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Abstract

Speculative Decoding (SD) accelerates large language model inference by em-
ploying a small draft model to generate predictions, which are then verified by a
larger target model. The effectiveness of SD hinges on the alignment between these
models, which is typically enhanced by Knowledge Distillation (KD). However,
conventional KD methods aim to minimize the KL divergence between the draft
and target models across all tokens, a goal that is misaligned with the true objective
of SD, which is to maximize token acceptance rate. Therefore, draft models often
struggle to fully assimilate the target model’s knowledge due to capacity con-
straints, leading to suboptimal performance. To address this challenge, we propose
AdaSPEC, a novel method that incorporates selective token filtering into the KD
process. AdaSPEC utilizes a reference model to identify and filter out difficult-to-fit
tokens, enabling the distillation of a draft model that better aligns with the target
model on simpler tokens. This approach improves the overall token acceptance rate
without compromising generation quality. We evaluate AdaSPEC across diverse
tasks, including arithmetic reasoning, instruction-following, coding, and summa-
rization, using model configurations of 31M/1.4B and 350M/2.7B parameters. Our
results demonstrate that AdaSPEC consistently outperforms the state-of-the-art
DistillSpec method, achieving higher acceptance rates across all tasks (up to 15%).
The code is publicly available at https://github.com/yuezhouhu/adaspec.

1 Introduction

Large language models (LLMs) have revolutionized natural language processing, achieving im-
pressive performance across a wide range of tasks. Models like GPT-4 [25] and Llama 3 [11]
demonstrate state-of-the-art results in various natural language understanding and generation tasks
[2, 27], including highly complex tasks such as summarization [23] and mathematical reasoning
[9, 13]. However, as these models grow in size and complexity, their inference becomes increasingly
computationally intensive, leading to practical challenges in deployment, including slow generation
speeds and significant output latency.

To address these shortcomings, current approaches primarily focus on achieving a trade-off between
efficiency and performance through two main strategies. The first involves compressing the model
scale to enhance the capability of smaller models, often using techniques like Knowledge Distillation
(KD) [14]. The second approach employs methods such as quantization to enable faster computation.
However, these strategies inevitably lead to a sacrifice of performance, either due to a loss of
representational capacity during compression or reduced accuracy resulting from optimization for
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speed. As a result, there is a growing need for methods that can maintain the high performance of
LLMs while significantly improving their inference efficiency.

Recently, Speculative Decoding (SD) [16, 7] has emerged as a promising paradigm for accelerating
LLM inference without sacrificing performance. Unlike model compression or quantization, which
modify the model architecture or parameters, SD accelerates generation by restructuring the decoding
process itself. Specifically, it introduces a lightweight draft model that speculatively generates
multiple candidate tokens, which are then verified by the larger target model. This paradigm preserves
the target model’s predictive quality while substantially reducing the number of expensive forward
passes, offering a new efficiency–performance trade-off.

The core of SD lies in the design of the draft model. This model is typically much smaller than
the target model, even ranging from one-tenth to one-hundredth of the size, enabling faster token
generation while maintaining a certain level of capability. Consequently, the actual inference speed-up
achieved by SD relies on the draft model closely aligning its predictions with the target model’s
output distribution. Typically, this alignment is achieved by pre-training and fine-tuning both models
on the same datasets, yielding a pair of homogeneous models from the same family, sharing the
same architecture but differing in size. However, training two models on the same datasets does not
necessarily produce optimal alignment, especially given the significant scale disparity between the
draft and target models. This difference in scale makes the draft model prone to prediction errors.
To address this challenge, state-of-the-art methods employ KD techniques to refine the draft model,
rather than relying solely on direct fine-tuning [32]. However, optimizing fidelity metric (e.g., forward
KL divergence) does not necessarily lead to a high acceptance rate. Worse still, it may waste the
draft model’s limited capacity on tokens that are inherently hard to learn and unlikely to be accepted
anyway. Additionally, these methods may encounter issues such as the loss failing to converge. Given
these challenges, there is a critical need for SD-specific training regimes that effectively balance
model capacity constraints with prediction accuracy requirements.

Fortunately, we observe substantial variation in the difficulty of learning individual tokens during
KD, which has critical implications for transferring knowledge from the teacher (target) model to the
student (draft) model. Instead of mimicking the full output distribution of the target model, the draft
model only needs to produce correct predictions on the subset of tokens that is easy enough to propose.
During the process of distillation, we identify a subset of “hard” tokens that pose particular challenges
for the student model to learn and to predict accurately, regardless of training efforts. Conversely,
other tokens are relatively easy to assimilate. We argue that uniformly emphasizing the loss on
both “easy” and “hard” tokens may be counterproductive. Attempting to reduce the loss on difficult
tokens often comes at the expense of increasing the loss on easy tokens, resulting in suboptimal
learning across both categories. To address this issue, we propose a novel approach: deliberately
excluding “hard” tokens from the training process. By focusing the loss function exclusively on “easy”
tokens, we can more effectively utilize the limited capacity of the student model, thus achieving better
alignment with the teacher model on these tokens. This strategic exclusion of hard-to-learn tokens
allows the student model to concentrate its resources on mastering the more accessible aspect of the
teacher’s knowledge, potentially leading to improved overall performance in SD tasks. Our approach
thus maximizes the alignment between the draft and target models within the constraints of the draft
model’s capacity.

