a
fraction of model parameters while keeping the rest
frozen. Various PEFT methods have been widely
studied(Li and Liang, 2021)(Liu et al., 2024c)(Liu
et al., 2022)(Hu et al., 2021). Among these meth-
ods, LoRA has emerged as the mainstream alter-
native to full parameter fine-tuning. Instead of
updating the original parameter matrix directly,
LoRA approximates the updated parameters us-
ing the product of two smaller matrices. During
inference, the output obtained from the original
parameter matrix is combined with the output from
the updated parameter matrices. However, LoORA
does not perform well in multi-task scenarios, par-
ticularly in dealing with complex datasets.

Recent LoRA variants have improved multi-task
learning by employing multiple LoRA adapters,
including Multi-LoRA (Wang et al., 2023), LoRA-
MoE (Dou et al., 2023), and MoeLoRA (Liu et al.,
2024a). We refer to this extended framework as
the Multi-Adapter LoRA architecture, which con-
sists of multiple down-projection matrices (A) and
their corresponding head matrices (B), enabling
task-specific adaptation through diverse parameter
sets. Notably, LoORA-MoE and MoeLoRA further
enhance this architecture by introducing a Mix-
ture of Experts (MoE) mechanism to aggregate
adapter outputs. Tian et al. (2024) observes that
in the Multi-Adapter LoRA architecture, the pa-
rameters of the down-projection matrices A are
relatively consistent, while the differences between
the head matrices B are more pronounced, which
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Figure 1: Training architecture comparison. (a) Full parameter fine-tuning; (b) Vanilla LoRA; (c) Multi-Adapter

architecture; (d) Multi-Head/Asymmetric architecture.

aids in capturing task-specific knowledge. To lever-
age this property, HydraLoRA (Tian et al., 2024)
is proposed to feature an asymmetric architecture
with one shared down-projection matrix A and mul-
tiple task-specific head matrices B. Additionally,
HydralLoRA also employs an MoE mechanism to
aggregate the outputs of the head matrices. This
design achieves a good balance between training
performance and parameter efficiency. In this work,
we explicitly define asymmetric architecture as a
Multi-Head structure, and introduce Multi-Head
randomization to improve LLMs’ performance on
multi-task learning. The mathematical formaliza-
tion of the Multi-Head structure is detailed in Sec-
tion 2.2. Figure 1 illustrates the differences among
the aforementioned structures.

However, in the Multi-Head architecture, the pa-
rameter similarity among head matrices remains
high, hindering task-specific knowledge learning.
This is due to the zero initialization of head matri-
ces B, leading to similar update directions. To ad-
dress this limitation, R-LoRA employs multi-head
randomization, combining random initialization
with multi-head dropout. This approach diversifies
both the starting points and inputs of the head matri-
ces, enabling more effective task-specific learning
by breaking initial symmetry and promoting dis-
tinct optimization trajectories. Our work makes the
following key contributions:

- We reveal redundancy and symmetry in the
head matrices of Multi-Head LoRA, limiting its
ability to capture diverse task-specific knowledge.

- We propose R-LoRA, introducing Multi-Head
Randomization to enhance both performance and
efficiency in multi-task learning.

- Extensive experiments validate R-LoRA’s supe-
riority, with analysis showing performance gains

stem from diversified head matrices.

2 Related Works

2.1 LoRA

Current LLMs generally follow a decoder-only
structure, characterized by a series of blocks, each
comprising two key components with residual con-
nections: a multi-head self-attention (MHA) layer
and a feed-forward network (FFN) (Vaswani, 2017).
These layers involve using dense learnable matri-
ces.

There is a need to adapt LLMs for specific tasks
or domains with limited resources. To achieve this,
low-rank adaptation (LoRA) (Hu et al., 2021), in-
spired by the concept of low intrinsic dimension-
ality in LLMs, decomposes the weight gradient
AW into low-rank matrices, thereby reducing the
number of trainable parameters. Specifically, for a
dense weight matrix W € R™*", LoRA employs
two low-rank matrices, B € R™*" and A € R"*",
to approximate the accumulated gradient updates
AW. The rank r is chosen to be much smaller
than the minimum of d and k, effectively decreas-
ing the number of trainable parameters from m x n
to 2r(m x n). Consequently, the resulting weight
matrix is expressed as W + BA, and the output h
for an input z through this updated weight matrix
is formulated as:

h=(W+AW)z =Wz +BAz (1)

Typically, matrix B is initialized with zeros, while
matrix A is initialized using Kaiming Uniform (He
et al., 2015). This initialization strategy ensures
that the initial outputs remain consistent with the
pre-trained model, thereby avoiding the introduc-
tion of random disturbances.



