
Accurate and Efficient World Modeling with Masked Latent Transformers

Maxime Burchi 1 Radu timofte 1

Abstract
The Dreamer algorithm has recently obtained
remarkable performance across diverse environ-
ment domains by training powerful agents with
simulated trajectories. However, the compressed
nature of its world model’s latent space can re-
sult in the loss of crucial information, negatively
affecting the agent’s performance. Recent ap-
proaches, such as ∆-IRIS and DIAMOND, ad-
dress this limitation by training more accurate
world models. However, these methods require
training agents directly from pixels, which re-
duces training efficiency and prevents the agent
from benefiting from the inner representations
learned by the world model. In this work, we
propose an alternative approach to world model-
ing that is both accurate and efficient. We intro-
duce EMERALD (Efficient MaskEd latent tRAns-
former worLD model), a world model using a
spatial latent state with MaskGIT predictions to
generate accurate trajectories in latent space and
improve the agent performance. On the Crafter
benchmark, EMERALD achieves new state-of-
the-art performance, becoming the first method to
surpass human experts performance within 10M
environment steps. Our method also succeeds to
unlock all 22 Crafter achievements at least once
during evaluation.

1. Introduction
Model-based reinforcement learning has attracted increasing
research attention in recent years (Hafner et al., 2019; 2020;
2021; 2023; Schrittwieser et al., 2020). The growing com-
putational capabilities of hardware systems have allowed re-
searchers to make significant progress, training world mod-
els from high-dimensional observations like videos (Yan
et al., 2023) using deep neural networks (LeCun et al., 2015)

1Computer Vision Lab, CAIDAS & IFI, University of
Würzburg, Germany. Correspondence to: Maxime Burchi
<maxime.burchi@uni-wuerzburg.de>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

DreamerV3 M

DreamerV3 XL
-IRIS

(ICML 2
024)

Human

Experts
EMERALD

(Ours)
0%

20%

40%

60%

80%

34.9 39.6 42.5
50.5

58.1

Crafter Achievements Score (10M environment steps)
Learn agent from reconstructed images
Spatial and temporal world model state
Temporal-only world model state

DreamerV3 M

DreamerV3 XL
-IRIS

(ICML 2
024)

EMERALD

(Ours)
0

15

30

45
38

23

12

27

Collected Frames Per Second (FPS on RTX 3090)

Figure 1: Achievements score and collected Frames Per
Second (FPS) of recently published model-based methods
on the Crafter benchmark. EMERALD is the first method to
exceed the performance of human experts on the benchmark.
The world model uses a spatial latent state with MaskGIT
predictions to improve performance and training efficiency.
∆-IRIS proposed an accurate world model but suffers from
lower training efficiency due to autoregressive decoding in
latent space and agent learning from reconstructed images.

as function approximations. World models (Sutton, 1991;
Ha & Schmidhuber, 2018) summarize the experience of an
agent into a predictive function that can be used instead of
the real environment to learn complex behaviors. Having
access to a model of the environment enables the agent to
simulate multiple plausible trajectories in parallel, improv-
ing generalization, sample efficiency, and decision-making
via planning.

Among these approaches, the Dreamer algorithm (Hafner
et al., 2020; 2021; 2023) has achieved remarkable perfor-
mance in various environments by training a world model
to generate imaginary trajectories in latent space. However,
while the world model has no difficulty in simulating simple

1

Accurate and Efficient World Modeling with Masked Latent Transformers

(a) EMERALD (b) DreamerV3 (M)

Figure 2: Comparison of EMERALD image reconstruction with DreamerV3. We show the 5 frames with highest recon-
struction error among a batch of 1024 test observations. The top row indicates original images, the middle row shows
reconstructed images and the bottom row shows reconstruction error. We observe that EMERALD achieves near-perfect
reconstruction, with errors resulting mostly from player orientation and textures. DreamerV3 fails to perceive crucial details
like diamonds and skeleton arrows, which diminishes the agent’s perception capacity and negatively impacts its performance.

visual environments such as DeepMind Control (Tassa et al.,
2018) tasks or Atari games (Bellemare et al., 2013), some
inaccuracies appear when modeling more complex environ-
ments like Crafter (Hafner, 2022) and MineRL (Guss et al.,
2019). As shown in Figure 2b, the world model has diffi-
culty perceiving important details on Crafter. This failure to
learn accurate representations for the agent leads to a lower
performance.

To remedy this problem, recent approaches have proposed
more accurate world models. ∆-IRIS (Micheli et al., 2024)
proposed to encode stochastic deltas for changes in the ob-
servation. Concurrently, DIAMOND (Alonso et al., 2024)
proposed a diffusion-based world model using a U-Net ar-
chitecture. Both of these approaches proposed new world
model alternatives to improve the reconstruction quality of
generated trajectories and increase the agent performance.
However, they also require learning the agent from recon-
struction images, which impact learning efficiency and does
not allow the agent to benefit from inner representations
learned by the world model such as long-term memory.
This significantly limits the potential of such methods for
perception and training efficiency.

In this work, we propose an alternative approach to world
modeling that is both accurate and efficient. We intro-
duce EMERALD, a Transformer model-based reinforce-
ment learning algorithm using a spatial latent state with
MaskGIT predictions to generate accurate trajectories in
latent space and improve the agent performance. Origi-
nally designed for vector-quantized image generation (Van
Den Oord et al., 2017), MaskGIT (Chang et al., 2022) im-
proves decoding speed and generation quality compared to
autoregressive sequential decoding (Esser et al., 2021). This

approach was later adapted by TECO (Yan et al., 2023),
demonstrating that MaskGIT-based latent space predictions
could enable powerful video generation models. Inspired
by these advances, we apply MaskGIT to model-based re-
inforcement learning, allowing the agent to better perceive
crucial environment details while improving decoding effi-
ciency. Furthermore, the agent benefits from internal repre-
sentations learned by the world model, such as long-term
memory, enabling it to track important objects and effec-
tively map the environment. As shown in Figure 1, EMER-
ALD sets a new record on the Crafter benchmark, being the
first method to exceed human experts performance within
10M environment steps with a score of 58.1%. Our method
also succeeds to unlock all 22 Crafter achievements at least
once during evaluation. Additionally, we report results on
the commonly used Atari 100k benchmark (Kaiser et al.,
2020) to demonstrate the general efficacy of EMERALD on
Atari games that do not necessarily require the use of spatial
latents to achieve near perfect reconstruction.

2. Related Works
2.1. Model-based Reinforcement Learning

Model-based reinforcement learning approaches use a
model of the environment to simulate agent trajectories,
improving generalization, sample efficiency, and decision-
making via planning. Following the success of deep neural
networks for learning function approximations, researchers
proposed to learn world models using gradient backpropa-
gation, allowing the development of powerful agents with
limited data. One of the earliest model-based algorithms
applied to image data is SimPLe (Kaiser et al., 2020), which
proposed a world model for Atari games in pixel space using

2

Accurate and Efficient World Modeling with Masked Latent Transformers

Table 1: Comparison between EMERALD and other recent model-based approaches. Latent (zt) refers to image latent
representations carrying spatial information while hidden (ht) refers to world model hidden state carrying temporal
information. EMERALD uses a spatial latent state to improve world model accuracy. It also trains the agent in latent space
to increase efficiency and benefit from world model inner representations. Efficient decoding is performed using MaskGIT.

