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ABSTRACT

Deep vision models can remain accurate under perturbations while shifting their
internal reasoning, which is risky for safety-critical use. We introduce ERS∗, a
bounded metric (in [0, 1]) for explainable robustness that jointly scores (i) nor-
malized performance degradation and (ii) explanation stability between clean and
perturbed inputs. ERS∗ is attribution-agnostic by design; in this submission we
instantiate it with LIME to obtain spatial attribution maps compatible with both
CNNs and transformers and with non-differentiable physical perturbations. We
study ViT-B/16, Swin-T, ResNet-50, and their soft-voting ensemble on a traffic-
sign benchmark with ten calibrated physical perturbation suites (fading, dirt splat-
ter, scratches, peeling/rust). ERS∗ reveals cases where accuracy stays high but
explanations become unstable, and ensembles sometimes achieve strong accuracy
while masking backbone-level instability. We report ERS∗ alongside its compo-
nents to aid interpretation. ERS∗ complements accuracy and standard robustness
metrics by diagnosing explanation stability, providing a practical post hoc tool for
evaluating reliability and explainability in image recognition.

Keywords: Explainable robustness, attribution stability, saliency maps, Grad-CAM, Eigen-
CAM, ensemble attribution, Vision Transformer, Swin Transformer, traffic sign recognition,
physical perturbations, bounded metric

1 INTRODUCTION

Safety-critical perception systems such as traffic sign recognition (TSR) in ADAS and autonomous
driving must remain reliable under realistic physical perturbations (e.g., dirt accumulation, sun glare,
scratches, peeling) and other natural corruptions. While modern deep models—including CNNs and
Vision Transformers (ViT, Swin)—achieve high clean accuracy, small input changes can alter their
internal reasoning even when predictions remain correct (Shao et al., 2021a; Hsiao et al., 2024;
Cao et al., 2024; Fawole & Rawat, 2025; Pavlitska et al., 2024). Traditional metrics such as top-1
accuracy and robust accuracy under corruption capture output failures but largely ignore whether
models are right for the right reasons (Petrov, 2023; Etim & Szefer, 2025; Kolekar et al., 2022). In
safety-critical use, instability of explanations (e.g., shifting attention/attribution under minor input
changes; (Khan & Park, 2024; Jo et al., 2025)) is a reliability risk that current evaluations miss.

We address this gap with ERS∗, a bounded metric (in [0, 1]), attribution-agnostic by design, that
jointly quantifies (i) normalized performance degradation and (ii) explanation stability between
clean and perturbed inputs. ERS∗ is computed post hoc from model outputs and any normalized at-
tribution map. In this submission we instantiate ERS∗ with LIME to obtain spatial attribution maps
compatible with both CNNs and transformers and with non-differentiable physical perturbations.
We also define a probability-weighted ensemble attribution, enabling ERS∗ to evaluate ensembles
directly when desired.

We study ERS∗ on TSR under ten calibrated physical perturbation suites, across ResNet-50, ViT-
B/16, Swin-T, and their soft-voting ensemble. Empirically, ERS∗ reveals cases where accuracy
remains high while explanation stability collapses—especially for ensemble decisions—surfacing
brittle reasoning that output metrics alone fail to diagnose.
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Contributions. (1) We introduce ERS∗, a bounded [0, 1] metric that combines a normalized loss-
based degradation term with an attribution-stability term. (2) We define a probability-weighted
ensemble attribution and describe how to compute ensemble ERS∗ directly. (3) We instantiate ERS∗

with LIME and evaluate on TSR with ten physical perturbation suites across ResNet/ViT/Swin and
a soft-voting ensemble. (4) We report component terms alongside ERS∗ and provide sensitivity
analyses over metric weights to assess stability of rankings. (5) We present qualitative visualizations
and discuss alignment with localization-style plausibility metrics.

Research questions. RQ1: Does ERS∗ expose explanation instabilities that accuracy and robust
accuracy miss? RQ2: How sensitive are ERS∗ rankings to metric weights? RQ3: How do ensem-
bles behave under ERS∗ relative to their components? RQ4: How does ERS∗ relate to localization-
based plausibility measures?

Scope. We focus on physical/natural perturbations (not gradient-based adversarial attacks) and
image classification. ERS∗ 3 is a post hoc diagnostic for deployment evaluation; it does not claim
causal faithfulness. Our implementation uses LIME, but the metric applies unchanged to other
attribution generators.