Following LoRA, AdaLoRA (Zhang et al., 2023)
dynamically learns the rank size needed for LoRA
in each layer of the model. DeltalLoRA (Zi et al.,
2023) updates the original weights of the model
using parameters from adapter layers, enhancing
LoRA’s representational capacity. DoRA (Liu et al.,
2024b) introduces a magnitude component to learn
the scale of AW while utilizing the original AB as
a direction component of AW. PiSSA (Meng et al.,
2025) and LoRA-GA (Wang et al., 2024) have im-
proved the convergence speed and performance of
LoRA by refining its initialization method. Their
approaches focus on optimizing the initial parame-
ter settings, which enhances the training dynamics
and leads to more efficient and stable convergence.

2.2 Multi-Head architecture

MTL-LoRA (Yang et al, 2024) and Hy-
dralLoRA (Tian et al., 2024) are pioneering meth-
ods that introduce the multi-head architecture into
LoRA. This architecture is characterized by a cen-
tral shared down-projection matrix A and multi-
ple distinct head matrices B, enabling efficient
and flexible adaptation across diverse tasks. As
shown in Figure 1, this architecture differentiates
task-specific information while effectively captur-
ing shared knowledge across various tasks. The
Multi-Head architecture can be formulated as:

N
W+AW:W+ZM'B¢A 2)
i=1
In MTL-LoRA (Yang et al.,, 2024) and Hy-
dralLoRA (Tian et al., 2024), the weights w; are
computed through the routing matrix W,. and the
softmax function. It can be formulated as:

w = Softmax(W,x) 3)

2.3 Dropout

Dropout is a widely used technique to prevent over-
fitting in deep networks by randomly deactivating
units during training (Srivastava et al., 2014). This
process samples from an exponential number of
thinned networks, reducing unit co-adaptation and
enhancing noise robustness. The following is the
formulation of Dropout.

1. Mask vector: Generate a binary mask vector
m € {0,1}%, where each element m; in-
dependently takes the value 1 with probabil-
ity 1 — p and O with probability p: m; ~
Bernoulli(p), j=1,...,d

2. Apply the mask: During training, multiply the
input x or the activation values by the mask
m element-wise to get the masked output x:
X = m O x, where © denotes the Hadamard
product (element-wise multiplication).

3. Scale activation values: To maintain consis-
tent expected outputs between training and
testing, the retained neurons are typically

scaled (multiplied by 1p): x=-1mox

1—p 1—p
Dropout operations require both the computation
and storage of masking vectors during training. At
test time, the full network is utilized, benefiting
from the ensemble effect of the thinned networks.
In our work, we adapt dropout to a novel context
within the multi-head structure of R-LoRA. Specifi-
cally, we employ dropout to differentiate the inputs
of the head matrices, ensuring that each head learns
distinct and complementary representations while
also reducing computational overhead.

3 Motivation

In this section, we analyze the parameter similar-
ity between different head matrices in the Multi-
Head LoRA architecture. To achieve our objec-
tives, we focus on HydralLoRA (Tian et al., 2024)
and use cosine similarity and the T-SNE method to
observe the parameters of the head matrices. We
fine-tune Qwen2.5-3B (Qwen Team, 2024) with
HydralLoRA (Tian et al., 2024) on five different
tasks. The details of the dataset can be referred
to Appendix B.1. First, we flatten the head ma-
trices into vectors and then calculate the cosine
similarity between the vectors to obtain a similarity
matrix. The average value of the matrix is regarded
as the similarity of the head matrix corresponding
to the parameter matrix. Additionally, we perform
T-SNE analysis on all the head matrices in Figure 6
of Appendix A.

As shown in Figure 2, the average similarity be-
tween different head matrices still reaches around
80%. With such a high similarity, the knowledge
learned between different head matrices is also
quite similar, which hinders the learning of task-
specific knowledge. To the best of our knowledge,
this is due to the zero initialization of the head
matrices. Tuning a pretrained LLM essentially
becomes optimizing in a much smaller parameter
space around the local optimum of pretrained mod-
els. After receiving the outputs from the shared
down-projection matrix A, the outputs of the head
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Figure 2: Cosine similarity among head matrices. "Overall mean" represents the average similarity across all layers.
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Figure 3: Overview of the R-LoRA.

matrices are highly similar in the early stages of
training, leading to highly similar update directions
during gradient updates.

Research Question 1: Is there a simple yet effec-
tive approach to differentiate head matrices such
that they capture distinct task-specific knowledge
for efficient multi-task learning ?

