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Abstract001

Fine-tuning large language models (LLMs)002
is computationally expensive, and Low-Rank003
Adaptation (LoRA) provides a cost-effective004
solution by approximating weight updates005
through low-rank matrices. In real-world sce-006
narios, LLMs are fine-tuned on data from mul-007
tiple domains to perform tasks across various008
fields, embodying multi-task learning (MTL).009
LoRA often underperforms in such complex010
scenarios. To enhance LoRA’s capability011
in multi-task learning, we propose R-LoRA,012
which incorporates Multi-Head Randomiza-013
tion. Multi-Head Randomization diversifies the014
head matrices through Multi-Head Dropout and015
Multi-Head Random Initialization, enabling016
more efficient learning of task-specific features017
while maintaining shared knowledge represen-018
tation. Our approach not only improves perfor-019
mance in MTL but also reduces GPU memory020
usage and training time. Experiments show that021
R-LoRA’s gains stem from increased diversity022
in the head matrices, demonstrating its effec-023
tiveness for multi-task learning. The code will024
be open-sourced after the revision.025

1 Introduction026

In recent years, large language models (LLMs)027

have manifested unprecedentedly superior per-028

formance in various natural language processing029

(NLP) tasks (Brown, 2020; Zhao et al., 2023;030

Chang et al., 2024). Due to its impressive capa-031

bilities in language understanding and generation,032

LLMs have gained extensive interest from both033

academia and industry. Despite their high general-034

izability, LLMs still require fine-tuning for specific035

domains or updating the knowledge base (Agiza036

et al., 2024; Xin et al., 2024).037

Supervised fine-tuning (SFT) is crucial for align-038

ing large language models (LLMs) with human039

instructions, which trains the model with a small040

yet high-quality set of labeled data (Hu et al., 2021;041

Xia et al., 2024). The vast number of parameters 042

in LLMs poses significant challenges regarding 043

computational efficiency and memory consump- 044

tion during full fine-tuning (FT), which updates all 045

parameters. 046

To address the issue of hardware requirements 047

for LLM adaptation, a solution called parameter ef- 048

ficient fine-tuning (PEFT) has been proposed (Han 049

et al., 2024). PEFT methods reduce VRAM us- 050

age of cached optimizer states by only optimizing a 051

fraction of model parameters while keeping the rest 052

frozen. Various PEFT methods have been widely 053

studied(Li and Liang, 2021)(Liu et al., 2024c)(Liu 054

et al., 2022)(Hu et al., 2021). Among these meth- 055

ods, LoRA has emerged as the mainstream alter- 056

native to full parameter fine-tuning. Instead of 057

updating the original parameter matrix directly, 058

LoRA approximates the updated parameters us- 059

ing the product of two smaller matrices. During 060

inference, the output obtained from the original 061

parameter matrix is combined with the output from 062

the updated parameter matrices. However, LoRA 063

does not perform well in multi-task scenarios, par- 064

ticularly in dealing with complex datasets. 065

Recent LoRA variants have improved multi-task 066

learning by employing multiple LoRA adapters, 067

including Multi-LoRA (Wang et al., 2023), LoRA- 068

MoE (Dou et al., 2023), and MoeLoRA (Liu et al., 069

2024a). We refer to this extended framework as 070

the Multi-Adapter LoRA architecture, which con- 071

sists of multiple down-projection matrices (A) and 072

their corresponding head matrices (B), enabling 073

task-specific adaptation through diverse parameter 074

sets. Notably, LoRA-MoE and MoeLoRA further 075

enhance this architecture by introducing a Mix- 076

ture of Experts (MoE) mechanism to aggregate 077

adapter outputs. Tian et al. (2024) observes that 078

in the Multi-Adapter LoRA architecture, the pa- 079

rameters of the down-projection matrices A are 080

relatively consistent, while the differences between 081

the head matrices B are more pronounced, which 082

1



Figure 1: Training architecture comparison. (a) Full parameter fine-tuning; (b) Vanilla LoRA; (c) Multi-Adapter
architecture; (d) Multi-Head/Asymmetric architecture.