Attributes IRIS DreamerV3 ∆-IRIS DIAMOND EMERALD (Ours)

World Model Transformer GRU Transformer U-Net Transformer
Tokens Latent (4× 4) Latent Latent (2× 2) N/A Latent (4× 4)

Latent Representation VQ-VAE Categorical-VAE VQ-VAE N/A Categorical-VAE
Decoding Sequential N/A Sequential EDM MaskGIT

Agent State (st) Image Latent, hidden Image Image Latent (4× 4), hidden

a convolutional autoencoder architecture. The world model
predicts future frames and environment rewards based on
past observations and selected actions, enabling the training
of a Proximal Policy Optimization (PPO) agent (Schulman
et al., 2017) with simulated trajectories.

Concurrently, PlaNet (Hafner et al., 2019) introduced a Re-
current State-Space Model (RSSM) incorporating Gated
Recurrent Units (GRUs) (Cho et al., 2014) to learn a world
model in latent space, planning using model predictive con-
trol. PlaNet learns a convolutional variational autoencoder
(VAE) (Kingma & Welling, 2014) with a pixel reconstruc-
tion loss to encode observations into stochastic state repre-
sentations. The RSSM then predicts future stochastic states
and environment rewards based on previous stochastic and
deterministic recurrent states. Following the success of
PlaNet on DeepMind Visual Control tasks, Dreamer (Hafner
et al., 2020) improved the algorithm by learning an actor
and a value network from the world model hidden repre-
sentations. DreamerV2 (Hafner et al., 2021) extended the
algorithm to Atari games, replacing Gaussian latents by cat-
egorical latent states using straight-through gradients (Ben-
gio et al., 2013) to improve performance. Lastly, Dream-
erV3 (Hafner et al., 2023) mastered diverse domains us-
ing the same hyper-parameters with a set of architectural
changes to stabilize learning across tasks. The agent uses
symlog predictions for the reward and value function to
address the scale variance across domains. The networks
also employ layer normalization (Ba et al., 2016) to im-
prove robustness and performance while scaling to larger
model sizes. It stabilizes policy learning by normalizing
the returns and value function using an Exponential Moving
Average (EMA) of the returns percentiles. With these modi-
fications, DreamerV3 outperformed specialized model-free
and model-based algorithms in a wide range of benchmarks.

Concurrent approaches have proposed to use a Transformer-
based world model to improve the hidden representations
and memory capabilities compared to RNNs. IRIS (Micheli
et al., 2023) first proposed a world model composed of a
VQ-VAE (Van Den Oord et al., 2017) to convert input im-

ages into discrete tokens and an autoregressive Transformer
to predict future tokens. TransDreamer (Chen et al., 2021)
proposed to replace Dreamer’s RSSM with a Transformer
State-Space Model (TSSM) using masked self-attention to
imagine future trajectories. TWM (Robine et al., 2023)
(Transformer-based World Model) proposed a similar ap-
proach, encoding states, actions and rewards as distinct
successive input tokens for the autoregressive Transformer.
More recently, STORM (Zhang et al., 2024) achieved results
comparable to DreamerV3 with better training efficiency on
the Atari 100k benchmark.

2.2. Accurate World Modeling in Pixel Space

Another line of work focuses on designing accurate world
models to train agents from reconstructed trajectories in
pixel space. Analogously to SimPLe, the agent’s policy
and value functions are trained from image reconstruction
instead of world model hidden state representations. This
requires learning auxiliary encoder networks for the policy
and value functions. Micheli et al. (2024) proposed ∆-
IRIS, encoding stochastic deltas between time steps using
previous action and image as conditions for the encoder and
decoder. This increased VQ-VAE compression ratio and
image reconstruction capabilities, achieving state-of-the-art
performance on the Crafter (Hafner, 2022) benchmark.

Meanwhile, DIAMOND (Alonso et al., 2024) introduced a
diffusion-based (Sohl-Dickstein et al., 2015) world model
with EDM decoding (Karras et al., 2022) to generate high-
quality trajectories and improve the agent performance. The
paper demonstrated that diffusion can successfully be ap-
plied to world modeling, requiring as few as 3 denoising
steps for imagination. The method was evaluated on the
Atari 100k benchmark showing better reconstruction quality
and improved performance compared to DreamerV3. How-
ever, it was not applied to a memory-demanding benchmark
like Crafter that requires both good memory and visual per-
ception to achieve strong results. The authors disclosed
that initial experiments on the Crafter benchmark did not
achieve good performance due to the absence of an effective

3

Accurate and Efficient World Modeling with Masked Latent Transformers

Encoder Decoder

Temporal Masked Transformer Network

Latent
Enc

Encoder Decoder

Latent
Enc

Encoder Decoder

Latent
Enc

Latent
Dec

Rew
NetworkSpatial MaskGIT Cont

Network

Cached Keys
and Values

(a) World Model Learning

Encoder

Temporal Masked Transformer Network

Latent
Enc

Latent
Dec

Spatial MaskGIT Critic
Network

Actor
Network

Latent
Enc

Latent
Enc

Cached Keys
and Values

(b) Actor-Critic Learning

Figure 3: Efficient masked latent Transformer-based world model. EMERALD uses a spatial latent state zt and a temporal
hidden state ht to model the environment accurately and effectively. The world model predictions are made using a spatial
MaskGIT predictor network to increase decoding speed while maintaining accuracy. Actor-critic learning is performed by
imagining trajectories in latent space which allows the agents to benefit from world model inner representations.

memory module for the world model. We find that DIA-
MOND has difficulties predicting future frames in Crafter,
generating hallucinations. In this work, we propose to im-
prove performance and training efficiency by learning an
accurate world model in latent space. Table 1 compares the
architectural details of recent model-based approaches with
our proposed method.

2.3. Scheduled MaskGIT Predictions in Latent Space

Parallel tokens prediction with refinements was intro-
duced by MaskGIT (Masked Generative Image Trans-
former) (Chang et al., 2022) as an alternative to sequen-
tial decoding for vector quantized image generation (Van
Den Oord et al., 2017; Ramesh et al., 2021; Esser et al.,
2021). MaskGIT proposed to replace autoregressive de-
coding with scheduled parallel decoding of masked tokens
to improve generation quality and significantly decrease
decoding time. During training, the method samples de-
coding times τ ∈ [0, 1) uniformly. It proceeds to mask
N = ⌊γHW ⌋ tokens where γ = cos(π2 τ) follows a cosine
schedule and H and W correspond to the height and width
of the latent space in tokens. At decoding time, the model
is sampled to progressively predict all the tokens. This is
done by selecting the most probable tokens and masking the
remaining tokens for the next decoding step.

