
Quantum Speedup for Hypergraph Sparsification

Chenghua Liu 1 2 Minbo Gao 1 2 Zhengfeng Ji 3 Mingsheng Ying 4

Abstract
Graph sparsification serves as a foundation for
many algorithms, such as approximation algo-
rithms for graph cuts and Laplacian system
solvers. As its natural generalization, hypergraph
sparsification has recently gained increasing at-
tention, with broad applications in graph machine
learning and other areas. In this work, we propose
the first quantum algorithm for hypergraph spar-
sification, addressing an open problem proposed
by Apers & de Wolf (2020). For a weighted hyper-
graph with n vertices, m hyperedges, and rank r,
our algorithm outputs a near-linear size ε-spectral
sparsifier in time Õ(r

√
mn/ε)1. This algorithm

matches the quantum lower bound for constant r
and demonstrates quantum speedup when com-
pared with the state-of-the-art Õ(mr)-time clas-
sical algorithm. As applications, our algorithm
implies quantum speedups for computing hyper-
graph cut sparsifiers, approximating hypergraph
mincuts and hypergraph s-t mincuts.

1. Introduction
Sparsification serves as a foundational algorithmic paradigm
wherein a densely constructed entity is transitioned to a
sparse counterpart while preserving its inherent character-
istics. Such a process invariably enhances various facets
of algorithmic efficiency, from reduced execution time to
optimized space complexity, and even more streamlined
communication. A typical instance of this paradigm is the
graph sparsification, where the objective is to reduce the

1Key Laboratory of System Software (Chinese Academy of
Sciences) and State Key Laboratory of Computer Science, Institute
of Software, Chinese Academy of Sciences, China 2University
of Chinese Academy of Sciences, Beijing, China 3Department of
Computer Science and Technology, Tsinghua University, Beijing,
China 4Centre for Quantum Software and Information, University
of Technology Sydney, Sydney, Australia. Correspondence to:
Zhengfeng Ji <jizhengfeng@tsinghua.edu.cn>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

1We use Õ(f) to represent O (f · polylog(m,n, r, 1/ε))
throughout this paper to suppress polylogarithmic factors.

number of edges by adjusting edge weights while (approx-
imately) preserving the spectral properties of the original
graph. Over the past two decades, graph sparsification has
experienced several breakthroughs (see Spielman & Srivas-
tava (2011); Batson et al. (2012)), ultimately leading to the
discovery of algorithms that finds spectral sparsifiers of lin-
ear size in nearly-linear time (Lee & Sun, 2018). Graph
sparsification algorithms are used for crucial tasks such as
Laplacian system solver (Cohen et al., 2014), computing
random walk properties (Cohen et al., 2016), and solving
maximum flow problem (Chen et al., 2022). Additionally,
they have found widespread applications in machine learn-
ing domains, including computer vision (Simonovsky &
Komodakis, 2017), clustering (Peng et al., 2015; Laenen &
Sun, 2020; Agarwal et al., 2022), and streaming machine
learning algorithms (Braverman et al., 2021).

Hypergraphs, a generalization of graphs, naturally emerge in
various real-world scenarios where interactions go beyond
pairwise relationships, such as group dynamics in biochem-
istry, social networks, and trade networks, as they allow a
single edge to connect any number of vertices (the max num-
ber of vertices an edge contains is called the rank). Thus,
as a natural generalization of the garph sparsification, the
task of sparsifying hypergraphs are investigated by many
researchers, starting from Soma & Yoshida (2019). Hyper-
graph sparsification significantly reduces the computational
cost of calculating hypergraph energy, a crucial quantity for
many machine learning tasks, including clustering (Zhou
et al., 2006; Hein et al., 2013; Takai et al., 2020), semi-
supervised learning (Hein et al., 2013; Zhang et al., 2020;
Yadati et al., 2019; Li et al., 2020), and link prediction (Ya-
dati et al., 2020).

With the rapid development of quantum computing, many
graph algorithms and machine learning tasks have benefited
from quantum speedups. In the context of the sparsification
paradigm, the groundbreaking work of Apers & de Wolf
(2020) introduced the first quantum speedup for graph spar-
sification with nearly optimal query complexity, showcasing
the potential of quantum computing for sparsification tasks.
They further proposed several open questions about the po-
tential for quantum speedups in broader sparsification tasks.
Among these, a natural and important question is:

Is there a hypergraph sparsification algorithm

1

Quantum Speedup for Hypergraph Sparsification

that enables quantum speedups?

In this paper, we give an affirmative answer to this question.
Specifically, we develop a quantum algorithm for construct-
ing an ε-spectral sparsifier of near-linear size for a weighted
hypergraph with n vertices, m hyperedges, and rank r. Our
algorithm achieves near-linear output size—matching the
current best classical algorithm—while operating in sublin-
ear time Õ(r

√
mn/ε)2, which improves the time complex-

ity Õ(mr) of the best known classical algorithm3. For the
constant rank r, this time complexity matches the quantum
lower bound of Ω̃(

√
mn/ε) established by Apers & de Wolf

(2020) and contrasts with the classical lower bound of Ω(m)
(see Remark 4.3). Additionally, for dense hypergraphs,
where m ∈ Ω(nr), our algorithm achieves near-quadratic
improvement, reducing the time complexity from Õ(rnr)

classically to Õ(rn(r+1)/2) quantumly.

Hypergraph Sparsification To extend the graph spar-
sification task to hypergraphs, we need to generalize the
quadratic form of the graph Laplacian. This generalization
leads to the concept of hypergraph energy, first introduced
by Chan et al. (2018); Yoshida (2019). For a hypergraph
H = (V,E,w), the energy of a vector x ∈ RV is defined
as a sum over all hyperedges e ∈ E, where each term is
the product of the edge weight we and the “quadratic form”
Qe(x). Here, Qe(x) represents the maximum squared dif-
ference between any two vector components xu and xv
corresponding to vertices u and v in the hyperedge e (see
Definition 2.4 for a formal description). The concept of
energy captures the spectral properties of the hypergraph,
while its inherent nonlinear structure introduces significant
computational challenges (Chan et al., 2018).

The task of hypergraph sparsification aims to reduce the
number of hyperedges while maintaining the energy of
the original hypergraph, ultimately producing a hypergraph
sparsifier (see Definition 2.5). Hypergraph sparsification
not only is of great theoretical interest, but also has wide
applications in many fields, especially in graph machine
learning. Consequently, researchers have been develop-
ing increasingly sophisticated and analytically refined algo-
rithms for hypergraph sparsification in recent years. Soma
& Yoshida (2019) were the first to demonstrate that an ε-
spectral sparsifier of size Õ(n3/ε2) could be constructed in
time Õ(nmr + n3/ε2). Subsequently, Bansal et al. (2019)
improved the sparsifier size to Õ(r3n/ε2) with a construc-
tion time of Õ(mr2 + r3n/ε2). Further advancements by

2To be more precise, our algorithm runs in Õ(r
√
mn/ε +

r
√
mnr) time, of which the second term is usually smaller in

most situations. See Remark 4.2 for a more detailed discussion.
3Typically, we assume that ε ≥

√
n/m, as sparsification is

only advantageous when the number of hyperedges in the sparsifier
is at most m.

Kapralov et al. (2021) and Kapralov et al. (2022) reduced
the sparsifier size to nearly linear, achieving Õ(n/ε4) in
polynomial time. The current state-of-the-art algorithm for
hypergraph sparsification, proposed by Jambulapati et al.
(2023), produces a sparsifier of size Õ(n/ε2) in almost
linear time Õ(mr). Independently and concurrently, Lee
(2023) presented a polynomial-time algorithm achieving a
sparsifier of the same size. For a detailed comparison of
these results, see Table 1.

Prior to the emergence of spectral sparsification, early re-
search focused on a relatively weaker notion called the cut
sparsification. In the domain of hypergraphs, extensive re-
search has been conducted on hypergraph cut sparsifiers,
yielding significant theoretical and practical advances (Ko-
gan & Krauthgamer, 2015; Chekuri & Xu, 2018). These
sparsifiers have proven particularly valuable in efficiently
approximating cut minimization problems in hypergraphs,
facilitating applications across multiple domains. Notable
applications include VLSI circuit partitioning (Alpert &
Kahng, 1995; Karypis et al., 1999), optimization of sparse
matrix multiplication (Akbudak et al., 2013; Ballard et al.,
2016), data clustering algorithms (Li & Milenkovic, 2017;
Liu et al., 2021), and ranking data analysis (Li & Milenkovic,
2017).

Main Results In this work, we propose the first quantum
algorithm for hypergraph sparsification that produces a spar-
sifier of size Õ(n/ε2) in Õ(r

√
mn/ε) time, which breaks

the linear barrier of classical algorithms.

Theorem 1.1 (Informal version of Theorem 4.1). There
exists a quantum algorithm that, given query access to a
hypergraph H = (V,E,w) with |V | = n, |E| = m, w ∈
RE

≥0, rank r and ε > 0, outputs with high probability4 an
ε-spectral sparsifier of H with Õ(n/ε2) hyperedges, in time
Õ(r
√
mn/ε).

As a corollary, our algorithm could be used to construct a cut
sparsifier for a hypergraph in sublinear time. This enables
quantum speedups for approximating hypergraph mincuts
and s-t mincuts, achieving sublinear time complexity with
respect to the number of hyperedges. For further details, we
refer readers to Section 5.

Techiques Our algorithms are inspired by a sampling-
based framework appearing in classical hypergraph sparsifi-
cation algorithms. The overall idea behind the framework is
to compute a proper importance weight for each hyperedge,
and sample the hyperedges based on the weights.

Specifically, we adopt the method proposed in Jambulap-
ati et al. (2023), where the weight on each hyperedge is

4Throughout this paper, we say something holds “with high
probability” if it holds with probability at least 1−O (1/n).

2

Quantum Speedup for Hypergraph Sparsification

Table 1. Summary of results on hypergraph sparsification

Reference Type Sparsifier size Time Complexity

Soma & Yoshida (2019) Classical O(n3 log n/ε2) Õ(mnr + n3/ε2)

Bansal et al. (2019) Classical O(r3n log n/ε2) Õ(mr2 + r3n/ε2)

Kapralov et al. (2021) Classical nr(log n/ε)
O(1)

O(mr2) + nO(1)

Kapralov et al. (2022) Classical O(n log3 n/ε4) Õ(mr + poly(n))

Jambulapati et al. (2023); Lee (2023) Classical O(n log n log r/ε2) Õ(mr)†

This work Quantum O(n log n log r/ε2) Õ(r
√
mnr + r

√
mn/ε)

† This Õ(mr) complexity corresponds to the algorithm proposed in Jambulapati et al. (2023).

set to be the group leverage score overestimate (which we
call hyperedge leverage score overestimate in our paper to
avoid ambiguity). Classically, computing these overesti-
mates would require Õ(mr) time by an iterative/contractive
algorithm which mainly follows the algorithm for comput-
ing an approximate John ellipse (Cohen et al., 2019). Then,
one can sample Õ(n/ε2) hyperedges in Õ(n/ε2) time, and
reweight them to get a hypergraph sparsifier.

We discover that, with the assistance of a series of classi-
cal and quantum techniques, the computation of hyperedge
leverage score overestimate can be accelerated. To be more
precise, we realize that the computation of hyperedge lever-
age score overestimate could be executed in a sequence
of sparse underlying graphs (see Definition 3.3 for more
details), and these sparse underlying graphs can be effi-
ciently constructed (in Õ(r

√
mnr) time) by the quantum

graph sparification algorithm proposed by Apers & de Wolf
(2020). Thus, we obtain a quantum algorithm (Algorithm 1)
that allows efficient queries to the hyperedge leverage score
overestimate running in sublinear time.