aids in capturing task-specific knowledge. To lever-083

age this property, HydraLoRA (Tian et al., 2024)084

is proposed to feature an asymmetric architecture085

with one shared down-projection matrix A and mul-086

tiple task-specific head matrices B. Additionally,087

HydraLoRA also employs an MoE mechanism to088

aggregate the outputs of the head matrices. This089

design achieves a good balance between training090

performance and parameter efficiency. In this work,091

we explicitly define asymmetric architecture as a092

Multi-Head structure, and introduce Multi-Head093

randomization to improve LLMs’ performance on094

multi-task learning. The mathematical formaliza-095

tion of the Multi-Head structure is detailed in Sec-096

tion 2.2. Figure 1 illustrates the differences among097

the aforementioned structures.098

However, in the Multi-Head architecture, the pa-099

rameter similarity among head matrices remains100

high, hindering task-specific knowledge learning.101

This is due to the zero initialization of head matri-102

ces B, leading to similar update directions. To ad-103

dress this limitation, R-LoRA employs multi-head104

randomization, combining random initialization105

with multi-head dropout. This approach diversifies106

both the starting points and inputs of the head matri-107

ces, enabling more effective task-specific learning108

by breaking initial symmetry and promoting dis-109

tinct optimization trajectories. Our work makes the110

following key contributions:111

- We reveal redundancy and symmetry in the112

head matrices of Multi-Head LoRA, limiting its113

ability to capture diverse task-specific knowledge.114

- We propose R-LoRA, introducing Multi-Head115

Randomization to enhance both performance and116

efficiency in multi-task learning.117

- Extensive experiments validate R-LoRA’s supe-118

riority, with analysis showing performance gains119

stem from diversified head matrices. 120

2 Related Works 121

2.1 LoRA 122

Current LLMs generally follow a decoder-only 123

structure, characterized by a series of blocks, each 124

comprising two key components with residual con- 125

nections: a multi-head self-attention (MHA) layer 126

and a feed-forward network (FFN) (Vaswani, 2017). 127

These layers involve using dense learnable matri- 128

ces. 129

There is a need to adapt LLMs for specific tasks 130

or domains with limited resources. To achieve this, 131

low-rank adaptation (LoRA) (Hu et al., 2021), in- 132

spired by the concept of low intrinsic dimension- 133

ality in LLMs, decomposes the weight gradient 134

∆W into low-rank matrices, thereby reducing the 135

number of trainable parameters. Specifically, for a 136

dense weight matrix W ∈ Rm×n, LoRA employs 137

two low-rank matrices, B ∈ Rm×r and A ∈ Rr×n, 138

to approximate the accumulated gradient updates 139

∆W. The rank r is chosen to be much smaller 140

than the minimum of d and k, effectively decreas- 141

ing the number of trainable parameters from m×n 142

to 2r(m× n). Consequently, the resulting weight 143

matrix is expressed as W +BA, and the output h 144

for an input x through this updated weight matrix 145

is formulated as: 146

h = (W +∆W)x = Wx+BAx (1) 147

Typically, matrix B is initialized with zeros, while 148

matrix A is initialized using Kaiming Uniform (He 149

et al., 2015). This initialization strategy ensures 150

that the initial outputs remain consistent with the 151

pre-trained model, thereby avoiding the introduc- 152

tion of random disturbances. 153

2



Following LoRA, AdaLoRA (Zhang et al., 2023)154

dynamically learns the rank size needed for LoRA155

in each layer of the model. DeltaLoRA (Zi et al.,156

2023) updates the original weights of the model157

using parameters from adapter layers, enhancing158

LoRA’s representational capacity. DoRA (Liu et al.,159

2024b) introduces a magnitude component to learn160

the scale of ∆W while utilizing the original AB as161

a direction component of ∆W . PiSSA (Meng et al.,162

2025) and LoRA-GA (Wang et al., 2024) have im-163

proved the convergence speed and performance of164

LoRA by refining its initialization method. Their165

approaches focus on optimizing the initial parame-166

ter settings, which enhances the training dynamics167

and leads to more efficient and stable convergence.168

2.2 Multi-Head architecture169

MTL-LoRA (Yang et al., 2024) and Hy-170

draLoRA (Tian et al., 2024) are pioneering meth-171

ods that introduce the multi-head architecture into172

LoRA. This architecture is characterized by a cen-173

tral shared down-projection matrix A and multi-174

ple distinct head matrices B, enabling efficient175

and flexible adaptation across diverse tasks. As176

shown in Figure 1, this architecture differentiates177

task-specific information while effectively captur-178

ing shared knowledge across various tasks. The179

Multi-Head architecture can be formulated as:180

W +∆W = W +
N∑
i=1

ωi ·BiA (2)181

In MTL-LoRA (Yang et al., 2024) and Hy-182

draLoRA (Tian et al., 2024), the weights wi are183

computed through the routing matrix Wr and the184

softmax function. It can be formulated as:185

ω = Softmax(Wrx) (3)186

2.3 Dropout187

Dropout is a widely used technique to prevent over-188

fitting in deep networks by randomly deactivating189

units during training (Srivastava et al., 2014). This190

process samples from an exponential number of191

thinned networks, reducing unit co-adaptation and192