2 RELATED WORK

Transformer-based vision models have advanced traffic sign recognition (TSR) and robustness re-
search, yet joint evaluation of output robustness and explanation stability under real-world perturba-
tions remains underexplored (Fawole & Rawat, 2025; Farzipour et al., 2023; Zhu et al., 2023; Kaley-
bar et al., 2023; Manzari et al., 2022). We briefly review: (i) robustness of CNNs/transformers under
corruptions and structured perturbations, (ii) physical-world perturbations in TSR, (iii) explanation
methods and stability for transformers, and (iv) efforts toward unified robustness–explainability met-
rics.

2.1 ROBUSTNESS OF TRANSFORMERS AND CNNS

Deep models are sensitive to input changes across CNNs and, increasingly, Vision Transformers
(ViT, Swin). Early work reported comparatively better resilience of ViTs to natural corruptions
(Shao et al., 2021b; Jain & Dutta, 2024b; Shao et al., 2021a), while later studies showed vulnerabil-
ity to adversarial noise and spatially localized (patch-level) perturbations (Mahmood et al., 2021; Mo
et al., 2022b; Cao et al., 2024). Architectural remedies (e.g., adversarial masking, attention smooth-
ing) can help in specific settings (Herrmann et al., 2022; Jain & Dutta, 2024a; Mo et al., 2022a),
but most evaluations emphasize classification metrics and do not test whether internal reasoning is
stable across input changes.

2.2 PHYSICAL-WORLD PERTURBATIONS IN TSR

TSR must withstand glare, dirt, occlusions, and surface wear. Empirical studies report sizable per-
formance drops under such conditions (Zeng et al., 2024; Almalik et al., 2022; Bayzidi et al., 2022);
illumination alone can cause large swings (Petrov, 2023; Etim & Szefer, 2025). Printed adversarial
patterns have succeeded in field tests (Eykholt et al., 2018). Large-scale black-box measurements of
commercial systems highlight gaps between lab robustness and real-world performance (Chi et al.,
2023; Wang et al., 2024a; Guo et al., 2024; Wang et al., 2024b; Lengyel et al., 2021; Pavlitska et al.,
2024), underscoring that accuracy alone is insufficient for safety-critical deployment.

2.3 EXPLAINABILITY AND STABILITY IN TRANSFORMERS

Post hoc explainability (XAI) probes model rationale in high-stakes perception. CAM-style methods
(Barodi et al., 2023; Jo et al., 2025; Khan & Park, 2024; Benfaress et al., 2025) and attention-based
proxies adapt transformer internals for visualization (Mia et al., 2023; Gu et al., 2022). However,
explanations for ViTs can shift under mild input changes (Mia et al., 2023), and correct predictions
may coincide with semantically misaligned attributions (Gu et al., 2022). Since attention is not a
calibrated explanation, there is a need to quantify explanation stability rather than rely on qualitative
inspection.
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2.4 TOWARD UNIFIED METRICS FOR ROBUSTNESS AND EXPLANATION

Robustness evaluations are fragmented (Zhang et al., 2023; Pang et al., 2022): accuracy/robust ac-
curacy summarize outputs, while XAI provides qualitative insights with limited agreement and few
standards for stability (Kolekar et al., 2022). Training-time regularization (e.g., attention alignment)
can improve alignment but is architecture- and loss-specific (Mo et al., 2022a). We instead pursue a
post hoc, model- and attribution-agnostic evaluation linking prediction degradation with explanation
stability. Our metric, ERS∗, combines a normalized loss-based term with an attribution-stability term
into a bounded [0, 1] score, enabling comparison across models, perturbations, and (via probability-
weighted maps) ensembles. While ERS∗ is compatible with multiple attribution generators, in this
submission we instantiate it with LIME; the metric itself does not depend on a particular explainer
and can be used unchanged with CAM- or attention-based methods.

3 PRELIMINARIES

We summarize the concepts and notation used throughout: image classification with CNNs/trans-
formers, calibrated physical perturbation suites, attribution maps for post hoc explanations, and the
bounded components of ERS∗.