In this study, we propose AdaSPEC, a novel Knowledge Distillation method designed to bridge the
capacity gap between the draft and target models in SD. AdaSPEC operates in two phases:

1: Reference Model Distillation and Token Filtering: A reference model, initialized as a copy of
the draft model, is distilled using the target model as its teacher. For simplicity, we assume that the
target model has been well fine-tuned to downstream tasks of our interests. Here the reference model
serves a crucial role as a token filter. It identifies “hard” tokens—those that are difficult for smaller
models to predict accurately—by comparing the perplexity differences between the reference and
draft models on the training data.

2: Selective Draft Model Distillation: Finally, the draft model undergoes distillation using a filtered
dataset. The reference model removes the previously identified “hard” tokens, allowing the draft
model to focus its limited capacity on learning to predict the remaining, more manageable tokens
accurately.
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We conduct extensive experiments on a wide range of models and downstream tasks, where we
benchmark AdaSPEC against DistillSpec and find that AdaSPEC sucessfully pushes the limit of
SD—across all tasks and model setups, AdaSPEC consistently achieves higher acceptance rates (up
to 15%; see Table 1).

2 Preliminaries

In this section, we provide a formal overview of the foundational concepts. We begin with the
mathematical framework of SD, followed by a description of various evaluation metrics. Finally,
we explore language model families and their significance in enabling techniques like SD to bridge
performance gaps between models of different sizes.

Speculative Decoding. Speculative Decoding [7, 16, 29, 20, 32, 6, 17, 18, 30, 6, 21, 26, 32, 20] is
originally proposed to accelerate LLM inference by employing a compact draft model to predict
potential output sequences in advance and then verified by a larger target model. The typical
framework of SD is formulated as follows. Let Mp and Mq denote the large target model and the
compact draft model, respectively. SD leverages the draft model to autoregressively generate γ tokens
z ≜ {zi}γi=1 ∼ qθ(· | x) based on the input x = [x1, x2, . . . , xt], which includes the prompt and
previously generated tokens. The target model then verifies these proposed tokens by evaluating their
probabilities {p(zi | x, z<i)}γi=1 in parallel.

Both models generate probability distributions p(zi+1 | x, z<i) and q(zi+1 | x, z<i) for each token
i = 1, . . . , γ in a single forward pass. Using a greedy decoding strategy, only the tokens with the
highest probabilities are selected for generation or verification. The sampling functions are:

Sp(z<i) = argmax
zi+1

p(zi+1 | x, z<i), (1)

Sq(z<i) = argmax
zi+1

q(zi+1 | x, z<i), (2)

for each i = 1, . . . , γ. The complete sampling and verification process is detailed in Appendix A.1

Acceptance Rate. The acceptance rate, α, measures the accuracy of the draft model Mq compared to
the target model Mp. It is calculated as:

α =
accept

accept + reject
. (3)

Here, accept and reject are the count of tokens accepted and rejected by Mp, respectively. A higher
α indicates greater alignment between Mp and Mq , facilitating faster inference in practical scenarios.

Block Efficiency and Wall-time Improvement. Block efficiency [7, 16], τ , quantifies the average
number of tokens generated per iteration. It is defined as the expected number of accepted tokens
per block, with a maximum value of γ + 1 for a block size of γ. The block efficiency can also be
expressed in terms of the acceptance rate α [16]:

τ(x) =
1− αγ+1

1− α
. (4)

This metric evaluates how effectively Mq approximates Mp. The speed-up factor for the total
wall-time is given by:

Speed-up =
τ(x)

γc+ 1
, (5)

where c is the cost coefficient, representing the ratio of the time taken by a single execution of Mq to
that of Mp.

Language Model Families. Modern language models are often developed as part of a family of
models that share the same core architecture but differ in scale, typically measured by the number of
parameters or the size of the training dataset. These families, such as Llama 3 [11], BERT [10], and
Pythia [5], are designed to enable researchers and practitioners to balance computational efficiency
and performance based on specific use cases. Within a family, smaller models are generally used
for tasks requiring faster inference or lower computational cost, while larger models are leveraged
for tasks demanding higher accuracy and richer representations. This structural consistency within a
family allows for techniques like Knowledge Distillation [14] and Speculative Decoding [7, 16] to
transfer knowledge or align predictions effectively between models of varying sizes.
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3 Method

We introduce AdaSPEC, an adaptive distillation framework for SD that enhances the alignment
between a target model and a smaller draft model through selective Knowledge Distillation. Given a
target model Mp fine-tuned for a specific downstream task, AdaSPEC consists of two key steps: (1)
constructing a reference model Mref and (2) selectively distilling knowledge from Mp and Mref to
the draft model Mq .