4 Method

In this work, we propose R-LoRA, which leverages
multi-head randomization to assist the model in
learning distinct knowledge. Multi-head random-
ization consists of two components: multi-head
dropout and random initialization. An overview of
R-LoRA is illustrated in Figure 3

Research Objective: 7o exploit randomization to
differentiate the head matrices, thereby facilitating
the optimization of their parameters to distinct re-
gions and enhancing the diversity among the head
matrices.

4.1 Multi-Head Dropout

Multi-Head LoRA architecture is characterized by
a shared down-projection matrix A and several
distinct head matrices B. In HydraLoRA (Tian
et al., 2024), the head matrices receive the same
output from the shared matrix A. According to
(Hayou et al., 2024) and (Tian et al., 2024), the
down-projection matrix A and the head matrix
B in LoRA play distinct roles. Specifically, the
down-projection matrix A primarily captures task-
agnostic knowledge, encoding generalizable fea-
tures applicable across tasks, while the head matri-
ces specialize in task-specific knowledge, enabling
the model to adapt to the unique requirements of
individual tasks. This division of roles enhances
the model’s ability to balance generalization and
specialization in multi-task learning scenarios. We
propose employing multi-head dropout to differ-
entiate the outputs of the down-projection matrix
A, thereby ensuring that the head matrices produce
distinct outputs. The framework of Multi-Head
dropout and R-LoRA is shown in Figure 3. Our
architecture builds upon the multi-head structure of
LoRA by incorporating multi-head dropout. After
the input is processed by the down-projection ma-
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Table 1: Comparison of initialization.

trix A, it generates a task-agnostic representation.
Multi-head dropout then diversifies this represen-
tation, allowing the model to learn task-specific
knowledge from multiple perspectives and improv-
ing both generalization and task adaptability.

Additionally, R-LoRA’s multi-head dropout
mechanism offers practical advantages by reducing
computational overhead and memory usage. Un-
like the original LoRA and Multi-Head structure
LoRA, which perform dropout on the input X €
R?*™ R-LoRA applies Multi-Head Dropout to the
intermediate representations. H € R"" r < m.
Since dropout operations require both the compu-
tation and storage of masking matrices, applying
dropout to the lower-dimensional H results in re-
duced computational costs and lower GPU memory
consumption.

4.2 Multi-Head Random Initialization

The zero initialization of the head matrices results
in identical starting points for the different head
matrices during training, causing them to converge
to similar positions. As demonstrated in Table 1,
To address this limitation, we adopt random initial-
ization to break the symmetry of initial head matri-
ces and diversify optimization trajectories, thereby
encouraging them to converge to different posi-
tions. To stabilize the magnitude of outputs and
enhance model performance, we incorporate a scal-
ing coefficient into the initialization process of the
head matrices. Specifically, inspired by (He et al.,
2015) and (Wang et al., 2024), we introduce a co-

N 7
efficient % or % during initialization to the

matrices to ensure scale stability. The v is a hy-
perparameter set to 64 based on empirical findings
from (Wang et al., 2024). Notably, (Wang et al.,
2024) theoretically analyzes that such a scaling fac-
tor helps maintain the numerical stability of the
output magnitudes throughout training. When the
head matrices are initialized with non-zero values,
the initial AWy is no longer zero. To maintain
consistency with the pre-trained model’s initial out-
puts and avoid random perturbations, we subtract

it from the original parameter matrix W during the
initialization phase. It can be formulated as:

N
1
W—W—AWO—W—N;BiO'AO )

S Experiments

In this section, we validate the effectiveness of R-
LoRA across various models and settings. Specifi-
cally, we evaluate R-LoRA’s multi-task adaptabil-
ity using Qwen2.5 (Qwen Team, 2024) in Setting
1 and its multi-task generalization capability us-
ing LLaMA-2 (Touvron et al., 2023) in Setting 2.
Model sizes range from 3B to 13B. An extensive
ablation study further demonstrates the effective-
ness of multi-head randomization in R-LoRA.

5.1 Experiment Settings

Datasets & Benchmarks: Setting 1: We fine-
tune Qwen2.5 on datasets covering commonsense
and mathematical reasoning tasks and evaluate
performance on their respective test sets. Set-
ting 2: We fine-tune LLaMA-2 on a subset of
the Flanv2 dataset (Brown, 2020), which includes
tasks grouped into 10 distinct task clusters. Per-
formance is measured using the Big-Bench Hard
(BBH) benchmark. Additional details about the
datasets and implementation details can be found
in Appendix B and Appendix C, respectively.
Baselines: In Setting 1, we compare R-LoRA
with LoRA, Multi-LoRA, MoeLLoRA, and Hy-
dralLoRA. In Setting 2, the comparison includes
LoRAHub (Huang et al., 2023), which employs
black-box optimization for weighted averaging of
LoRAs, LoRA-MoE (Liu et al., 2024a), which in-
tegrates lightweight experts with a Mixture of Ex-
perts architecture, and Hydral.LoRA.