The quantum procedure described above, however, intro-
duces a new challenge for the sampling step: the exact
sampling probabilities cannot be directly accessed. To re-
solve this issue, we utilize the technique of “preparing many
copies of a quantum state” (Hamoudi, 2022) to get Õ(n/ε2)

samples in Õ(r
√
mn/ε) time without explicitly computing

the normalization constant for the sampling probability. Af-
ter sampling hyperedges, we encounter a problem in the
reweighting stage due to the unknown normalization con-
stant. We address this issue partially using the quantum sum
estimation procedure (Theorem 2.9), while the imprecision
introduced during this procedure necessitates a more rig-
orous analysis. We complete the correctness analysis by
employing the novel chaining argument proposed in Lee
(2023).

Related Works Quantum algorithms have demonstrated
significant potential in graph-theoretic and optimization

tasks through the sparsification paradigm, offering both
theoretical advances and practical applications.

The seminal work of Apers & de Wolf (2020) established
quantum algorithms for graph sparsification, demonstrating
speedups in cut approximation, effective resistance compu-
tation, spectral clustering, and Laplacian system solving,
while also providing fundamental lower bounds for quan-
tum graph sparsification. This work catalyzed several break-
through results for graph problems. Apers & Lee (2021)
developed a quantum algorithm for exact minimum cut com-
putation, achieving quantum speedups when the graph’s
weight ratio is bounded. Apers et al. (2024) extended these
techniques to solve the exact minimum s-t cut problem.
The versatility of quantum graph sparsification was further
demonstrated in Cade et al. (2023), where it enabled accel-
erated motif clustering computations.

A significant theoretical advancement emerged in Apers
& Gribling (2024), which generalized the quantum graph
sparsification framework to quantum spectral approxima-
tion by combining leverage score sampling with Grover
search. This generalization enabled efficient approxima-
tion of Hessians and gradients in barrier functions for inte-
rior point methods, yielding quantum speedups for linear
programming under specific conditions. These spectral ap-
proximation techniques have found recent applications in
various machine learning problems. Song et al. (2023) and
Li et al. (2024) applied the quantum spectral approximation
and leverage score sampling algorithms to achieve quantum
advantages in linear regression and John ellipsoid approxi-
mation, respectively.

2. Preliminaries
2.1. Notation

For clarity, we use [n] to represent the set {1, 2, . . . , n}
and [n]0 to represent the set {0, 1, . . . , n− 1}. Throughout
this paper, we use G = (V, F, c) to denote a graph, where

3

Quantum Speedup for Hypergraph Sparsification

V is the vertex set, F is the edge set, and c : F → R≥0

represents the edge weights. For an undirected weighted
hypergraph, we denote it as H = (V,E,w), where V is
the vertex set, E is the hyperedge set, and w : E → R≥0

represents the hyperedge weights. We use n,m to denote
the size of V andE respectively. Typically, we denote edges
(consisting of two vertices) with f and g, while reserving e
for hyperedges. Given a hyperedge e, we use

(
e
2

)
to denote

the corresponding induced edge set {f ⊆ e : |f | = 2}.

2.2. Laplacian and Graph Sparsification

For an undirected weighted graph G = (V, F, c), the
weighted degree of vertex i is defined by

deg(i) :=
∑

f∈F :i∈f

cf ,

where the sum is taken over all edges f that contain i, and
cf represents the weight of edge f .

Definition 2.1 (Laplacian). The Laplacian of a weighted
graph G = (V, F, c) is defined as the matrix LG ∈ RV×V

such that

(LG)ij =


deg(i) ifi = j,

−cij if{i, j} ∈ F,
0 otherwise.

The Laplacian of graph G is given by LG = DG −
AG, with AG the weighted adjacency matrix (AG)ij =
cij and D the diagonal weighted degree matrix DG =
diag (deg (i) : i ∈ V). LG is a positive semidefinite matrix
whenever weight function c is nonnegative. The quadratic
form of LG can be written as

x⊤LGx =
∑

{i,j}∈F

cij · (xi − xj)2 (1)

for arbitrary vector x ∈ RV . Graph sparsification produces
a reweighted graph with fewer edges, known as a graph
(spectral) sparsifier. A graph spectral sparsifier of G is a re-
weighted subgraph that closely approximates the quadratic
form of the Laplacian for any vector x ∈ RV .

Definition 2.2 (Graph Spectral Sparsifier). Let G =
(V, F, c) be a weighted graph. A re-weighted graph G̃ =

(V, F̃ , c̃) is a subgraph of G, where c̃ : F̃ → R≥0 and
F̃ = {f ∈ F : c̃f > 0}. For any ε > 0, G̃ is an ε-spectral
sparsifier of G if for any vector x ∈ RV , the following
holds: ∣∣x⊤LG̃x− x

⊤LGx
∣∣ ≤ ε · x⊤LGx.

In the groundbreaking work by Spielman & Srivastava
(2011), the authors demonstrated that graphs can be effi-
ciently sparsified by sampling edges with weights roughly

proportional to their effective resistances. This importance
sampling approach is foundational to graph sparsification
and has also inspired advancements in hypergraph sparsifi-
cation. Next, we define the effective resistance.

Definition 2.3 (Effective Resistance). Given a graph G =
(V, F, c), the effective resistance of a pair of i, j ∈ V is
defined as

Rij := (δi − δj)⊤L+
G(δi − δj) = ∥L

+/2
G (δi − δj)∥2,

where L+
G denotes the Moore-Penrose inverse of LG, and

δi denotes the vector with all elements equal to 0 except for
the i-th being 1.

For further details, including key properties of effective
resistance used in this work, we refer the readers to Ap-
pendix A.

2.3. Hypergraph Sparsification

Here, we formally define the fundamental concept in hyper-
graph sparsification, namely the energy.

Definition 2.4 (Energy). Let H = (V,E,w) be a weighted
hypergraph. For every vector x ∈ RV , we define its associ-
ated energy in H as

QH(x) :=
∑
e∈E

we ·Qe(x), (2)

where Qe(x) := max{i,j}⊆e (xi − xj)
2.

In the special case when the rank of H is 2, (meaning H is
actually a graph), the energy reduces to the quadratic form
of graph Laplacian (see Equation (1)).

Similar to graph sparsification, the goal of hypergraph spar-
sification is to produce a hypergraph spectral sparsifier with
fewer hyperedges. The hypergraph spectral sparsifier of
hypergraph H is a reweighted subgraph of H that approxi-
mately preserves the energy for any vector x ∈ RV .

Definition 2.5 (Hypergraph Spectral Sparsifier). Let H =
(V,E,w) be a weighted hypergraph. A re-weighted hy-
pergraph H̃ = (V, Ẽ, w̃) is a subgraph of H , where
w̃ : Ẽ → R≥0 and Ẽ = {e ∈ E : w̃e > 0}. For any
ε > 0, H̃ is an ε-spectral sparsifier of G if for any vector
x ∈ RV , the following holds:∣∣QH(x)−QH̃(x)

∣∣ ≤ ε ·QH(x).

The hypergraph cut sparsifier is a weaker notion of spar-
sification than the spectral sparsifier. Specifically, for a
weighted hypergraphH (V,E,w), we restrict x ∈ RV to be
the characteristics vector 1S ∈ {0, 1}V of a vertex subset
S ⊆ V . The energy QH (1S), or simply QH(S), can be
expressed as QH(S) =

∑
e∈δS

we, where δS denotes the

4

Quantum Speedup for Hypergraph Sparsification

set of hyperedges crossing the cut (S, V \ S). The ε-cut
sparsifier H̃ of the hypergraph H is a subgraph that satisfies
the following:∣∣QH (S)−QH̃ (S)

∣∣ ≤ ε ·QH (S) , ∀S ⊆ V. (3)

2.4. Quantum Computing and Speedup

In quantum mechanics, a d-dimensional quantum state
|v⟩ = (v0, . . . , vd−1)

⊤ is a unit vector in a complex Hilbert
space Cd, namely,

∑
i∈[d]0

|vi|2 = 1. We define the com-
putational basis of the space Cd by {|i⟩}i∈[d]0

, where |i⟩ =
(0, . . . , 0, 1, 0, . . . , 0)⊤ with the i-th entry (0-indexed) being
1 and others being 0. The inner product of quantum states
|u⟩ , |v⟩ ∈ Cd is defined by ⟨u|v⟩ =

∑
i∈[d]0

u∗i vi, where z∗

denotes the conjugate of z ∈ C. The tensor product of quan-
tum states |u⟩ ∈ Cd1 and |v⟩ ∈ Cd2 is their Kronecker prod-
uct, |u⟩ ⊗ |v⟩ = (u0v0, u0v1, . . . , ud1−1vd2−1)

⊤, which
can be abbreviated as |u⟩ |v⟩.

A quantum bit, or qubit, is a quantum state |ψ⟩ in C2, ex-
pressible as |ψ⟩ = α |0⟩ + β |1⟩, where α, β ∈ C and
|α|2 + |β|2 = 1. Furthermore, an n-qubit state is in the
tensor product space of n Hilbert spaces C2, denoted as
(C2)⊗n = C2n , with the computational basis {|i⟩}i∈[2n]0

.
To extract classical information from an n-qubit state |ψ⟩,
we measure it in the computational basis, yielding outcome
i with probability p (i) = |⟨ψ|i⟩|2 for i ∈ [2n]0. The op-
erations in quantum computing are described by unitary
matrices U , satisfying UU† = U†U = I , where U† is the
Hermitian conjugate of U , and I is the identity matrix.

We consider the following edge-vertex incidence oracle OG

for the graph G = (V, F, c) with n vertices and m edges.
This oracle consists of two unitaries, Ovtx

G and Owt
G , which

are defined as follows for any edge f = {i, j} ∈ F :

Ovtx
G : |f⟩ |0⟩ 7→ |f⟩ |i⟩ |j⟩ ,
Owt

G : |f⟩ |0⟩ 7→ |f⟩ |cf ⟩ ,

where |f⟩ ∈ Cm, |i⟩ , |j⟩ ∈ Cn, and cf is represented as
a floating-point number with |cf ⟩ ∈ Cdacc . Taking dacc =

Õ(1) allows for achieving arbitrary desired floating-point
accuracy. Similarly, we assume access to hyperedge oracle
OH for the hypergraph H = (V,E,w), which consists of
three unitaries Osize

H , Ovtx
H and Owt

H . These unitaries allow
for the following queries for any hyperedge e ∈ E:

Osize
H : |e⟩ |0⟩ 7→ |e⟩ ||e|⟩ ,

Ovtx
H : |e⟩ |0⟩⊗r 7→ |e⟩

(⊗
i∈e

|i⟩
)
|0⟩⊗(r−|e|)

,

Owt
H : |e⟩ |0⟩ 7→ |e⟩ |we⟩ .

In many quantum algorithms, information can be stored
and retrieved in quantum-read classical-write random ac-
cess memory (QRAM) (Giovannetti et al. (2008)), which is

employed in numerous time-efficient quantum algorithms.
QRAM enables the storage or modification of an array
c1, . . . , cn of classical data while allowing quantum query
access via a unitary UQRAM : |i⟩ |0⟩ 7→ |i⟩ |ci⟩. Although
QRAM is a natural quantization of the classical RAM model
and is widely utilized, it is important to acknowledge that,
given the current advancements of quantum computers, the
feasibility of implementing practical QRAM remains some-
what speculative.