Step 1: Constructing the Reference Model. The reference model Mref is constructed by distilling
Mp on a downstream task dataset D using the DistillSpec framework [32]. The objective is to
minimize the forward KL divergence between the target model and the reference model:

LKD = Ex∼D,y∼P (y|x) [K (P (y|x)||R(y|x))] , (6)

where x represents the input prefix, y denotes the generated context, K denotes the forward KL diver-
gence, P (y|x) represents the probability distribution of the target model, and R(y|x) corresponds to
the probability distribution of the reference model.

Step 2: Selective Knowledge Distillation for the Draft Model. To identify learnable tokens for the
draft model Mq , we compute token-wise losses based on the predicted distributions of Mref and Mq .
Specifically, for each token w, the token-wise KL divergence losses are computed as:

Lref(w) = K (P (w | context)||R(w | context)) , (7)
Ldraft(w) = K (P (w | context)||Q(w | context)) , (8)

where Q(w | context) is the probability predicted for token w by the draft model, given the context.

Next, we calculate the difference in token-wise losses:

∆L(w) = Ldraft(w)− Lref(w). (9)

Tokens with higher ∆L(w) represent a larger performance gap between Mq and Mref relative to Mp,
suggesting that these tokens are not yet well aligned but are highly learnable for the draft model.
Accordingly, we select the subset of tokens with larger ∆L(w) values, as they are most promising for
improving the alignment between the draft and target models. Specifically, we denote

S = {w |∆L(w) is among the top k×100% of all tokens }, k ∈ [0, 1].

Therefore, the overall loss for training the draft model Mq is:

Ldistill =
1

k · |y|

|y|∑
i=1

I [yi ∈ S] · Ldraft(yi), (10)

where I[·] is the indicator function that equals 1 if the condition inside the brackets is satisfied, and 0
otherwise. It ensures that only the selected learnable tokens contribute to the loss calculation. The
whole filtering process is shown in figure 1.

Figure 1: Overview of AdaSPEC distillation process: AdaSPEC selects the most training-effective
tokens and distills on these tokens.
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4 Experiments

We evaluate AdaSPEC through comprehensive experiments across diverse domains and conduct
detailed ablation studies to analyze its impact on the acceptance rate α.

4.1 Experimental Setup

Our experimental framework employs GPT-like decoder-only Transformer models in two distinct
configurations, designed to evaluate performance across different parameter scales while maintaining
tokenizer consistency for SD:

• Small-to-Large Model Configuration: A draft model Pythia-31M paired with target model
Pythia-1.4B [5]. These models share architecture and tokenizer, providing an ideal test case for
same-family knowledge transfer.

• Medium-to-Large Model Configuration: A draft model CodeGen-350M paired with target
model Phi-2 [24, 1]. While from different families, these models use an aligned tokenizer to ensure
token-level consistency, allowing us to evaluate cross-family KD.

We test these two configurations on a diverse set of five tasks, each representative of a specific
domain to provide a robust evaluation framework for AdaSPEC: GSM8K [9] (A benchmark for
multi-step arithmetic reasoning), Alpaca [27] (A comprehensive instruction following dataset), MBPP
[3] (A Python programming challenge set for code generation), CNN/Daily Mail [22] (A long-form
summarization task), and XSUM [23] (An extreme summarization challenge).

Reference Model Training. To ensure a consistent starting point and fair comparison, both the draft
model and the reference model are initialized from the same pre-trained model. For each task, we first
fine-tune the target model on the task-specific dataset to establish a strong baseline. The reference
model is then trained using the method from DistillSpec [32].

4.2 Baseline Setup

We compare AdaSPEC against DistillSpec [32], the current state-of-the-art method for SD. Although
AdaSPEC builds upon DistillSpec’s training framework for its reference model, it introduces novel
token selection mechanism. To evaluate its effectiveness, we evaluate both methods under two
settings: a resource-efficient scenario with fixed training duration and a scenario optimized for
maximum performance:

• 3-Epoch Setting: Both reference and draft models are trained for exactly 3 epochs, a standard
practice in LLM fine-tuning that balances task-specific performance with general capability retention
[4]. This controlled training duration effectively prevents overfitting while ensuring adequate task
adaptation. This setting evaluates model effectiveness under typical resource constraints and provides
insights into rapid adaptation scenarios.

• Optimal-Epoch Setting: Models are trained for a variable number of epochs, treated as a tunable
hyperparameter, to maximize task-specific performance. While this approach may lead to overfitting
to the specific task at the expense of performance on other tasks, it allows us to thoroughly evaluate the
upper bound of performance. The optimal number of epochs is determined empirically. Specifically,
for GSM8K, the number of target epochs is chosen according to validation accuracy, while for the rest
of the experiments it is chosen according to validation perplexity. Afterwards, we distill the reference
model and pick the one with highest α on validation set. Eventually, this model serves as reference
to train our draft model. For robustness, we only select the optimal epoch from 1, 3, 6, 10, 15, 20
and 30 (for XSUM and CNN/Daily Mail we select from 1, 3, 6, 10 for training efficiency). This
configuration enables evaluation of both methods under less constrained scenarios, where achieving
optimal task performance takes precedence over maintaining general capabilities.