Inspired by the success of MaskGIT and similar approaches
such as draft-and-revise (Lee et al., 2022) for image gener-
ation, Yan et al. (2023) proposed TECO (Temporally Con-
sistent Video Transformer). TECO is a video generation
model using MaskGIT with draft-and-revise decoding to
predict future frames in latent space. They showed that us-
ing a MaskGit prior allows for not just faster but also higher
quality sampling compared to an autoregressive sequential
prior. Using a pre-trained VQ-GAN (Esser et al., 2021) vec-
tor quantizer, the algorithm demonstrated strong memory
capabilities and generation quality. In this work, we propose
to apply MaskGIT to model-based reinforcement learning.
We train a world model that is both accurate and efficient
without requiring pre-trained discrete representations.

Meanwhile, the use of MaskGIT as prior for model-based
reinforcement learning was concurrently explored by GIT-
STORM (Meo et al., 2024). GIT-STORM proposed to ap-
ply MaskGIT decoding using a draft-and-revise strategy
to the recently proposed STORM model. However, we
note that the motivation behind GIT-STORM is different
from our work: Similarly to image and video generation
works (Chang et al., 2022; Yan et al., 2023), EMERALD
uses MaskGIT as an alternative to sequential token decod-
ing in order to improve decoding efficiency for spatial la-
tent spaces. In contrast, the GIT-STORM paper applied
MaskGIT to the vector latent space of STORM in order to

4

Accurate and Efficient World Modeling with Masked Latent Transformers

H

H

W

G

Autoregressive
Sequential
Decoding

Scheduled
Parallel
Decoding

W

G

t = 0 t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8

t = 0 t = 64 t = 128 t = 192 t = 256 t = 320 t = 384 t = 448 t = 512

Figure 4: Comparison of scheduled parallel decoding in EMERALD vs. autoregressive sequential decoding used by IRIS
and ∆-IRIS. We illustrate the H ×W × G latent space of our method with only 4 of the 32 groups for better clarity.
Sequential decoding predicts one token at a time, significantly impacting efficiency. In contrast, EMERALD uses parallel
predictions with scheduled refinements, reducing decoding time while preserving the coherence of predicted tokens.

improve the quality of sampling. Key differences also lie in
the architecture of the MaskGIT network. GIT-STORM per-
forms attention on the 32 feature tokens of the vector latent
space while EMERALD first concatenates the tokens along
the feature dimension and performs attention on spatial posi-
tions similarly to the original MaskGIT paper (Chang et al.,
2022).

3. Method
We introduce EMERALD, a Transformer model-based re-
inforcement learning algorithm using a spatial latent state
with MaskGIT predictions to generate accurate trajectories
in latent space and improve the agent performance. EMER-
ALD can be separated into three main components: The
Transformer world model that learns to simulate the envi-
ronment in latent space. A critic network that learns to
estimate the sum of future rewards. And an actor network
that learns to select actions that maximize future rewards
estimated by the critic network. Each component is trained
concurrently by sampling trajectories from a replay buffer
of past experiences. This section describes the architecture
and optimization process of our proposed masked latent
Transformer world model. Additionally, we provide a brief
overview of the imagination process for actor-critic learning.
Figure 3 provides a visual overview of world model learn-
ing and imagination process during the actor-critic learning
phase.

3.1. World Model Overview

Analogously to the Dreamer algorithm (Hafner et al., 2023)
and other recent approaches learning a world model in latent
space (Robine et al., 2023; Zhang et al., 2024), we encode
input image observations ot into hidden representations us-
ing a convolutional VAE with categorical latents. To balance
prediction accuracy and efficiency, our world model adopts
a carefully designed architecture with spatial latent states
zt and temporal hidden states ht. The spatial latent states
are first projected into temporal feature vectors for efficient
processing by the world model. A temporal Transformer
network with masked self-attention then generates the tem-
poral hidden states ht by modeling long-range dependencies.
These temporal states are subsequently projected back into
spatial features for MaskGIT predictions. The trainable
components of the world model are the following:

Encoder Network: zt ∼ qϕ(zt | ot)
Transformer Network: ht = fϕ(z1:t−1, a1:t−1)

MaskGIT Predictor: ẑt ∼ pϕ(ẑt | ht, zmaskt)

Decoder Network: ôt ∼ pϕ(ôt | ht, zt)
Reward Predictor: r̂t ∼ pϕ(r̂t | ht, zt)
Continue Predictor: ĉt ∼ pϕ(ĉt | ht, zt)

(1)

The spatial latent states and temporal hidden states are com-
bined to form the world model state st = [zt, ht], which
integrates both spatial and temporal information. Latent
state predictions are made using a spatial MaskGIT network,

5

Accurate and Efficient World Modeling with Masked Latent Transformers

while separate networks predict the environment reward r̂t
and episode continuation ĉt.

Encoder Network While previous approaches project
encoder features to a compressed vector latent space to
simplify world model predictions, our method leverages
a spatial latent space to improve world model accuracy
and the agent performance. The spatial feature represen-
tations are first projected to categorical distribution logits
l ∈ RH×W×D, which are then reorganized into multiple fea-
ture groups G for sampling. Instead of representing entire
latent vector with a single embedding, the token represen-
tations combine embeddings from multiple feature groups.
This grouping mechanism was originally used by Dream-
erV2 (Hafner et al., 2021) to improve training stability using
a flexible latent representation. We sample discrete stochas-
tic states zt ∈ RH×W×G×(D/G) from the encoder, which
serves as spatial latent states for our world model.

The use of a spatial latent space allows to effectively im-
prove the accuracy of the world model without significantly
increasing the amount of trainable parameters. The world
model stochastic state capacity can also be increased by
using a larger number of groups and/or token dimensions.
However, this results in a significantly larger number of
parameters due to linear projections. In contrast, the spatial
latent space benefits from weight sharing, which provides a
useful position bias for the world model.

Temporal Masked Transformer Network EMERALD
uses a Transformer State-Space Model (TSSM) (Chen et al.,
2021) to learn long-range memory dependencies and pre-
dict future observations more accurately. The Transformer
network uses masked self-attention with relative positional
encodings (Dai et al., 2019), which simplifies the use of the
world model during imagination and evaluation. We also use
truncated backpropagation through time (TBTT) (Pašukonis
et al., 2023) to preserve information over time. This requires
the sampling of training trajectories sequentially in order
to access past memory, passing cached attention keys and
values from one batch to the next. The Transformer net-
work outputs hidden states ht ∈ RT×D, carrying temporal
information.

Spatial MaskGIT Predictor The MaskGIT predictor net-
work uses a Transformer architecture with spatial attention
to model relationships between spatial tokens. After spatial
upsampling by the latent decoder network, the temporal hid-
den states serve as conditioning inputs to accurately predict
the next spatial tokens. To train the MaskGIT predictor, we
uniformly sample decoding times τ ∈ [0, 1) and use a cosine
schedule to mask N = ⌊γHWG⌋ tokens from the latent
space: zmaskt = zt ⊙mt with mask m ∈ {0, 1}H×W×G.
The MaskGIT predictor learns to predict masked tokens by

0.0 0.2 0.4 0.6 0.8 1.0
Decoding time

0.0

0.2

0.4

0.6

0.8

1.0

M
as

k
sc

he
du

le

(
)

start

1st step

2nd step

3rd step

() = cos(2)

Figure 5: Cosine mask schedule. During training, we uni-
formly sample decoding times τ between 0 and 1. During
imagination, the world model samples all masked tokens
and refines N = ⌊γHWG⌋ tokens with lower probability.
We illustrate the schedule used for S = 3 decoding steps.

minimizing the KL divergence with the unmasked latent
state as follows:

Lmask = KL
[
sg(qϕ(zt | ot)) || pϕ(ẑt | ht, zmaskt)

]
(2)

We use the stop gradient operator sg(·) to prevent the gradi-
ents of targets from being backpropagated.