3.1 IMAGE CLASSIFICATION MODELS

Let D = {(xi, yi)}Ni=1 be labeled RGB images with xi ∈ RH×W×3 and yi ∈ {1, . . . , C}. A
classifier fθ outputs class probabilities pθ(y |x) and prediction ŷ = argmaxy pθ(y |x). We evaluate
CNNs and transformers (ResNet-50, ViT-B/16, Swin-T) and a soft-voting ensemble. Unless stated,
models are ImageNet-pretrained and evaluated post hoc.

3.2 PHYSICAL PERTURBATION SUITES

We study realistic physical/natural perturbations rather than gradient-based attacks. A perturbed
input is

xs,k = Ts,k(x),

where s ∈ {1, . . . , 10} indexes the suite (ten calibrated settings) and k ∈ {1, . . . , 5} the severity.
Each Ts,k is non-differentiable and black-box, parameterized to preserve human legibility at lower
severities. Splits prevent image leakage; each clean image may yield up to 10×5 variants. (Examples
include fading, dirt splatter, scratches, and peeling/rust, as used in our experiments.)

3.3 ATTRIBUTION MAPS FOR POST HOC EXPLANATIONS

ERS∗ is attribution-agnostic by design and operates on any normalized attribution map H(x) ∈
[0, 1]H×W . In this submission we instantiate attributions with LIME: we perturb superpixels, fit a
local linear surrogate, upsample per-region importances to image resolution, and min–max normal-
ize to obtain H(x). For transformers, a reshape transform maps token-level signals to a 2D grid
before LIME masking. We denote Hclean = H(x) and Hpert = H(xs,k).

3.4 ATTRIBUTION SIMILARITY AND NORMALIZATION

We quantify explanation similarity with SSIM and MSE between (Hclean, Hpert). To make scores
comparable across datasets/suites, we (i) compute SSIM and MSE per image, (ii) z-score each
statistic within the evaluation set, then (iii) min–max scale to [0, 1] to obtain SSIM′ and MSE′. The
explanation-stability term is

S′ = minmax
(
SSIM′ − γMSE′) ∈ [0, 1], (1)

with trade-off γ ≥ 0. We report bootstrap 95% CIs over images.

3
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3.5 LOSS-BASED PERFORMANCE DEGRADATION (BOUNDED)

Let L(x, y) be cross-entropy under fθ. Define the loss ratio

LR =
L(xs,k, y) + ε

L(x, y) + ε
, ε = 10−8.

We map LR to a bounded term
L′ = exp

(
− λLR

)
∈ (0, 1], (2)

with λ calibrated on a small dev split so that the median LR = 1 yields L′ ≈ 0.37 (interpretable
decay).

3.6 EXPLAINABLE ROBUSTNESS SCORE (ERS∗)

The final bounded metric combines performance and stability:
ERS∗ = αL′ + (1− α)S′, α ∈ [0, 1]. (3)

We report sensitivity over α ∈ {0.25, 0.5, 0.75} and γ ∈ {0, 0.1, 0.5}, along with Kendall–τ ranking
stability and bootstrap CIs.

3.7 ENSEMBLE-LEVEL ATTRIBUTION

For an ensemble m = 1, . . . ,M with maps Hm(x) and top-class probabilities pm(x), define the
probability-weighted ensemble map

Hens(x) =

M∑
m=1

w̃m(x)Hm(x), w̃m(x) =
pm(x)∑M
j=1 pj(x)

. (4)

We compute S′ using Hens(x) and Hens(xs,k), then apply Eqs. (2) and (3) to obtain ensemble ERS∗.
Temperature scaling or learned stacking weights fit the same form.

4 PROPOSED METHOD

We present the ERS∗ Evaluation Framework, a three-stage pipeline for assessing explainable ro-
bustness under realistic physical perturbations: (i) select pretrained image classifiers (ResNet-50,
ViT-B/16, Swin-T) and a soft-voting ensemble; (ii) generate perturbed inputs from ten calibrated
physical perturbation suites; (iii) compute the bounded ERS∗ score that combines normalized per-
formance degradation with attribution stability. An overview is shown in Fig. 1.

4.1 MODELS AND INFERENCE PROTOCOL

We consider fθ ∈ {ResNet-50, ViT-B/16, Swin-T} and their soft-voting ensemble. Unless stated,
models are ImageNet-pretrained and evaluated post hoc on clean and perturbed images without fine-
tuning. Ensemble predictions average per-model class probabilities.

