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ABSTRACT

The success of state-of-the-art deep neural networks heavily relies on the presence
of large-scale labelled datasets, which are extremely expensive and time-consuming
to annotate. This paper focuses on tackling semi-supervised part segmentation
tasks by generating high-quality images with a pre-trained GAN and labelling the
generated images with an automatic annotator. In particular, we formulate the
annotator learning as a learning-to-learn problem. Given a pre-trained GAN, the
annotator learns to label object parts in a set of randomly generated images such that
a part segmentation model trained on these synthetic images with their predicted
labels obtains low segmentation error on a small validation set of manually labelled
images. We further reduce this nested-loop optimization problem to a simple
gradient matching problem and efficiently solve it with an iterative algorithm.
We show that our method can learn annotators from a broad range of labelled
images including real images, generated images, and even analytically rendered
images. Our method is evaluated with semi-supervised part segmentation tasks and
significantly outperforms other semi-supervised competitors when the amount of
labelled examples is extremely limited.

1 INTRODUCTION

In recent years, deep neural networks have shown a remarkable ability to learn complex visual
concepts from large quantities of labelled data. However, collecting manual annotations for a growing
body of visual concepts remains a costly practice, especially for pixel-wise prediction tasks such as
semantic segmentation. A common and effective way of reducing the dependence on manual labels
is first learning representations from unlabeled data (Pathak et al., 2016; Noroozi & Favaro, 2016;
Gidaris et al., 2018; He et al., 2020) and then transferring learned representations to a supervised
learning task (Chen et al., 2020; Zhai et al., 2019). The insight of this paradigm is that some of
the transferred representations are informative, easily identified, and disentangled, such that a small
amount of labelled data suffices to train the target task.

A promising direction for learning such representations is using generative models (Kingma &
Welling, 2014; Goodfellow et al., 2014) since they attain the capability of synthesizing photorealistic
images and disentangling factors of variation in the dataset. Recent methods (Goetschalckx et al.,
2019; Shen et al., 2020; Karras et al., 2019; Plumerault et al., 2020; Jahanian et al., 2020; Voynov
& Babenko, 2020; Spingarn-Eliezer et al., 2021; Härkönen et al., 2020) show that certain factors
such as object shape and position in the images synthesized by generative adversarial networks
(GANs) (Goodfellow et al., 2014) can be individually controlled by manipulating latent features.
Building on the success of powerful GAN models, Zhang et al. (2021) and Tritrong et al. (2021)
demonstrate that feature maps in StyleGAN (Karras et al., 2019; 2020b;a) can be mapped to semantic
segmentation masks or keypoint heatmaps through a shallow decoder, denoted as annotator in this
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paper. Remarkably, the annotator can be trained after a few synthesized images are manually labelled,
and the joint generator and trained annotator can be used as an infinite labelled data generator.
Nonetheless, labelling synthesized images with “human in the loop” has two shortcomings: (i) it
can be difficult to label the generated images of low quality; (ii) it requires continual human effort
whenever the generator is changed.

One straightforward way to mitigate these limitations is to inverse the generation process to obtain
generator features for given images. In this way, annotator, which only receives generator features as
input, can be trained from existing labelled data, not necessarily generated data. However, inversion
methods can not ensure exact recovery of the generator features, leading to degraded performance
of annotator (see Section C.1). Another way to address this issue is to align the joint distribution of
generated images and labels with that of real ones using adversarial learning as in SemanticGAN (Li
et al., 2021). However, adversarial learning is notoriously unstable (Brock et al., 2018) and requires a
large amount of data to prevent discriminators from overfitting (Karras et al., 2020a).

In this paper, we formulate the annotator learning as a learning-to-learn problem – the annotator learns
to label a set of randomly generated images such that a segmentation network trained on these auto-
matically labelled images obtains low prediction error on a small validation set of manually labelled
images. This problem involves solving a nested-loop optimization, where the inner loop optimizes the
segmentation network and the outer loop optimizes the annotator based on the solution of inner-loop
optimization. Instead of directly using end-to-end gradient-based meta-learning techniques (Li et al.,
2019; Pham et al., 2021), we reduce this complex and expensive optimization problem into a simple
gradient matching problem and efficiently solve it with an iterative algorithm. We show that our
method obtains performance comparable to the supervised learning counterparts (Zhang et al., 2021;
Tritrong et al., 2021) yet overcomes their shortcomings such that training annotators can utilize
labelled data within a broader range, including real data, synthetic data, and even out-of-domain data.

Our method requires a large quantity of unlabeled data for pre-training GANs and a relatively small
amount of labelled data for training annotators, which drops into a semi-supervised learning setting.
Our method relies on unconditional GANs, of which the performance limit the application of our
approach. As the state-of-the-art GANs only produce appealing results on single-class images but
struggle to model complex scenes, we focus on part segmentation of particular classes and avoid
multi-object scenes.

Our contribution can be summarized as follows. (i) We formulate the learning of annotations for
GAN-generated images as a learning-to-learn problem and propose an algorithm based on gradient
matching to solve it. Consequently, a broad range of labelled data, including real data, synthetic data,
and even out-of-domain data, is applicable. (ii) We empirically show that our method significantly
outperforms other semi-supervised segmentation methods in the few-label regime.1

2 RELATED WORK

Semi-supervised learning Semi-supervised learning (SSL) (Zhu, 2005) augments the training of
neural networks from a small amount of labelled data with a large-scale unlabeled dataset. A rich
body of work regularizes networks on unlabeled data with consistency regularization. In particular,
networks are required to make consistent predictions over previous training iterations (Laine &
Aila, 2017; Tarvainen & Valpola, 2017; Izmailov et al., 2018), noisy inputs (Miyato et al., 2018), or
augmented inputs (Berthelot et al., 2019b;a; Sohn et al., 2020). This paradigm is also interpreted as
a teacher-and-student framework where the teacher produces pseudo labels for unlabelled data to
supervise the training of students. Pseudo labels can be enhanced with heuristics (Lee et al., 2013;
Berthelot et al., 2019a) or optimized towards better generalization (Pham et al., 2021; Li et al., 2019).
Apart from image classification tasks, the above ideas are also successfully applied to semantic
segmentation tasks (Hung et al., 2018; Ouali et al., 2020; Ke et al., 2020; French et al., 2020). Our
work can also be interpreted from a teacher-and-student perspective. In contrast to the above methods
that adopt homogeneous network structures for teacher and student, our work employs generative
models as a teacher and discriminative models as a student.

Other SSL approaches explore the utility of unlabelled data from a representation learning perspective.
In particular, deep neural networks are first optimized on the unlabeled data with self-supervised

1Code is available at https://github.com/yangyu12/lagm.
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learning tasks (Pathak et al., 2016; Noroozi & Favaro, 2016; Gidaris et al., 2018; He et al., 2020)
to gain powerful and versatile representations, and then finetuned on the labelled data to perform
target tasks (Chen et al., 2020; Zhai et al., 2019). In addition, generative models can also learn
efficient and transferable representations without labels. To this end, one promising direction is to
decode generative features into dense annotations such as segmentation masks and keypoint heatmap
to facilitate SSL, as done in SemanticGAN (Li et al., 2021), DatasetGAN (Zhang et al., 2021),
RepurposeGAN (Tritrong et al., 2021) and our work. However, our work differs from these works in
that we formulate the annotator learning as a learning-to-learn problem that is solved with gradient
matching. Particularly, unlike SemanticGAN (Li et al., 2021) that learns annotator and data generator
jointly, our method presumes a fixed pre-trained GAN and learns annotator only, which circumvents
the complication of joint learning.