A quantum (query) algorithm A is a quantum circuit con-
sisting of a sequence of unitaries U1, . . . , UT , where each
Ut could be a quantum gate, a quantum oracle, or a
QRAM operation. The time complexity of A is deter-
mined by the number T of quantum gates, oracles and
QRAM operations it contains. The algorithm A operates
on n qubits, starting with the initial state |0⟩⊗n. The uni-
tary operators U1, . . . , UT are then applied sequentially
to the quantum state, resulting in the final quantum state
|ψ⟩ = UT . . . U1 |0⟩⊗n. Finally, a measurement is per-
formed on |ψ⟩ in the computational basis |i⟩ for i ∈ [2n]0,
yielding a classical outcome i with probability |⟨i|ψ⟩|2.

In our paper, we incorporate quantum algorithms from pre-
vious research as basic components of our algorithm. One
such algorithm is quantum graph sparsification, initially pro-
posed by Apers & de Wolf (2020) using adjacency-list input
queries, and later revisited through alternative techniques
in Apers & Gribling (2024) using edge-vertex incidence
queries. The query access described below refers to the
latter approach.

Theorem 2.6 (Quantum Graph Sparsification, Theorem 1
in Apers & de Wolf (2020)). There exists a quantum algo-
rithm GraphSparsify(OG, ε) that, given query access OG

to a weighted graph G = (V, F, c) with |V | = n, |F | =
m, c ∈ RF

≥0 and ε ≥
√
n/m, outputs with high probability

the explicit description of an ε-spectral sparsifier of G with
Õ(n/ε2) edges, using Õ(

√
mn/ε) queries to OG and in

time Õ(
√
mn/ε).

The next quantum algorithm proposed by Hamoudi (2022)
provides an efficient approach to prepare many copies of a
quantum state.

Theorem 2.7 (Preparing Many Copies of a Quantum State,
Theorem 1 in Hamoudi (2022)). There exists a quantum
algorithm that, given oracle accessOw to a vectorw ∈ Rn

≥0

(0-indexed) (Ow : |i⟩ |0⟩ 7→ |i⟩ |wi⟩ ,∀i ∈ [n]), and k ∈ [n],
with high probability, outputs k copies of the state |w⟩,
where

|w⟩ = 1√
W

∑
i∈[n]0

√
wi |i⟩

with W =
∑

i∈[n]0
wi. The algorithm uses Õ(

√
nk)

queries to Ow, and runs in Õ(
√
nk) time.

5

Quantum Speedup for Hypergraph Sparsification

By performing measurements on each of the generated quan-
tum state copies, a sample sequence is produced, where each
element i is selected with a probability proportional to wi.
This leads to the following corollary.
Corollary 2.8. There exists a quantum algorithm
MultiSample(Ow, k) that, given query access Ow to a vec-
tor w ∈ Rn

≥0 and integer k ∈ [n], outputs with high proba-

bility a sample sequence σ ∈ [n]
k such that each element

i is sampled with probability proportional to wi. The al-
gorithm uses Õ(

√
nk) queries to Ow, and runs in Õ(

√
nk)

time.

In addition to the quantum algorithms mentioned above,
we also require quantum sum estimation, which provides a
quadratic speedup over classical approaches.
Theorem 2.9 (Quantum Sum Estimation, Lemma 3.1
in Li et al. (2019)). There exists a quantum algorithm
SumEstimate(Ow, ε) that, given query access Ow to a vec-
tor w ∈ Rn

≥0 and ε > 0, outputs with high probability an
estimate s̃ for s =

∑
i∈[n] wi satisfying |s̃− s| ≤ εs, using

Õ(
√
n/ε) queries to Ow and in Õ(

√
n/ε) time.

3. Quantum Algorithm for Leverage Score
Overestimates

In this section, we will introduce the notion of hyperedge
leverage scores, which is a generalization of leverage scores
of edges in a graph. We then define the concept of leverage
score overestimates, which are one-side bounded estimates
of hyperedge leverage scores. Finally, we propose a quan-
tum algorithm that computes the overestimates given query
access to a hypergraph.

To define hyperedge leverage scores, we first introduce the
concept of underlying graphs.
Definition 3.1 (Underlying Graph). Given an undirected
weighted hypergraph H = (V,E,w), an underlying graph
of H is defined as a multigraph G = (V, F, c) with edge
set F =

{
(e, f) : f ∈

(
e
2

)
, e ∈ E

}
and weights c ∈ RF

≥0,
satisfying

we =
∑
f∈(e2)

ce,f , ∀e ∈ E. (4)

Note that if the hypergraph contains m hyperedges with
rank r, its underlying graph can have up to mr(r − 1)/2
edges. The multiple edges in the underlying graph are la-
beled according to the hyperedges they originate from.

With this concept, we define the hyperedge leverage score as
follows: Given a hypergraphH and one of its corresponding
underlying graphs G, the leverage score of a hyperedge
e ∈ E, is defined as

ℓe := weRe, (5)

where Re = max{Rf : ∀f ∈
(
e
2

)
}, and Rf represents the

effective resistance of the edge f in the underlying graph G.

We remark that, the choice of the underlying graph G will
greatly influence the hyperedge leverage scores. For our
sparsification purpose, we want to bound the total sum of
hyperedge leverage scores by O(n), which determines the
the size of the resulting hypergraph sparsifiers. Therefore,
we define the following notion of hyperedge leverage score
overestimates, which are entry-wise upper bounds for lever-
age scores with a specific underlying graph, such that the
total sum is bounded by a parameter ν = O(n).

Definition 3.2 (Hyperedge Leverage Score Overestimate,
adapted from Jambulapati et al. (2023, Definition 1.3)).
Given a hypergraph H = (V,E,w), we say z ∈ RE

≥0 is
a ν-(bounded hyperedge leverage score) overestimate for
H if ∥z∥1 ≤ ν and there exists a corresponding underlying
graph G = (V, F, c), satisfying the constraints Equation (4),
such that for all e ∈ E, ze ≥ ℓe.

To obtain an overestimate, we need to handle the weights
of the underlying graph, which contains O(mr2) edges.
Nevertheless, it is sufficient to manage only O(mr) edges
by replacing each hyperedge with a sparse subgraph (e.g.,
a star graph with up to r − 1 edges) rather than a complete
clique (Definition 3.1). We refer to the resulting graph as a
sparse underlying graph.

Definition 3.3 (Sparse Underlying Graph). Given an undi-
rected weighted hypergraph H = (V,E,w), a sparse un-
derlying graph of H is defined as G = (V, F, c) with edge
set F = {(e, f) : f ∈ Se, e ∈ E} and weights c ∈ RF

≥0,
satisfying

we =
∑
f∈Se

ce,f , ∀e ∈ E. (6)

For each e ∈ E, we fix an arbitrary vertex ae ∈ e and define
Se = {f ∈

(
e
2

)
: ae ∈ f}.

Now we present our quantum algorithm of hyperedge lever-
age score overestimates, which is a key step for our main
quantum algorithm for hypergraph sparsification. Our al-
gorithm is inspired by the approximating John ellipsoid
algorithm proposed in Cohen et al. (2019) and the group
leverage score overestimate algorithm in Jambulapati et al.
(2023). The input of our algorithm includes a quantum ora-
cle to the hypergraph, the number of iterations T , the graph
sparsification parameter α1, and the effective resistance ap-
proximation factor α2. The output of our quantum algorithm
is a data structure, which could provide a query access to the
hyperedge leverage score overestimates (see Proposition B.6
for a formal description of the output).

Recall that the choice of the underlying graph G determines
the hyperedge leverage scores, as well as their overesti-
mates. Our algorithm iteratively adjusts the edge weights

6

Quantum Speedup for Hypergraph Sparsification

of the underlying graph over roughly log r rounds to con-
struct a suitable G. In each iteration, we use quantum graph
sparsification to reduce the graph’s size and reassign hy-
peredge weights to the edges of the underlying graph ac-
cording to edge leverage scores. To maintain overall ef-
ficiency, this process is implemented entirely quantumly
through a series of quantum subroutines. The process begins
with WeightInitialize, which is employed during the first it-
eration to establish quantum query access to the weights
of the underlying graph via queries to the original hyper-
graph (Proposition B.1). In each iteration, the system uti-
lizes UGraphStore to provide quantum query access to the
stored weights of the sparsifier obtained from GraphSparsify
(Proposition B.4). Subsequently, EffectiveResistance en-
ables efficient quantum queries to the approximate effec-
tive resistance of a graph (Proposition B.3). For the next
iteration, WeightCompute implements quantum query ac-
cess to the updated weights of the sparse underlying graph
(Proposition B.5). The complete algorithm is presented in
Algorithm 1.

Algorithm 1 Quantum Hyperedge Leverage Score Overes-
timates QHLSO(OH , T, α1, α2)

Require: Quantum Oracle OH to a hypergraph H =
(V,E,w) with |V | = n, |E| = m, rank r; the number
of episodes T ∈ N; positive real numbers α1, α2 ∈ R.

Ensure: An instanceZ of QOverestimate which stores the
vector z being an O(n)-overestimate for H .

1: Let UG(1) = WeightInitialize(OH).
2: for t = 1 to T do
3: G̃(t) = (V, F̃ (t), c̃(t))← GraphSparsify(UG(t), α1).
4: G(t) ← UGraphStore(G̃(t)).
5: R(t) ← EffectiveResistance(G̃(t), α2).
6: UG(t+1) = WeightCompute(OH ,R(t),G(t)).
7: end for
8: C1 ← 2(1 + α1+α2

1−α1
) · exp (log r/T).

9: Z ← QOverestimate({G(t) : t ∈ [T]}, {R(t) : t ∈
[T]},OH , C1, T).

The algorithm’s complexity is described in the following
theorem.

Theorem 3.4 (Quantum Hyperedge Leverage Score
Overestimates). There exists a quantum algorithm
QHLSO(OH , T, α1, α2) that, given integer T = O(log r),
positive real numbers α1, α2 < 1 and query access OH to
a hypergraph H = (V,E,w) with |E| = m, |V | = n,w ∈
RE

≥0, and rank r, the algorithm runs in time Õ(r
√
mnr).

Then, with high probability, it provides query access to a
ν-overestimate z with ν = O(n), where each query to z
requires Õ(r) time.

Due to space constraints, the proof of Theorem 3.4 is de-
ferred to Appendix B.

4. Quantum Hypergraph Sparsification
Assuming query access to a ν-overestimate, we aim to im-
plement the sampling scheme in a quantum framework.
By leveraging Corollary 2.8, we can sample a sequence
σ = (σi : σi ∈ E) where each element e is sampled
with probability proportional to ze. By combining the in-
formation of each sampled e with the normalization factor
obtained via SumEstimate, we assign appropriate weights
to the sampled edges to construct the final sparsifier. The
complete algorithm is outlined in Algorithm 2.

Algorithm 2 Quantum Hypergraph Sparsification
QHypergraphSparse(OH , ε)

Require: Quantum Oracle OH to a hypergraph H =
(V,E,w) with |V | = n, |E| = m, rank r; accuracy
ε > 0.

Ensure: An ε-spectral sparsifier of H , denoted by H̃ =
(V, Ẽ, w̃), |Ẽ| = O(n log n log r/ε2).

1: Ẽ = ∅, w̃ = 0,M ← Θ
(
n log n log r/ε2

)
.

2: Z ← QHLSO(OH , log(r − 1), 0.1, 0.1).
3: σ ← MultiSample(Z.Query,M).
4: s← SumEstimate(Z.Query, 0.1).
5: for i = 1 to M do
6: wσi ← measurement outcome of the second register

of Owt
H |σi⟩ |0⟩.

7: zσi ← measurement outcome of the second register
of Z.Query |σi⟩ |0⟩.