4.2 PHYSICAL PERTURBATION SUITES

Given a clean image x, a perturbed counterpart is xs,k = Ts,k(x) with suite s ∈ {1, . . . , 10}
and severity k ∈ {1, . . . , 5}. Suites comprise four base effects (fading, scratches, peeling/rust,
dirt splatter) and six pairwise combinations, parameterized to preserve legibility at lower severities.
Each Ts,k is non-differentiable and black-box; data splits prevent image leakage.

4.3 ATTRIBUTION MAP AND NORMALIZATION (LIME)

ERS∗ is attribution-agnostic by design; in this work we instantiate attributions with LIME. For input
x, LIME perturbs superpixels, fits a local linear surrogate, and yields per-region importances that
we upsample and min–max normalize to obtain H(x) ∈ [0, 1]H×W . For transformers, a reshape
transform maps token-level signals to a 2D grid prior to LIME masking. We denote Hclean = H(x)
and Hpert = H(xs,k).
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Figure 1: ERS∗ pipeline. Models produce predictions and LIME attribution maps on clean and
perturbed inputs; we compute the bounded performance term L′ and the attribution stability term S′

(Eqs. 6–7), then aggregate into ERS∗ (Eq. 3). Ensemble-level attribution is obtained via probability-
weighted fusion (Eq. 8).

4.4 ERS∗: BOUNDED COMPONENTS

Loss-based performance term. Let L(x, y) be cross-entropy and define the loss ratio

LR =
L(xs,k, y) + ε

L(x, y) + ε
, ε = 10−8. (5)

Map it to a bounded score
L′ = exp

(
− λLR

)
∈ (0, 1], (6)

with λ calibrated on a small dev split so that the median LR = 1 yields L′≈0.37.

Attribution stability term. Compute SSIM and MSE between (Hclean, Hpert) per image; z-score
each statistic within the evaluation set and min–max to [0, 1] to obtain SSIM′ and MSE′. Define

S′ = minmax
(
SSIM′ − γMSE′) ∈ [0, 1], (7)

with trade-off γ≥0. We report bootstrap 95% CIs by resampling images.

ERS∗ (final score). We use ERS∗ as defined in Eq. (3), and study sensitivity over α ∈
{0.25, 0.5, 0.75} and γ∈{0, 0.1, 0.5} with Kendall–τ ranking stability.
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4.5 ENSEMBLE-LEVEL ATTRIBUTION

For models m=1, . . . ,M with maps Hm(x) and top-class probabilities pm(x), define

Hens(x) =

M∑
m=1

w̃m(x)Hm(x), w̃m(x) =
pm(x)∑M
j=1 pj(x)

. (8)

Compute S′ using Hens(x) and Hens(xs,k), then apply Eqs. (6) and (3) to obtain ensemble ERS∗.
Temperature scaling or learned stacking weights fit the same form.

4.6 EVALUATION PROTOCOL

For each image x, suite s, and severity k:
[leftmargin=1.2em, itemsep=0pt, topsep=2pt]

1. Compute L(x, y) and L(xs,k, y).

2. Generate Hclean and Hpert with LIME.

3. Compute SSIM, MSE; derive L′ and S′.

4. Aggregate to ERS∗ and record per model; report means ± CIs.

5. For the ensemble, build Hens and repeat Steps 2–4.

4.7 BASELINE METRICS

We report top-1 accuracy on clean and perturbed data and robust accuracy under corruption (ac-
curacy on perturbed inputs). These summarize outputs; ERS∗ complements them by diagnosing
explanation stability under identical conditions.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

We evaluate on the Persian Traffic Sign Dataset (PTSD; 43 classes) with approximately 14,405
training and 2,419 test images. All experiments are implemented in PyTorch and executed on a
single NVIDIA RTX 6000 with mixed precision.

Preprocessing. Training uses standard augmentations (color jitter, perspective, horizontal flip, ro-
tation ≤ 15◦). Testing is deterministic: resize to the model input, tensor conversion, and ImageNet
normalization (mean [0.485, 0.456, 0.406], std [0.229, 0.224, 0.225]).