Semantic Part Segmentation Semantic part segmentation, which decomposes rigid or non-rigid
objects into several parts, is of great significance in tremendous computer-vision tasks such as human
parsing (Dong et al., 2014; Nie et al., 2018; Fang et al., 2018; Gong et al., 2017), pose estimation (Yang
& Ramanan, 2011; Shotton et al., 2011; Xia et al., 2017) and 3D object understanding (Yi et al., 2016;
Song et al., 2017). The challenge of part segmentation arises from viewpoint changes, occlusion,
and a lack of clear boundaries for certain parts. Existing datasets manage to alleviate the problem
by enriching the data and annotations. CelebAMask-HQ (Lee et al., 2020a) is a large-scale face
image dataset annotated with masks of face components. Chen et al. (2014) provides additional
part segmentation upon PASCAL VOC dataset (Everingham et al., 2010). Those datasets meet
the demands of latest data-driven and deep neural network based method (Lee et al., 2020b; Wang
et al., 2015; Wang & Yuille, 2015). However, a well-curated part segmentation dataset containing
fine-grained pixel-wise annotation usually requires time-consuming manual labelling work, which
holds back the development of this field. This problem also motivates the latest work (Zhang et al.,
2021; Li et al., 2021; Tritrong et al., 2021) to leverage a generative model as an infinite data generator
in a semi-supervised learning setting, which gains promising results.

Gradient matching Gradient matching is an important technique in meta learning (Li et al., 2018;
Sariyildiz & Cinbis, 2019), which is shown to be effective in domain generalization (Li et al., 2018),
zero-shot classification (Sariyildiz & Cinbis, 2019), and dataset condensation (Zhao et al., 2021;
Zhao & Bilen, 2021) etc. Although our work’s general principle and gradient matching loss function
resemble those in the above works, we are motivated to solve a different problem. In particular,
Gradient Matching Network (GMN) (Sariyildiz & Cinbis, 2019) employs gradient matching to train
a conditional generative model towards application on zero-shot classification. Dataset Condensation
(DC) (Zhao et al., 2021; Zhao & Bilen, 2021) condenses a large-scale dataset into a small synthetic
one with gradient matching. Our work shows that gradient matching is also an effective way to learn
annotations of GAN-generated images from limited labelled examples. Moreover, in contrast to DC,
where the synthesized images are typically not realistic, our work is concerned about photo-realistic
synthetic images.

3 METHOD

3.1 PRELIMINARY

Let G denote a generative model trained from a dataset Dtot without labels. G can be trained via
adversarial learning (Goodfellow et al., 2014) such that it can generate photo-realistic images. The
generation process is formulated as

(h,x) = G(z), z ∼ Pz (1)

where z denotes a random variable drawn from a prior distribution Pz which is typically a normal
distribution, x denotes the generated image, and h represents the hidden features in G. An annotator
Aω is constructed to decode h into labels

ŷ = Aω(h), (2)

where ω parameterizes the annotator. Let Dl denote a manually labeled dataset. Given a fixed G, our
problem is to learn annotator Aω from Dl such that Aω can annotate images generated from G.
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Gradient Matching

Figure 1: Illustration of learning to annotate with gradient matching. The procedure is as follows. (i)
The gradients of segmentation network Sθ on labeled examples are computed, denoted as ∇θLl(θ).
(ii) A batch of synthetic data is randomly generated by generator G and labeled by annotator Aω . (iii)
The gradients of Sθ on synthetic data are computed, denoted as ∇θLg(θ, ω). (iv) Gradient matching
between ∇θLl(θ) and ∇θLg(θ, ω) is computed to optimize Aω .

Revisiting supervised annotator learning DatasetGAN (Zhang et al., 2021) and Repur-
poseGAN (Tritrong et al., 2021) train annotators in a supervised learning manner. First, a set
of synthetic images {xi}Ni=1 generated from G are selected and annotated by humans and their
generator features {hi}Ni=1 are reserved. These features and manual labels {yi}Ni=1 constitute the
labeled dataset Dl = {(xi,hi,yi)}Ni=1. Second, an annotator is trained by minimizing the loss
computed between annotator prediction and ground truth labels,

ω = argmin
ω

E(·,h,y)∼Dlf(Aω(h),y), (3)

where f denotes per-pixel cross-entropy function for segmentation tasks. This method, however,
requires Dl to be a synthetic and generator-specific set, which has the following two defects. (i)
Details might be illegible in synthetic images, which increases the difficulty of annotation. (ii) Data
needs to be re-labelled whenever the generator is changed. Although projecting labelled images into
GAN latent space can alleviate the above drawbacks, it leads to degraded performance due to inexact
inversion (see Section C.1 in the appendix).

3.2 LEARNING TO ANNOTATE WITH GRADIENT MATCHING

Learning to learn We formulate the problem of learning Aω as a learning-to-learn problem like Li
et al. (2019); Pham et al. (2021). In particular, we introduce a segmentation network Sθ, a deep neural
network parameterized with θ. It takes as input an image and outputs a segmentation mask. This
segmentation network learns the target task only from the automatically labeled generated images,
which is formulated as

θ∗(ω) = argmin
θ

E(h,x)=G(z),z∼Pzf(Sθ(x), Aω(h))︸ ︷︷ ︸
Lg(θ,ω)

. (4)

where f denotes the loss function for the target task. The optimal solution of Equation 4 depends on
the ω, which is therefore denoted as θ∗(ω). The performance of learned segmentation network can
be evaluated with loss on the labeled dataset Dl as

Ll(θ∗(ω)) = E(x,y)∈Dlf(Sθ∗(ω)(x),y). (5)
The aim of learning the annotator is to produce high-quality labels such that the learned segmentation
network achieve minimal loss on Dl, which is formulated as

min
ω

Ll(θ∗(ω)),
where θ∗(ω) = argmin

θ
Lg(θ, ω). (6)

This problem is a nested-loop optimization problem, where the inner loop optimizes the segmentation
network (Equation 4) and the outer loop optimizes the annotator based on the solution of the inner
loop. This optimization problem does not require manual labelling of generated images. To this
end, any labelled images, including real labelled images, can serve as Dl. While this problem can
be solved with MAML-like (Finn et al., 2017) approaches (Li et al., 2019; Pham et al., 2021), its
solution involves expensive unrolling of the computational graph over multiple θ states, which is
memory and computation intensive. Hence, we reduce it into a simple gradient matching problem as
follows. See Section C.1 in the appendix for further comparison and discussion.
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Gradient matching Inspired by Li et al. (2018), we reduce the nested-loop optimization problem
(Equation 6) into a gradient matching problem. First, as commonly done in gradient-based meta
learning approaches, the optimization of segmentation network (Equation 4) is approximated with
one-step gradient descent,

θ∗(ω) ≈ θ0 − η∇θLg(θ0, ω), (7)
where η denotes the learning rate and θ0 denotes the initialized parameter. By plugging this equation
into Ll(θ∗(ω)), unfolding it as Taylor series and omitting the higher order term, we have

Ll(θ∗(ω)) ≈ Ll(θ0 − η∇θLg(θ0, ω))
= Ll(θ0)− η∇>θ Ll(θ0)∇θLg(θ0, ω) + . . .