enhancing noise robustness. The following is the193

formulation of Dropout.194

1. Mask vector: Generate a binary mask vector195

m ∈ {0, 1}d, where each element mj in-196

dependently takes the value 1 with probabil-197

ity 1 − p and 0 with probability p: mj ∼198

Bernoulli(p), j = 1, . . . , d199

2. Apply the mask: During training, multiply the 200

input x or the activation values by the mask 201

m element-wise to get the masked output x̃: 202

x̃ = m⊙ x, where ⊙ denotes the Hadamard 203

product (element-wise multiplication). 204

3. Scale activation values: To maintain consis- 205

tent expected outputs between training and 206

testing, the retained neurons are typically 207

scaled (multiplied by 1
1−p ): x̃ = 1

1−pm⊙ x 208

Dropout operations require both the computation 209

and storage of masking vectors during training. At 210

test time, the full network is utilized, benefiting 211

from the ensemble effect of the thinned networks. 212

In our work, we adapt dropout to a novel context 213

within the multi-head structure of R-LoRA. Specifi- 214

cally, we employ dropout to differentiate the inputs 215

of the head matrices, ensuring that each head learns 216

distinct and complementary representations while 217

also reducing computational overhead. 218

3 Motivation 219

In this section, we analyze the parameter similar- 220

ity between different head matrices in the Multi- 221

Head LoRA architecture. To achieve our objec- 222

tives, we focus on HydraLoRA (Tian et al., 2024) 223

and use cosine similarity and the T-SNE method to 224

observe the parameters of the head matrices. We 225

fine-tune Qwen2.5-3B (Qwen Team, 2024) with 226

HydraLoRA (Tian et al., 2024) on five different 227

tasks. The details of the dataset can be referred 228

to Appendix B.1. First, we flatten the head ma- 229

trices into vectors and then calculate the cosine 230

similarity between the vectors to obtain a similarity 231

matrix. The average value of the matrix is regarded 232

as the similarity of the head matrix corresponding 233

to the parameter matrix. Additionally, we perform 234

T-SNE analysis on all the head matrices in Figure 6 235

of Appendix A. 236

As shown in Figure 2, the average similarity be- 237

tween different head matrices still reaches around 238

80%. With such a high similarity, the knowledge 239

learned between different head matrices is also 240

quite similar, which hinders the learning of task- 241

specific knowledge. To the best of our knowledge, 242

this is due to the zero initialization of the head 243

matrices. Tuning a pretrained LLM essentially 244

becomes optimizing in a much smaller parameter 245

space around the local optimum of pretrained mod- 246

els. After receiving the outputs from the shared 247

down-projection matrix A, the outputs of the head 248
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Figure 2: Cosine similarity among head matrices. "Overall mean" represents the average similarity across all layers.

Figure 3: Overview of the R-LoRA.

matrices are highly similar in the early stages of249

training, leading to highly similar update directions250

during gradient updates.251

Research Question 1: Is there a simple yet effec-252

tive approach to differentiate head matrices such253

that they capture distinct task-specific knowledge254

for efficient multi-task learning?255

4 Method256

In this work, we propose R-LoRA, which leverages257

multi-head randomization to assist the model in258

learning distinct knowledge. Multi-head random-259

ization consists of two components: multi-head260

dropout and random initialization. An overview of261

R-LoRA is illustrated in Figure 3262

Research Objective: To exploit randomization to 263

differentiate the head matrices, thereby facilitating 264

the optimization of their parameters to distinct re- 265

gions and enhancing the diversity among the head 266

matrices. 267

4.1 Multi-Head Dropout 268

Multi-Head LoRA architecture is characterized by 269

a shared down-projection matrix A and several 270

distinct head matrices B. In HydraLoRA (Tian 271

et al., 2024), the head matrices receive the same 272

output from the shared matrix A. According to 273

(Hayou et al., 2024) and (Tian et al., 2024), the 274

down-projection matrix A and the head matrix 275

B in LoRA play distinct roles. Specifically, the 276

down-projection matrix A primarily captures task- 277

agnostic knowledge, encoding generalizable fea- 278

tures applicable across tasks, while the head matri- 279

ces specialize in task-specific knowledge, enabling 280

the model to adapt to the unique requirements of 281

individual tasks. This division of roles enhances 282

the model’s ability to balance generalization and 283

specialization in multi-task learning scenarios. We 284

propose employing multi-head dropout to differ- 285

entiate the outputs of the down-projection matrix 286

A, thereby ensuring that the head matrices produce 287

distinct outputs. The framework of Multi-Head 288

dropout and R-LoRA is shown in Figure 3. Our 289

architecture builds upon the multi-head structure of 290

LoRA by incorporating multi-head dropout. After 291

the input is processed by the down-projection ma- 292
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Method A Init B Init
LoRA U

(
−
√

3
din

,
√

3
din

)
0

HydraLoRA U
(
− 1

din
, 1
din

)
0

R-LoRA
4√dout√

γ ·N
(
0, 1

din

)
4√dout√

γ ·N
(
0, 1

dout

)
Table 1: Comparison of initialization.