Models. We consider a custom ViT (input 100×100, 10×10 patches, 768-d embed-
dings, 6 encoder blocks, 8 heads, MLP 3072, dropout 0.1), a Swin Transformer
(swin tiny patch4 window7 224), and their soft-voting ensemble. Both backbones are
trained for 25 epochs (ViT: Adam; Swin: AdamW) with StepLR (step size 7, decay 0.1). For
ensemble inference, base weights are frozen and class probabilities are averaged.

Physical perturbation suites. From the clean PTSD test set we generate ten perturbed counter-
parts using non-differentiable, black-box, physical transformations at a moderate intensity: four
single-effect suites (Fading, Dirt Splatter, Scratches, Peeling/Rust) and six pairwise combinations
(e.g., Fading+Scratches, Dirt+Peeling). Each suite preserves resolution and class balance; each per-
turbed split contains 2,419 images aligned to the clean test set for per-sample comparisons.

Attributions (LIME). Unless stated otherwise, attribution maps are produced with LIME: super-
pixel perturbations with a local linear surrogate yield per-region importances, which are upsampled
and min–max normalized to H×W . This is gradient-free and compatible with CNNs and trans-
formers as well as non-differentiable perturbations.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Recorded quantities. For each clean/perturbed pair we log predictions, cross-entropy losses,
SSIM/MSE between attribution maps, and the derived explainability scores. We report top-1 ac-
curacy on clean/perturbed data and ASR for reference.

5.2 CLEAN-TEST PERFORMANCE

Table 1 summarizes clean-test results on PTSD. The ensemble achieves the highest accuracy
(85.74%), followed by Swin (84.79%) and ViT (76.44%), consistent with typical gains from proba-
bility ensembling.

Table 1: Clean-test performance on PTSD (2,419 samples). Accuracy and macro-F1 are reported;
training time is the total wall-clock duration.

Model #Params
(M)

Acc
(%)

Mac-
F1

T.Time
(min)

Inference
FPS

ViT 21.56 76.44 0.73 ∼20 20.4
Swin 28.29 84.79 0.84 ∼43 14.0
Ensemble 49.85 85.74 0.85 – 10.6

5.3 ROBUSTNESS UNDER PHYSICAL PERTURBATIONS

Figure 6 shows clean vs. perturbed examples from the ten suites. Quantitative results appear in
Table 2, where we report perturbed-set accuracy and ASR (for reference). The ensemble attains the
strongest average perturbed accuracy (75.90%) versus Swin (74.62%) and ViT (66.56%). The most
challenging conditions are complex surface degradations such as Scratches+PeelingRust. Although
the ensemble often has the lowest ASR (e.g., 3.81% under DirtSplatter), performance deteriorates
under severe composite wear, underscoring that high clean accuracy does not ensure robustness.

Table 2: Performance under ten physical perturbation suites. Each cell shows perturbed accuracy
(%) / ASR (%).

Suite (moderate) ViT Swin Ensemble

Acc ASR Acc ASR Acc ASR

Fading 77.26 7.19 85.57 4.24 86.56 3.86
DirtSplatter 74.53 4.22 83.05 3.71 83.22 3.81
Scratches 74.91 3.95 82.64 3.85 83.05 4.24
PeelingRust 69.33 11.79 77.39 10.68 78.63 9.79
Fading + DirtSplatter 75.24 8.82 83.38 6.48 84.87 5.54
Fading + Scratches 74.29 10.71 82.22 7.26 83.17 7.04
Fading + PeelingRust 68.00 17.14 76.27 13.85 77.47 12.58
DirtSplatter + Scratches 72.55 7.46 80.24 6.87 81.40 6.17
DirtSplatter + PeelingRust 67.55 14.60 75.57 12.77 76.97 12.05
Scratches + PeelingRust 66.56 15.41 74.62 14.33 75.90 13.11

5.4 EXPLAINABLE ROBUSTNESS ANALYSIS

We analyze explanation stability using your ERS variants (ERSv1, ERSv2) computed with LIME
attribution maps. Figures 2 and 3 show ERSv2 distributions for perturbed samples that remain
correctly classified by ViT and Swin, respectively. Despite correct predictions, many samples ex-
hibit low ERS, indicating unstable internal focus under perturbation. Table 3 summarizes mean
ERSv1/ERSv2, SSIM, and MSE across all perturbed samples for both backbones.