In order to stabilize learning, the predictor also uses a dy-
namics loss with regularization (Hafner et al., 2023). A
linear layer is optimized to predict the target latent states
from upsampled hidden states. This allows to guide the
predictions of the MaskGIT predictor in early training. The
regularization terms stabilize learning by training the en-
coder representations to become more predictable. Both
loss terms are scaled with loss weights βdyn = 0.5 and βreg
= 0.1, respectively:

Ldyn = βdyn KL
[
sg(qϕ(zt | ot)) || pϕ(ẑt | ht)

]
+ βreg KL

[
qϕ(zt | ot) || sg(pϕ(ẑt | ht))

] (3)

Decoder Network The decoder network receives both
spatial latent states zt and temporal hidden states ht as
inputs. This helps the encoder to learn more compressed
representations by conditioning on past context. The two
representations are projected and concatenated along the
channel dimension for decoding. The reconstruction loss
Lrec learns hidden representations for the world model by
reconstructing input visual observations ot as follows:

Lrec = ||ôt − ot||22 (4)

Reward and Continuation Predictors Lrew and Lcon
train the world model to predict environment rewards and

6

Accurate and Efficient World Modeling with Masked Latent Transformers

Colle
ct

Coa
l

Colle
ct

Diam
on

d

Colle
ct

Drin
k

Colle
ct

Iro
n

Colle
ct

Sa
plin

g

Colle
ct

Sto
ne

Colle
ct

Woo
d

Defe
at

Ske
let

on

Defe
at

Zom
bie

Ea
t C

ow

Ea
t P

lan
t

Make
 Iro

n P
ick

axe

Make
 Iro

n S
word

Make
 St

on
e P

ick
axe

Make
 St

on
e S

word

Make
 W

oo
d P

ick
axe

Make
 W

oo
d S

word

Pla
ce

Fur
na

ce

Pla
ce

Pla
nt

Pla
ce

Sto
ne

Pla
ce

Tab
le

Wake
 Up

0.01

0.1

1

10

100
Su

cc
es

s R
at

e
(%

)

Sco
re

0

25

50

75

100

Su
cc

es
s R

at
e

(%
)

EMERALD Human Experts Delta-IRIS DreamerV3-XL

Figure 6: Achievements success rates over 256 evaluation episodes after training 10M environment steps. EMERALD
succeeds to solve all achievements at least once. Our method also achieves new state-of-the-art performance, becoming the
first method to surpass human experts performance in terms of achievements score.

episode continuation flags, which are used to compute
the returns of imagined trajectories during the imagination
phase. We adopt the symlog cross-entropy loss from Dream-
erV3 (Hafner et al., 2023), which scales and transforms
rewards into twohot encoded targets to ensure robust learn-
ing across games with different reward magnitudes:

Lrew = SymlogCrossEnt(r̂t, rt) (5a)
Lcon = BinaryCrossEnt(ĉt, ct) (5b)

Complete Training Objective Given an input batch con-
taining B sequences of T image observations o1:T , actions
a1:T , rewards r1:T , and episode continuation flags c1:T ,
the world model parameters (ϕ) are optimized to minimize
the following loss function:

L(ϕ) =
1

T

T∑
t=1

[
Lmask+Ldyn+Lrew+Lcon+Lrec

]
(6)

3.2. World Model Imagination Process

The agent critic and actor networks are trained with imagi-
nary trajectories generated from the world model. Learning
takes place entirely in latent space, which allows the agent
to process large batch sizes and increase generalization. We
flatten the model states of the sampled sequences along the
batch and time dimensions to generate Bimg = B× T sam-
ple trajectories using the world model. The self-attention
keys and values features computed during the world model
training phase are cached to be reused during the agent be-
havior learning phase and preserve past context. As shown
in Figure 3b, the world model imagines H = 15 steps into
the future using the Transformer network and the dynamics
network head, selecting actions by sampling from the actor
network categorical distribution. We detail the behavior
learning process in more detail in the appendix A.6.

4. Experiments
In this section, we describe our experiments on the Crafter
benchmark. We show the results obtained by EMERALD
in Table 2. We also perform an ablation study on the world
model architecture in section 4.3. Finally, we analyze the
impact of the number of decoding steps on world model
predictions in section 4.4. Additional comparison on the
Atari 100k benchmark with other model-based methods can
be found in the appendix A.7.

4.1. Crafter Benchmark

The Crafter benchmark was proposed in Hafner (2022) to
evaluate a wide range of general abilities within a single en-
vironment. Crafter is inspired by the video game Minecraft.
It features visual inputs, a discrete action space of 17 dif-
ferent actions and non-deterministic environment dynamics.
The goal of the agent is to achieve as many achievements
as possible among a list of 22 achievements1. The bench-
mark evaluates the capacity of the agent to use long-term
memory and accurate visual perception to collect resources
and craft items while surviving in a hostile environment.
The agents receive a single reward of +1 for each unlocked
achievement. It also perceives a reward of -0.1 for every
health point lost and a reward of +0.1 for every health point
that is regenerated. The benchmark compares the achieve-
ments score, which is computed as the geometric mean of
success rates for all 22 achievements. This metric prioritizes
general agents that unlock a wide range of achievements
over those that unlock a small number of achievements very
frequently. The mean episode return can also be used to

1Score (%) = exp
(

1
N

∑N
i=1 ln(1 + si)

)
− 1, where si ∈

[0; 100] are the N = 22 achievement success rates.

7

Accurate and Efficient World Modeling with Masked Latent Transformers

Figure 7: Impact of the number of decoding steps on world model prediction accuracy and efficiency. The randomness of the
Crafter environment requires the world model to make refinements on the predicted tokens to avoid the sampling of tokens
with contradictory representations. White rectangle boundaries show hallucinations due to incoherent predictions made
during imagination. We use S = 3 decoding steps during imagination to achieve good prediction accuracy and efficiency.

directly compare the metric optimized during training.

Table 2: Crafter benchmark comparison (10M env frames).
We show achievement scores and environment mean returns
aggregated over 5 different seeds. Following Micheli et al.
(2024), we also compute FPS as the total number of envi-
ronment frames collected divided by the training duration.