≈ Ll(θ0)− η∇>θ Ll(θ0)∇θLg(θ0, ω)
(8)

The last approximation is conditioned on ‖η∇θLg(θ0, ω)‖ ≤ ε, where ε is a very small amount. By
further omitting the constant term Ll(θ0) in Equation 8, we obtain the approximation of Equation 6
as

min
ω
−∇>θ Ll(θ0)∇θLg(θ0, ω) s.t. ‖η∇θLg(θ0, ω)‖ ≤ ε. (9)

We notice a connection between this constrained optimization problem with the following uncon-
strained optimization problem

min
ω
−∇

>
θ Ll(θ0)∇θLg(θ0, ω)
‖η∇θLg(θ0, ω)‖

, (10)

where to minimize this objective, one needs to simultaneously maximize the dot product between the
gradients and minimize the norm of∇θLg(θ0, ω). Note that−∇

>
θ Ll(θ0)∇θLg(θ0,ω)
‖η∇θLg(θ0,ω)‖ = ‖∇θLl(θ0)‖

η (1−
∇>θ Ll(θ0)∇θLg(θ0,ω)
‖∇θLl(θ0)‖‖∇θLg(θ0,ω)‖ )−

‖∇θLl(θ0)‖
η , and the constant term and constant coefficient can be omitted

without changing the optimal solution. We re-write the learning objective of Equation 10 as

Lgm(θ0, ω) = D(∇θLl(θ0),∇θLg(θ0, ω)) = 1− ∇>θ Ll(θ0)∇θLg(θ0, ω)
‖∇θLl(θ0)‖‖∇θLg(θ0, ω)‖

, (11)

which computes the cosine distance between the gradients of segmentation network on automatically
labeled generated data and manually labeled data (see Section B in appendix for dealing with gradient
matching in multi-layer neural networks). To this end, the nested-loop optimization (Equation 6) is
reduced into a simple one that minimizes the gradient matching loss (Equation 11). An illustration of
this procedure is presented in Figure 1.

Algorithm Note that the gradient matching problem learns an annotator for a particular network
parameterized with θ0. However, a desirable annotator should produce universal automatic labels for
training any segmentation network with previously unseen parameters. Hence, we present an alternate
training algorithm of annotator and segmentation network in Algorithm 1, where the segmentation
network is iteratively updated using the automatically labelled synthetic data, and the annotator is
iteratively updated with gradient matching. This algorithm allows the annotator to be optimized over
various segmentation network states, leading to a segmentation-network-agnostic annotator. The
gradient matching problem for each segmentation network parameter is solved with K-step gradient
descent, and typically K = 1 works well in practice. Implementation details are available in the
appendix (see Section B).

4 EXPERIMENTS

4.1 SETUP

Datasets We evaluate our method on six part segmentation datasets: CelebA, Pascal-Horse, Pascal-
Aeroplane, Car-20, Cat-16, and Face-34. CelebA (Liu et al., 2015) is a large-scale human face
dataset where 30,000 images are annotated with up to 19 part classes, also known as CelebAMask-
HQ (Lee et al., 2020a). We consider a subset of 8 face classes and use the first 28,000 images as
an unlabeled set, the last 500 images as a test set, and the rest 1500 images as a labelled set, as in
Li et al. (2021). Pascal-Horse and Pascal-Aeroplane are constructed by taking images of horse and
aeroplane from PascalPart (Chen et al., 2014) which provides detailed part segmentation annotations
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Algorithm 1: Learning to annotate with gradient matching.
Inputs :
G trained generator
Dl set of labeled examples
ω, Aω , ηa initial annotator parameters, annotator, and learning rate for annotator
θ, Sθ , ηs initial segmentor parameters, segmentor, and learning rate for segmentor
T , K, and B total number of optimization steps, interval of updating segmentor, and batch size

1 for t← 1 to T do
// update annotator Aω

2 Bl ← {(xi,yi) ∼ Dl}Bi=1 // sample a batch of labeled examples

3 ∇θLl ← 1
B

∑B
i=1∇θf(Sθ(xi),yi) // compute gradients on Bl

4 Bg ← {(xj , Aω(hj))}Bj=1 // sample a batch of synthetic data

5 ∇θLg ← 1
B

∑B
j=1∇θf(Sθ(xj), Aω(hj)) // compute gradients on Bg

6 Lgm ← D(∇θLg,∇θLl) // compute gradient matching loss
7 ω ← ω − ηa∇ωLgm // update annotator parameters

// update segmentor Sθ
8 if t mod K = 0 then
9 Bg ← {(xj , Aω(hj))}Bj=1 // sample a batch of synthetic data

10 Lg ← 1
B

∑B
j=1 f(Sθ(xj), Aω(hj)) // compute loss on synthetic data

11 θ ← θ − ηs∇θLg // update segmentor parameters
12 end
13 end

Output :annotator Aω and segmentor Sθ

for images from Pascal VOC 2010 (Everingham et al.). The selected images are cropped according to
bounding box annotations. Full process details are available in the appendix. We finally obtain 180
training images, 34 validation images, and 225 test images to constitute Pascal-Horse, 180 training
images, 78 validation images, and 269 test images to constitute Pascal-Aeroplane. In Pascal-Horse
and Pascal-Aeroplane, additional images from LSUN (Yu et al., 2015) are utilized as an unlabeled set.
Car-20, Cat-16, and Face-34, released by Zhang et al. (2021), are three part-segmentation datasets
annotated with 20, 16, and 34 part classes for car, cat, and human face, respectively. We use the same
datasets to make a fair comparison to DatasetGAN (Zhang et al., 2021). In these datasets, all the
training images are images generated from pre-trained StyleGAN (Karras et al., 2019) while all the
test images are real images. Car-20 contains 16 training images and 10 test images; Cat-16 contains
30 training images and 20 test images; Face-34 contains 16 training images and 20 test images.

Pre-trained generators We use models of StyleGAN family (Karras et al., 2019; 2020b;a) that are
either trained by ourselves or publicly available. Details are provided in the appendix (see Section B).

Evaluation We use mean intersection over union (mIoU) to evaluate the performance of segmenta-
tion networks. On CelebA, Pascal-Horse, and Pascal-Aeroplane, we use the validation set to select
checkpoints and report mIoU across all foreground classes, denoted as “FG-mIoU”, on the test set.
On Car-20, Cat-16 and Face-34, we follow the setting of DatasetGAN (Zhang et al., 2021) and report
the cross-validation mIoU across all classes, including background on the test set.

4.2 SEMI-SUPERVISED PART SEGMENTATION

Since our method has a mild requirement for the labelled data, in this section, we show the effec-
tiveness of our method under three different circumstances: real images as labelled data, synthetic
images as labelled data, and out-of-domain images as labelled data.

Real images as labeled data Following SemanticGAN (Li et al., 2021), our methods are compared
against SSL methods that have codes available2, including Mean Teacher (MT) (Tarvainen & Valpola,

2We adopt the implementation in https://github.com/ZHKKKe/PixelSSL. For these SSL meth-
ods, the real unlabeled images are used as unlabeled set.
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Figure 2: Benchmark on CelebA (Left), Pascal-Horse (Middle), and Pascal-Aeroplane (Right). The
y-axes are FG-mIoU (%) on test set.