While Zhou et al. [32] employs a more extensive training schedule in their DistillSpec experiments,
our study adopts a more resource-efficient approach due to computational constraints. In the Optimal-
Epoch Setting, we limit training to a maximum of 30 epochs, striking a balance between performance
optimization and computational feasibility. Complete hyperparameter configurations and training
specifications for both DistillSpec and AdaSPEC are detailed in Appendix A.2.
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4.3 Main Results

We summarize the main experimental results in Table 1.

Table 1: Main experimental results for AdaSPEC compared to DistillSpec under two settings: 3-
Epoch and Optimal-Epoch. Metrics include acceptance rate (α).

Task 3-Epoch (α) Optimal-Epoch (α)
Pythia-31M→ 1.4B CodeGen-350M→ Phi-2 Pythia-31M→ 1.4B CodeGen-350M→ Phi-2

DistillSpec AdaSPEC DistillSpec AdaSPEC DistillSpec AdaSPEC DistillSpec AdaSPEC

GSM8K 57.58% 62.63% 79.49% 82.79% 66.19% 68.28% 81.49% 83.48%
Alpaca 44.34% 47.25% 56.48% 58.80% 65.41% 65.79% 58.05% 60.36%
MBPP 46.88% 47.73% 87.36% 88.76% 49.88% 65.12% 86.60% 87.70%
CNN/Daily Mail 73.05% 74.22% 79.33% 80.63% 80.15% 80.89% 85.01% 86.29%
XSUM 47.24% 49.11% 58.88% 59.93% 56.11% 57.80% 66.78% 68.19%

Acceptance Rate Analysis. We evaluate performance using the acceptance rate α, defined as the
proportion of draft-model-generated tokens validated by the target model. As shown in Table 1,
AdaSPEC consistently achieves higher acceptance rates than DistillSpec across all tasks and model
configurations, demonstrating superior draft-target model alignment.

4.4 Analysis

To provide detailed insights into AdaSPEC’s effectiveness, we conduct in-depth analyses on two
representative configurations:

• Pythia-31M/1.4B on GSM8K (3-Epoch): This configuration examines performance on arithmetic
reasoning under constrained training conditions, representing scenarios with limited computational
resources and the need for generalization. Since reasoning is typically considered as an additional
capability beyond general language modeling, this setup ensures that the model retains its core
abilities while effectively handling arithmetic tasks.

• Pythia-31M/1.4B on CNN/Daily Mail (Optimal-Epoch): This setup investigates extractive
summarization with extended training, demonstrating the model’s ability to optimize for task-specific
objectives. In real-world applications, models are sometimes specifically deployed for summarizing
long-form contents such as news reports, emails, or web pages, requiring dedicated fine-tuning. Thus,
the Optimal-Epoch setting is chosen to maximize the model’s summarization capabilities.

Task-Level Acceptance Rate Distribution. We first analyze the distribution of acceptance rates
across tasks for both methods. As illustrated in Figure 2, AdaSPEC demonstrates consistently
superior performance compared to DistillSpec. The acceptance rate histograms for both tasks exhibit
a significant rightward shift under AdaSPEC, indicating more frequent successful draft predictions.
This systematic improvement in acceptance rate suggests that AdaSPEC’s selective distillation
approach effectively enhances draft-target model alignment across diverse task contexts.

Logit Margin Distributions Across Tokens. Next, we analyze the distribution of top-2 logit margins
across tokens for both methods. The logit margin, defined as the difference between the logits of the
top-1 and top-2 predicted tokens, serves as a measure of prediction confidence. A positive margin
indicates a correct draft model prediction, while a negative margin signifies an incorrect prediction
that would be rejected in SD.

As shown in Figure 2, AdaSPEC demonstrates superior logit margin distributions compared to
DistillSpec across both GSM8K and CNN/Daily Mail datasets. AdaSPEC exhibits:

• Higher frequency and magnitude of positive margins, indicating more frequent and confident correct
predictions.

• Lower frequency and magnitude of negative margins, suggesting less frequent and less severe
prediction errors.

These patterns demonstrate that AdaSPEC achieves better draft-target model alignment through its
selective distillation approach, enabling more effective knowledge transfer from the target model to
the draft model.
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KL-Divergence Distribution Across Tokens. We further analyze the Kullback-Leibler (KL) di-
vergence between draft and target models’ token prediction distributions on both GSM8K and
CNN/Daily Mail datasets. As illustrated in Figure 2, AdaSPEC exhibits consistently lower KL
divergence values compared to DistillSpec across both tasks, demonstrated by significant leftward
shifts in the distributions. This systematic reduction in KL divergence across different tasks and
tokens indicates that AdaSPEC’s selective distillation approach achieves tighter alignment between
draft and target model predictions, corroborating our previous findings on acceptance rates and logit
margins.