8: Ẽ ← Ẽ ∪ {σi}, w̃σi
← w̃σi

+ wσi
· s/(Mzσi

).
9: end for

Theorem 4.1 (Quantum Hypergraph Sparsification). There
exists a quantum algorithm that, given query access to
a hypergraph H = (V,E,w) with |E| = m, |V | =
n,w ∈ RE

≥0, rank r, and ε > 0, outputs with high
probability the explicit description of an ε-spectral spar-
sifier of H with O(n log n log r/ε2) hyperedges, in time
Õ(r
√
mnr + r

√
mn/ε).

The proof of correctness for the algorithm follows closely
the chaining argument in Lee (2023) and Jambulapati et al.
(2023). Due to space constraints, we provide the detailed
proof in Appendix C.
Remark 4.2. We assume ε ≥

√
n/m, as sparsification is

beneficial only when the sparsifier contains less m hyper-
edges. It is also generally the case that m ≥ nr, as the
objects being sparsified are dense. It’s worth noting that
the time complexity Õ (r

√
mnr + r

√
mn/ε) simplifies to

Õ (r
√
mn/ε) whenever ε ≥

√
n/m and m ≥ nr.

Remark 4.3. For the hypergraph with constant rank r, the
above complexity contrasts with the classical lower bound
of Ω(m). This lower bound arises from the fact that, in
the case of graphs (r = 2), there exists an Ω (m) classical
query lower bound for determining whether a graph is con-

7

Quantum Speedup for Hypergraph Sparsification

nected, which establishes the same lower bound for both cut
sparsifiers and spectral sparsifiers.

5. Applications
As a direct corollary of Theorem 4.1, we can compute a cut
sparsifier for a hypergraph in sublinear time.

Corollary 5.1 (Quantum Hypergraph Cut Sparsification).
There exists a quantum algorithm that, given query access
to a hypergraph H = (V,E,w) with |E| = m, |V | =
n,w ∈ RE

≥0, rank r, and ε > 0, outputs with high prob-
ability the explicit description of an ε-cut sparsifier of H
with O(n log n log r/ε2) hyperedges in time Õ(r

√
mnr +

r
√
mn/ε).

Similar to the case for graphs, quantum hypergraph cut
sparsification facilitates faster approximation algorithms for
cut problems. Below, we highlight two such applications.

Mincut Given a hypergraph H = (V,E,w), the hyper-
graph mincut problem asks for a vertex set S : ∅ ⊊ S ⊊ V
that minimizes the energy QH(S). To the best of our knowl-
edge, the fastest algorithm for computing the mincut in a
hypergraph without error runs in Õ(mnr) time (Klimmek
& Wagner, 1996; Mak & Wong, 2000). By applying Corol-
lary 5.1, we first sparsify the hypergraph and then apply the
mincut algorithm to the cut sparsifier. This gives a quantum
algorithm that, with high probability, outputs a (1 + ε)-
approximate mincut in time Õ(r

√
mn/ε+ rn2), which is

sublinear in the number of hyperedges.

Corollary 5.2 (Quantum Hypergraph Mincut Solver). There
exits a quantum algorithm that, given query access to a
hypergraph H = (V,E,w) with |E| = m, |V | = n,w ∈
RE

≥0, rank r, and ε > 0, outputs with high probability
the (1 + ε)-approximate mincut of H in time Õ(r

√
mnr +

r
√
mn/ε+ rn2).

s-t mincut Given a hypergraph H = (V,E,w) and two
vertices s, t ∈ V , the s-t mincut problem seeks a vertex
set S ⊆ V with |S ∩ {s, t}| = 1(i.e., either s ∈ S or
t ∈ S) that minimizes the energy QH(S). The standard
approach for computing an s-t mincut in a hypergraph is
computing the s-t maximum flow in an associated digraph
with O(n+m) vertices and O(mr) edges (Lawler, 1973).
And an s-t maximum flow in such graph can be found
in Õ(mr

√
m+ n) time (Lee & Sidford, 2014). By com-

bining Corollary 5.1 with the aforementioned approach,
we can compute a (1 + ε)-approximate s-t mincut in time
Õ(r
√
mn/ε) whenever m = Ω(n2), which is sublinear in

number of hyperedges.

Corollary 5.3 (Quantum Hypergraph s-t Mincut Solver).
There exits a quantum algorithm that, given query access to
a hypergraph H = (V,E,w) with |E| = m, |V | = n,w ∈

RE
≥0, rank r, two vertices s, t ∈ V , and ε > 0, outputs with

high probability the (1 + ε)-approximate s-t mincut of H
in time Õ(r

√
mnr + r

√
mn/ε+ rn3/2).

6. Conclusion and Future works
In this paper, we present a quantum algorithm for hyper-
graph sparsification with time complexity Õ(r

√
mn/ε +

r
√
mnr), where m,n, r, ε are the number of hyperedges,

the number of vertices, rank of hypergraph and precision of
sparsifier, respectively.

Our paper naturally raises several open questions for future
work. For instance:

• Quantum graph sparsification has directly led to the de-
velopment of numerous quantum algorithms, including
max-cut for graphs (Apers & de Wolf, 2020), graph
minimum cut finding (Apers & Lee, 2021), graph min-
imum s-t cut finding (Apers et al., 2024), motif clus-
tering (Cade et al., 2023). A natural question arises:
for more related problems in hypergraphs, such as
hypergraph-k-cut, minmax-hypergraph-k-partition, hy-
pergraph spectral diffusion (Ameranis et al., 2023),
can we design faster quantum algorithms compared to
classical ones?

• We conjecture that the runtime of our quantum al-
gorithm is tight up to polylogarithmic factors when
ε ≤ 1/

√
r. Can we establish a quantum lower bound

of Ω(r
√
mn/ε) for hypergraph sparsification? Al-

ternatively, can we improve the time complexity for
quantum hypergraph sparsification, or further enhance
the runtime for hypergraph cut sparsification? Fur-
thermore, state-of-the-art hypergraph cut sparsification
achieves a size ofO(n log n/ε2) (without the log r fac-
tor) in Õ(mn+n10/ε7) time (Chen et al., 2020)—can
we design a faster quantum algorithm that matches this
size?

• Hypergraph sparsification has been extended to various
frameworks, including online hypergraph sparsifica-
tion (Soma et al., 2024; Khanna et al., 2025), directed
hypergraph sparsification (Oko et al., 2023), submodu-
lar hypergraph sparsification (Kenneth & Krauthgamer,
2024), generalized linear models sparsification (Jam-
bulapati et al., 2024), and quotient sparsification for
submodular functions (Quanrud, 2024). A natural ques-
tion is can we develop specialized quantum algorithms
for these settings?

Acknowledgements
The work was supported by National Key Research
and Development Program of China (Grant No.

8

Quantum Speedup for Hypergraph Sparsification

2023YFA1009403), National Natural Science Foun-
dation of China (Grant No. 12347104), Beijing Natural
Science Foundation (Grant No. Z220002), and Tsinghua
University.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none of which we feel must be
specifically highlighted here.

References
Agarwal, A., Khanna, S., Li, H., and Patil, P. Sublinear

algorithms for hierarchical clustering. Advances in Neural
Information Processing Systems, 35:3417–3430, 2022.

Akbudak, K., Kayaaslan, E., and Aykanat, C. Hyper-
graph partitioning based models and methods for ex-
ploiting cache locality in sparse matrix-vector multipli-
cation. SIAM Journal on Scientific Computing, 35(3):
C237–C262, 2013. doi: 10.1137/100813956.

Alpert, C. J. and Kahng, A. B. Recent directions in
netlist partitioning: a survey. Integration, 19(1):1–81,
1995. ISSN 0167-9260. doi: https://doi.org/10.1016/
0167-9260(95)00008-4.

Ameranis, K., Chen, A., DePavia, A., Orecchia, L., and Tani,
E. Hypergraph diffusions and resolvents for norm-based
hypergraph laplacians. arXiv preprint arXiv:2307.11042,
2023.

Apers, S. and de Wolf, R. Quantum speedup for graph
sparsification, cut approximation and laplacian solving.
In 2020 IEEE 61st Annual Symposium on Foundations
of Computer Science (FOCS), pp. 637–648, 2020. doi:
10.1109/FOCS46700.2020.00065.

Apers, S. and Gribling, S. Quantum speedups for linear
programming via interior point methods, 2024. URL
https://arxiv.org/abs/2311.03215.

Apers, S. and Lee, T. Quantum complexity of minimum cut.
In Proceedings of the 36th Computational Complexity
Conference, 2021. doi: 10.4230/LIPIcs.CCC.2021.28.

Apers, S., Auza, A., and Lee, T. A sublinear query
quantum algorithm for s-t minimum cut on dense sim-
ple graphs, 2024. URL https://arxiv.org/abs/
2110.15587.

Ballard, G., Druinsky, A., Knight, N., and Schwartz, O.
Hypergraph partitioning for sparse matrix-matrix multi-
plication. ACM Trans. Parallel Comput., 3(3), December
2016. ISSN 2329-4949. doi: 10.1145/3015144.

Bansal, N., Svensson, O., and Trevisan, L. New notions and
constructions of sparsification for graphs and hypergraphs.
In 2019 IEEE 60th Annual Symposium on Foundations
of Computer Science, pp. 910–928, 2019. doi: 10.1109/
FOCS.2019.00059.

Batson, J., Spielman, D. A., and Srivastava, N. Twice-
ramanujan sparsifiers. SIAM Journal on Computing, 41
(6):1704–1721, 2012. doi: 10.1137/090772873.

Braverman, V., Hassidim, A., Matias, Y., Schain, M., Silwal,
S., and Zhou, S. Adversarial robustness of streaming
algorithms through importance sampling. In Advances in
Neural Information Processing Systems, volume 34, pp.
3544–3557, 2021.

Cade, C., Labib, F., and Niesen, I. Quantum Motif Clus-
tering. Quantum, 7:1046, 2023. ISSN 2521-327X. doi:
10.22331/q-2023-07-03-1046.

Chan, T.-H. H., Louis, A., Tang, Z. G., and Zhang, C. Spec-
tral properties of hypergraph laplacian and approxima-
tion algorithms. Journal of the ACM, 65(3), 2018. doi:
10.1145/3178123.

Chekuri, C. and Xu, C. Minimum cuts and sparsification in
hypergraphs. SIAM Journal on Computing, 47(6):2118–
2156, 2018. doi: 10.1137/18M1163865.

Chen, L., Kyng, R., Liu, Y. P., Peng, R., Gutenberg, M. P.,
and Sachdeva, S. Maximum flow and minimum-cost flow
in almost-linear time. In Proceedings of the 2022 IEEE
63rd Annual Symposium on Foundations of Computer
Science, pp. 612–623. IEEE, 2022.

Chen, Y., Khanna, S., and Nagda, A. Near-linear size hy-
pergraph cut sparsifiers. In 2020 IEEE 61st Annual Sym-
posium on Foundations of Computer Science, pp. 61–72,
2020. doi: 10.1109/FOCS46700.2020.00015.

Cohen, M. B., Kyng, R., Miller, G. L., Pachocki, J. W., Peng,
R., Rao, A. B., and Xu, S. C. Solving SDD linear systems
in nearly m log1/2 n time. In Proceedings of the forty-
sixth annual ACM symposium on Theory of computing,
pp. 343–352, 2014.

Cohen, M. B., Kelner, J., Peebles, J., Peng, R., Sidford,
A., and Vladu, A. Faster algorithms for computing the
stationary distribution, simulating random walks, and
more. In Proceedings of the 2016 IEEE 57th annual
symposium on foundations of computer science, pp. 583–
592. IEEE, 2016.