trix A, it generates a task-agnostic representation.293

Multi-head dropout then diversifies this represen-294

tation, allowing the model to learn task-specific295

knowledge from multiple perspectives and improv-296

ing both generalization and task adaptability.297

Additionally, R-LoRA’s multi-head dropout298

mechanism offers practical advantages by reducing299

computational overhead and memory usage. Un-300

like the original LoRA and Multi-Head structure301

LoRA, which perform dropout on the input X ∈302

Rb×m, R-LoRA applies Multi-Head Dropout to the303

intermediate representations. H ∈ Rb×r, r ≪ m.304

Since dropout operations require both the compu-305

tation and storage of masking matrices, applying306

dropout to the lower-dimensional H results in re-307

duced computational costs and lower GPU memory308

consumption.309

4.2 Multi-Head Random Initialization310

The zero initialization of the head matrices results311

in identical starting points for the different head312

matrices during training, causing them to converge313

to similar positions. As demonstrated in Table 1,314

To address this limitation, we adopt random initial-315

ization to break the symmetry of initial head matri-316

ces and diversify optimization trajectories, thereby317

encouraging them to converge to different posi-318

tions. To stabilize the magnitude of outputs and319

enhance model performance, we incorporate a scal-320

ing coefficient into the initialization process of the321

head matrices. Specifically, inspired by (He et al.,322

2015) and (Wang et al., 2024), we introduce a co-323

efficient
4√dout√

γ or
4√din√

γ during initialization to the324

matrices to ensure scale stability. The γ is a hy-325

perparameter set to 64 based on empirical findings326

from (Wang et al., 2024). Notably, (Wang et al.,327

2024) theoretically analyzes that such a scaling fac-328

tor helps maintain the numerical stability of the329

output magnitudes throughout training. When the330

head matrices are initialized with non-zero values,331

the initial ∆W0 is no longer zero. To maintain332

consistency with the pre-trained model’s initial out-333

puts and avoid random perturbations, we subtract334

it from the original parameter matrix W during the 335

initialization phase. It can be formulated as: 336

W = W −∆W0 = W − 1

N

N∑
i=1

Bi0 ·A0 (4) 337

5 Experiments 338

In this section, we validate the effectiveness of R- 339

LoRA across various models and settings. Specifi- 340

cally, we evaluate R-LoRA’s multi-task adaptabil- 341

ity using Qwen2.5 (Qwen Team, 2024) in Setting 342

1 and its multi-task generalization capability us- 343

ing LLaMA-2 (Touvron et al., 2023) in Setting 2. 344

Model sizes range from 3B to 13B. An extensive 345

ablation study further demonstrates the effective- 346

ness of multi-head randomization in R-LoRA. 347

5.1 Experiment Settings 348

Datasets & Benchmarks: Setting 1: We fine- 349

tune Qwen2.5 on datasets covering commonsense 350

and mathematical reasoning tasks and evaluate 351

performance on their respective test sets. Set- 352

ting 2: We fine-tune LLaMA-2 on a subset of 353

the Flanv2 dataset (Brown, 2020), which includes 354

tasks grouped into 10 distinct task clusters. Per- 355

formance is measured using the Big-Bench Hard 356

(BBH) benchmark. Additional details about the 357

datasets and implementation details can be found 358

in Appendix B and Appendix C, respectively. 359

Baselines: In Setting 1, we compare R-LoRA 360

with LoRA, Multi-LoRA, MoeLoRA, and Hy- 361

draLoRA. In Setting 2, the comparison includes 362

LoRAHub (Huang et al., 2023), which employs 363

black-box optimization for weighted averaging of 364

LoRAs, LoRA-MoE (Liu et al., 2024a), which in- 365

tegrates lightweight experts with a Mixture of Ex- 366

perts architecture, and HydraLoRA. 367

5.2 Performance of R-LoRA on Multi-Tasks 368

The evaluation across diverse multi-task reason- 369

ing datasets, as shown in Table 2 and Table 3, 370
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Schemes Task1 2 3 4 5 6 7 8 Avg %Par A B

Qwen2.5-3B

LoRA*1 80.00 56.50 84.80 72.10 90.10 87.60 87.60 44.15 75.36 0.18 1 1
LoRA*2 86.30 56.40 84.70 72.60 91.40 87.90 87.60 44.80 76.46 0.45 1 1
Multi-LoRA 84.50 55.40 82.70 72.10 89.80 81.80 87.69 44.80 74.85 0.60 3 3
MoeLoRA 87.40 58.10 85.60 73.40 92.25 87.40 87.34 45.50 77.12 0.68 3 3
HydraLoRA 86.50 56.40 85.00 73.40 92.00 87.40 88.38 45.10 76.77 0.45 1 3
R-LoRA 87.10 57.90 88.13 73.90 94.70 88.25 88.26 45.60 77.98 0.45 1 3

Qwen2.5-7B

LoRA*1 87.20 59.85 87.60 80.10 91.10 89.50 90.30 47.80 79.18 0.10 1 1
LoRA*2 88.40 60.80 88.40 81.50 93.60 91.20 91.80 48.10 80.48 0.25 1 1
Multi-LoRA 88.30 58.90 87.50 79.80 91.50 88.40 91.90 47.90 79.28 0.33 3 3
MoeLoRA 89.50 61.40 88.90 82.90 93.60 91.50 91.90 48.70 81.05 0.38 3 3
HydraLoRA 88.60 61.20 89.50 81.70 93.60 91.60 91.70 48.10 80.75 0.25 1 3
R-LoRA 89.80 62.50 89.40 83.70 95.10 92.10 92.17 50.80 81.95 0.25 1 3

Table 2: Comparison of different training schemes on multi-task reasoning datasets. The rank of LoRA*2 was set to
10 to ensure that its trainable parameters matched those of R-LoRA, while all other configurations used a rank of 4.

Metrics Base LoRA LoRAHub* LoRA MoE* HydraLoRA R-LoRA
7B 31.6 37.1 39.7 40.3 41.5 42.2
13B 38.4 40.8 41.9 43.7 44.2 45.1
A/B for training - 1/1 48/48 48/48 1/10 1/10
A/B for inference - 1/1 20/20 48/48 1/10 1/10
% Param - 0.062 1.240 2.976 0.341 0.341

Table 3: Comparison of different training schemes on multi-tasks. * indicates results from (Tian et al., 2024).