Figure 2: Comparative analysis of AdaSPEC and DistillSpec performance across multiple
metrics on GSM8K (a, c, e) and CNN/Daily Mail (b, d, f) datasets: (a-b) Task-level acceptance
rate distributions showing AdaSPEC’s superior performance across tasks. (c-d) Logit margin distribu-
tions demonstrating AdaSPEC’s improved prediction confidence with higher positive margins and
lower negative margins. (e-f) Token-level KL divergence distributions indicating better draft-target
model alignment for AdaSPEC with consistently lower divergence values. The results demonstrate
AdaSPEC’s more effective knowledge transfer and improved draft-target model alignment compared
to DistillSpec across different evaluation metrics.

Case Studies. We conduct detailed case studies on GSM8K and CNN/Daily Mail datasets. A
consistent pattern emerges: AdaSPEC’s prediction errors form nearly a subset of DistillSpec’s errors,
as illustrated in Figure 3. This pattern demonstrates the general effectiveness of AdaSPEC’s targeted
training approach in improving alignment and reducing inference discrepancies.

GSM8K, with its natural division between mathematical and non-mathematical tokens, offers par-
ticularly insightful analysis. During training, AdaSPEC predominantly selects mathematics-related
tokens for focused learning (see Appendix A.3). During inference, this selective approach translates
into significantly improved prediction accuracy for mathematical tokens compared to DistillSpec, as
shown in Figure 3. These results demonstrate AdaSPEC’s ability to identify and prioritize task-critical
tokens during training, leading to more precise draft-target model alignment.

4.5 Ablation Study

To systematically evaluate the effectiveness of different components in AdaSPEC, we conduct
comprehensive ablation studies across the following four key dimensions. All experiments are
conducted on GSM8K and MBPP with Pythia 1.4B (target) and Pythia 31M parameters (draft). All
models are trained for 3 epochs.

Token Selection Mechanism. To evaluate our token selection strategy, we compare models trained
on the top 40% of tokens (selected based on KL-divergence margin) against those trained on the
bottom 40%. As shown in Table 2, models trained on the top 40% tokens consistently outperform
those trained on the bottom 40%, with the latter performing even worse than the reference model.
The improvement is particularly pronounced on the MBPP dataset, where token selection yields up
to a 6% performance gain. These results demonstrate that AdaSPEC effectively enhances model
alignment by focusing on more learnable tokens during Knowledge Distillation.

Training Method. To demonstrate that AdaSPEC’s benefits extend beyond Knowledge Distillation,
we replace the distillation process for both reference and draft models with direct fine-tuning. Table 3
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Figure 3: Comparison of prediction errors between AdaSPEC and DistillSpec on GSM8K and
CNN/Daily Mail Datasets: Tokens highlighted in blue represent errors made by both methods,
while tokens highlighted in red indicate errors unique to the corresponding method. As can be seen,
AdaSPEC‘s errors form nearly a subset of DistillSpec’s errors, demonstrating the effectiveness of
AdaSPEC’s selective training approach in reducing inference discrepancies.

Table 2: Ablation study results for token selection strategies.

Sub-Strategy GSM8K MBPP
Reference α Draft α Reference α Draft α

Top 40% 59.77% 63.22% 42.22% 48.22%
Bottom 40% 59.77% 49.03% 42.22% 39.75%

Table 3: Ablation study results for training methods.

Sub-Strategy GSM8K MBPP
Reference α Draft α Reference α Draft α

Distillation 59.77% 63.22% 42.22% 48.22%
Fine-tuning 59.64% 63.13% 41.42% 45.61%

Table 4: Ablation study results for distillation methods.

Sub-Strategy GSM8K MBPP
Reference α Draft α Reference α Draft α

KL 59.77% 63.22% 42.22% 48.22%
TVD 9.32% 9.09% 3.86% 6.76%
RKL 30.22% 30.05% 13.17% 15.61%

reveals two key findings: (1) fine-tuned draft models outperform the distillation baseline (reference
model) across both datasets, confirming that our token selection process aids model convergence;
and (2) fine-tuned draft models achieve up to 4% improvement over their reference counterparts,
indicating that our token selection mechanism’s benefits generalize beyond distillation to broader
training scenarios.

Distillation Method. We expand AdaSPEC to more distillation approaches: Reverse KL (RKL) and
Total Variation Distance (TVD) [28]. With k = 0.4 for all methods, we observe that token selection
significantly improves the acceptance rate by 6% on MBPP when using forward KL. However, when
using RKL and TVD, the acceptance rate performance degrades. This is primarily attributed to the
inherent limitations of RKL and TVD as distillation objectives, which struggle to effectively align the
draft and target models in the context of SD. It is worth noting that DistillSpec [32] uses TVD as the
distillation function with a batch size of 32 and a training step of 300,000. This prolonged training
process not only requires substantial computational resources but also results in the problem of
overfitting. Considering these factors, we ultimately select forward KL divergence as our distillation
objective.
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Figure 4: Impact of token selection ra-
tio k on acceptance rate for GSM8K:
Results show a general trend where
lower k values (0.2-0.4) yield higher ac-
ceptance rates.

Token Selection Ratio. To investigate the impact of token
selection ratio, we vary k and compare the final accep-
tance rate of the draft model. Results in Fig 4 show that
typically, lower k values result in better final acceptance
rate. To strike a balance between training efficiency and
performance, we finally choose k = 0.4 in most cases.