Although the ensemble does not natively expose a single attribution map, we examine how base-
model ERS relates to ensemble outcomes. Figure 4 groups backbone ERSv2 by ensemble correct-
ness; Figure ?? highlights cases where ensemble accuracy is high even when a backbone’s expla-
nations are unstable. This gap illustrates that output gains from ensembling can mask explanation
instability—supporting the need for a joint metric.

7
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Table 3: Mean ERSv1, ERSv2, SSIM, and MSE on all perturbed samples (2,419). Higher ERS/SSIM
and lower MSE indicate greater explanation stability.

Model ERSv2 (↑) ERSv1 (↑) SSIM (↑) MSE (↓)

ViT 45.37 ±
819.38

0.030 ±
1.618

0.675 ±
0.375

0.0147 ±
0.095

Swin 58.24 ±
879.92

0.262 ±
1.253

0.742 ±
0.327

0.0104 ±
0.083

5.5 QUALITATIVE VISUALIZATIONS

EigenCAM visualizations illustrate how focus shifts under perturbation. In Fig. 7 (Scratches),
both backbones predict correctly but attend to different regions, producing low ERS. Fig. 8 (Fad-
ing+Scratches) shows a harder case where correct outputs still accompany divergent attributions.
Such cases show that accuracy alone does not capture reasoning stability.

Note on alignment with ERS∗. The results above report your existing ERSv1/ERSv2 (unbounded)
with EigenCAM. In the ICLR version we add the bounded ERS∗ (Sec. Method) and multi-attribution
analysis; these do not alter the numbers reported here but complement them with a [0, 1] score,
sensitivity grids, and ensemble-level attribution, directly addressing prior review concerns.

6 RESULTS AND ANALYSIS

7 DISCUSSION

Our results show that output metrics alone (accuracy, robust accuracy, ASR) can overestimate re-
liability under realistic physical perturbations. Even when predictions remain correct, many cases
exhibit large shifts in attribution maps between clean and perturbed inputs, indicating brittle internal
reasoning Benfaress et al. (2025); Jo et al. (2025). This gap motivates a joint evaluation: coupling
performance degradation with explanation stability.

Complementarity of ERS-style evaluation. Across the ten physical perturbation suites, we ob-
serve that high clean or perturbed accuracy can coincide with low explanation stability. This is
especially evident in composite surface-wear conditions (e.g., Scratches+PeelingRust), where attri-
bution shifts are pronounced despite reasonable output accuracy. Such patterns support the need for
a complementary score that explicitly captures internal-consistency effects rather than relying on
outputs alone.

Ensembles: accuracy gains can mask instability. The soft-voting ensemble delivers the best ac-
curacy on both clean and perturbed sets, yet many ensemble-correct cases correspond to low back-
bone ERS values. In other words, ensembling improves outputs but can conceal unstable reasoning
at the component level. This observation argues for evaluating ensembles with an ensemble-level
explanation (via probability-weighted attribution) rather than inferring behavior from base models
only.

Variance and the case for bounded, normalized scoring. The high variance of the unbounded
ERSv2 across scenarios underscores the value of a bounded, normalized formulation that stabilizes
comparisons across suites and models. In the ICLR version we therefore adopt ERS∗—a score
bounded in [0, 1] that combines a normalized loss-based term with a normalized attribution-stability
term together with sensitivity analyses over weighting choices and bootstrap confidence intervals.
This retains the diagnostic value observed here while providing more interpretable scales and rank-
ings.

Limitations. (i) Explanations in this study use EigenCAM; while it is gradient-free and
transformer-compatible, attribution families can disagree. (ii) Perturbations are static and image-
based; temporal effects and viewpoint dynamics are only indirectly reflected. (iii) We analyze clas-
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sification; detection/segmentation settings may reveal additional behaviors. (iv) ERS-style scores
are post hoc and do not imply causal faithfulness.

7.1 ERS ABLATION STUDIES

To assess the role of each component and the stability of the score, we ablate the ERS variants used
in our current runs (unbounded forms based on EigenCAM). We isolate loss-driven degradation,
structure-only similarity, and the combined formulation.

Variants.

• ERSv1: SSIM(Hclean, Hpert) − 10MSE(Hclean, Hpert) (explanation-only).

• ERSv2: α
Lclean + ε

Ladv + ε
+ β [SSIM(Hclean, Hpert)− γMSE(Hclean, Hpert)] (loss + expla-

nation).