demonstrates that R-LoRA achieves superior per-371

formance compared to all other methods. By372

introducing multi-head randomization, R-LoRA373

achieves significantly improved multi-task adapt-374

ability and generalization capabilities. The per-375

formance gains achieved by R-LoRA, driven by376

these innovations, outperform LoRA and SOTA377

multi-head LoRA methods like HydraLoRA. This378

highlights R-LoRA’s enhanced generalization and379

task adaptability. Additional results on the perfor-380

mance of R-LoRA under single-task settings are381

provided in Appendix A.382

5.3 Efficiency of R-LoRA383

We conducted a comparative analysis of the mem-384

ory usage and training time between R-LoRA385

and the original Multi-head structure LoRA using386

Qwen2.5-3B under various configurations. Table 4387

demonstrates that R-LoRA’s multi-head dropout388

approach reduces GPU memory consumption by389

up to 20% and cuts training time by up to 8%, high-390

lighting its superior efficiency in comparison to391

traditional methods. 392

5.4 Parameter Analysis 393

Research Question2: Does multi-head randomiza- 394

tion effectively enhance the acquisition of diverse 395

knowledge across the head matrices? 396

In this section, we analyze the parameter differ- 397

ences among the head matrices in R-LoRA. The 398

methodology and experimental setup align with 399

those described in Section 3. As shown in Figure 4, 400

the parameter similarity between head matrices in 401

R-LoRA is reduced to below 70%. This signifi- 402

cant decrease indicates that multi-head randomiza- 403

tion effectively enhances the model’s capacity to 404

learn task-specific knowledge, thereby mitigating 405

redundant learning and increasing the diversity of 406

acquired knowledge across tasks. 407

5.5 Training Process 408

Research Question3: Does multi-head randomiza- 409

tion impact the stability of the training process? 410

As illustrated in Figure 5, R-LoRA benefits from 411

multi-head randomization, exhibiting significantly 412
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Schemes 3 Heads(bfloat16) 5 Heads(bfloat16) 3 Heads(float32) 5 Heads(float32)
MD 18.53GB / 2.20h 22.05GB / 2.75h 34.23GB / 8.68h 41.24GB / 9.65h
ID 23.42GB / 2.41h 30.25GB / 3.25h 42.09GB / 9.08h 54.45GB / 10.31h

Table 4: Comparison of memory consumption and per-epoch training time across different dropout operations. MD
denotes our proposed Multi-Head Dropout, while ID represents input dropout applied to x in HydraLoRA.

Figure 4: Cosine similarity among head matrices in R-LoRA. "Overall mean" represents the average similarity
across all layers.

Figure 5: Gradient norm dynamics during training:
Comparison of conventional and multi-head randomized
configurations, highlighting enhanced stability through
diversified head matrices.

larger gradient norms in the early stages of training413

compared to HydraLoRA. This drives the head ma-414

trices to converge to distinct regions, enhancing the415

model’s ability to capture diverse representations416

and improving overall performance. Furthermore,417

R-LoRA exhibits superior training stability, as evi- 418

denced by its more stable gradient norms through- 419

out the training process. This stability enables the 420

model to effectively acquire diverse knowledge 421

without compromising training efficiency and ro- 422

bustness. 423

5.6 Ablation Study 424

Ablation studies were conducted on Llama3.2-3B 425

and Qwen2.5-3B models across eight-task config- 426

urations, using 11 datasets spanning 8 categories. 427

All models were evaluated on their respective test 428

sets, with results summarized in Table 5. Dataset 429

details are provided in the Appendix B.4. More 430

results on the smaller model Qwen2.5-0.5B are 431

shown in the Appendix A 432

Experimental results demonstrate that the 433

two key components of multi-head randomiza- 434

tion—random initialization and dropout—are piv- 435

otal for enhancing the model’s adaptability across 436

tasks. Multi-head randomization remains effec- 437

tive even when initialization is isolated to LoRA 438

B. As shown in Table 5, R-LoRA with zero- 439
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Schemes Task1 2 3 4 5 6 7 8 Avg

Llama3.2-3B

R-LoRA 95.82 83.68 84.25 85.48 71.45 74.12 84.34 85.39 83.07
w/o MD 95.24 83.25 82.46 84.75 70.27 73.96 84.57 83.29 82.22
w/o MI 94.66 82.77 83.58 83.25 69.79 74.23 83.28 84.16 81.97
Zero A 95.67 83.46 83.47 85.64 70.27 73.84 84.13 84.89 82.67
HydraLoRA 95.12 82.14 83.88 82.68 69.86 72.33 79.25 84.25 81.19

Qwen2.5-3B

R-LoRA 96.42 83.27 85.34 86.49 72.84 73.86 86.24 88.94 84.18
w/o MD 96.22 83.66 83.25 84.72 71.15 73.24 85.02 88.12 83.17
w/o MI 96.10 83.21 83.65 84.50 71.69 72.05 83.24 88.36 82.85
Zero A 96.24 84.02 84.36 85.89 72.13 73.51 85.26 89.13 83.82
HydraLoRA 95.89 83.53 82.97 84.24 70.95 71.93 83.06 87.33 82.49

Table 5: Results of Ablation Studies on Qwen2.5 and Llama3.2 with Different Schemes Across Various Tasks.
The table compares R-LoRA with its ablated versions (without Multi-Head Dropout/MD, without Multi-Head
Initialization/MI, and zero initialization to LoRA A in R-LoRA) against HydraLoRA across eight tasks.