4.6 Additional Experimental Results

Wall Clock Speed-up. To investigate AdaSPEC’s po-
tential to accelerate end to end decoding in a real world
setting, we use frontier inference engine vLLM [15] on
one single A100 GPU and report speed-up in Table 5. Re-
sults show that an expected 10∼20% speed-up could be
easily achieved compared with DistillSpec, demonstrating the effectiveness of our approach.

Table 5: Generation speed for AdaSPEC with VLLM on one single A100 GPU. We use greedy
decoding and report time to generate a sentence and one token. We use Pythia-31M→1.4B and the
models are trained for 3 epochs. On these tasks, AdaSPEC exhibits 10∼20% speed-up.

Speed (s/sentence) Speed (tokens/s)

MBPP DistillSpec 0.69 149.15
AdaSPEC 0.57 181.67

GSM8K DistillSpec 0.51 227.86
AdaSPEC 0.48 241.34

CNN/DailyMail DistillSpec 0.76 248.49
AdaSPEC 0.67 283.50

Integration with Advanced SD Methods. To demonstrate the orthogonality and generalizability of
AdaSPEC beyond vanilla speculative decoding (SD), we integrate our method with EAGLE [17],
an advanced SD algorithm featuring tree attention and adaptive expansion strategies. Following the
standard 3-Epoch training setup on the ShareGPT dataset, we evaluate both training accuracy and
generation speed on MT-Bench. As shown in Table 6, AdaSPEC consistently improves both accuracy
and decoding efficiency within the EAGLE framework.

Table 6: Vicuna-7B-v1.3 [8, 31] with 3-
Epoch finetuning following original EAGLE
recipe. Here, training accuracy refers to first-
generated-token accuracy in the training set.

Eagle Eagle + AdaSPEC

Training Accuracy ↑ 75.3% 76.3%
Speed (s/sentence) ↓ 8.85 8.06 (-8.9%)
Speed (tokens/s) ↑ 63.48 68.21 (+7.45%)

Table 7: Acceptance rate of larger model con-
figuration with 3-Epoch GSM8K.

GSM8K

DistillSpec 84.43%
AdaSPEC 86.21%

Results on Larger Models. We conduct an additional GSM8K evaluation using a combination of
the Qwen2.5-0.5B and Qwen2.5-32B models. When trained with 3 epochs, AdaSPEC reaches an
acceptance rate of 86.21% while DistillSpec achieves 84.43%, as shown in Table 7. This shows that
our approach can easily scale up to larger models.

Table 8: Performance on mixed datasets.

MBPP GSM8K

DistillSpec 69.63% 72.75%
AdaSPEC 70.69% 78.41%

Results on Mixed Dataset. To further validate
AdaSPEC’s ability to work on blended tasks, we mix
GSM8K with MBPP in training and validate α sepa-
rately. Specifically, we first train the target on MBPP
and then on GSM8K, each for 3 epochs. The reference
and draft models also follow the same process. The
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results in Table 8 reveals that AdaSPEC strives to retain the original model’s capabilities as much as
possible, with less forgotten knowledge.

5 Dicussion

Size Gap Between Target and Draft Models. In traditional SD settings, the size gap between the
draft model and the target model is often within 10x. In this work, we demonstrate that AdaSPEC
effectively bridges the performance gap, even when the size difference is substantial — up to 64 times
in our experiments. By leveraging selective token filtering and Knowledge Distillation, AdaSPEC can
enhance token acceptance rates and help maintain generation quality, providing more opportunities to
use significantly smaller draft models.

Model Size Gap and Performance Gains. From Table 1, we observe that the performance gain
of AdaSPEC over DistillSpec becomes more pronounced as the size gap between the reference
and target models increases (e.g., from CodeGen-350M → Phi-2 to Pythia-31M → 1.4B). This
trend is consistent across both 3-Epoch and Optimal-Epoch settings. The result aligns well with our
motivation: when the capacity discrepancy between models widens, direct Knowledge Distillation
tends to suffer from representation mismatch, making it harder for the smaller model to absorb
all teacher signals uniformly. AdaSPEC’s adaptive mechanism mitigates this issue by selectively
aligning easier tokens first, effectively narrowing the transfer gap. Consequently, the larger the size
difference, the greater the relative improvement AdaSPEC achieves.

Connection with Lin et al. [19]. A similar token selection method is proposed in Lin et al. [19],
which focuses on identifying and prioritizing harder-to-learn tokens (opposite to the motivation of
AdaSPEC) during pre-training. Different from their design, our approach focuses on addressing
the limited capacity of the draft model in SD. Specifically, we focus on identifying and filtering out
challenging tokens, allowing the draft model to concentrate on learning easier-to-predict tokens. Our
selective distillation process ensures that the draft model aligns more effectively with the target model
on tokens that are more tractable, given its constrained capacity. By doing so, we maximize the draft
model’s limited resources while maintaining high-quality predictions in SD tasks. Thus, the essential
difference lies in the distinct objectives of pre-training and Speculative Decoding.