5.2 Performance of R-LoRA on Multi-Tasks

The evaluation across diverse multi-task reason-
ing datasets, as shown in Table 2 and Table 3,



Schemes Task1 2 3 4 5 6 7 8 Avg  %Par A B
Owen2.5-3B

LoRA*1 80.00 56.50 84.80 72.10 90.10 87.60 87.60 44.15 7536 0.18 1 1
LoRA*2 86.30 5640 84.70 72.60 9140 8790 87.60 4480 7646 045 1 1
Multi-LoRA  84.50 5540 8270 72.10 89.80 81.80 87.69 4480 7485 0.60 3 3
MoeLoRA 87.40 58.10 85.60 7340 9225 8740 8734 4550 77.12 068 3 3
HydraLoRA 86.50 56.40 85.00 73.40 92.00 87.40 8838 4510 7677 045 1 3
R-LoRA 87.10 5790 88.13 7390 9470 88.25 88.26 4560 7798 045 1 3
Owen2.5-7B

LoRA*1 87.20 59.85 87.60 80.10 91.10 89.50 90.30 47.80 79.18 0.10 1 1
LoRA*2 88.40 60.80 8840 81.50 93.60 91.20 91.80 48.10 8048 025 1 1
Multi-LoRA  88.30 58.90 87.50 79.80 91.50 88.40 9190 4790 7928 033 3 3
MoeLoRA 89.50 6140 88.90 8290 93.60 91.50 9190 48.70 81.05 038 3 3
HydraLoRA 88.60 61.20 89.50 81.70 93.60 91.60 91.70 48.10 80.75 025 1 3
R-LoRA 89.80 62.50 89.40 83.70 95.10 92.10 92.17 50.80 8195 025 1 3

Table 2: Comparison of different training schemes on multi-task reasoning datasets. The rank of LoORA*2 was set to
10 to ensure that its trainable parameters matched those of R-LoRA, while all other configurations used a rank of 4.

Metrics Base LoRA LoRAHub* LoRA MoE* HydralLLoRA R-LoRA
7B 31,6 37.1 39.7 40.3 41.5 42.2
13B 384  40.8 41.9 43.7 44.2 45.1
A/B for training - 1/1 48/48 48/48 1/10 1/10
A/B for inference - 1/1 20/20 48/48 1/10 1/10
% Param - 0.062 1.240 2.976 0.341 0.341

Table 3: Comparison of different training schemes on multi-tasks. * indicates results from (Tian et al., 2024).

demonstrates that R-LoRA achieves superior per-
formance compared to all other methods. By
introducing multi-head randomization, R-LoRA
achieves significantly improved multi-task adapt-
ability and generalization capabilities. The per-
formance gains achieved by R-LoRA, driven by
these innovations, outperform LoRA and SOTA
multi-head LoRA methods like HydralLoRA. This
highlights R-LoRA’s enhanced generalization and
task adaptability. Additional results on the perfor-
mance of R-LoRA under single-task settings are
provided in Appendix A.

5.3 Efficiency of R-LoRA

We conducted a comparative analysis of the mem-
ory usage and training time between R-LoRA
and the original Multi-head structure LoRA using
Qwen2.5-3B under various configurations. Table 4
demonstrates that R-LoRA’s multi-head dropout
approach reduces GPU memory consumption by
up to 20% and cuts training time by up to 8%, high-
lighting its superior efficiency in comparison to

traditional methods.

5.4 Parameter Analysis

Research Question2: Does multi-head randomiza-
tion effectively enhance the acquisition of diverse
knowledge across the head matrices?

In this section, we analyze the parameter differ-
ences among the head matrices in R-LoRA. The
methodology and experimental setup align with
those described in Section 3. As shown in Figure 4,
the parameter similarity between head matrices in
R-LoRA is reduced to below 70%. This signifi-
cant decrease indicates that multi-head randomiza-
tion effectively enhances the model’s capacity to
learn task-specific knowledge, thereby mitigating
redundant learning and increasing the diversity of
acquired knowledge across tasks.