Cohen, M. B., Cousins, B., Lee, Y. T., and Yang, X. A
near-optimal algorithm for approximating the John el-
lipsoid. In Beygelzimer, A. and Hsu, D. (eds.), Pro-
ceedings of the Thirty-Second Conference on Learning

9

https://arxiv.org/abs/2311.03215
https://arxiv.org/abs/2110.15587
https://arxiv.org/abs/2110.15587

Quantum Speedup for Hypergraph Sparsification

Theory, volume 99 of Proceedings of Machine Learn-
ing Research, pp. 849–873. PMLR, 25–28 Jun 2019.
URL https://proceedings.mlr.press/v99/
cohen19a.html.

Giovannetti, V., Lloyd, S., and Maccone, L. Quantum ran-
dom access memory. Phys. Rev. Lett., 100:160501, Apr
2008. doi: 10.1103/PhysRevLett.100.160501.

Hamoudi, Y. Preparing many copies of a quantum state
in the black-box model. Phys. Rev. A, 105:062440, Jun
2022. doi: 10.1103/PhysRevA.105.062440.

Hein, M., Setzer, S., Jost, L., and Rangapuram, S. S.
The total variation on hypergraphs - learning on
hypergraphs revisited. In Burges, C., Bottou, L.,
Welling, M., Ghahramani, Z., and Weinberger, K.
(eds.), Advances in Neural Information Process-
ing Systems, volume 26. Curran Associates, Inc.,
2013. URL https://proceedings.neurips.
cc/paper_files/paper/2013/file/
8a3363abe792db2d8761d6403605aeb7-Paper.
pdf.

Jambulapati, A., Liu, Y. P., and Sidford, A. Chaining, group
leverage score overestimates, and fast spectral hypergraph
sparsification. In Proceedings of the 55th Annual ACM
Symposium on Theory of Computing, pp. 196–206, New
York, NY, USA, 2023. doi: 10.1145/3564246.3585136.

Jambulapati, A., Lee, J. R., Liu, Y. P., and Sidford, A. Spar-
sifying generalized linear models. In Proceedings of
the 56th Annual ACM Symposium on Theory of Com-
puting, STOC 2024, pp. 1665–1675, New York, NY,
USA, 2024. Association for Computing Machinery. ISBN
9798400703836. doi: 10.1145/3618260.3649684.

Kapralov, M., Krauthgamer, R., Tardos, J., and Yoshida, Y.
Towards tight bounds for spectral sparsification of hyper-
graphs. In Proceedings of the 53rd Annual ACM SIGACT
Symposium on Theory of Computing, pp. 598–611, 2021.
doi: 10.1145/3406325.3451061.

Kapralov, M., Krauthgamer, R., Tardos, J., and Yoshida, Y.
Spectral hypergraph sparsifiers of nearly linear size. In
2021 IEEE 62nd Annual Symposium on Foundations of
Computer Science, pp. 1159–1170, 2022. doi: 10.1109/
FOCS52979.2021.00114.

Karypis, G., Aggarwal, R., Kumar, V., and Shekhar, S. Mul-
tilevel hypergraph partitioning: applications in vlsi do-
main. IEEE Transactions on Very Large Scale Integra-
tion (VLSI) Systems, 7(1):69–79, 1999. doi: 10.1109/92.
748202.

Kenneth, Y. and Krauthgamer, R. Cut Sparsification
and Succinct Representation of Submodular Hyper-
graphs. In Bringmann, K., Grohe, M., Puppis, G.,

and Svensson, O. (eds.), 51st International Collo-
quium on Automata, Languages, and Programming
(ICALP 2024), volume 297 of Leibniz International
Proceedings in Informatics (LIPIcs), pp. 97:1–
97:17, Dagstuhl, Germany, 2024. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik. ISBN 978-3-95977-
322-5. doi: 10.4230/LIPIcs.ICALP.2024.97. URL
https://drops.dagstuhl.de/entities/
document/10.4230/LIPIcs.ICALP.2024.97.

Khanna, S., Li, H., and Putterman, A. Near-optimal linear
sketches and fully-dynamic algorithms for hypergraph
spectral sparsification. In Proceedings of the 57th Annual
ACM Symposium on Theory of Computing (STOC), 2025.
To appear.

Klimmek, R. and Wagner, F. A simple hypergraph
min cut algorithm. Technical Report B, 02, 1996.
URL http://edocs.fu-berlin.de/docs/
servlets/MCRFileNodeServlet/FUDOCS_
derivate_000000000297/1996_02.pdf.

Kogan, D. and Krauthgamer, R. Sketching cuts in graphs
and hypergraphs. In Proceedings of the 2015 Confer-
ence on Innovations in Theoretical Computer Science, pp.
367–376, 2015. doi: 10.1145/2688073.2688093.

Laenen, S. and Sun, H. Higher-order spectral clustering of
directed graphs. Advances in neural information process-
ing systems, 33:941–951, 2020.

Lawler, E. L. Cutsets and partitions of hypergraphs. Net-
works, 3(3):275–285, 1973. doi: https://doi.org/10.1002/
net.3230030306.

Lee, J. R. Spectral hypergraph sparsification via chaining.
In Proceedings of the 55th Annual ACM Symposium on
Theory of Computing, pp. 207–218, 2023. doi: 10.1145/
3564246.3585165.

Lee, Y. T. and Sidford, A. Path finding methods for linear
programming: Solving linear programs in Õ(

√
rank)

iterations and faster algorithms for maximum flow. In
2014 IEEE 55th Annual Symposium on Foundations of
Computer Science, pp. 424–433, 2014. doi: 10.1109/
FOCS.2014.52.

Lee, Y. T. and Sun, H. Constructing linear-sized spec-
tral sparsification in almost-linear time. SIAM Journal
on Computing, 47(6):2315–2336, 2018. doi: 10.1137/
16M1061850.

Li, P. and Milenkovic, O. Inhomogeneous hypergraph clus-
tering with applications. In Proceedings of the 31st Inter-
national Conference on Neural Information Processing
Systems, NIPS’17, pp. 2305–2315, Red Hook, NY, USA,
2017. Curran Associates Inc. ISBN 9781510860964.

10

https://proceedings.mlr.press/v99/cohen19a.html
https://proceedings.mlr.press/v99/cohen19a.html
https://proceedings.neurips.cc/paper_files/paper/2013/file/8a3363abe792db2d8761d6403605aeb7-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2013/file/8a3363abe792db2d8761d6403605aeb7-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2013/file/8a3363abe792db2d8761d6403605aeb7-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2013/file/8a3363abe792db2d8761d6403605aeb7-Paper.pdf
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.97
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.97
http://edocs.fu-berlin.de/docs/servlets/MCRFileNodeServlet/FUDOCS_derivate_000000000297/1996_02.pdf
http://edocs.fu-berlin.de/docs/servlets/MCRFileNodeServlet/FUDOCS_derivate_000000000297/1996_02.pdf
http://edocs.fu-berlin.de/docs/servlets/MCRFileNodeServlet/FUDOCS_derivate_000000000297/1996_02.pdf

Quantum Speedup for Hypergraph Sparsification

Li, P., He, N., and Milenkovic, O. Quadratic decomposable
submodular function minimization: Theory and prac-
tice. Journal of Machine Learning Research, 21(106):1–
49, 2020. URL http://jmlr.org/papers/v21/
18-790.html.

Li, T., Chakrabarti, S., and Wu, X. Sublinear quantum al-
gorithms for training linear and kernel-based classifiers.
In Chaudhuri, K. and Salakhutdinov, R. (eds.), Proceed-
ings of the 36th International Conference on Machine
Learning, volume 97 of Proceedings of Machine Learn-
ing Research, pp. 3815–3824. PMLR, 09–15 Jun 2019.
URL https://proceedings.mlr.press/v97/
li19b.html.

Li, X., Song, Z., and Yu, J. Quantum speedups for ap-
proximating the John ellipsoid, 2024. URL https:
//arxiv.org/abs/2408.14018.

Liu, M., Veldt, N., Song, H., Li, P., and Gleich, D. F.
Strongly local hypergraph diffusions for clustering and
semi-supervised learning. In Proceedings of the Web
Conference 2021, WWW ’21, pp. 2092–2103, New York,
NY, USA, 2021. Association for Computing Machinery.
ISBN 9781450383127. doi: 10.1145/3442381.3449887.

Mak, W.-K. and Wong, D. A fast hypergraph min-cut al-
gorithm for circuit partitioning. Integration, 30(1):1–11,
2000. ISSN 0167-9260. doi: 10.1016/S0167-9260(00)
00008-0.

Oko, K., Sakaue, S., and Tanigawa, S.-i. Nearly Tight
Spectral Sparsification of Directed Hypergraphs. In 50th
International Colloquium on Automata, Languages, and
Programming, volume 261, pp. 94:1–94:19, 2023. doi:
10.4230/LIPIcs.ICALP.2023.94.

Peng, R., Sun, H., and Zanetti, L. Partitioning well-clustered
graphs: Spectral clustering works! In Conference on
learning theory, pp. 1423–1455. PMLR, 2015.

Quanrud, K. Quotient sparsification for submodular func-
tions. In Proceedings of the 2024 Annual ACM-SIAM
Symposium on Discrete Algorithms, pp. 5209–5248, 2024.
doi: 10.1137/1.9781611977912.187.

Simonovsky, M. and Komodakis, N. Dynamic edge-
conditioned filters in convolutional neural networks on
graphs. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pp. 3693–3702,
2017.

Soma, T. and Yoshida, Y. Spectral sparsification of hyper-
graphs. In Proceedings of the 2019 Annual ACM-SIAM
Symposium on Discrete Algorithms, pp. 2570–2581, 2019.
doi: 10.1137/1.9781611975482.159.

Soma, T., Tung, K. C., and Yoshida, Y. Online algorithms
for spectral hypergraph sparsification. In Vygen, J. and
Byrka, J. (eds.), Integer Programming and Combinatorial
Optimization, pp. 405–417, Cham, 2024. Springer Nature
Switzerland. ISBN 978-3-031-59835-7.

Song, Z., Yin, J., and Zhang, R. Revisiting quantum algo-
rithms for linear regressions: Quadratic speedups with-
out data-dependent parameters, 2023. URL https:
//arxiv.org/abs/2311.14823.

Spielman, D. A. and Srivastava, N. Graph sparsification by
effective resistances. SIAM Journal on Computing, 40(6):
1913–1926, 2011. doi: 10.1137/080734029.

Takai, Y., Miyauchi, A., Ikeda, M., and Yoshida, Y. Hy-
pergraph clustering based on pagerank. In Proceedings
of the 26th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pp. 1970–1978,
2020. doi: 10.1145/3394486.3403248.

Yadati, N., Nimishakavi, M., Yadav, P., Nitin, V.,
Louis, A., and Talukdar, P. Hypergcn: A new
method for training graph convolutional networks
on hypergraphs. In Advances in Neural Infor-
mation Processing Systems, volume 32, 2019.
URL https://proceedings.neurips.
cc/paper_files/paper/2019/file/
1efa39bcaec6f3900149160693694536-Paper.
pdf.

Yadati, N., Nitin, V., Nimishakavi, M., Yadav, P., Louis, A.,
and Talukdar, P. Nhp: Neural hypergraph link prediction.
In Proceedings of the 29th ACM International Conference
on Information & Knowledge Management, CIKM ’20,
pp. 1705–1714, 2020. doi: 10.1145/3340531.3411870.

Yoshida, Y. Cheeger inequalities for submodular transfor-
mations. In Proceedings of the Thirtieth Annual ACM-
SIAM Symposium on Discrete Algorithms, pp. 2582–2601,
2019.