Limitations. As a preliminary study on selective training for SD, we limit our study on simple
loss-related token filter. In future work, one can design more adaptive filtering strategies as well as
integrate AdaSPEC with tree-based or multi-step verification frameworks to further improve both
speed and quality of LLM inference.

6 Conclusion

We present AdaSPEC, a novel approach for training more efficient draft models for SD. AdaSPEC
introduces selective token filtering based on reference model perplexity gaps, enabling draft models
to focus limited capacity on tokens where alignment with the target model is most achievable.
Experiments show it outperforms baselines in arithmetic reasoning, instruction following, code
generation, and summarization with higher acceptance rates.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Both the abstract and beginning part of introduction indicate the scope of the
paper’s contributions.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations are discussed in “conclusions” chapter.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: This article is based on experiments and does not require strict theoretical
proof.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Results can be reproduced according to “method” and “experiments” chapters.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: Please refer to the "abstract" part.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Please refer to “experiments” chapter.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: The experiments related to our method is relatively costly so it is difficult to
repeat each setting. However, we testify our method on a wide range of settings and tasks,
which exhibits the feasibility of our method.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

15

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Please refer to Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The authors have reviewed the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Please refer to Appendix.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper doesn’t release any new models, generators or datasets.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Please refer to the “experiments” chapter.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Technical Appendices and Supplementary Material

A.1 Full Algorithms for AdaSPEC

Algorithm 1 Greedy Speculative Decoding

1: Input: target model Mp, draft model Mq , input sequence x
2: accept← 0, reject← 0, t← len(x)
3: ▷ Sample γ tokens z1, ..., zγ from Mq autoregressively.
4: for i = 1 to γ do
5: zi = Sq(z<i); z ← z + zi
6: end for
7: ▷ Verify in parallel
8: z′ ← [Sp(z<1), Sp(z<2), ..., Sp(z<γ)] ≜ [z

′

1, z
′

2, ..., z
′

γ ]
9: for i = 1 to γ do

10: if z′i ̸= zi then
11: reject← reject + 1; break
12: end if
13: x← x+ zi, accept← accept + 1
14: if zi = <eos> then
15: return x, accept, reject
16: end if
17: end for
18: x← x+ Sp(z<1); goto 4

Algorithm 2 AdaSPEC: Selective Distillation for Speculative Decoding

1: Input: dataset D, target model Mp, draft model Mq , fraction k
2: Step 1. Fine-tune Mp:
3: Train Mp on D (via standard LM fine-tuning) to obtain M∗

p .
4: Step 2. Reference Model Training:
5: Initialize Mref ←Mq .
6: Distill Mref from M∗

p on D (e.g. forward KL).
7: Step 3. Selective Distillation:
8: (a) Compute losses: For each token w and context,

Lref(w) = K (P (w | context)||R(w | context)) ,

Ldraft(w) = K (P (w | context)||Q(w | context)) ,
∆L(w) = Ldraft(w)− Lref(w).

9: (b) Filter tokens:

S = {w |∆L(w) is among the top k×100% of all tokens }, k ∈ [0, 1].

10: (c) Distill on filtered set:

min
Mq

Ldistill =
1

k · |y|

|y|∑
i=1

I [yi ∈ S] · Ldraft(yi)

11: return Mq (draft model in SD)

A.2 Implementation Details

We use the hyperparameters in Table 9. For 3-Epoch setting, both reference and draft model are
distilled for 3 epochs. For Optimal-Epoch setting, the target model is first fine-tuned to maximize
performance on validation set. Specifically, for GSM8K, the number of target epochs is chosen
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according to validation accuracy, while for the rest of the experiments it is chosen according to
validation perplexity. Afterwards, we distill the reference model and pick the one with highest α
on validation set. Eventually, this model serves as the reference model to train our draft model.
For robustness, we only select the optimal epoch from 1, 3, 6, 10, 15, 20 and 30 (for XSUM and
CNN/Daily Mail we select from 1, 3, 6, 10 for training efficiency). Note that when performing token
selection, we apply the linear scaling rule for learning rate adjustment [12].

Table 9: Experimental hyperparameters.
Task Hyperparameter 3-Epoch Optimal-Epoch

Pythia 31M→1.4B Codegen-350M→Phi-2 Pythia 31M→1.4B Codegen-350M→Phi-2

GSM8K

Batch size 16 16 16 16
Learning rate 3e-4 3e-4 3e-4 3e-4
Epochs for target model 3 3 6 3
Epochs for reference model 3 3 15 30
Epochs for draft model 3 3 30 30
Filter fraction k 0.4 0.4 0.4 0.4

Alpaca

Batch size 16 16 16 16
Learning rate 3e-4 3e-4 3e-4 3e-4
Epochs for target model 3 3 1 1
Epochs for reference model 3 3 15 20
Epochs for draft model 3 3 30 15
Filter fraction k 0.4 0.4 0.4 0.4

MBPP

Batch size 8 8 8 8
Learning rate 1e-5 1e-4 1e-5 1e-4
Epochs for target model 3 3 1 1
Epochs for reference model 3 3 30 10
Epochs for draft model 3 3 6 6
Filter fraction k 0.4 0.4 0.4 0.4