Method Score (%) Return #Params FPS

Human Experts 50.5 14.3 ± 2.3 - -
DreamerV3 (M) 34.9 14.0 ± 0.4 37M 38
DreamerV3 (XL) 39.6 15.4 ± 0.1 200M 23
∆-IRIS 42.5 16.1 ± 0.1 25M 12
EMERALD (Ours) 58.1 16.8 ± 0.6 30M 27

4.2. Results

Table 2 compares the performance of EMERALD with ∆-
IRIS and DreamerV3 on the Crafter benchmark after train-
ing 10M environment steps. We show achievements scores,
mean episode returns and total number of parameters. Anal-
ogously to Micheli et al. (2024), we also compare the num-
ber of collected Frames Per Second (FPS) using a single
RTX 3090 GPU for training. EMERALD achieves a score
of 58.1%, being the first algorithm to exceed human experts
performance on the benchmark. EMERALD’s enhanced
perception enables the agent to detect objects and enemies
more effectively, leading to increased survival time and im-
proved performance. Our method also benefits from reduced
training time compared to ∆-IRIS and DreamerV3 XL. The
MaskGIT prior reduces decoding time during imagination
while preserving the coherence of predicted tokens. Figure 6
compares the success rates of individual achievements. We
find that EMERALD successfully solves all achievements

at least once when evaluating on 256 episodes. The agent
progressively learns to master all levels of the technology
tree, leading to the collection of diamonds.

4.3. Ablation Study

We study the impact of using spatial latent states and a
Transformer-based world model on performance and train-
ing efficiency. Table 3 shows the performance obtained by
each ablation, applying one modification at a time. We first
experiment replacing the DreamerV3 vector latent space
by a spatial latent space with MaskGIT predictions. We
find that the use of a spatial latent state significantly helps
to reduce reconstruction error and increase performance.
This improves world model accuracy by encoding important
environment details for the agent in the latent space. We
then compare the use of a Transformer-based world model
with masked self-attention with the recurrent-based world
model of DreamerV3. We find that attention helps to further
improve performance by conditioning representations on
a longer context. The capacity of self-attention to model
temporal relationships without recurrence makes the Trans-
former architecture highly effective at capturing historical
context. The use of a Transformer-based architecture also
improves training efficiency by not requiring recurrent pro-
cessing of hidden states during the world model forward.

4.4. Choice of the number of decoding steps

While parallel predictions allow the world model to signifi-
cantly reduce decoding time, this can also generate unclear
predictions with unmatching sets of tokens. The random-
ness of the Crafter environment requires the world model
to make refinements on the predicted tokens to avoid the
sampling of tokens with contradictory representations. To

8

Accurate and Efficient World Modeling with Masked Latent Transformers

Table 3: Ablation study on world model architecture and latent space size (10M environment frames). We compare model
performance, training efficiency and reconstruction quality. The performance metrics are aggregated over 5 seeds.

World Model Architecture Latent Space Size MaskGIT Score (%) Return #Params FPS Pixel L2 loss

DreamerV3 (M) RSSM 32 No 34.9 14.0 ± 0.4 37M 38 0.000522
DreamerV3 (S) RSSM 4× 4× 32 Yes 40.4 15.8 ± 0.1 28M 20 0.000231

EMERALD TSSM 32 No 31.8 13.1 ± 0.5 30M 44 0.000890
4× 4× 32 Yes 58.1 16.8 ± 0.6 30M 27 0.000241

Figure 8: World model prediction accuracy. We show the to-
ken prediction accuracy for world model rollout aggregated
over 5 seeds for several numbers of decoding steps.

avoid incoherent predictions, we follow MaskGIT by using
multiple decoding steps during the imagination phase. Fig-
ure 7 shows the impact of the number of decoding steps on
prediction quality. We find that using a single decoding step,
without revising the prediction, can generate blurry predic-
tions. These unmatching representations in latent space
cause the world model to make incoherent predictions for
successive time steps. Using a small number of decoding
steps helps to revise the prediction and limit this effect while
maintaining good prediction efficiency. Therefore, we set
S = 3 decoding steps in our experiments.

Figure 8 shows the average accuracy of predictions for dif-
ferent numbers of decoding steps at imaginations time (No
MaskGIT designates predictions made by the linear head
learned by the dynamics loss Ldyn). The accuracy is aver-
aged of the 5 EMERALD seeds and computed by comparing
the target future states with predicted states during rollout,
conditioned on the correct sequence of future actions. We
find that using less than 3 decoding steps during imagination
results in a drop of accuracy. We also compare the rollout
time in seconds required to imaginate 15 time steps in the
future. Using a larger number of decoding steps can lead to
a small increase in accuracy but also results in longer rollout

duration, which impacts training efficiency. We performed
a corresponding ablation to study the impact of the number
of imagination decoding steps on final performance over 5
seeds. Table 4 shows the impact on final performance when
using different numbers of decoding steps for imagination.
We find that the decrease of prediction accuracy has a notice-
able impact on final performance. The decrease of average
accuracy in world model predictions leads to the generation
of less accurate trajectories for the actor and critic networks.
Our experiments using 3 and 8 decoding steps achieves
higher returns and achievement scores compared to using a
single decoding step or a simple linear head for prediction.

Table 4: Impact of the number of world model decoding
steps S on final performance and training efficiency.

#Decoding Steps Score (%) Return FPS

No MaskGIT 51.6 16.1 ± 0.7 33
S = 1 step 53.8 16.1 ± 0.5 33
S = 3 steps 58.1 16.8 ± 0.6 27
S = 8 steps 55.1 16.5 ± 0.6 23

5. Conclusion
We propose EMERALD, a Transformer model-based rein-
forcement learning algorithm using a spatial latent state with
MaskGIT predictions to generate accurate trajectories in la-
tent space and improve the agent performance. EMERALD
achieves new state-of-the-art performance on the Crafter
benchmark with a budget of 10M environment steps, becom-
ing the first method to exceed human experts performance.
We study the impact of latent space size and find that the use
of a spatial latent state helps the world model to perceive en-
vironment details that are crucial to the agent. Additionally,
we demonstrate that a Transformer-based architecture out-
performs a recurrent-based approach by leveraging attention
to model long-range dependencies more effectively. Based
on these findings, we hope this work will inspire researchers
to further explore the impact of masked latent world models
in more complex environments, such as Minecraft.

9

Accurate and Efficient World Modeling with Masked Latent Transformers

Acknowledgments
This work was partly supported by The Alexander von Hum-
boldt Foundation (AvH).

Impact Statement
The development of autonomous agents for real-world ap-
plications introduces various safety and environmental con-
cerns. In real-world scenarios, an agent might cause harm
to individuals and damage to its surroundings during both
training and deployment. Although using world models dur-
ing training can mitigate these risks by allowing policies to
be learned through simulation, some risks may still persist.
This statement aims to inform users of these potential risks
and emphasize the importance of AI safety in the application
of autonomous agents to real-world scenarios.

References
Alonso, E., Jelley, A., Micheli, V., Kanervisto, A., Storkey,

A. J., Pearce, T., and Fleuret, F. Diffusion for world mod-
eling: Visual details matter in atari. Advances in Neural
Information Processing Systems, 37:58757–58791, 2024.

Ba, J. L., Kiros, J. R., and Hinton, G. E. Layer normalization.
arXiv preprint arXiv:1607.06450, 2016.

Bellemare, M. G., Naddaf, Y., Veness, J., and Bowling, M.
The arcade learning environment: An evaluation plat-
form for general agents. Journal of artificial intelligence
research, 47:253–279, 2013.

Bengio, Y., Léonard, N., and Courville, A. Estimating or
propagating gradients through stochastic neurons for con-
ditional computation. arXiv preprint arXiv:1308.3432,
2013.