Zhang, C., Hu, S., Tang, Z. G., and Chan, T.-H. H. Re-
revisiting learning on hypergraphs: Confidence interval,
subgradient method, and extension to multiclass. IEEE
Transactions on Knowledge and Data Engineering, 32
(3):506–518, 2020. doi: 10.1109/TKDE.2018.2880448.

Zhou, D., Huang, J., and Schölkopf, B. Learn-
ing with hypergraphs: Clustering, classification,
and embedding. In Advances in Neural Infor-
mation Processing Systems, volume 19, 2006.
URL https://proceedings.neurips.
cc/paper_files/paper/2006/file/
dff8e9c2ac33381546d96deea9922999-Paper.
pdf.

11

http://jmlr.org/papers/v21/18-790.html
http://jmlr.org/papers/v21/18-790.html
https://proceedings.mlr.press/v97/li19b.html
https://proceedings.mlr.press/v97/li19b.html
https://arxiv.org/abs/2408.14018
https://arxiv.org/abs/2408.14018
https://arxiv.org/abs/2311.14823
https://arxiv.org/abs/2311.14823
https://proceedings.neurips.cc/paper_files/paper/2019/file/1efa39bcaec6f3900149160693694536-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/1efa39bcaec6f3900149160693694536-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/1efa39bcaec6f3900149160693694536-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/1efa39bcaec6f3900149160693694536-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2006/file/dff8e9c2ac33381546d96deea9922999-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2006/file/dff8e9c2ac33381546d96deea9922999-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2006/file/dff8e9c2ac33381546d96deea9922999-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2006/file/dff8e9c2ac33381546d96deea9922999-Paper.pdf

Quantum Speedup for Hypergraph Sparsification

A. Useful properties of effective resistance
It’s the well-known fact in graph theory that the effective resistance defines a metric on the vertices of a graph. Below, we
outline several key properties of effective resistance that will be utilized in this work.

Lemma A.1 (Foster). For a weighted graph G = (V, F, c), let Rij represent the effective resistance between vertices i and
j. Then, it holds that

∑
{i,j}∈F cijRij ≤ n.

Proof. For a edge {i, j}, recall that Rij = (δi − δj)⊤ L+
G (δi − δj), then∑

{i,j}∈F

cijRij =
∑

{i,j}∈F

Tr
(
cij (δi − δj) (δi − δj)⊤ L+

G

)
= Tr

(
LGL

+
G

)
≤ n− 1

since rank of LG is at most n− 1.

Lemma A.2 (Convexity, Lemma 3.4 in Cohen et al. (2019)). For a weighted graph G = (V, F, c), the function logRf (c) is
convex with respect to c.

B. Proof of Theorem 3.4
For a hyperedge e, let Se represent the set {f ∈

(
e
2

)
: a ∈ f}, where a is a fixed vertex in e.

Proposition B.1 (Weight Initialization for Overestimates). Suppose H = (V,E,w) is a hypergraph with vertex set V of size
n, edge set E of size m, weight function w : E → R≥0, and OH is a quantum oracle to H . Then, there exists a quantum
algorithm WeightInitialize(OH), that satisfies

WeightInitialize(OH) |e⟩ |f⟩ |0⟩ = |e⟩ |f⟩ |c(1)e,f ⟩

with c(1)e,f = we/(|e|− 1), for ∀e ∈ E and ∀f = {i, j} ∈ Se, and performs no action if f = {i, j} /∈ Se, using O(1) queries

to OH , in Õ(1) time. Here, we represent |f⟩ as |i⟩ |j⟩ for f = {i, j}.

Proof. Consider the following procedure: for any e ∈ E and f ∈ Se, we have

|e⟩ |f⟩ |0⟩ |0⟩ |0⟩ Owt
H ,Osize

H7−−−−−→ |e⟩ |f⟩ |we⟩ ||e|⟩ |0⟩
Ufwd7−−→ |e⟩ |f⟩ |we⟩ ||e| − 1⟩ |0⟩
Udiv7−−→ |e⟩ |f⟩ |we⟩ ||e| − 1⟩ |c(1)e,f ⟩
U†

fwd7−−→ |e⟩ |f⟩ |we⟩ ||e|⟩ |c(1)e,f ⟩
Osize

H
†
,Owt

H
†

7−−−−−−−→ |e⟩ |f⟩ |0⟩ |0⟩ |c(1)e,f ⟩,

where Ufwd satisfies Ufwd |i⟩ = |i− 1⟩, Udiv satisfies Udiv |i⟩ |j⟩ |0⟩ = |i⟩ |j⟩ |i/j⟩. This procedure uses 4 queries to OH and
Õ(1) additional arithmetic operations. Therefore, let WeightInitialize(OH) = Owt

H
†Osize

H

†
U†

fwdUdivUfwdOsize
H Owt

H , we know
it satisfies the requirement stated in the proposition.

Recall the following classical algorithm for efficiently computing the effective resistances of a graph proposed by Spielman
& Srivastava (2011).

Theorem B.2 (Effective Resistance Oracle, Theorem 2 in Spielman & Srivastava (2011)). There exists a (classical)
algorithm ClassicalEffectiveResistance(G, ε) such that for any ε > 0 and graph G = (V, F, c) with vertex set V of size n,
edge set F of size m, and weights c ∈ RF

≥0, with high probability, returns a matrix ZG of size p× n with p = ⌈24 log n/ε2⌉
satisfying

(1− ε)Rab ≤ ∥ZG(δa − δb)∥2 ≤ (1 + ε)Rab

for every pair of a, b ∈ V , where Rab is the effective resistance between a and b, in Õ(m/ε2) time.

12

Quantum Speedup for Hypergraph Sparsification

We require a quantum variant of this effective resistance computation, as outlined below.
Proposition B.3 (Quantum Effective Resistance Oracle, Apers & de Wolf (2020, Claim 7.9)). Let G = (V, F, c) be a graph
with a vertex set V of size n, an edge set F of size m, and weights c :∈ RF

≥0. For ε > 0, there is a quantum data structure
EffectiveResistance, that supports the following operations:

• Initialization: EffectiveResistance(G, ε), outputs an instanceR, in Õ(m/ε2) time.

• Query: R.Query, outputs a unitary satisfying

R.Query |a⟩ |b⟩ |0⟩ = |a⟩ |b⟩ |R̃ab⟩

with (1 − ε)Rab ≤ R̃ab ≤ (1 + ε)Rab for every pair of vertices a, b ∈ V , and Rab being the effective resistance
between vertices a and b, in Õ(1/ε2) time.

Proof. First, we use the algorithm ClassicalEffectiveResistance(G, ε) to obtain the matrix ZG and store each entries of
matrix in QRAM. This allows us to access the matrix through a unitary UZG

such that

UZG
|i⟩ |j⟩ |0⟩ = |i⟩ |j⟩ |ZG(i, j)⟩

where ZG (i, j) is the entry in the i-th row and j-th column of the matrix ZG, i ∈ [n] , j ∈ [q] with q = ⌈24 log n/ε2⌉.
The time of computing and storing ZG is Õ(m/ε2), and each query of UZG

has a time complexity of Õ(1). Consider the
following procedure:

|i⟩ |j⟩ |0⟩ |0⟩ |0⟩
U ′

ZG7−−−→ |i⟩ |j⟩
(q⊗
k=1

|ZG (i, k)⟩
)(q⊗

k=1

|ZG(j, k)⟩
)
|0⟩

denote
= |i⟩ |j⟩ |Zi

G⟩|Z
j
G⟩ |0⟩

Uminus7−−−→ |i⟩ |j⟩ |Zi
G⟩|Z

j
G⟩|Z

i
G − Z

j
G⟩

Usquare7−−−→ |i⟩ |j⟩ |Zi
G⟩|Z

j
G⟩|R̃ij⟩

U ′
ZG

†

7−−−−→ |i⟩ |j⟩ |0⟩|0⟩|R̃ij⟩

where Zi
G is the i-th row of the matrix ZG, and U ′

ZG
can be implemented using O(q) queries of UZG

; Uminus satisfies
Uminus |i⟩ |j⟩ |0⟩ = |i⟩ |j⟩ |i− j⟩, Usquare satisfies Usquare |i⟩ |0⟩ = |i⟩

∣∣i2〉. This procedure uses Õ(1/ε2) queries to UZG
and

Õ(1) additional arithmetic operations. Therefore, letR.Query = U ′
ZG

†
UsquareUminusU

′
ZG

, we confirm that this satisfies the
requirements outlined in the proposition.

The following proposition formalizes the procedure of storing a graph in QRAM, which is made straightforward by the
capabilities of QRAM.
Proposition B.4 (Quantum Underlying Graph Storage). Let H = (V,E,w) is a hypergraph with vertex set V of size n,
edge set E of size m, weights w ∈ RE

≥0. Suppose G = (V, F, c) is a sparse underlying graph G of H . There is a quantum
data structure UGraphStore, that supports the following operations:

• Initialization: UGraphStore(G), outputs an instance G, in Õ(mr) time.

• Query: G.Query, outputs a unitary satisfying

G.Query |e⟩ |f⟩ |0⟩ = |e⟩ |f⟩ |ce,f ⟩

for every edge (e, f) ∈ F , where f = {i, j} ∈ Se, and performs no action if (e, f) /∈ F , in Õ(1) time. Here, we
represent |f⟩ as |i⟩ |j⟩ for f = {i, j}.

Proof. For the graph G with edge set F of size at most m(r− 1), the initialization step is to store all the weights ce,f for the
edges with indices (e, f) ∈ F into an array using a QRAM of size Õ(mr) and in Õ(mr) QRAM classical write operations.

For the query operation, the G.Query is the QRAM quantum query operation to the above array.

13

Quantum Speedup for Hypergraph Sparsification

The following proposition concerns weight updates in the quantum overestimation algorithm.

Proposition B.5 (Weight Computation for Overestimates). Let H = (V,E,w) be a hypergraph with vertex set V of size
n, edge set E of size m, weights ∈ RE

≥0. Suppose OH is a quantum oracle to H , G and R represent the instances of
UGraphStore and EffectiveResistance for the sparse underlying graph G = (V, F, c), respectively. Then, there exists a
quantum algorithm WeightCompute(OH ,G,R), such that

WeightCompute(OH ,G,R) |e⟩ |f⟩ |0⟩ = |e⟩ |f⟩ |c′e,f ⟩

where

c′e,f =
ce,fRf∑

g∈Se
ce,gRg

· we, (7)

and Rf is the query result ofR on vertices of f . The algorithm requires O(1) queries to OH , O(r) queries to bothR and
G, and runs in Õ(r) time.

Proof. Consider the following procedure: for any e ∈ E and f ∈ Se, we have

|e⟩ |f⟩ |0⟩ OH7−−→ |e⟩ |f⟩ |0⟩ (⊗i∈e |i⟩) |0⟩ |we⟩ |0⟩
Ustar7−−→ |e⟩ |f⟩ |0⟩ (⊗g∈Se |g⟩ |0⟩) |we⟩ |0⟩
G.Query7−−−−−→ |e⟩ |f⟩ |ce,f ⟩ |0⟩ (⊗g∈Se

|g⟩ |ce,g⟩ |0⟩) |we⟩ |0⟩
R.Query7−−−−−→ |e⟩ |f⟩ |ce,f ⟩ |Rf ⟩ |0⟩ (⊗g∈Se

|g⟩ |ce,g⟩ |Rg⟩ |0⟩) |we⟩ |0⟩
Umult7−−−→ |e⟩ |f⟩ |ce,f ⟩ |Rf ⟩ |wece,fRf ⟩ (⊗g∈Se

|g⟩ |ce,g⟩ |Rg⟩ |ce,gRg⟩) |we⟩ |0⟩
O†

H ,G.Query†,R.Query†

7−−−−−−−−−−−−−−→ |e⟩ |f⟩ |wece,fRf ⟩ (⊗g∈Se |ce,gRg⟩) |0⟩
Usum7−−→ |e⟩ |f⟩ |wece,fRf ⟩ (⊗g∈Se |ce,gRg⟩) |∆e⟩ |0⟩
Udiv7−−→ |e⟩ |f⟩ |wece,fRf ⟩ (⊗g∈Se

|ce,gRg⟩) |∆e⟩
∣∣c′e,f〉

where ∆e represents the sum
∑

g∈Se
ce,gRg , Ustar satisfies Ustar (⊗i∈e |i⟩) |0⟩ = ⊗g∈Se

|g⟩ |0⟩, and Umult, Usum, Udiv denote
basic arithmetic operations—multiplication, addition, and division, respectively, as previously. It’s clear that this procedure
meets the requirements stated in the proposition, since |Se| = O(r) for ∀e ∈ E.