CNN/Daily Mail

Batch size 16 16 16 16
Learning rate 1e-4 1e-4 1e-4 1e-4
Epochs for target model 3 3 1 1
Epochs for reference model 3 3 10 10
Epochs for draft model 3 3 10 10
Filter fraction k 0.4 0.4 0.4 0.4

XSUM

Batch size 16 16 16 16
Learning rate 3e-4 1e-4 3e-4 1e-4
Epochs for target model 3 3 1 1
Epochs for reference model 3 3 10 10
Epochs for draft model 3 3 10 10
Filter fraction k 0.4 0.4 0.4 0.4

A.3 AdaSPEC Example Tokens

Here, we showcase some example tokens (Listing 1) that AdaSPEC selects while training on GSM8K.
These selected tokens are typically mathematical related tokens, such as digits and operators.

{ "scored", "8", "in", "thus", "9", "x", "1", "=", "<<", "9", "*", "91", "=", "19",
">>", "8", "19", "Em", "because", "28", "28", "\+", "8", "28", "+", "90", "18",
"9", "18", "18", "18", "-", "8", "=", "99", "99", "99", "+", "100", "The", "

final", "answer", "100", "equal", "12", "+", "7", "=", "19", ">>", "19", "packs
", "19", "5", "24", "total", "(", "24", "*(", "2", ")=", "16", ">>", "16", "J",
"spends", "inside", "because", "-", "(", "inside", "16", "iley", "3", "18", "

spends", "12", "In", "total", "they", "+", "12", "=", "<<", "8", "+", "=", "20",
"/", "=", "10", "10", "The", "earned", "final", "answer", "difference", "-",

"=", "13", "*", "2", "26", ">>", "26", "twice", "26", "18", "=", "26", "18",
"8", "The", "final", "answer", ":", " ", "8", }

Listing 1: Selected tokens during GSM8k training.

A.4 Minimal Code Implementation of AdaSPEC

The core of AdaSPEC could be implemented with ∼ 100 lines of code. We show it in Listing 2.

def compute_loss(
self,
model,
inputs,
return_outputs=False,
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num_items_in_batch=None
):

labels = inputs["labels"][:, 1:]

outputs = model(∗∗inputs)
with torch.no_grad():

target_outputs = self.target_model(∗∗inputs)
ref_outputs = self.ref_model(∗∗inputs)

logits = outputs["logits"]
target_logits = target_outputs["logits"]
ref_logits = ref_outputs["logits"]

loss_fct = KLDivLoss(reduction="none")

shift_logits = logits[..., :−1, :].contiguous()
shift_target_logits = (target_logits[..., :−1, :]

.contiguous())
shift_ref_logits = (ref_logits[..., :−1, :]

.contiguous())

shift_logits = shift_logits.view(
−1, model.config.vocab_size)

shift_target_logits = (shift_target_logits
.view(−1, model.config.vocab_size))

shift_ref_logits = (shift_ref_logits
.view(−1, model.config.vocab_size))

mask = labels.ne(IGNORE_INDEX).flatten().unsqueeze(−1)

shift_logits = (
torch.masked_select(shift_logits, mask=mask)
.view(−1, model.config.vocab_size))

shift_target_logits = \
(torch.masked_select(shift_target_logits, mask=mask)
.view(−1, model.config.vocab_size))

shift_ref_logits = \
(torch.masked_select(shift_ref_logits, mask=mask)
.view(−1, model.config.vocab_size))

p = F.softmax(shift_target_logits, dim=−1)
q_log = F.log_softmax(shift_logits, dim=−1)
actual = loss_fct(q_log, p)

q_log = F.log_softmax(shift_ref_logits, dim=−1)
ref = loss_fct(q_log, p)

actual = actual.sum(dim=−1)
ref = ref.sum(dim=−1)

k = self.k
delta = actual − ref
mask = delta >= torch.quantile(

delta, 1 − k, dim=0, keepdim=True)

if num_items_in_batch is not None:
loss = torch.masked_select(actual, mask=mask).sum()
loss = loss / num_items_in_batch

else:
loss = torch.masked_select(actual, mask=mask).mean()

return (loss, outputs) if return_outputs else loss

Listing 2: AdaSPEC implementation with PyTorch.
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A.5 Broader Impact

AdaSPEC can be used mainly to improve generation speed of LLMs, which is a positive influence to
reduce potential electric energy consumption for serving LLMs. However, this technique may also
be used for some models that is non-compliance with regulations and ethics, such as models that
generate discriminatory contents.

A.6 Experiments compute resources

Here we list the estimated GPU hours; see Table 10.

Table 10: GPU hours of training models on A100 GPUs.

Task 3-Epoch Optimal-Epoch
Pythia-31M→ 1.4B CodeGen-350M→ Phi-2 Pythia-31M→ 1.4B CodeGen-350M→ Phi-2

GSM8K 1 3 15 50
Alpaca 1 3 15 50
MBPP 1 3 15 50
CNN/Daily Mail 60 200 200 700
XSUM 60 200 200 700
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