Methods G S
Cat-16

# annotations: 30
# classes: 16

Face-34
# annotations: 16

# classes: 16

Car-20
# annotations: 16

# classes: 20

TL† - DeepLabv3 21.58 ± 0.61 45.77 ± 1.51 33.91 ± 0.57
SSL (Mittal et al., 2019)† - DeepLabv3 24.85 ± 0.35 48.17 ± 0.66 44.51 ± 0.94
DatasetGAN
(Zhang et al., 2021)

StyleGAN DeepLabv3‡ 32.63 ± 0.68 54.55 ± 0.25 67.53 ± 2.58
StyleGAN U-Net] 31.36 ± 0.76 53.84 ± 0.41 66.27 ± 2.75

Ours

StyleGAN DeepLabv3 33.89 ± 0.43 52.58 ± 0.61 63.55 ± 2.25
StyleGAN U-Net 32.64 ± 0.74 53.69 ± 0.54 60.45 ± 2.42

StyleGAN2 DeepLabv3 33.56 ± 0.17 55.10 ± 0.39 61.21 ± 2.07
StyleGAN2 U-Net 31.90 ± 0.75 53.58 ± 0.45 58.30 ± 2.64

Our downstream segmentation performance
Cat-16 Face-34 Car-20

Source \ Downstream DeepLabv3 U-Net DeepLabv3 U-Net DeepLabv3 U-Net
DeepLab 33.38 ± 0.66 33.39 ± 0.74 55.11 ± 0.63 54.77 ± 0.32 63.47 ± 2.33 62.72 ± 2.89
U-Net 33.38 ± 0.40 32.42 ± 0.62 54.05 ± 0.40 53.80 ± 1.06 63.22 ± 2.42 62.25 ± 2.77

Table 1: Comparisons to DatasetGAN on Car-20, Cat-16, Face-34. The performance is evaluated
with mIoU(%). TL: transfer learning. SSL: semi-supervised learning. †: Results taken from Zhang
et al. (2021). ‡: Up-to-date performance from DatasetGAN github repository. ]: Results obtained by
ourselves using DatasetGAN source codes.

2017; Li et al., 2020), Guided Collaborative Training (GCT) (Ke et al., 2020), an adversarial-
learning-based semi-supervised segmentation method (AdvSSL) (Hung et al., 2018), as well as
SemanticGAN (Li et al., 2021). We benchmark performances on CelebA, Pascal-Horse, and Pascal-
Aeroplane with respect to a different amount of labelled data and present the results in Figure 2.
Qualitative results are available in the appendix (see Figure D.7, D.8, D.9). Our method significantly
outperforms other SSL methods when labelled data is extremely limited. When the number of labelled
images decreases, the performance of our method drops mildly while the performances of other
methods decrease drastically. We attribute it to our utilization of the highly interpretable generator
features. Notably, SemanticGAN (Li et al., 2021) also exploits the generative features to produce
segmentation masks, but its performance degrades faster than our methods as the number of labelled
images decreases. We conjecture it is due to that the adversarial learning employed by SemanticGAN
typically requires sufficient data to prevent discriminators from overfitting. The edges of our method
become marginal under the case of a large number of labels. One possible reason is that the quality
of pre-trained GAN needs to be further improved, which requires more research in the future. (see
Section C.5 for more discussion)

Synthetic images as labeled data We comprehensively compare our method to a supervised
learning counterpart, DatasetGAN (Zhang et al., 2021) on Car-20, Cat-16, and Face-34. We follow
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(a) Out-of-domain labeled examples (b) Generated images with learned annotations

Figure 3: Cross-domain annotator learning demo. (a) Out-of-domain labelled examples: car
images and ground truth segmentations rendered from 3D CAD model. (b) Generated images with
learned annotations: our method learns a reasonable annotator for GAN generated images.

the same setting as in DatasetGAN, using precisely the same synthetic images as training data.
Quantitative results are presented in Table 1 and qualitative comparison is available in the appendix
(see Figure D.12, D.11, D.10). First, our method achieves the same performance level with Dataset-
GAN on Face-34 and Cat-16. Second, as a merit of our method, we can upgrade the generator to
StyleGAN2 (Karras et al., 2020b;a) without requiring extra human effort. However, upgrading the
generator brings modest improvement on Face-34 and Cat-16 and even a bit decrease on Car-20.
This result suggests that synthesis quality measured by metrics like FID can not precisely depict the
disentanglement of generator features. Finally, our method could adapt to different segmentation
architectures such as DeepLabv3 (Chen et al., 2017) and U-Net (Ronneberger et al., 2015).

We further use our trained annotator to generate synthetic segmentation datasets for training down-
stream segmentation networks. Table 1 shows the results when we use different source networks for
training annotators with gradient matching and different downstream networks. First, our learned
synthetic datasets can be used to train downstream segmentation networks of different architec-
ture that achieve good performances. This result indicates that our learned synthetic dataset is not
architecture-specific. Second, DeepLabv3 as a source network generally leads to higher performances
than U-Net, suggesting that the segmentation networks used for gradient matching affect annotator
learning in our method.

Out-of-domain images as labeled data We further consider a challenge where out-of-domain
images constitute labelled data. In particular, we render a set of car images from annotated 3D CAD
models provided by CGPart3 (Liu et al., 2021) using graphic tools (e.g. blender). Since 3D models
are annotated with parts, the ground truth part segmentation of these rendered images are available
via 3D projection. These rendered images vary in viewpoints and textures and have a significant
domain gap compared to realistic car images due to inexact 3D models, unrealistic textures, artificial
lighting etc., raising challenges for learning annotators. Despite so, as presented in Figure 3, our
method still learns reasonable annotators that produce quality segmentation labels for GAN generated
images. It is noteworthy that it is nearly impossible for DatasetGAN (Zhang et al., 2021) and
RepurposeGAN (Tritrong et al., 2021) to utilize such out-of-domain labelled data.

4.3 ABLATION STUDY

The frequency of updating segmentation network The results of an ablation study w.r.t. the
interval of updating segmentation network, K, is shown in Figure 4. Experiments are run on Face-34
and Cat-16 with DeepLabv3 as segmentation network and StyleGAN as generator such that pairs of
generator features and ground truth segmentation are available to measure the performance of the
annotator quantitatively. It shows that the annotator learns significantly faster when the segmentation
network is updated more frequently. The visualization shows that very detailed parts, e.g. pupils in
Face-34 and eyes in Cat-16, emerge sooner if the segmentation network is updated more frequently.
It is more effective to match gradients for various segmentation network parameters than optimize
gradient matching for single segmentation network parameters.

Gradient matching on partial segmentation network parameters As the implementation of gra-
dient matching requires maintenance of computation graph of backpropagation through segmentation
networks, one may be concerned about the training efficiency for very deep neural networks. Here

3https://qliu24.github.io/cgpart/
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Figure 4: Ablation study w.r.t. K. Evolution of the learned annotator on Face-34 (first row) and
Cat-16 (second row). (a) Annotator performance (mIoU (%)) on training data w.r.t. number of
updating annotator steps (K). (b) Examples of generated images. (c) Evolution of automatic labels.