5.5 Training Process

Research Question3: Does multi-head randomiza-

tion impact the stability of the training process?
As illustrated in Figure 5, R-LoRA benefits from

multi-head randomization, exhibiting significantly



Schemes

3 Heads(bfloatl6) 5 Heads(bfloatl6) 3 Heads(float32)

5 Heads(float32)

MD 18.53GB /2.20h
ID 23.42GB /2.41h

22.05GB /2.75h
30.25GB / 3.25h

34.23GB/8.68h  41.24GB /9.65h
42.09GB /9.08h  54.45GB /10.31h

Table 4: Comparison of memory consumption and per-epoch training time across different dropout operations. MD
denotes our proposed Multi-Head Dropout, while ID represents input dropout applied to x in HydraLoRA.
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Figure 4: Cosine similarity among head matrices in R-LoRA. "Overall mean" represents the average similarity

across all layers.
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Figure 5: Gradient norm dynamics during training:
Comparison of conventional and multi-head randomized
configurations, highlighting enhanced stability through
diversified head matrices.

larger gradient norms in the early stages of training
compared to HydralLoRA. This drives the head ma-
trices to converge to distinct regions, enhancing the
model’s ability to capture diverse representations
and improving overall performance. Furthermore,

R-LoRA exhibits superior training stability, as evi-
denced by its more stable gradient norms through-
out the training process. This stability enables the
model to effectively acquire diverse knowledge
without compromising training efficiency and ro-
bustness.

5.6 Ablation Study

Ablation studies were conducted on Llama3.2-3B
and Qwen2.5-3B models across eight-task config-
urations, using 11 datasets spanning 8 categories.
All models were evaluated on their respective test
sets, with results summarized in Table 5. Dataset
details are provided in the Appendix B.4. More
results on the smaller model Qwen2.5-0.5B are
shown in the Appendix A

Experimental results demonstrate that the
two key components of multi-head randomiza-
tion—random initialization and dropout—are piv-
otal for enhancing the model’s adaptability across
tasks. Multi-head randomization remains effec-
tive even when initialization is isolated to LoRA
B. As shown in Table 5, R-LoRA with zero-



Schemes Task1 2 3 5 6 7 8 Avg
Llama3.2-3B

R-LoRA 05.82 83.68 84.25 8548 7145 74.12 8434 85.39 83.07
w/o MD 95.24 83.25 8246 84.75 70.27 7396 84.57 83.29 8222
w/o MI 94.66 8277 83.58 8325 69.79 7423 83.28 84.16 81.97
Zero A 95.67 83.46 8347 85.64 7027 73.84 84.13 84.89 82.67
HydraLoRA | 95.12 82.14 83.88 82.68 69.86 72.33 79.25 84.25 81.19
Owen2.5-3B

R-LoRA 96.42 83.27 8534 8649 7284 73.86 86.24 88.94 84.18
w/o MD 96.22 83.66 83.25 84.72 71.15 7324 85.02 88.12 83.17
w/o MI 96.10 83.21 83.65 84.50 71.69 72.05 83.24 88.36 82.85
Zero A 96.24 84.02 8436 8589 72.13 7351 8526 89.13 83.82
HydralLoRA | 95.89 83.53 82.97 8424 7095 7193 83.06 87.33 8249

Table 5: Results of Ablation Studies on Qwen2.5 and Llama3.2 with Different Schemes Across Various Tasks.
The table compares R-LoRA with its ablated versions (without Multi-Head Dropout/MD, without Multi-Head
Initialization/MI, and zero initialization to LORA A in R-LoRA) against HydraLoRA across eight tasks.

initialized LoRA A (Zero A) consistently outper-
forms HydraLoRA, demonstrating that the perfor-
mance gains are primarily attributed to the diversi-
fied parameter spaces in the head matrices B. Ran-
dom initialization assigns unique weights to each
head matrix, enabling task-specific pattern capture.
Dropout diversifies inputs to the head matrices, pro-
moting distinct learning pathways. Together, these
components improve task-specific feature capture
while maintaining robustness in multi-task learn-
ing.

6 Discussion

In this section, we discuss the underlying mecha-
nisms behind R-LoRA’s multi-head randomization
that enhance multi-task learning. As revealed in the
Motivation section, a key limitation of traditional
multi-head LoRA lies in the high similarity among
head matrices, which stems from zero-initialization.
This initialization scheme confines heads to sym-
metric states, limiting their ability to explore sparse
yet critical subspaces, such as those relevant to rare
syntactic relationships. Consequently, heads tend
to converge on overlapping subspaces, failing to
adequately address task-specific requirements.
Each token’s semantic logics (e.g., semantic,
syntactic, contextual) naturally reside in multiple
subspaces of high-dimensional embedding spaces.
The Multi-Head mechanism excels by decompos-
ing these logics into distinct subspaces for indepen-
dent processing. R-LoRA aligns with this principle

through two key innovations:

- Multi-Head Dropout: Promotes heteroge-
neous feature learning to capture complementary
aspects of the embedding space.

- Multi-Head Random Initialization: Decou-
ples head trajectories to prevent convergence to
overlapping subspaces.