Proposition B.6 (Preparation for Overestimates). Let T ∈ N, C ∈ R, ε ∈ R, and H = (V,E,w) be a hypergraph
with rank r. Assume OH is a quantum oracle to H . Suppose {G(t) : t ∈ [T]} represents a sequence of instances of
UGraphStore for the sparse underlying graphs G(t) = (V, F (t), c(t)) of H , and {R(t) : t ∈ [T]} represents a sequence
of instances of EffectiveResistance for the corresponding underlying graphs G(t) and ε. Then, there is a quantum data
structure QOverestimate, that supports the following operations:

• Initialization: QOverestimate({G(t) : t ∈ [T]}, {R(t) : t ∈ [T]},OH , C, T), outputs an instance Z in Õ(
∑

t∈[T] τt)

time, where τt denotes the needed time of both UGraphStore(G(t)) and EffectiveResistance(G(t), ε).

• Query: Z.Query, outputs a unitary such that, for every e ∈ E

Z.Query |e⟩ |0⟩ = |e⟩ |ze⟩

with

ze = C · 1
T

∑
t∈[T]

∑
g∈Se

ℓ(t)e,g

where ℓ(t)e,g = c
(t)
e,gR

(t)
g , and Rg

(t) is the query result ofR(t) on vertices of g. This query is executed in Õ(r
∑
ιt) time,

where ιt represents the time required for querying both UGraphStore and EffectiveResistance for G(t).

14

Quantum Speedup for Hypergraph Sparsification

Proof. The case of initialization operation is straightforward. Aside from initializing for UGraphStore and
EffectiveResistance, we store C, T in QRAM in Õ(1) time, allowing access through a unitary UC,T : |i⟩ |0⟩ → |i⟩ |C/T ⟩.
For the query operation, we consider the following procedure:

|e⟩ |0⟩ OH ,Ustar7−−−−−→ |e⟩
(
⊗T

t=1 (⊗g∈Se |g⟩ |0⟩)
)
|0⟩

G(t).Query,R(t).Query7−−−−−−−−−−−−−→ |e⟩
(
⊗T

t=1

(
⊗g∈Se

|g⟩ |c(t)e,g⟩|R(t)
g ⟩|0⟩

))
|0⟩

Umult7−−−→ |e⟩
(
⊗T

t=1

(
⊗g∈Se

|g⟩ |c(t)e,g⟩|R(t)
g ⟩|ℓ(t)e,g⟩

))
|0⟩

Usum7−−→ |e⟩
(
⊗T

t=1

(
⊗g∈Se

|g⟩ |c(t)e,g⟩|R(t)
g ⟩|ℓ(t)e,g⟩

))
|
∑
t

∆(t)
e ⟩ |0⟩

UC,T ,Umult7−−−−−−→ |e⟩
(
⊗T

t=1

(
⊗g∈Se

|g⟩ |c(t)e,g⟩|R(t)
g ⟩|ℓ(t)e,g⟩

))
|
∑
t

∆(t)
e ⟩ |ze⟩

where ∆
(t)
e represents the sum

∑
g∈Se

c
(t)
e,gR

(t)
g , and Uclique, Umult, Usum denote basic arithmetic operations of clique genera-

tion, multiplication, and addition, respectively, as previously. The procedure can be executed in O(r
∑

t∈[T] ιt) time, since
|Se| = O(r) for ∀e ∈ E.

Proposition B.7. Let Z be the output of QHLSO(OH , T, α1, α2) (Algorithm 1). Then, the vector z stored in Z is a
ν-overestimate for H , where ν = (1 + α2)C1n and C1 is determined by α1, α2, r, T , as defined in line 8 of Algorithm 1.

Proof. In the algorithm, G̃(t) is a α1-spectral sparsifier of G(t). Let R(t̃)
f and R(t)

f be the effective resistances of G̃(t)

and G(t) respectively. Since effective resistances correspond to quadratic forms in the pseudo-inverse of the Laplacian,
we have 1

1+α1
R

(t)
f ≤ R

(t̃)
f ≤

1
1−α1

R
(t)
f ,∀f ∈ F . According to Proposition B.3, we know that (1− α2)R

(t̃)
f ≤ R̃

(t)
f ≤

(1 + α2)R
(t̃)
f ,∀f ∈ F . Combining two inequalities we obtain

1− α2

1 + α1
·R(t)

f ≤ R̃
(t)
f ≤

1 + α2

1− α1
·R(t)

f , ∀f ∈ F.

Let α3 := max
{
1 − 1−α2

1+α1
, 1+α2

1−α1
− 1

}
= α1+α2

1−α1
, then R̃

(t)
f is an α3-approximate of R(t)

f for ∀f ∈ F . We define

ℓ̃
(t)
e,f = c̃

(t)
e,f R̃

(t)
f .

We will show that z is a ν-overestimate with corresponding underlying graph G = (V, F, c̄), where c̄ = 1
T

∑
t∈[T] c̃

(t).
Specifically, we need to verify the following two conditions:

1. ∥z∥1 ≤ ν,

2. ze ≥ weRe for all e ∈ E where Re = max{Rf : f ∈
(
e
2

)
}.

We show the first condition first. As ℓ̃(t)e,f = c̃
(t)
e,f R̃

(t)
f ≤ (1 + α2)c̃

(t)
e,fR

(t̃)
f , we have

∥z∥1 =
∑
e∈E

C1
1

T

∑
t∈[T]

∑
g∈Se

ℓ̃(t)e,g = C1 ·
1

T

∑
t∈[T]

∑
e∈E

∑
g∈Se

ℓ̃(t)e,g

 ≤ C1(1 + α2)n

where the final inequality is derived from Lemma A.1.

We now prove that the second condition also holds. For any e ∈ E we fix a ∈ e. Since effective resistance is a metric on
vertices, for any u, v ∈ e, it follows that

Ruv ≤ Rua +Rav.

Consequently, at least one of the two terms on the RHS must be at least Ruv/2. By taking the maximum on both sides, we
obtain

max
u,v∈e

Ruv ≤ 2max
u∈e

Rau

15

Quantum Speedup for Hypergraph Sparsification

Thus, for any e ∈ E, we have

log (weRe(c)) ≤ log (we · 2max{Rf (c) : f ∈ Se})
denote
= log(we · 2Rf⋆(c))

(a)

≤ 1

T

∑
t∈[T]

log
(
2weRf⋆

(
c(t)
))

≤ 1

T

∑
t∈[T]

log
(
2we (1 + α3) R̃

(t)
f⋆

)
=

1

T

∑
t∈[T]

log
(
2 (1 + α3)we · ℓ̃(t)e,f⋆/c̃

(t)
e,f⋆

)
(b)
=

1

T

∑
t∈[T]

(
log

(
c̃
(t+1)
e,f⋆ ·

∑
g∈Se

ℓ̃
(t)
e,g

c̃
(t)
e,f⋆

))
+ log(2(1 + α3))

=
1

T

∑
t∈[T]

log

(
c̃
(t+1)
e,f⋆

c̃
(t)
e,f⋆

)
+ log

∑
g∈Se

ℓ̃(t)e,g

+ log(2(1 + α3))

(c)

≤ 1

T
log

(
c̃
(T+1)
e,f⋆

c̃
(1)
e,f⋆

)
+ log

 1

T

∑
t∈[T]

∑
g∈Se

ℓ̃(t)e,g

+ log(2(1 + α3))

(d)

≤ 1

T
log r + log

 1

T

∑
t∈[T]

∑
g∈Se

ℓ̃(t)e,g

+ log(2(1 + α3))

(e)
= log (ze)

where inequality (a) holds since log (Rf (c)) is convex with respect to c (see Lemma A.2), equality (b) follows from
definition of WeightCompute (Equation (7)), inequality (c) follows from the concavity of log, and inequality (d) arises
from the fact that

c̃
(T+1)
e,f⋆

c̃
(1)
e,f⋆

≤ we

we/(|e| − 1)
≤ r,

the last equality (e) follows directly from the definition of ze in Proposition B.6, with the parameter C selected as in line 8
of Algorithm 1.

Proof of Theorem 3.4. By taking α1 = α2 = 0.1 as constants and T = log r, z becomes a 4n-overestimate according to
Proposition B.7. It remains to analyze the time complexity of the algorithm.

First, we note that the WeightInitialize(OH) procedure runs in Õ(1) time, as established in Proposition B.1. In
each round t ∈ [T], GraphSparsify(UG(t), α1) is executed in Õ(r

√
mnr) time, following Theorem 2.6, where Õ(r)

accounts for the query cost of UG(t). The resulting graph G̃(t) is a α1-spectral sparsifier of G(t), and a crucial
fact is that G̃(t) is sparse and the number of edges in G̃(t) is Õ(n). Hence, we can initialize the data structures
UGraphStore(G̃(t)) and EffectiveResistance(G̃(t), α2) in Õ(n) time, as per Proposition B.3 and Proposition B.4. The
procedure WeightCompute(OH ,R(t),G(t)) provides UG(t+1), with each query taking Õ(r) time according to Proposi-
tion B.5. In the final step of the algorithm, Z can be initialized in Õ(n) time and each Z.Query can be executed in Õ(r)

time, following Proposition B.6 with τt = Õ(n) and ιt = Õ(1).

To summarize, the total preprocessing time is Õ(r
√
mnr), and the per-query time is Õ(r).

C. Proof of Theorem 4.1
The proof of correctness for the algorithm follows closely the chaining proofs in Lee (2023) and Jambulapati et al. (2023).
In particular, we rely on the following crucial technical bound from Lee (2023), which is derived using Talagrand’s generic
chaining method.

16

Quantum Speedup for Hypergraph Sparsification

Lemma C.1 (Corollary 2.13 in Lee (2023)). Let A : Rn → Rs be a linear map, with a1, . . . , as representing the rows of A.
The functions ϕ1, . . . , ϕm : Rs → R are in the form of ϕi(x) = maxj∈Si wi |⟨aj , x⟩| for some Si ⊆ [s] and w ∈ [0, 1]

Si .
Let D = maxi∈[m]|Si|. Then, for any T ⊆ Bn

2 := {x ∈ Rn : ∥x∥2 ≤ 1}, the following inequality holds:

E sup
x∈T

m∑
j=1

ξjϕj(x)
2 ≤ C0 · ∥A∥2→∞

√
log(s+ n) logD · sup

x∈T

 m∑
j=1

ϕj(x)
2

1/2

,

for some universal constant C0. The variables ξ1, . . . , ξm are i.i.d. Bernoulli random variables taking values ±1, and
∥A∥2→∞ is defined by ∥A∥2→∞ := max{∥Ax∥∞ : x ∈ Bn

2 }.