Chang, H., Zhang, H., Jiang, L., Liu, C., and Freeman,
W. T. Maskgit: Masked generative image transformer. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 11315–11325, 2022.

Chen, C., Yoon, J., Wu, Y.-F., and Ahn, S. Transdreamer:
Reinforcement learning with transformer world models.
In Deep RL Workshop NeurIPS 2021, 2021.

Cho, K., van Merrienboer, B., Gulcehre, C., Bougares, F.,
Schwenk, H., and Bengio, Y. Learning phrase represen-
tations using rnn encoder-decoder for statistical machine
translation. In Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP 2014), 2014.

Dai, Z., Yang, Z., Yang, Y., Carbonell, J. G., Le, Q., and
Salakhutdinov, R. Transformer-xl: Attentive language
models beyond a fixed-length context. In Proceedings of
the 57th Annual Meeting of the Association for Computa-
tional Linguistics, pp. 2978–2988, 2019.

Esser, P., Rombach, R., and Ommer, B. Taming transformers
for high-resolution image synthesis. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 12873–12883, 2021.

Guss, W. H., Codel, C., Hofmann, K., Houghton, B., Kuno,
N., Milani, S., Mohanty, S., Liebana, D. P., Salakhutdi-
nov, R., Topin, N., et al. The minerl 2019 competition
on sample efficient reinforcement learning using human
priors. arXiv preprint arXiv:1904.10079, 2019.

Ha, D. and Schmidhuber, J. Recurrent world models facil-
itate policy evolution. Advances in Neural Information
Processing Systems, 31, 2018.

Hafner, D. Benchmarking the spectrum of agent capabilities.
In International Conference on Learning Representations,
2022.

Hafner, D., Lillicrap, T., Fischer, I., Villegas, R., Ha, D.,
Lee, H., and Davidson, J. Learning latent dynamics for
planning from pixels. In International Conference on
Machine Learning, pp. 2555–2565. PMLR, 2019.

Hafner, D., Lillicrap, T., Ba, J., and Norouzi, M. Dream
to control: Learning behaviors by latent imagination. In
International Conference on Learning Representations,
2020.

Hafner, D., Lillicrap, T., Norouzi, M., and Ba, J. Master-
ing atari with discrete world models. In International
Conference on Learning Representations, 2021.

Hafner, D., Pasukonis, J., Ba, J., and Lillicrap, T. Mastering
diverse domains through world models. arXiv preprint
arXiv:2301.04104, 2023.

Kaiser, L., Babaeizadeh, M., Milos, P., Osinski, B., Camp-
bell, R. H., Czechowski, K., Erhan, D., Finn, C., Koza-
kowski, P., Levine, S., et al. Model-based reinforcement
learning for atari. In International Conference on Learn-
ing Representations, 2020.

Karras, T., Aittala, M., Aila, T., and Laine, S. Elucidating
the design space of diffusion-based generative models.
Advances in Neural Information Processing Systems, 35:
26565–26577, 2022.

Kingma, D. P. and Welling, M. Auto-encoding variational
bayes. In International Conference on Learning Repre-
sentations, 2014.

LeCun, Y., Bengio, Y., and Hinton, G. Deep learning. nature,
521(7553):436–444, 2015.

Lee, D., Kim, C., Kim, S., Cho, M., and HAN, W. S. Draft-
and-revise: Effective image generation with contextual rq-
transformer. Advances in Neural Information Processing
Systems, 35:30127–30138, 2022.

10

Accurate and Efficient World Modeling with Masked Latent Transformers

Meo, C., Lica, M., Ikram, Z., Nakano, A., Shah, V., Di-
dolkar, A. R., Liu, D., Goyal, A., and Dauwels, J. Masked
generative priors improve world models sequence mod-
elling capabilities. arXiv preprint arXiv:2410.07836,
2024.

Micheli, V., Alonso, E., and Fleuret, F. Transformers are
sample-efficient world models. In International Confer-
ence on Learning Representations, 2023.

Micheli, V., Alonso, E., and Fleuret, F. Efficient world mod-
els with context-aware tokenization. In International Con-
ference on Machine Learning, pp. 35623–35638. PMLR,
2024.

Pašukonis, J., Lillicrap, T. P., and Hafner, D. Evaluating
long-term memory in 3d mazes. In International Confer-
ence on Learning Representations, 2023.

Ramesh, A., Pavlov, M., Goh, G., Gray, S., Voss, C., Rad-
ford, A., Chen, M., and Sutskever, I. Zero-shot text-
to-image generation. In International Conference on
Machine Learning, pp. 8821–8831. PMLR, 2021.

Robine, J., Höftmann, M., Uelwer, T., and Harmeling, S.
Transformer-based world models are happy with 100k
interactions. In International Conference on Learning
Representations, 2023.

Schrittwieser, J., Antonoglou, I., Hubert, T., Simonyan, K.,
Sifre, L., Schmitt, S., Guez, A., Lockhart, E., Hassabis,
D., Graepel, T., et al. Mastering atari, go, chess and shogi
by planning with a learned model. Nature, 588(7839):
604–609, 2020.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.

Schwarzer, M., Ceron, J. S. O., Courville, A., Bellemare,
M. G., Agarwal, R., and Castro, P. S. Bigger, better,
faster: Human-level atari with human-level efficiency.
In International Conference on Machine Learning, pp.
30365–30380. PMLR, 2023.

Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., and
Ganguli, S. Deep unsupervised learning using nonequi-
librium thermodynamics. In International Conference on
Machine Learning, pp. 2256–2265. PMLR, 2015.

Sutton, R. S. Dyna, an integrated architecture for learning,
planning, and reacting. ACM Sigart Bulletin, 2(4):160–
163, 1991.

Tassa, Y., Doron, Y., Muldal, A., Erez, T., Li, Y., Casas, D.
d. L., Budden, D., Abdolmaleki, A., Merel, J., Lefrancq,
A., et al. Deepmind control suite. arXiv preprint
arXiv:1801.00690, 2018.

Van Den Oord, A., Vinyals, O., et al. Neural discrete rep-
resentation learning. Advances in Neural Information
Processing Systems, 30, 2017.

Wang, S., Liu, S., Ye, W., You, J., and Gao, Y. Efficientzero
v2: Mastering discrete and continuous control with lim-
ited data. In International Conference on Machine Learn-
ing, pp. 51041–51062. PMLR, 2024.

Williams, R. J. Simple statistical gradient-following algo-
rithms for connectionist reinforcement learning. Machine
learning, 8:229–256, 1992.

Yan, W., Hafner, D., James, S., and Abbeel, P. Temporally
consistent transformers for video generation. In Inter-
national Conference on Machine Learning, pp. 39062–
39098. PMLR, 2023.

Zhang, W., Wang, G., Sun, J., Yuan, Y., and Huang, G.
Storm: Efficient stochastic transformer based world mod-
els for reinforcement learning. Advances in Neural Infor-
mation Processing Systems, 36, 2024.