initialized LoRA A (Zero A) consistently outper-440

forms HydraLoRA, demonstrating that the perfor-441

mance gains are primarily attributed to the diversi-442

fied parameter spaces in the head matrices B. Ran-443

dom initialization assigns unique weights to each444

head matrix, enabling task-specific pattern capture.445

Dropout diversifies inputs to the head matrices, pro-446

moting distinct learning pathways. Together, these447

components improve task-specific feature capture448

while maintaining robustness in multi-task learn-449

ing.450

6 Discussion451

In this section, we discuss the underlying mecha-452

nisms behind R-LoRA’s multi-head randomization453

that enhance multi-task learning. As revealed in the454

Motivation section, a key limitation of traditional455

multi-head LoRA lies in the high similarity among456

head matrices, which stems from zero-initialization.457

This initialization scheme confines heads to sym-458

metric states, limiting their ability to explore sparse459

yet critical subspaces, such as those relevant to rare460

syntactic relationships. Consequently, heads tend461

to converge on overlapping subspaces, failing to462

adequately address task-specific requirements.463

Each token’s semantic logics (e.g., semantic,464

syntactic, contextual) naturally reside in multiple465

subspaces of high-dimensional embedding spaces.466

The Multi-Head mechanism excels by decompos-467

ing these logics into distinct subspaces for indepen-468

dent processing. R-LoRA aligns with this principle469

through two key innovations: 470

- Multi-Head Dropout: Promotes heteroge- 471

neous feature learning to capture complementary 472

aspects of the embedding space. 473

- Multi-Head Random Initialization: Decou- 474

ples head trajectories to prevent convergence to 475

overlapping subspaces. 476

As shown in Figure 4, R-LoRA effectively re- 477

duces the similarity among head matrices, promot- 478

ing diverse feature learning across tasks. Empirical 479

results in Table 5 further confirm that the perfor- 480

mance gains are primarily attributed to the diversi- 481

fied parameter spaces in LoRA B, rather than LoRA 482

A, highlighting the importance of the up-projection 483

module in enabling task-specific adaptation. 484

7 Conclusion 485

In this work, we first analyze the multi-head struc- 486

ture of LoRA, revealing excessive similarity among 487

head matrices that limits task-specific learning. To 488

address this, R-LoRA introduces multi-head ran- 489

domization, a simple yet effective approach that 490

differentiates head matrices, enabling the model to 491

learn diverse knowledge across tasks. This inno- 492

vation enhances both performance and efficiency, 493

reducing GPU memory usage and training time. 494

Extensive experiments validate R-LoRA’s supe- 495

riority. The performance gains stem primarily from 496

increased diversity in the parameter spaces of the 497

head matrices, confirming the effectiveness of R- 498

LoRA for efficient multi-task learning. 499
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8 Limitation500

Despite the promising results of R-LoRA, several501

limitations should be acknowledged. While we502

have conducted extensive experiments to validate503

its effectiveness, the inherent complexity of multi-504

task learning highlights the importance of further505

exploration and broader evaluation. Currently, our506

validation focuses on NLP tasks, and extending507

the method to other modalities, such as computer508

vision and multimodal settings, represents an ex-509

citing avenue for future research. These directions510

could help unlock the full potential of R-LoRA and511

deepen our understanding of its applicability across512

diverse domains.513
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A More Results 660

A.1 T-SNE analysis 661

The T-SNE analysis of head matrices in Hy- 662

draLoRA is shown in Figure 6. 663

A.2 Performance of R-LoRA on Single Task 664

We compare R-LoRA against various PEFT meth- 665

ods on single datasets: 1) Full fine-tuning; 666

2) Prompt Tuning (Lester et al., 2021); 3) 667

P-Tuning (Liu et al., 2024c); 4) Prefix Tun- 668

ing (Li and Liang, 2021); 5) IA3 (Liu et al., 669

2022); 6) AdaLoRA (Zhang et al., 2023); 7) Hy- 670

draLoRA (Tian et al., 2024). 671

As shown in Table 6, in the single-task setting, 672

where the knowledge and text format of the data 673

are relatively homogeneous, R-LoRA demonstrates 674

slightly improved performance compared to Hy- 675

draLoRA. While multi-head randomization is pri- 676

marily designed for multi-task learning, its ability 677

to learn diverse knowledge remains beneficial even 678

in single-task scenarios. This slight edge over Hy- 679

draLoRA underscores R-LoRA’s capacity to cap- 680

ture varied patterns effectively, even when its full 681

potential is not fully utilized in single-dataset set- 682

tings. These results further highlight R-LoRA’s 683

robustness and adaptability across different task 684

complexities. 685

A.3 Ablation study of R-LoRA on smaller 686

model 687

Table 7 show the ablation study on Qwen2.5-0.5B 688

A.4 Datasets in Single-task 689

1. General: We fine-tune with the 690

general instruction tuning dataset 691

databricks-dolly-15k for generic 692

language capability and evaluate with 693

MMLU. 694

2. Medical: We fine-tune with GenMedGPT and 695

clinic-10k from ChatDoctor for medicine 696

applications and evaluate medical tasks in 697

MMLU including three related tasks: "clini- 698

cal knowledge", "professional medicine", and 699

"college medicine". 700

3. Law: We fine-tune with two legal instruc- 701

tion tuning datasets Lawyer-Instruct and 702

US-Terms then evaluate with law tasks in 703

MMLU including two related tasks: "profes- 704

sional law" and "international law". 705
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Figure 6: T-SNE analysis of head matrices in HydraLoRA