As shown in Figure 4, R-LoRA effectively re-
duces the similarity among head matrices, promot-
ing diverse feature learning across tasks. Empirical
results in Table 5 further confirm that the perfor-
mance gains are primarily attributed to the diversi-
fied parameter spaces in LORA B, rather than LoORA
A, highlighting the importance of the up-projection
module in enabling task-specific adaptation.

7 Conclusion

In this work, we first analyze the multi-head struc-
ture of LoRA, revealing excessive similarity among
head matrices that limits task-specific learning. To
address this, R-LoRA introduces multi-head ran-
domization, a simple yet effective approach that
differentiates head matrices, enabling the model to
learn diverse knowledge across tasks. This inno-
vation enhances both performance and efficiency,
reducing GPU memory usage and training time.

Extensive experiments validate R-LoRA’s supe-
riority. The performance gains stem primarily from
increased diversity in the parameter spaces of the
head matrices, confirming the effectiveness of R-
LoRA for efficient multi-task learning.



8 Limitation

Despite the promising results of R-LoRA, several
limitations should be acknowledged. While we
have conducted extensive experiments to validate
its effectiveness, the inherent complexity of multi-
task learning highlights the importance of further
exploration and broader evaluation. Currently, our
validation focuses on NLP tasks, and extending
the method to other modalities, such as computer
vision and multimodal settings, represents an ex-
citing avenue for future research. These directions
could help unlock the full potential of R-LoRA and
deepen our understanding of its applicability across
diverse domains.
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A  More Results

A.1 T-SNE analysis

The T-SNE analysis of head matrices in Hy-
dralLoRA is shown in Figure 6.

A.2 Performance of R-LoRA on Single Task

We compare R-LoRA against various PEFT meth-
ods on single datasets: 1) Full fine-tuning;
2) Prompt Tuning (Lester et al., 2021); 3)
P-Tuning (Liu et al., 2024c); 4) Prefix Tun-
ing (Li and Liang, 2021); 5) IA3 (Liu et al.,
2022); 6) AdaLoRA (Zhang et al., 2023); 7) Hy-
dralLoRA (Tian et al., 2024).

As shown in Table 6, in the single-task setting,
where the knowledge and text format of the data
are relatively homogeneous, R-LoRA demonstrates
slightly improved performance compared to Hy-
dralLoRA. While multi-head randomization is pri-
marily designed for multi-task learning, its ability
to learn diverse knowledge remains beneficial even
in single-task scenarios. This slight edge over Hy-
dralLoRA underscores R-LoRA’s capacity to cap-
ture varied patterns effectively, even when its full
potential is not fully utilized in single-dataset set-
tings. These results further highlight R-LoRA’s
robustness and adaptability across different task
complexities.

A.3 Ablation study of R-LoRA on smaller
model

Table 7 show the ablation study on Qwen2.5-0.5B

A.4 Datasets in Single-task

1. General: We fine-tune with the
general  instruction  tuning  dataset
databricks-dolly-15k for generic

language capability and evaluate with
MMLU.

Medical: We fine-tune with GenMedGPT and
clinic-10k from ChatDoctor for medicine
applications and evaluate medical tasks in
MMLU including three related tasks: "clini-
cal knowledge", "professional medicine", and

"college medicine".

. Law: We fine-tune with two legal instruc-
tion tuning datasets Lawyer-Instruct and
US-Terms then evaluate with law tasks in
MMLU including two related tasks: "profes-
sional law" and "international law".
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Figure 6: T-SNE analysis of head matrices in HydraLoRA

4. Math: We fine-tune with the training split of  clusters. Then we evaluate it with the Big-Bench
GSM8K for mathematical reasoning and evalu-  Hard (BBH) benchmark.

ate with the test set of GSM8K. We summarize the details of the used datasets as
follows:
5. Code: We fine-tune with CodeAlpaca
for code generation and evaluate with 1. Struct-to-Text Conversion: This task eval-
HumanEval. uates the capability to generate natural lan-

B Datasets

B.1 Motivation

In the section of Motivation, We fine-tune
Qwen2.5-3B on five tasks: Paraphrase Detection
(QQP), Natural Language Inference (QNLI) (Wang,
2018), Commonsense Reasoning (SIQA) (Sap
et al., 2019), Physical Commonsense Reason-
ing (PIQA) (Bisk et al., 2020), and Math
(GSMS8K) (Cobbe et al., 2021)