11

Accurate and Efficient World Modeling with Masked Latent Transformers

A. Appendix
A.1. Latent Space Comparison

(a) DreamerV3’s Vector Latent Space

(b) EMERALD’s Spatial Latent Space

Figure 9: Comparison between the standard DreamerV3 vector latent space and EMERALD spatial latent space. We
illustrate the size of each grouped latent space in tokens, where each token is of dimension D/G. The compressed nature of
the DreamerV3 vector latent space zt ∈ RG×(D/G) can result in the loss of crucial information, negatively impacting the
agent’s performance. In contrast, the use of a spatial latent state zt ∈ RH×W×G×(D/G) improves world model accuracy and
provides further information to the agent.

Latent
Dec

MLP

(a) MLP Head Prediction

Latent
Dec

Spatial MaskGIT Masking

(b) MaskGIT Decoding

Figure 10: Comparison between standard MLP head and MaskGIT for decoding. The MLP head is very efficient and samples
predictions without refinements, which can lead to ambiguous predictions with tokens having unmatching representations.
MaskGIT limits this effect by progressively sampling and refining the prediction to avoid incoherent representations.

12

Accurate and Efficient World Modeling with Masked Latent Transformers

A.2. Success Rates Comparison

Table 5: Success rates of each method on the Crafter benchmark (10M environment steps).

Achievement Human Experts DreamerV3 (M) DreamerV3 (XL) ∆-IRIS EMERALD

Collect Coal 86.0% 77.3% 86.8% 90.6% 91.6%
Collect Diamond 12.0% 0.0% 0.0% 0.0% 0.5%
Collect Drink 92.0% 93.0% 96.2% 98.4% 95.8%
Collect Iron 53.0% 12.1% 32.6% 76.6% 71.2%
Collect Sapling 67.0% 86.3% 97.0% 96.9% 99.9%
Collect Stone 100.0% 95.4% 98.2% 98.4% 97.9%
Collect Wood 100.0% 99.9% 99.9% 100.0% 99.8%
Defeat Skeleton 31.0% 50.5% 74.3% 81.3% 82.3%
Defeat Zombie 84.0% 87.6% 92.4% 96.9% 92.3%
Eat Cow 89.0% 84.1% 94.9% 98.4% 90.5%
Eat Plant 8.0% 0.4% 0.8% 0.0% 0.1%
Make Iron Pickaxe 26.0% 0.0% 0.0% 0.0% 41.5%
Make Iron Sword 22.0% 0.0% 0.0% 1.6% 41.6%
Make Stone Pickaxe 78.0% 72.0% 84.2% 95.3% 93.7%
Make Stone Sword 78.0% 80.3% 91.0% 95.3% 83.5%
Make Wood Pickaxe 100.0% 96.5% 98.6% 98.4% 99.2%
Make Wood Sword 45.0% 90.0% 96.9% 98.4% 98.8%
Place Furnace 32.0% 90.0% 96.0% 95.3% 96.2%
Place Plant 24.0% 86.3% 97.0% 96.9% 99.9%
Place Stone 90.0% 94.8% 98.2% 98.4% 97.4%
Place Table 100.0% 99.3% 99.9% 98.4% 99.4%
Wake Up 73.0% 92.2% 98.0% 89.1% 92.2%

Score 50.5% 34.9% 39.6% 42.5% 58.1%

13

Accurate and Efficient World Modeling with Masked Latent Transformers

A.3. Crafter Achievement Curves

0.0 0.5 1.0
1e7

0

10

20
Reward

0.0 0.5 1.0
1e7

0

500

1000

1500 Length

0.0 0.5 1.0
1e7

0

10

20

Collect Coal

0.0 0.5 1.0
1e7

0

1

2
Collect Diamond

0.0 0.5 1.0
1e7

0

100

200

300
Collect Drink

0.0 0.5 1.0
1e7

0

5

10

15
Collect Iron

0.0 0.5 1.0
1e7

0

10

20

Collect Sampling

0.0 0.5 1.0
1e7

0

50

100
Collect Stone

0.0 0.5 1.0
1e7

0

20

40

Collect Wood

0.0 0.5 1.0
1e7

0

5

10

15
Defeat Skeleton

0.0 0.5 1.0
1e7

0

5

10

Defeat Zombie

0.0 0.5 1.0
1e7

0

5

10

Eat Cow

0.0 0.5 1.0
1e7

0

1

2
Eat Plant

0.0 0.5 1.0
1e7

0

2

4

6
Make Iron Pickaxe

0.0 0.5 1.0
1e7

0

2

4

Make Iron Sword

0.0 0.5 1.0
1e7

0

10

Make Stone Pickaxe

0.0 0.5 1.0
1e7

0

5

10

Make Stone Sword

0.0 0.5 1.0
1e7

0

5

10

Make Wood Pickaxe

0.0 0.5 1.0
1e7

0

5

10

Make Wood Sword

0.0 0.5 1.0
1e7

0

10

20

Place furnace

0.0 0.5 1.0
1e7

0

5

10
Place Plant

0.0 0.5 1.0
1e7

0

25

50

75

Place Stone

0.0 0.5 1.0
1e7

0

5

10

Place Table

0.0 0.5 1.0
1e7

0

5

10

15
Wake Up

Figure 11: Achievement counts of EMERALD with shaded min and max.

14

Accurate and Efficient World Modeling with Masked Latent Transformers

A.4. Model Architecture

Table 6: Architecture of the encoder and decoder networks. The size of submodules is omitted and can be derived from
output shapes. We use layer normalization (LN) and a SiLU activation layer inside residual blocks.

Encoder submodules Output shape

Input image (ot) 64× 64× 3
Conv strided 32× 32× 32
Residual block 32× 32× 32
Conv strided 16× 16× 64
Residual block 16× 16× 64
Conv strided 8× 8× 128
Residual block 8× 8× 128
Conv strided 4× 4× 256
Residual block 4× 4× 256
Conv 4× 4× 1024
Reshape + Softmax 4× 4× 32× 32
Sample + One Hot (outputs zt) 4× 4× 32× 32

Decoder submodules Output shape

Input latent state (zt) 4× 4× 32× 32
Reshape (label as xz) 4× 4× 1024

Input hidden state (ht) 512
Linear + Reshape 4× 4× 128
Conv (label as xh) 4× 4× 256

Concat xz and xh 4× 4× 1280
Conv 4× 4× 256
Residual block 4× 4× 256
Conv transposed 8× 8× 128
Residual block 8× 8× 128
Conv transposed 16× 16× 64
Residual block 16× 16× 64
Conv transposed 32× 32× 32
Residual block 32× 32× 32
Conv transposed (outputs ôt) 64× 64× 3

Table 7: Transformer network. The latent states z0:T−1 and one-hot encoded actions a0:T−1 ∈ RT×A are combined using
an action mixer network (Zhang et al., 2024). The features are processed by the Transformer network to compute temporal
hidden states h1:T .

Submodule Module alias Output shape

Inputs latent states (z0:T−1)
Latent Encoder

T × 4× 4× 32× 32
Reshape + Conv T × 4× 4× 128
Flatten + Linear T × 512

Concat actions (a0:T−1)
Action Mixer

T × (512 +A)
Linear + LN + SiLU T × 512

Linear + LN T × 512

Transformer block ×K Transformer
Network T × 512Outputs hidden states (h1:T)

15

Accurate and Efficient World Modeling with Masked Latent Transformers

Table 8: MaskGIT predictor. The latent states zt are masked and concatenated with spatial hidden states. The features are
processed by the Transformer network to predict masked tokens ẑt.