4. Math: We fine-tune with the training split of706

GSM8K for mathematical reasoning and evalu-707

ate with the test set of GSM8K.708

5. Code: We fine-tune with CodeAlpaca709

for code generation and evaluate with710

HumanEval.711

B Datasets712

B.1 Motivation713

In the section of Motivation, We fine-tune714

Qwen2.5-3B on five tasks: Paraphrase Detection715

(QQP), Natural Language Inference (QNLI) (Wang,716

2018), Commonsense Reasoning (SIQA) (Sap717

et al., 2019), Physical Commonsense Reason-718

ing (PIQA) (Bisk et al., 2020), and Math719

(GSM8K) (Cobbe et al., 2021)720

B.2 Setting 1721

1. Reading Comprehension: BoolQ722

2. Science Question Answering: SiQA723

3. Physical Question Answering: PiQA724

4. Word Relation Reasoning: Winogrande725

5. Commonsense Reasoning: Hellaswag726

6. Open-Book Question Answering: OBQA727

7. Closed-Book Question Answering: ARC728

8. Mathematical Reasoning: GSM8K729

B.3 Setting 2730

Following (Tian et al., 2024), for complex mixed731

multi-task/domain, we select a portion of the732

Flanv2 datasets covering Natural Language Under-733

standing (NLU) and Natural Language Generation734

(NLG), which can be grouped into 10 distinct task735

clusters. Then we evaluate it with the Big-Bench 736

Hard (BBH) benchmark. 737

We summarize the details of the used datasets as 738

follows: 739

1. Struct-to-Text Conversion: This task eval- 740

uates the capability to generate natural lan- 741

guage descriptions from structured data inputs. 742

We use the following datasets: (1) Common- 743

Gen; (2) DART; (3) E2ENLG; (4) WebNLG 744

2. Translation: Translation involves convert- 745

ing text from one language to another, main- 746

taining the original meaning and nuances. 747

We use the following datasets: (1) En-Fr 748

from WMT’14; (2) En-De, En-Tr, En-Ru, En- 749

Fi, En-Ro from WMT’16; (3) En-Es from 750

Paracrawl. 751

3. Commonsense Reasoning: This involves as- 752

sessing the ability to apply physical or scien- 753

tific principles alongside common sense in rea- 754

soning tasks. We use the following datasets: 755

(1) COPA; (2) HellaSwag; (3) PiQA; (4) Sto- 756

ryCloze. 757

4. Sentiment Analysis: A fundamental task in 758

natural language processing (NLP) that de- 759

termines the sentiment polarity (positive or 760

negative) of a given text. We use the follow- 761

ing datasets: (1) IMDB; (2) Sentiment140; (3) 762

SST-2; (4) Yelp. 763

5. Paraphrase Detection: This task requires 764

models to ascertain whether two sentences 765

convey the same meaning, indicating seman- 766

tic equivalence. We use the following datasets: 767

(1) MRPC; (2) QQP; (3) Paws Wiki. 768

6. Coreference Resolution: Involves identify- 769

ing instances within a text that refer to the 770

same entity, demonstrating an understanding 771
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Schemes General Medical Law Code Math Avg %Param #A #B
Base* 38.88 35.98 33.51 20.34 10.38 27.82 - - -
Full* 49.91 46.78 46.08 32.93 25.70 40.28 100 - -
Prompt Tuning* 39.91 37.59 35.02 21.55 13.18 29.45 0.001 - -
P-Tuning* 41.11 39.81 36.72 21.13 15.56 30.87 0.193 - -
Prefix Tuning* 41.78 40.28 36.54 22.56 16.89 31.61 0.077 - -
IA3* 40.45 37.12 35.25 23.17 13.98 29.99 0.009 - -
LoRA(r = 8) 43.44 41.18 37.95 22.82 18.72 32.82 0.062 1 1
AdaLoRA*(r = 8) 44.32 42.83 39.36 23.78 19.51 33.96 0.093 1 1
LoRA(r = 16) 45.12 43.22 40.24 25.22 20.14 34.79 0.124 1 1
HydraLoRA(r = 8) 46.89 45.21 42.88 27.43 22.27 36.94 0.124 1 3
R-LoRA(r = 8) 47.02 45.54 43.23 27.27 22.12 37.04 0.124 1 3

Table 6: Comparison of different training schemes on single task. * indicates results from (Tian et al., 2024)

Schemes Task1 2 3 4 5 Avg
R-LoRA 91.74 81.50 77.60 67.80 49.30 73.59
w/o MD 91.40 81.20 77.10 66.10 49.10 72.98
w/o MI 91.20 80.80 77.50 66.20 49.40 73.02
HydraLoRA 90.97 80.30 77.20 65.80 49.20 72.69

Table 7: Results of Ablation Studies on Qwen2.5-0.5B with Different Schemes Across Various Tasks. The table
compares R-LoRA with its ablated versions (without Multi-Head Dropout/MD and without Multi-Head Random
Initialization/MI) against HydraLoRA across five tasks.