B.2 Setting 1
1. Reading Comprehension: BoolQ

2. Science Question Answering: SiQA

3. Physical Question Answering: PiQA

4. Word Relation Reasoning: Winogrande
5. Commonsense Reasoning: Hellaswag

6. Open-Book Question Answering: OBQA
7. Closed-Book Question Answering: ARC
8. Mathematical Reasoning: GSM8K

B.3 Setting 2

Following (Tian et al., 2024), for complex mixed
multi-task/domain, we select a portion of the
Flanv?2 datasets covering Natural Language Under- 6.
standing (NLU) and Natural Language Generation
(NLG), which can be grouped into 10 distinct task
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guage descriptions from structured data inputs.
We use the following datasets: (1) Common-
Gen; (2) DART; (3) E2ENLG; (4) WebNLG

Translation: Translation involves convert-
ing text from one language to another, main-
taining the original meaning and nuances.
We use the following datasets: (1) En-Fr
from WMT’ 14; (2) En-De, En-Tr, En-Ru, En-
Fi, En-Ro from WMT’16; (3) En-Es from
Paracrawl.

. Commonsense Reasoning: This involves as-

sessing the ability to apply physical or scien-
tific principles alongside common sense in rea-
soning tasks. We use the following datasets:
(1) COPA; (2) HellaSwag; (3) PiQA; (4) Sto-
ryCloze.

Sentiment Analysis: A fundamental task in
natural language processing (NLP) that de-
termines the sentiment polarity (positive or
negative) of a given text. We use the follow-
ing datasets: (1) IMDB; (2) Sentiment140; (3)
SST-2; (4) Yelp.

. Paraphrase Detection: This task requires

models to ascertain whether two sentences
convey the same meaning, indicating seman-
tic equivalence. We use the following datasets:
(1) MRPC; (2) QQP; (3) Paws Wiki.

Coreference Resolution: Involves identify-
ing instances within a text that refer to the
same entity, demonstrating an understanding



Schemes General Medical Law Code Math Avg %Param #A #B
Base* 38.88 3598 33,51 20.34 10.38 27.82 - - -
Full* 4991 46.78  46.08 3293 2570 40.28 100 - -
Prompt Tuning* 39.91 37.59  35.02 21.55 13.18 29.45 0.001 - -
P-Tuning* 41.11 39.81  36.72 21.13 15.56 30.87 0.193 - -
Prefix Tuning* 41.78 40.28  36.54 2256 16.89 31.61 0.077 - -
TA3% 40.45 37.12 3525 23.17 1398 29.99 0.009 - -
LoRA(r = 8) 43.44 41.18 3795 2282 18.72 32.82 0.062 1 1
AdaLoRA*(r = 8) 44.32 4283 3936 2378 19.51 33.96 0.093 1 1
LoRA(r = 16) 45.12 4322 40.24 2522 20.14 34.79 0.124 1 1
HydraLoRA(r =8)  46.89 4521 4288 2743 2227 3694 0.124 1 3
R-LoRA(r = 8) 47.02 4554 4323 2727 2212 37.04 0.124 1 3

Table 6: Comparison of different training schemes on single task. * indicates results from (Tian et al., 2024)

Schemes Task1 2 4 5 Avg
R-LoRA 91.74 81.50 77.60 67.80 49.30 73.59
w/o MD 9140 8120 77.10 66.10 49.10 72.98
w/o MI 91.20 80.80 77.50 66.20 49.40 73.02
HydraLoRA | 90.97 80.30 77.20 65.80 49.20 72.69

Table 7: Results of Ablation Studies on Qwen2.5-0.5B with Different Schemes Across Various Tasks. The table
compares R-LoRA with its ablated versions (without Multi-Head Dropout/MD and without Multi-Head Random

Initialization/MI) against HydralLoRA across five tasks.

10.

of textual context. We use the following
datasets: (1) DPR; (2) WSC273.

Reading Comprehension: Assesses the ca-
pability to derive answers to questions from
a provided text containing relevant informa-
tion. We use the following datasets: (1)
BoolQ; (2) DROP; (3) MultiRC; (4) OBQA;
(5) SQuADv1; (6) SQuADV2.

Reading Comprehension with Common-
sense: Merges traditional reading compre-
hension skills with commonsense reasoning,
requiring understanding beyond the explicit
text. We use the following datasets: (1) Cos-
mosQA; (2) ReCoRD.

Natural Language Inference: Focuses on
deducing the relationship between two sen-
tences, determining if the second sentence
logically follows from, contradicts, or is unre-
lated to the first sentence. We use the follow-
ing datasets: (1) ANLI; (2) CB; (3) MNLI; (4)
QNLI; (5) SNLI; (6) WNLI; (7) RTE.

Closed-Book Question Answering: This
task challenges models to answer questions
about general knowledge without direct ac-
cess to external information sources. We use
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the following datasets: (1) ARC; (2) NQ; (3)
TriviaQA.