Blocks All Res2∼Head Res3∼Head Res4∼Head Res5∼Head * Head
Time / step 3.34× 3.34× 3.28× 3.08× 1.62× 1×
mIoU (%) 33.71 ± 0.77 34.38 ± 0.49 33.81 ± 0.99 33.78 ± 0.70 34.12 ± 0.57 33.56 ± 0.17

Table 2: Ablation study w.r.t. blocks for matching gradients. Evaluation is performed on Cat-16,
where StyleGAN2 is the generator and DeepLabv3 is the segmentation network. “Time / step” is
measured as the ratio with respect to the default setting. * denotes the default setting.

we present a simple strategy to trade off the training efficiency and overall performance: gradient
matching can be done only on the part of segmentation network parameters. Table 2 presents an
ablation study about matching blocks on Cat-16, where StyleGAN2 is the generator and DeepLabv3
is the segmentation network. We consider network blocks in DeepLabv3 with ResNet-101 as back-
bone from bottom to top: Res1, Res2, Res3, Res4 and Res5 that are residual blocks in the
backbone, and Head that is the segmentation head. Results show that skipping the bottom blocks
for gradient matching improves the training speed while the segmentation performance is affected
little. We conjecture the reasons can be two folds: (i) the backbone parameters are pre-trained such
that little needs to be changed during training; (ii) the gradients accumulate more randomness as they
backpropagate to the bottom blocks of deep neural networks. Therefore, in practice, we only match
the gradients of Head in DeepLabv3 by default. Additional results are available in the appendix (see
Section C.3).

5 CONCLUSION

We propose a gradient-matching-based method to learn annotator, which can label generated images
with part segmentation by decoding the generator features into segmentation masks. Unlike existing
methods that require labelling generated images for training an annotator, our method allows a broader
range of labelled data, including realistic images, synthetic images, and even rendered images from
3D CAD models. On the benchmark of semi-supervised part segmentation, our method significantly
outperforms other semi-supervised segmentation methods under the circumstances of extremely
limited labelled data but becomes less competitive under large-scale settings, which requires future
research. The effectiveness of our method is validated on a variety of single-class datasets, including
well-aligned images, e.g. CelebA and Face-34, as well as images in the wild part of which contain
cluttered backgrounds, e.g. Pascal-Horse, Pascal-Aeroplane, Car-20 and Cat-16. In terms of more
complex scenes, discussion and investigation are further needed. With the rapid progress of generative
modelling, it is promising to use more powerful generative models and explore more computer vision
problems under different challenging settings in the future.
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A DATASET DETAILS

CelebA Following Li et al. (2021), we only consider 8 part classes: background, ear, eye, eyebrow,
skin, hair, mouth, and nose. Table A.1(Left) presents the protocol for merging the 19 part classes into
8 classes. CelebAMask-HQ contains 30,000 annotated images in total. We split this dataset into the
unlabeled set, training set, validation set and test set as in Table A.1(Right).

8 classes 19 classes
background background, hat, ear r, neck l, neck, cloth
ear l ear, r ear
eye l eye, r eye
eyebrow eyebrow
skin rest
hair hair
mouth mouth, u lip, r lip
nose nose

Split Image id
Unlabeled set 1∼28,000
Training set (2) 28,001∼28,002
Training set (10) 28,001∼28,010
Training set (30) 28,001∼28,030
Training set (150) 28,001∼28,150
Training set (1500) 28,001∼29,500
Validation set 27,501∼28,000
Test set 29,501∼30,000

Table A.1: Left: Protocol for merging part classes on CelebA. Right: Dataset split on CelebA.

Pascal-Horse & Pascal-Aeroplane Pascal Part (Chen et al., 2014) provides part segmentation
annotations of 20 object classes for images in Pascal VOC 2010. Following other work on part
segmentation (Tsogkas et al., 2015; Zhao et al., 2019; Tritrong et al., 2021), we merge the fine-grained
part classes into 6 classes for horse and aeroplane. The merging protocol is presented in Table A.2.
We crop the image patches that contain the object of interest according to bounding box annotations.
Concretely, we discard bounding boxes with IoU with other boxes smaller than 0.05 to ensure a single
object appears in a single image patch. The patches that have any side less a certain number of pixels
(32 for horse; 50 for aeroplane) are also abandoned. The crop regions are extended from bounding
boxes to square boxes, and the regions outside images are padded with zeros. These processed
patches are finally resized to 256× 256 resolution to serve the training and evaluation process. For
horse and aeroplane, We further split the patches in official VOC 2010 train split in training and
validation set, and take the patches in official VOC 2010 val split as test set. This procedure finally
provides 180 images as the training set (i.e. labelled set), 33 images as a validation set, 223 images
as the test set in Pascal-Horse, 180 images as labelled set, 78 images as the validation set and 266
images as the test set in Pascal-Aeroplane. As unlabeled images, we centre-crop the 200,000 images
in the large-scale LSUN (Yu et al., 2015) archive and resize them to 256× 256 resolution for both
horse and aeroplane.

Pascal-Horse
6 classes fine-grained classes
background background
head head, leye, reye, lear, rear, muzzle
torso torso
legs lfho, rfho, lbho, rbho, lfuleg, lflleg, rfuleg
neck neck
tail tail

Pascal-Aeroplane
6 classes fine-grained classes
background background
body body
stern stern, tail
wing lwing, rwing
engine engine {d}
wheel wheel {d}

Table A.2: Protocol for merging part classes on Pascal Part.

CGPart As a part segmentation dataset composed of 3D CAD models from 5 vehicle categories
with 3D part manual annotations, CGPart (Liu et al., 2021) manage to render a large amount of image
dataset with part mask labels by adopting blender, a well-known graphical software. In this paper,
we select category car as the training and evaluation dataset and make moderate modifications upon
the rendering pipeline. Parts are merged into 15 classes, where excessively fine-grained parts that
seldom emerge are combined to avoid sample imbalance. Part merging protocol is presented in Table
A.3. Viewpoints are sampled around the object with azimuth ranging in full 360◦. Elevation angle is
varied from 0◦ to 80◦, yet higher sampling probability is assigned to interval [0◦, 30◦]. The distance
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from the object to the viewpoint is carefully set to be located at the centre and fully in frame. Random
colour is painted upon the object, and random texture sampled from COCO dataset (Lin et al., 2014),
and Pixar-One-Twenty-Eight (Sisson, 2018) is rendered on the ground and the surroundings. 4, 000
images of 512 × 384 are rendered as a full train dataset. When training, only 1, 000 of them are
randomly sampled as official trainset. The original val split of CGPart is adopted as test dataset,
consisting of 40 images. Test masks are merged under the same merging protocol in the inference
and evaluation phases.

CGPart-Car
15 classes fine-grained classes
background background
back bumper back bumper
car body left frame, right frame
door back left door, back right door, front left door, front right door
front bumper front bumper
head light left head light, right head light
hood hood
licence plate back license plate, front license plate
mirror left mirror, right mirror
roof roof
tail light left tail light, right tail light
trunck trunck
wheel back left wheel, back right wheel, front left wheel, front right wheel
window back left window, back right window, front left window, front right window,

left quarter window, right quarter window
windshield back windshield, front windshield

Table A.3: Protocol for merging part classes on CGPart.