To provide clarity on how this lemma applies, we explain its connection to hypergraphs. Let H = (V,E,w) be a hypergraph
with |E| = m, |V | = n, and weights w ∈ RE

≥0. The rank of the hypergraph is r = maxe∈E |e|. In the lemma, n and m
correspond to the number of vertices and hyperedges, respectively. The functions ϕi capture the maximization over all edges
in the clique generated by replacing each hyperedge, corresponding to the energy of the hyperedges. The number s refers to
the number of edges in the complete graph Kn, i.e., s = n(n− 1)/2. The parameter D represents the maximum number of
edges in the clique generated by replacing each hyperedge, i.e., D = r(r − 1)/2.

Before proving the Theorem 4.1, we present the following fact.
Proposition C.2. Let H = (V,E,w) be a hypergraph with n vertices, and let G = (V, F, c) represent its underlying graph.
For any x ∈ Rn such that x ⊥ 1, the inequality QH(L

+/2
G x) ≥ ∥x∥2 holds.

Proof. For any v ∈ Rn, we have

QH (v) =
∑
e∈E

we max
{i,j}⊆e

(vi − vj)2

=
∑
e∈E

(
∑

{i,j}⊆e

ceij) max
{i,j}⊆e

(vi − vj)2

≥
∑
e∈E

∑
{i,j}⊆e

ceij (vi − vj)
2

= v⊤LGv.

Taking v = L
+/2
G x achieves we desired.

Proof of Theorem 4.1. Utilizing Algorithm 1 we can obtain a query access to ν-overestimate z with ν = 2(1+α2)C1 ·n =

O (n) in Õ(r
√
mnr) time. Each query can be executed in Õ(r) time. Combining with quantum sampling algorithm

(Corollary 2.8), we can sample a subset Ẽ ⊆ E of size M = Õ(n/ε2) in Õ(
√
Mm · r) = Õ(r

√
mn/ε) time. The quantum

sum estimation (Theorem 2.9) is executed in Õ(r
√
m) time, obtaining s̃ as 0.1-approximation of s = ∥z∥1. We then move

on to demonstrate the correctness of the algorithm, showing that the output H̃ is indeed an ε-spectral sparsifier of H .

For a hyperegde e ∈ E, we introduce the following notations

µe = ze/s̃,

aij = L
+/2
G (δi − δj) , ∀ {i, j} ∈ [n] ,

aeij =
√
s̃we/ze · aij , ∀ {i, j} ⊆ e,

ϕe (x) = max
{∣∣〈aeij , x〉∣∣ : ∀ {i, j} ⊆ e} , ∀x ∈ Rn,

ϕ2e (x) = max
{〈
aeij , x

〉2
: ∀ {i, j} ⊆ e

}
, ∀x ∈ Rn,

where Re := max{Rf : f ∈
(
e
2

)
}. Suppose we sample a hyperedge sequence σµ =

(
e
(1)
µ , . . . , e

(M)
µ

)
such that each

element e is sampled with probability proportional to µe (also proportional to ze). For the new obtained hypergraph Hµ, the
weight of sampled hyperedge is

wµ
e =

#
{
t ∈ [M] : e

(t)
µ = e

}
M

· we

µe
, ∀e ∈ E.

17

Quantum Speedup for Hypergraph Sparsification

Recall the definition that Qe(x) = max{u,v}⊆e(xu − xv)2, the energy of sampled hypergraph Hµ is given by

QHµ
=

1

M

M∑
t=1

w
e
(t)
µ

µ
e
(t)
µ

Q
e
(t)
µ

(x) .

We want to choose sample time M sufficiently large such that

E
Hµ

[∣∣QH (x)−QHµ
(x)
∣∣] ≤ ε ·QH (x) , ∀x ∈ Rn. (8)

Equivalently, it suffices to show that
E
Hµ

max
v:QH(v)≤1

∣∣QH (v)−QHµ
(v)
∣∣ ≤ ε.

It is worth noting that for ∀x ∈ Rn,

we

µe
Qe

(
L+/2x

)
=
we

ze
· s̃ max

{i,j}⊆e

〈
L+/2x, δi − δj

〉2
= max

{i,j}⊆e

〈
x, aeij

〉2
= ϕ2e (x) .

Then we have
QHµ

(
L+/2x

)
=

1

M

∑
j∈[M]

ϕ2j (x) (9)

where ϕj (x) corresponds to the j-th sampled hyperedge using µ. Let H ′
µ be an independent copy of Hµ, and ξt, t ∈ [M] be

the i.i.d. Bernoulli ±1 random variables. Note that EHµ

[
QHµ

(x)
]
= s̃

sQH (x) and s̃/s ∈ [0.9, 1.1]. By convexity of the
absolute value function, for any x ∈ T :=

{
x ∈ Rn : QH

(
L+/2x

)
≤ 1
}

, we have

E
Hµ

max
x∈T

∣∣∣QH

(
L+/2x

)
−QHµ

(
L+/2x

)∣∣∣
concavity
≤ E

H′
µ

E
Hµ

max
x∈T

∣∣∣s
s̃
QH′

µ

(
L+/2x

)
−QHµ

(
L+/2x

)∣∣∣
≤ s

s̃
· E
H′

µ

E
Hµ

max
x∈T

∣∣∣QH′
µ

(
L+/2x

)
−QHµ

(
L+/2x

)∣∣∣+ (s
s̃
− 1
)
E
Hµ

max
x∈T

∣∣∣QHµ

(
L+/2x

)∣∣∣
Equation (9)

=
s

s̃
· E
H′

µ

E
Hµ

max
x∈T

∣∣∣∣∣∣ 1M
∑
t∈[M]

ϕ2
e
(t)
µ

(x)− ϕ2
e
(t)
µ

′ (x)

∣∣∣∣∣∣+
(s
s̃
− 1
)
E
Hµ

max
x∈T

∣∣∣∣∣∣ 1M
∑
t∈[M]

ϕ2
e
(t)
µ

(x)

∣∣∣∣∣∣
=
s

s̃
· E
ξ
E
H′

µ

E
Hµ

max
x∈T

∣∣∣∣∣∣ 1M
∑
t∈[M]

ξt

(
ϕ2
e
(t)
µ

(x)− ϕ2
e
(t)
µ

′ (x)
)∣∣∣∣∣∣+

(s
s̃
− 1
)
E
ξ
E
Hµ

max
x∈T

∣∣∣∣∣∣ 1M
∑
t∈[M]

ξtϕ
2

e
(t)
µ

(x)

∣∣∣∣∣∣
≤ 2s

s̃
· E
ξ
E
Hµ

max
x∈T

∣∣∣∣∣∣ 1M
∑
t∈[M]

ξtϕ
2

e
(t)
µ

(x)

∣∣∣∣∣∣+
(s
s̃
− 1
)
E
ξ
E
Hµ

max
x∈T

∣∣∣∣∣∣ 1M
∑
t∈[M]

ξtϕ
2

e
(t)
µ

(x)

∣∣∣∣∣∣
=

(
3s

s̃
− 1

)
· E
ξ
E
Hµ

max
x∈T

∣∣∣∣∣∣ 1M
∑
t∈[M]

ξtϕ
2

e
(t)
µ

(x)

∣∣∣∣∣∣ .
Note that for any function f , the inequality maxx∈T |f(x)| ≤ max{maxx∈T f(x), 0}+max{maxx∈T −f(x), 0} holds.
Now, let f(x) = 1

M

∑
t∈[M] ξtϕ

2

e
(t)
µ

(x). The second term 0 in max{·, 0}, can be attained by the first term, since

limv→1QH(v) = 0, combined with the identity Equation (9). Consequently, we have

E
Hµ

max
x∈T

∣∣∣QH

(
L+/2x

)
−QHµ

(
L+/2x

)∣∣∣
≤
(
3s

s̃
− 1

)
·
(
E
ξ
E
Hµ

max
x∈T

f(x) + E
ξ
E
Hµ

max
x∈T
−f(x)

)
= 2

(
3s

s̃
− 1

)
· E
ξ
E
Hµ

max
x∈T

1

M

∑
t∈[M]

ξtϕ
2

e
(t)
µ

(x).

(10)

18

Quantum Speedup for Hypergraph Sparsification

The last equality holds because ξt, t ∈ [T] are i.i.d. Bernoulli ±1 random variables.

Consider the random process Vx = 1
M

∑
j∈[M] ξjϕ

2
j (x), where ϕj (x) corresponds to the j-th sampled hyperedge using µ,

x ∈ T . By applying Lemma C.1 with the linear map A : Rn → Rn(n−1)/2 defined as

(Ax)ij := max
e∈E:{i,j}∈(e2)

∥aeij∥ · ⟨x, aij/∥aij∥⟩ ,

and using Proposition C.2 to ensure that T ⊆ Bn
2 , as required by Lemma C.1, we obtain:

E
ξ
sup
x∈T

Vx ≤ C0 ·
∥A∥2→∞ ·

√
log (n(n− 1)/2 + n) log (r(r − 1)/2)√

M
max
x∈T

 1

M

∑
j∈[M]

ϕ2j (x)

1/2

≤ 2C0 ·
∥A∥2→∞ ·

√
log n log r√

M
max
x∈T

 1

M

∑
j∈[M]

ϕ2j (x)

1/2
(11)

where

∥A∥2→∞ = max{∥Ax∥∞ : x ∈ Bn
2 } = max

e∈E
max

{i,j}⊆e

∥∥aeij∥∥
= max

e∈E
max

{i,j}⊆e

√
s̃we

ze
·Rij =

√
s̃ ·max

e∈E
max

{i,j}⊆e

√
weRij

ze

≤
√
s̃.

Observe that the component in RHS of Equation (11) can be written as

max
x∈T

1

M

∑
j∈[M]

ϕ2j (x) = max
v:QH(v)≤1

1

M

∑
j∈[M]

ϕ2j

(
L+/2v

)
= max

v:QH(v)≤1
QHµ (v) .

The first equality holds because QH(x) = QH(x′) whenever x− x′ ∈ ker(LG). Then we have

τ := E
Hµ

max
v:QH(v)≤1

∣∣QH (v)−QHµ
(v)
∣∣ = E

Hµ

max
x∈T

∣∣∣QH

(
L+/2x

)
−QHµ

(
L+/2x

)∣∣∣
Equation (10)
≤

(
6s

s̃
− 2

)
· E
ε
E
Hµ

max
x∈T

1

M

∑
t∈[M]

εtϕ
2

e
(t)
µ

(x)

Equation (11)
≤ 4

(
3s

s̃
− 1

)
· C0 ·

√
s̃ log n log r/M · E

Hµ

(
max

v:QH(v)≤1
QHµ

(v)

)1/2

concavity
≤ 4

(
3s

s̃
− 1

)
· C0 ·

√
s̃ log n log r/M ·

(
E
Hµ

max
v:QH(v)≤1

QHµ (v)

)1/2

≤ 4

(
3s

s̃
− 1

)
· C0 ·

√
s̃ log n log r/M · (1 + τ)

1/2

≤ 4

(
3s

s̃
− 1

)
· C0 ·

√
s̃ log n log r/M ·

(
1 +

1

2
τ

)
≤ 10C0 ·

√
s̃ log n log r/M ·

(
1 +

1

2
τ

)
.

Therefore, we have τ ≤ 20C0

√
s̃ log n log r/M whenever M ≥ 100C2

0 s̃ log n log r. Choosing M :=
400C2

0 s̃log n log r/ε
2 = Θ(n log n log r/ε2) yields

E
Hµ

max
v:QH(v)≤1

∣∣QH (v)−QHµ
(v)
∣∣ = τ ≤ ε.

19