B.4 Ablation Study

Due to limited computational resources, we se-
lected a subset of the dataset for training and testing.
Five tasks for Smaller model Qwen2.5-0.5B in
Appendix A.3:

* Task 1: Sentiment Analysis (SST2)
* Task 2: Paraphrase Detection (QQP)
* Task 3: Natural Language Inference (QNLI)

* Task 4: Physical Commonsense Reasoning

(PiIQA)

* Task 5: Commonsense Reasoning (SiQA)

Eight tasks:

 Task 1: Sentiment Analysis (SST2)
* Task 2: Paraphrase Detection (QQP)

e Task 3: Natural Language Inference (MNLI +
QNLI)

* Task 4: Reading Comprehension (BoolQ +
OBQA)



Train loss
— HydraloRA — /M-LoRA

— 500: 0.3214 HydraLoRA
— 500: 0.3081/M-LoRA
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Figure 7: Training loss curves of HydraLoRA and R-
LoRA. The loss of R-LoRA remains lower throughout
the entire training process.

* Task 5: Commonsense Reasoning (PiQA +
SiQA)

» Task 6: Reading Comprehension with Com-
monsense (CosmosQA)

* Task 7: Coreference Resolution (Winogrande)

e Task 8: Closed-Book Question Answering
(ARC)

C Implementation Details

The hyperparameters used for training are as fol-
lows: a learning rate of 0.0002, "lora_alpha"=32,
and trainable LoRA components including
"gate_proj", "down_proj", and "up_proj". A
dropout rate of 0.2 was applied to the LoRA, with
a warmup ratio of 0.03. Mixed-precision training
was enabled using bfloat16, and the learning rate
scheduler was set to cosine annealing. The model
was trained for 1 epoch on NVIDIA 4090 GPU.
In Setting 1, the rank of LoRA was set to 10 for
LoRA*2 to match the total number of trainable
parameters in R-LoRA, while the rank for others
was set to 4.

D Baselines

1. Prompt Tuning: This method adds task-
specific prompts to the input. These prompt
parameters are updated independently while
the pretrained model parameters remain
frozen.

2. P-Tuning: This method incorporates trainable
prompt embeddings into the input, optimized
by a prompt encoder to automatically discover
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effective prompts, removing the need for man-
ual design. Prompt tokens can be placed any-
where in the input sequence, and anchor to-
kens are introduced to enhance performance.

. Prefix Tuning: This method prefixes a series

of task-specific vectors to the input sequence.
These prefix parameters can be learned while
keeping the pretrained model frozen. The pre-
fix parameters are inserted into all layers of
the model.

. T A3: This method enhances efficiency by in-

fusing learned vectors into transformer archi-
tectures, drastically reducing the number of
trainable parameters.

. AdaLoRA: Unlike LoRA, which distributes

parameters evenly across all modules,
AdaLoRA optimizes the number of trainable
parameters assigned to weight matrices and
layers. More parameters are allocated to
important weight matrices and layers, while
less important ones receive fewer parameters.

. LoraHub randomly aggregates 20 LoRAs for

new downstream tasks. It employs a black-
box optimization technique to determine the
weight of each LoRA, eliminating the need for
gradient calculations of the large model. This
involves parameter-level weighted averaging.

. LoRA MOoE. A collection of n parameter-

ized experts, denoted as E1,..., E,, is or-
chestrated by a router network R. E; = B; A;.
Router network features a dense layer with
adjustable weights Wp from R4 >" A soft-
max function then processes an intermediate
token representation z, yielding gating scores
S1, - - ., Sp that determine the weighted contri-
bution of each expert’s output:

s; = R(x); = softmax(Top(Wiz, K))
®
Subsequently, the overall output y is synthe-
sized by aggregating the Top-K experts’ out-
puts, each modulated by its respective gating
score:

y=Y si-Ei(zr) (MoE)  (6)
=1

This results in a dynamic allocation of the
model’s capacity, enabling specialized pro-
cessing by experts as directed by the router’s
gating mechanism.



8. HydraLl.oRA uses a shared matrix A and mul-

tiple matrices By, . .., B,,. The shared matrix
A is used to project the input vector x into a
lower-dimensional space, while each matrix
B; is used to modulate the output of the cor-
responding expert F;. The overall output y is
synthesized by aggregating the experts’ out-
puts, each modulated by its respective gating
score:

n

y=> si-(B;i-A-x) )

i=1

This approach allows for efficient parameteri-
zation and specialization of the model’s capac-
ity, leveraging the shared matrix A for com-
mon transformations and the individual matri-
ces B; for task-specific adjustments.
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