B IMPLEMENTATION DETAILS

Gradient matching loss Following DC (Zhao et al., 2021), the distance between gradients is
measured with cosine similarity. The computation of gradient matching is quite similar as in DC.
Here, we re-state this procedure for clarity. In particular, considering a multi-layer neural network Sθ
that is parameterized with θ, the gradient matching loss is computed as an average over layerwise
losses as D(∇θLl,∇θLg) = 1

L

∑L
i=1 d(∇θ(i)Ll,∇θ(i)Lg), where i denotes the layer index, L

denotes the number of layers for gradient matching and

d(A,B) =

N∑
j=1

(
1− Aj ·Bj

‖Aj‖ · ‖Bj‖

)
(12)

where Aj and Bj are flattened gradient vectors for each neural node j. The minor difference of our
practice compared DC is that we average the layerwise gradient distances whereas DC sum them. It is
easier to handle numerical issues using our practice in our problem. In terms of gradient matching for
normalization layers such as Batch Normalization (BN), we follow the practice of DC to ignore the
gradient matching of learnable parameters in BN. The BN layer is set as train mode during gradient
matching. We find it works well.

Pre-trained GAN We use StyleGAN family (Karras et al., 2019; 2020b;a) as our pre-trained
GANs. We either train GANs by ourselves for each dataset or use publicly available models. The
training configurations or links of the pre-trained GANs are listed in Table B.4. For GANs trained by
ourselves, we use the checkpoints with the lowest FID in the historical ones.

Annotator structure An annotator is a neural network that takes the generator features and output
segmentation masks as input. DatasetGAN (Zhang et al., 2021) and RepurposeGAN (Tritrong et al.,
2021) first upsample feature maps to full resolution (resolution of output image) and then concatenate
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Dataset Version Output resolution Training configurations or links
CelebA StyleGAN2-ADA 256× 256 --cfg=paper256 --mirror=True

Pascal-Horse StyleGAN2 256× 256 stylegan2-horse-config-f.pkl
Pascal-Aeroplane StyleGAN2 256× 256 --cfg=stylegan2 --aug=noaug

Cat-16 StyleGAN 256× 256 available in DatasetGAN repo
Cat-16 StyleGAN2 256× 256 lsuncat200k-paper256-ada.pkl
Face-34 StyleGAN 512× 512 available in DatasetGAN repo
Face-34 StyleGAN2-ADA 512× 512 --cfg=paper512 --mirror=True

Car-20 StyleGAN 512× 512 available in DatasetGAN repo
Car-20 StyleGAN2 512× 512 stylegan2-car-config-f.pkl

Table B.4: Pretrained GANs. We use the source codes provided by Karras et al. (2020a) to train Style-
GAN models: https://github.com/NVlabs/stylegan2-ada-pytorch. For CelebA
and Face-34 the StyleGAN-ADA is trained on CelebAHQ-Mask 28k images at 256 × 256 and
512× 512 resolution, respectively. For Pascal-Aeroplane, the StyleGAN2 is trained on 200k images
from LSUN airplane.

these feature maps along the channel. This procedure results in highly high-dimensional feature
vectors for every pixel. These features are fed into either multiple-layer perceptrons (MLPs) as in
DatasetGAN (Zhang et al., 2021) or convolutional neural networks (CNNs) as in (Tritrong et al.,
2021). Nonetheless, this practice consumes a lot of GPU memory and run painfully slow even on
high-end modern GPUs. That is also why DatasetGAN cannot consume all image feature vectors in a
batch during training.

Therefore, to make training annotators more efficient, as commonly done in segmentation or detection
network architectures, we fuse the multi-scale feature maps with a feature pyramid network (FPN) (Lin
et al., 2017) structure and decode the fused features into segmentation masks with consecutive
convolutional layers. This FPN structure saves a lot of GPU memories and computation, which
allows us to consume multiple full images in one mini-batch during training. An illustration of our
annotator structure is presented in Figure B.1. For generator features that are fed into annotator, we
use outputs of all convolutional layers in StyleGAN as in DatasetGAN (Zhang et al., 2021) and use
outputs of all synthesis blocks, each of which typically contains two consecutive convolutional layers,
in StyleGAN2.
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Figure B.1: Annotator architecture.
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Segmentation network structures In our experiments, we employ two prevalent segmentation
network structures: U-Net (Ronneberger et al., 2015) and DeepLabv3 (Chen et al., 2017) with
ResNet-101 pretrained on ImageNet as backbone. For U-Net, we reference the implementation
from https://github.com/milesial/Pytorch-UNet and train it from scratch on target
datasets. For DeepLabv3, we use the the built-in implementation in PyTorch library4. For all the
experiments on CelebA, Pascal-Horse, and Pascal-Aeroplane, we report the results (Figure 2) using
DeepLabv3 as segmentation networks.

Training details of our method We use pixelwise cross-entropy loss as f(·, ·) for training segmen-
tation network and computing gradients. The annotator and the segmentation network are optimized
with an SGD optimizer with learning rate 0.001 and momentum 0.9. By default, we jointly train an
annotator and a segmentation network with K = 1 and batch size 2 for 150, 000 steps.

Training details of competing semi-supervised methods For MT, GCT and AdvSSL, we train
the networks for 10, 000 iterations with batch size 16 for labelled data and 8 for unlabeled data. The
learning rate is decayed with a power of 0.9 every iteration. During the training process, the input
images are randomly resized to a scale in [160, 640] and cropped to 256× 256. We use the default
settings for the rest of the hyper-parameters as in PixelSSL.

C FURTHER ANALYSIS

C.1 COMPARISON TO OTHER BASELINES

Inversion method As discussed in Section 1, the “inversion method” is a straightforward way to
utilize existing labelled images to train annotators in the supervised learning manner. We evaluate the
performance of the inversion method and compare it to our method on Cat-16, Face-34, and Car-20
using StyleGAN2 as the generator. In particular, inversion baseline first projects images into GAN
latent space using the projection method provided by Karras et al. (2020b). Then the latent style
codes are forwarded to the generator to acquire generator features. Finally, it trains the annotator
using the generator features and ground truth masks.

Table C.5 shows the quantitative results and Figure C.2 presents examples of reconstruction quality.
Despite its accurate image reconstruction, the inversion method fails to combat our method and
produces lower-quality automatic labels than ours (see Figure C.3). We believe it is non-trivial
to inverse the GAN generation process to acquire features for specific images. Even though the
reconstruction of images is satisfying, one can still recover inaccurate generator features, leading to
degraded annotator learning.

Methods G S Cat-16 Face-34 Car-20

Ours
StyleGAN2 DeepLab 33.56 ± 0.17 55.10 ± 0.39 61.21 ± 2.07
StyleGAN2 U-Net 31.90 ± 0.75 53.58 ± 0.45 58.30 ± 2.64

Inversion method
StyleGAN2 DeepLab 15.14 ± 0.27 47.87 ± 0.86 52.18 ± 2.31
StyleGAN2 U-Net 12.78 ± 0.42 48.57 ± 0.38 52.41 ± 1.69

Table C.5: Comparison of our methods to inversion method.

Pseudo-labeling method Another way to train annotators using existing labeled images in su-
pervised learning manner is pseudo-labeling method, which uses a trained segmentation model to
predict pseudo labels for the generated images. In particular, this method involves three stages. (i) A
segmentation model is trained with the labeled dataset. (ii) The trained segmentation model is used to
produce pseudo labels for every random image generated from generator. (iii) The generator features
and pseudo labels are used to train annotators in the supervised learning manner.