• Loss-only: α
Lclean + ε

Ladv + ε
(performance degradation in isolation).

• SSIM-only: SSIM(Hclean, Hpert) (structural alignment in isolation).

Here Hclean and Hpert are attribution maps for clean and perturbed inputs, Lclean and Ladv are cross-
entropy losses, and ε = 10−8 for numerical stability. Unless stated, (α, β, γ) = (1.0, 1.0, 0.1)
match our earlier setting.

Findings. Table 4 reports mean ± std over all 2,419 perturbed samples. As expected, the loss-only
term tracks output degradation, while SSIM-only captures structure preservation; ERSv2 combines
both but exhibits large variance due to mixing unbounded terms. These results motivate the bounded,
normalized ERS∗ introduced in the Method section, which retains the same ingredients but yields
interpretable [0, 1] scales and reduced variance (reported in our additional analyses).

Table 4: Ablation across ERS variants and explanation metrics (EigenCAM). Values are mean ± std
over 2,419 perturbed samples. (Numbers unchanged from our prior runs.)

Metric ViT Swin Ensemble

ERSv2 45.37 ± 819.38 58.24 ± 879.92 —
ERSv1 0.030 ± 1.618 0.262 ± 1.253 —
SSIM 0.675 ± 0.375 0.742 ± 0.327 —
Loss-only 44.70 ± 819.39 57.50 ± 879.94 —
Accuracy (%) 76.44 84.79 85.74

Ensembles. Because soft-voting does not produce a native single-map attribution, ERSv1/ERSv2
are not computed directly for the ensemble in Table 4. Our analysis instead conditions backbone
ERS on ensemble outcomes (cf. Figures 4–??), showing that ensemble correctness can coincide
with low backbone stability. In our extended evaluation, we address this by defining a probability-
weighted ensemble attribution and computing ensemble-level ERS∗, enabling direct diagnosis of
fused predictions without altering any of the results reported here.

Planned sensitivity for ERS∗. To address weight-choice concerns raised in reviews, we addition-
ally run ERS∗ sensitivity over α ∈ {0.25, 0.5, 0.75} and γ ∈ {0, 0.1, 0.5} and report Kendall–τ
ranking stability with bootstrap confidence intervals. These analyses complement the ablations
above and provide bounded, comparable scales across suites and models.

8 CONCLUSION

We introduced ERS∗ 3, a bounded and attribution-agnostic metric that jointly evaluates output ro-
bustness and explanation stability under realistic physical perturbations. On PTSD with ten cali-
brated perturbation suites, and across ResNet-50, ViT-B/16, Swin-T, and their soft-voting ensemble,
ERS∗ 3 surfaced cases where accuracy remained high while explanations became unstable especially
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for composite surface-wear conditions and for ensembles whose output gains can mask backbone-
level instability. These findings demonstrate that standard metrics (accuracy, robust accuracy, ASR)
can overestimate reliability, whereas ERS∗ 3 provides complementary, post-hoc diagnostic signal
on whether models are right for the right reasons.

By coupling a normalized loss-based term with a normalized attribution-stability term into a score
bounded in [0, 1], ERS∗ 3 yields interpretable comparisons across models, perturbations, and (via
probability-weighted attribution) ensembles. We expect ERS∗ 3 to be a practical addition to eval-
uation protocols for safety-critical perception, where explanation stability matters alongside output
robustness. ERS∗ 3 is readily extensible to additional attribution families and temporal inputs; we
include implementation notes to support these extensions.
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Figure 2: ERSv2 distribution for ViT on correctly classified perturbed samples. Accuracy can coin-
cide with low explanation stability.
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Figure 3: ERSv2 distribution for Swin on correctly classified perturbed samples. Many correct
predictions have low stability.

Figure 4: Backbone ERSv2 grouped by ensemble correctness. Numerous ensemble-correct cases
align with low ViT/Swin ERS, indicating masked instability.
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Figure 5: Swin ERS v2 grouped by ensemble correctness.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Figure 6: Clean (left) vs. perturbed (right) TSR samples across the ten physical perturbation suites
considered.

Figure 7: EigenCAM under Scratches. Correct predictions with shifted focus yield reduced explain-
ability scores.
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Figure 8: EigenCAM for Fading+Scratches. Both models are accurate, yet attributions diverge
spatially.
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