of textual context. We use the following772

datasets: (1) DPR; (2) WSC273.773

7. Reading Comprehension: Assesses the ca-774

pability to derive answers to questions from775

a provided text containing relevant informa-776

tion. We use the following datasets: (1)777

BoolQ; (2) DROP; (3) MultiRC; (4) OBQA;778

(5) SQuADv1; (6) SQuADv2.779

8. Reading Comprehension with Common-780

sense: Merges traditional reading compre-781

hension skills with commonsense reasoning,782

requiring understanding beyond the explicit783

text. We use the following datasets: (1) Cos-784

mosQA; (2) ReCoRD.785

9. Natural Language Inference: Focuses on786

deducing the relationship between two sen-787

tences, determining if the second sentence788

logically follows from, contradicts, or is unre-789

lated to the first sentence. We use the follow-790

ing datasets: (1) ANLI; (2) CB; (3) MNLI; (4)791

QNLI; (5) SNLI; (6) WNLI; (7) RTE.792

10. Closed-Book Question Answering: This793

task challenges models to answer questions794

about general knowledge without direct ac-795

cess to external information sources. We use796

the following datasets: (1) ARC; (2) NQ; (3) 797

TriviaQA. 798

B.4 Ablation Study 799

Due to limited computational resources, we se- 800

lected a subset of the dataset for training and testing. 801

Five tasks for Smaller model Qwen2.5-0.5B in 802

Appendix A.3: 803

• Task 1: Sentiment Analysis (SST2) 804

• Task 2: Paraphrase Detection (QQP) 805

• Task 3: Natural Language Inference (QNLI) 806

• Task 4: Physical Commonsense Reasoning 807

(PiQA) 808

• Task 5: Commonsense Reasoning (SiQA) 809

Eight tasks: 810

• Task 1: Sentiment Analysis (SST2) 811

• Task 2: Paraphrase Detection (QQP) 812

• Task 3: Natural Language Inference (MNLI + 813

QNLI) 814

• Task 4: Reading Comprehension (BoolQ + 815

OBQA) 816
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Figure 7: Training loss curves of HydraLoRA and R-
LoRA. The loss of R-LoRA remains lower throughout
the entire training process.

• Task 5: Commonsense Reasoning (PiQA +817

SiQA)818

• Task 6: Reading Comprehension with Com-819

monsense (CosmosQA)820

• Task 7: Coreference Resolution (Winogrande)821

• Task 8: Closed-Book Question Answering822

(ARC)823

C Implementation Details824

The hyperparameters used for training are as fol-825

lows: a learning rate of 0.0002, "lora_alpha"=32,826

and trainable LoRA components including827

"gate_proj", "down_proj", and "up_proj". A828

dropout rate of 0.2 was applied to the LoRA, with829

a warmup ratio of 0.03. Mixed-precision training830

was enabled using bfloat16, and the learning rate831

scheduler was set to cosine annealing. The model832

was trained for 1 epoch on NVIDIA 4090 GPU.833

In Setting 1, the rank of LoRA was set to 10 for834

LoRA*2 to match the total number of trainable835

parameters in R-LoRA, while the rank for others836

was set to 4.837

D Baselines838

1. Prompt Tuning: This method adds task-839

specific prompts to the input. These prompt840

parameters are updated independently while841

the pretrained model parameters remain842

frozen.843

2. P-Tuning: This method incorporates trainable844

prompt embeddings into the input, optimized845

by a prompt encoder to automatically discover846

effective prompts, removing the need for man- 847

ual design. Prompt tokens can be placed any- 848

where in the input sequence, and anchor to- 849

kens are introduced to enhance performance. 850

3. Prefix Tuning: This method prefixes a series 851

of task-specific vectors to the input sequence. 852

These prefix parameters can be learned while 853

keeping the pretrained model frozen. The pre- 854

fix parameters are inserted into all layers of 855

the model. 856

4. IA3: This method enhances efficiency by in- 857

fusing learned vectors into transformer archi- 858

tectures, drastically reducing the number of 859

trainable parameters. 860

5. AdaLoRA: Unlike LoRA, which distributes 861

parameters evenly across all modules, 862

AdaLoRA optimizes the number of trainable 863

parameters assigned to weight matrices and 864

layers. More parameters are allocated to 865

important weight matrices and layers, while 866

less important ones receive fewer parameters. 867

6. LoraHub randomly aggregates 20 LoRAs for 868

new downstream tasks. It employs a black- 869

box optimization technique to determine the 870

weight of each LoRA, eliminating the need for 871

gradient calculations of the large model. This 872

involves parameter-level weighted averaging. 873

7. LoRA MoE. A collection of n parameter- 874

ized experts, denoted as E1, . . . , En, is or- 875

chestrated by a router network R. Ei = BiAi. 876

Router network features a dense layer with 877

adjustable weights WR from Rdm×n. A soft- 878

max function then processes an intermediate 879

token representation x, yielding gating scores 880

s1, . . . , sn that determine the weighted contri- 881

bution of each expert’s output: 882

si = R(x)i = softmax(Top(W T
Rx,K))

(5) 883

Subsequently, the overall output y is synthe- 884

sized by aggregating the Top-K experts’ out- 885

puts, each modulated by its respective gating 886

score: 887

y =

n∑
i=1

si · Ei(x) (MoE) (6) 888

This results in a dynamic allocation of the 889

model’s capacity, enabling specialized pro- 890

cessing by experts as directed by the router’s 891

gating mechanism. 892

13



8. HydraLoRA uses a shared matrix A and mul-893

tiple matrices B1, . . . , Bn. The shared matrix894

A is used to project the input vector x into a895

lower-dimensional space, while each matrix896

Bi is used to modulate the output of the cor-897

responding expert Ei. The overall output y is898

synthesized by aggregating the experts’ out-899

puts, each modulated by its respective gating900

score:901

y =
n∑

i=1

si · (Bi ·A · x) (7)902

This approach allows for efficient parameteri-903

zation and specialization of the model’s capac-904

ity, leveraging the shared matrix A for com-905

mon transformations and the individual matri-906

ces Bi for task-specific adjustments.907
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