Another way to train annotators using existing labelled images in a supervised learning manner is
the pseudo-labelling method, which uses a trained segmentation model to predict pseudo labels for
the generated images. In particular, this method involves three stages. (i) A segmentation model is

4https://pytorch.org/hub/pytorch_vision_deeplabv3_resnet101/
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Figure C.2: Examples of reconstruction quality. The first row shows target images and the second
row shows the reconstructed images.

Automatic labels by inversion baseline

Automatic labels by ours

Figure C.3: Comparison of the automatic labels produced by inversion method v.s. ours.

trained with the labelled dataset. (ii) The trained segmentation model produces pseudo labels for
every random image generated from the generator. (iii) The generator features and pseudo labels are
used to train annotators in supervised learning.

Methods G S Cat-16 Face-34 Car-20

Ours
StyleGAN2 DeepLab 33.56 ± 0.17 55.10 ± 0.39 61.21 ± 2.07
StyleGAN2 U-Net 31.90 ± 0.75 53.58 ± 0.45 58.30 ± 2.64

Pseudo-labeling method
StyleGAN2 DeepLab 20.21 ± 0.65 42.15 ± 0.68 12.37 ± 0.91
StyleGAN2 U-Net 16.72 ± 0.79 43.26 ± 1.20 13.48 ± 0.48

Table C.6: Comparison of our methods to pseudo-labeling method.

Our method with MAML One straightforward solution to Equation 6 is to use a MAML-like
algorithm, which unrolls the inner loop with multi-step stochastic gradient descent, reserves the
computation graph, computes the meta loss, and finally backpropagates the gradients for updating
the annotator. We refer to this method as “Ours-K-step-MAML” and summarize this algorithm as
Algorithm 2. Table C.7 shows the experimental comparison of gradient matching versus MAML,
where we use ηi = 0.1 in MAML for all experiments. The following conclusions can be drawn
from these results. First, gradient matching generally leads to higher performance and obtains more
consistent results across different datasets and different segmentation network architectures than
MAML. Second, MAML probably requires multiple inner-loop steps (more than two) to match
the performance of gradient matching, given that it fails to do so with two inner-loop steps. It is
very inefficient and requires enormous computation resources. Furthermore, in practice, we observe
that MAML appears unstable and sensitive to hyperparameters (e.g. inner-loop learning rate) across
different datasets and different network architectures, whereas gradient matching requires neither
dataset-specific nor network-architecture-specific hyperparameters.
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Algorithm 2: Learning to annotate with K-step MAML.
Inputs :
G trained generator
Dl set of labeled examples
ω, Aω , ηω initial annotator parameters, annotator, and learning rate for annotator
θ, Sθ , ηθ initial segmentor parameters, segmentor, and learning rate for segmentor
T and B total number of optimization steps and batch size
ηi and K inner-loop learning rate and inner-loop steps

1 for t← 1 to T do
// update annotator Aω

2 θ′ ← θ // copy segmentor parameters for simulated SGD

3 Bg ← {(xj , Aω(hj))}Bj=1 // sample a batch of synthetic data

4 for k ← 1 to K do
5 ∇θ′Lg ← 1

B

∑B
j=1∇θ′f(Sθ′(xj), Aω(hj)) // compute gradients on Bg

6 θ′ ← θ′ − ηi∇θ′Lg // update segmentor parameters
7 end
8 Bl ← {(xi,yi) ∼ Dl}Bi=1 // sample a batch of labeled examples

9 Ll ← 1
B

∑B
i=1 f(Sθ(xi),yi) // compute meta loss

10 ω ← ω − ηω∇ωLl // update annotator parameters

// update segmentor Sθ

11 Bg ← {(xj , Aω(hj))}Bj=1 // sample a batch of synthetic data

12 Lg ← 1
B

∑B
j=1 f(Sθ(xj), Aω(hj)) // compute loss on synthetic data

13 θ ← θ − ηθ∇θLg // update segmentor parameters
14 end

Output :annotator Aω and segmentor Sθ

Methods G S
Cat-16

# annotations: 30
# classes: 16

Face-34
# annotations: 16

# classes: 16

Car-20
# annotations: 16

# classes: 20

Ours-GM

StyleGAN DeepLab 33.89 ± 0.43 52.58 ± 0.61 63.55 ± 2.25
StyleGAN U-Net 32.64 ± 0.74 53.69 ± 0.54 60.45 ± 2.42
StyleGAN2 DeepLab 33.56 ± 0.17 55.10 ± 0.39 61.21 ± 2.07
StyleGAN2 U-Net 31.90 ± 0.75 53.58 ± 0.45 58.30 ± 2.64

Ours-1-step-MAML

StyleGAN DeepLab 32.49 ± 0.43 35.24 ± 0.20 54.74 ± 2.67
StyleGAN U-Net 16.70 ± 0.43 23.21 ± 0.07 29.26 ± 0.72
StyleGAN2 DeepLab 30.30 ± 0.53 33.82 ± 0.24 54.42 ± 3.11
StyleGAN2 U-Net 22.78 ± 0.65 32.64 ± 0.18 26.59 ± 0.60

Ours-2-step-MAML
StyleGAN DeepLab 32.98 ± 0.50 39.73 ± 0.13 58.22 ± 2.17
StyleGAN2 DeepLab 29.66 ± 0.69 39.04 ± 0.23 56.47 ± 2.32

Table C.7: Comparisons of our methods using gradient matching (GM) versus MAML on Car-20,
Cat-16, Face-34 with different network architectures. The performance is evaluated with mean
intersection over union (mIoU(%)) across all part classes plus a background class.

C.2 THE IMPACT OF SEGMENTATION NETWORK STATES

We study the impact of segmentation network states, i.e. segmentation parameters, in the alternate
learning algorithm. In particular, we compare the training the annotators’ training convergence and the
performance when different series of segmentation network states are employed for gradient matching.
Figure C.4 & Figure C.5 shows the evolution of annotator performance during training process, where
“baseline” denotes the default setting and the following settings are further compared. (i) “random
re-init”: the segmentation network parameters are randomly re-initialized rather than learned from
generated images. (ii) “pre-trained”: the segmentation network is pre-trained to acquire an acceptable
performance (∼ 40.7% mIoU evaluated on the test set). (iii) “scratch”: the segmentation network
is a DeepLabv3 network with a randomly initial backbone rather than pre-trained on ImageNet.
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(iv) “random init & fixed” and “pre-trained & fixed”: the segmentation network parameters, either
randomly initialized or pre-trained, are fixed, respectively.

First, the “fixed” segmentation network results in a gradient matching problem on a single segmenta-
tion network state, leading to an annotator with inferior performance than the default setting. This
result suggests that matching gradients for various segmentation network states is vital to learning
annotators. Second, even though requiring an annotator to produce segmentation-network-agnostic
labels is crucial, a random re-initialization strategy does not work well (see results of “random re-init”
v.s. “baseline”). Moreover, the results of “pre-trained & fixed” are better than “random init & fixed”,
which suggest that a well-performed segmentation network provides more informative gradients such
that by gradient matching, the annotator can be more effectively learned. Third, matching gradients
of pre-trained segmentation networks accelerates the learning of annotators (see results of “baseline”
v.s. “pre-trained” and “baseline” v.s. “scratch”), suggesting a well-performed segmentation network
provides more informative gradients.
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Figure C.4: Comparison of the training con-
vergence under different settings of sampling
segmentation network states. Annotator perfor-
mance (mIoU (%)) is evaluated on training set
of Car-20. Segmentation network is U-Net.
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Figure C.5: Comparison of the training conver-
gence of segmentation network with pretrained
backbone (“baseline”) versus segmentation
network with randomly initialized backbone
(“scratch”). Annotator performance (mIoU (%))
is evaluated on the training set of Car-20. The
segmentation network is DeepLabv3.

C.3 TRADE OFF TRAINING EFFICIENCY WITH PERFORMANCE

Gradient matching on partial network parameters We present additional results on in Table C.8.
U-Net takes as input an image and first produce a feature map at multiple downsampled scales
with consecutive convolutional and pooling layers. These feature maps are then processed by
consecutive convolutional and upsampling layers to be mapped back to the original input scale.
Notably, skip connection is employed to connect the multi-scale feature maps along the downsampling
and upsampling paths. We consider the following particular group of layers in U-Net: (i) Up v.s.
Down, (ii) Input v.s. Output, and (iii) U1 v.s. U2. Up and Down denote the convolutional
layers along the upsampling and downsampling path, respectively. Input and Output denote the
input convolutional layer and the output convolutional layer, respectively. U1 and U2 denote the
convolutional layers that process feature maps at 1/1 and 1/2 scales, respectively. The results show
that matching gradients of layers near the output end is more effective than doing so at layers near the
input end.
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Blocks * All Up Down Input Output U1 U2
Time / step 1× 0.65× 0.73× 0.73× 0.34× 0.71× 0.63×

mIoU (%) 31.90
±0.75

30.12
±0.43

14.42
±0.23

12.40
±0.40

25.41
±0.77

30.18
±0.79

31.22
±0.48

Table C.8: Ablation study w.r.t. blocks for matching gradients on U-Net. Evaluation is performed
on Cat-16, where StyleGAN2 is the generator. “Time / step” is measured as the ratio to the case of
default setting. * denotes the default setting.

Input resolution to segmentation network Another way to improve the training efficiency is
to reduce the input resolution to the segmentation network. Figure C.6 and Table C.9 show that
reducing the resolution improves the training speed but compromises the annotator performance and
downstream segmentation network performance. Therefore, in practice, the input resolution to the
segmentation network can be tuned to trade off the training efficiency versus effectiveness.
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Figure C.6: The evolution of annotator performance(mIoU (%)) evaluated on training and validation
set during the training process on Face-34.

Resolution * 512× 512 256× 256 128× 128

Time / step 1× 0.45× 0.37×
mIoU (%) 51.93 ± 0.28 50.71 ± 0.39 45.53 ± 0.31

Table C.9: Comparisons of the training efficiency (time / step) and downstream segmentation (U-Net)
performance (mIoU (%)) w.r.t. different input resolution to segmentation network on Face-34. “Time
/ step” is measured as ratio with respect to the default setting. * denotes the default setting.

C.4 THE IMPACT OF GENERATOR

As our segmentation network is trained only on the synthetic images and labels (Algorithm 1 Line
9∼11), the segmentation performance is inevitably affected by the quality of pre-trained GANs.
Table C.10 confirms this point and shows that premature GANs – ones with high FID score – generally
leads to lower segmentation performance.
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CelebA Pascal-Aeroplane
FID ↓ 10.21 6.80 5.12 4.29 11.74 7.78 6.25 5.04
FG-mIoU (%) ↑ 73.92 76.61 77.48 78.07 21.69 36.01 38.81 41.21

Table C.10: The segmentation performance with respect to generators of different quality (indicated
by FID) on CelebA and Pascal-Aeroplane.

C.5 DISCUSSION ON LARGE-SCALE SETTING

As shown in Fig. 2, the performance of our method begins to saturate and even be beaten by other
semi-supervised segmentation methods when the number of labels grows large. To investigate
the performance of our method under a large-scale setting, we further run experiments with more
unlabeled and labelled data and present the results in Table C.11. It shows that the performance of
our method even slightly drops when the number of unlabeled data or the number of labels increases
and is significantly beaten by supervised learning. We hypothesize the reason to be that our method
is seriously limited by the performance of GANs, which still struggle to fit large-scale datasets. In
contrast, supervised learning becomes stronger under a large-scale setting since more labels are
available. How to address this issue requires further research in the future.

Method unlabeled data # labels FG-mIoU (%)
Supervised learning – 29,000 84.32
Ours CelebA-train (29,000) 1,500 77.90
Ours CelebA-train (29,000) 29,000 76.03
Ours CelebA-train + FFHQ (99,000) 29,000 75.00

Table C.11: Experiments on human face part segmentation under large-scale setting.

C.6 COMPARISON TO DATASETGAN IN OTHER ASPECTS

Real images v.s. synthetic images as labeled data As our method removes the necessity of
labelling synthetic images, we investigate if replacing the labelled synthetic images with real ones
could improve the segmentation performance. Table C.12 shows an evaluation on CelebA-test
at 512×512 resolution across 8 face classes. DatasetGAN (Zhang et al., 2021), which uses 16
annotated synthetic images for training, achieves 70.01 mIoU performance. Our method achieves a
bit higher performance when using the exactly same synthetic images as DatasetGAN. Moreover,
the performance of our method can be further improved with around 6.7% mIoU by replacing the
labelled synthetic images with real ones in CelebA-train. This result suggests that the capability of
using real labelled data exhibits the superiority of our method over DatasetGAN.

Labeled data CelebA-test@512×512
DatasetGAN (Zhang et al., 2021)† Synthetic 70.01

Ours
Synthetic 72.55

Real 79.25

Table C.12: Comparison of the performance when using synthetic images versus real images as
labeled data. †: Results taken from Zhang et al. (2021).

Our method with more labeled data on Car-20 Considering our method does not match the
performance of DatasetGAN on Car-20, we further investigate if this gap can be narrowed with the
help of more labelled data. Table C.13 presents the performance of our method when more labelled
data is used on Car-20. It shows that with an increased number of labelled data, the performance of
our method gradually approaches that of DatasetGAN.

D QUALITATIVE RESULTS
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G S
DatasetGAN Ours

# annotations: 16 # annotations: 16 # annotations: 25 # annotations: 33
StyleGAN DeepLab 67.53 ± 2.58 63.55 ± 2.25 64.68 ± 2.53 64.88 ± 2.52
StyleGAN U-Net 66.27 ± 2.75 60.45 ± 2.42 63.09 ± 3.49 65.37 ± 2.78

Table C.13: Performance of our method with respect to different number of labeled images on Car-20
dataset.
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Figure D.7: Qualitative results of our method on CelebA. The segmentation results of our models
trained from 2, 10, and 30, 150, 1500 labeled examples are presented.
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Figure D.8: Qualitative results of our method on Pascal-Horse. The segmentation results of our
models trained from 2, 10, and 30, 100, 180 labeled examples are presented.
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Figure D.9: Qualitative results of our method on Pascal-Aeroplane. The segmentation results of our
models trained from 2, 10, and 30, 100, 180 labeled examples are presented.
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Synthetic Data

Segmentation Results
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Figure D.10: Qualitative comparison of our method to DatasetGAN on Car-20
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Figure D.11: Qualitative comparison of our method to DatasetGAN on Face-34.
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Figure D.12: Qualitative comparison of our method to DatasetGAN on Cat-16.
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