Submodule Module alias Output shape

Inputs hidden states (ht)
Latent Decoder

512
Linear + Reshape 4× 4× 128

Conv 4× 4× 256

Concat masked latent states (zt)
Latent Embedding

4× 4× 1536
Flatten + Linear 16× 256

Add pos embeddings 16× 256

Transformer block ×Kmask

MaskGIT
Predictor

16× 256
Linear 16× 1024

Reshape + Softmax 4× 4× 32× 32
Sample + One Hot (outputs ẑt) 4× 4× 32× 32

Table 9: World model predictors and actor-critic networks architecture. Each network first projects spatial latent states zt
into feature vectors for concatenation with hidden states ht. Each Linear layer is followed by a layer normalization and
SiLU activation except for the last layer which outputs distribution logits.

Predictor submodules Output shape

Inputs latent states (zt) 4× 4× 32× 32
Reshape + Conv 4× 4× 128
Flatten + Linear 512
Concat hidden states (ht) 1024
Linear + LN + SiLU 512
Linear + LN + SiLU 512
Linear prediction layer Output dim

Network Output dim Output Distribution

Reward predictor 255 Symlog Discrete
Continue predictor 1 Bernoulli
Critic network 255 Symlog Discrete
Actor network A One hot Categorical

16

Accurate and Efficient World Modeling with Masked Latent Transformers

A.5. Model Hyperparameters

Table 10: EMERALD hyper-parameters.

Hyperparameter Value

General
Image resolution 64× 64

Batch size (B) 16
Sequence length (T) 64
Optimizer Adam
Environment parallel instances 16
Collected frames per training Step 16
Replay buffer capacity 1M

World model
Latent space size (H ×W ×G) 4× 4× 32

Number categories per group 32
Temporal Transformer blocks 4
Temporal Transformer width 512
Spatial MaskGIT blocks 2
Spatial MaskGIT width 256
Number of attention heads 8
Dropout probability 0.1
Attention context length 64
Learning rate 10−4

Gradient clipping 1000

Actor-critic
Imagination horizon (H) 15
Number of decoding steps (S) 3
Return discount 0.997
Return lambda 0.95
Critic EMA Decay 0.98
Return normalization Momentum 0.99
Actor entropy Scale 3 · 10−4

Learning rate 3 · 10−5

Gradient clipping 100

17

Accurate and Efficient World Modeling with Masked Latent Transformers

A.6. Actor Critic Learning

Analogously to world model predictor networks, the actor and critic networks are designed as simple MLPs with a projection
layer for the spatial latent states. The two network have parameter vectors (θ) and (ψ), respectively.

Actor Network: at ∼ πθ(at|st)
Critic Network: vt ∼ Vψ(vt|st)

(7)

Critic Learning Following DreamerV3, the critic network learns to minimize the symlog cross-entropy loss with
discretized λ-returns obtained from imagined trajectories with rewards and episode continuation flags predicted by the world
model:

Rλt = r̂t+1 + γĉt+1

(
(1− λ)Vψ(st+1) + λRλt+1

)
RλH+1 = Vψ(sH+1) (8)

The critic does not use a target network but relies on its own predictions for estimating rewards beyond the prediction
horizon. This requires stabilizing the critic by adding a regularizing term toward the outputs of its own EMA network Vψ′ .
Equation 9 defines the critic network loss:

Lcritic(ψ) =
1

H

H∑
t=1

[
SymlogCrossEnt

(
vt, R

λ
t

)
discrete returns regression

+SymlogCrossEnt
(
vt, Vψ′(st)

)
critic EMA regularizer

]
(9)

Actor Learning The actor network learns to select actions that maximize the predicted returns using Reinforce (Williams,
1992) while maximizing the policy entropy to ensure sufficient exploration during both data collection and imagination. The
actor network loss is defined as follows:

Lactor(θ) =
1

H

H∑
t=1

[
− sg(Aλt) log πθ(at | st)

reinforce

− ηH
(
πθ(at | st)

)
entropy regularizer

]
(10)

Where Aλt =
(
R̂λt − Vψ(st)

)
/max(1, S) defines advantages computed using normalized returns. The returns are scaled

using exponentially moving average statistics of their 5th and 95th batch percentiles to ensure stable learning across all
Atari games:

S = EMA(Per(Rλt , 95)− Per(Rλt , 5),momentum = 0.99) (11)

18

Accurate and Efficient World Modeling with Masked Latent Transformers

A.7. Atari 100k Benchmark

The commonly used Atari 100k benchmark was proposed in Kaiser et al. (2020) to evaluate reinforcement learning agents
on Atari games in low data regime. The benchmark includes 26 Atari games with a budget of 400k environment frames,
amounting to 100k interactions between the agent and the environment using the default action repeat setting. This amount
of environment steps corresponds to about two hours (1.85 hours) of real-time play, representing a similar amount of time
that a human player would need to achieve reasonably good performance.

We evaluate our method on the benchmark to assess EMERALD’s performance on environments that do not necessarily
require the use of spatial latents to achieve near perfect reconstruction. We also demonstrate improved training efficiency
compared to ∆-IRIS and DIAMOND. Following preceding works, we use human-normalized metrics and compare the
mean and median returns across all 26 games. The human-normalized scores are computed for each game using the scores
achieved by a human player and the scores obtained by a random policy: normed score = agent score−random score

human score−random score .

The current state-of-the-art is held by EfficientZero V2 (Wang et al., 2024), which uses Monte-Carlo Tree Search to select
the best action at every time step. Another recent notable work is BBF (Schwarzer et al., 2023), a model-free agent using
learning techniques that are orthogonal to our work such as periodic network resets and hyper-parameters annealing to
improve performance. In this work, to ensure fair comparison, we compare our method with model-based approaches that
do not utilize look-ahead search techniques.

We compare EMERALD with Diamond (Alonso et al., 2024), ∆-IRIS (Micheli et al., 2024) and DreamerV3 (Hafner
et al., 2023) as well as other model-based approaches like STORM (Zhang et al., 2024), IRIS (Micheli et al., 2023) and
SimPLe (Kaiser et al., 2020). We find that EMERALD achieves comparable aggregated performance as ∆-IRIS and
Diamond while offering higher training efficiency. When using a RTX 3090 GPU for training, EMERALD requires only 17
hours to reach 400k environment steps on the Breakout game while ∆-IRIS and DIAMOND need 27 hours and 75 hours,
respectively.

Table 11: Agent scores and human-normalized metrics on the 26 games of the Atari 100k benchmark. We show average
scores over 5 seeds. Bold numbers indicate best performing method for each game.

Game Random Human SimPLe TWM IRIS DreamerV3 STORM ∆-IRIS DIAMOND EMERALD

Alien 228 7128 617 675 420 959 984 391 744 651
Amidar 6 1720 74 122 143 139 205 64 226 129
Assault 222 742 527 683 1524 706 801 1123 1526 798
Asterix 210 8503 1128 1116 854 932 1028 2492 3698 1045
Bank Heist 14 753 34 467 53 649 641 1148 20 927
Battle Zone 2360 37188 4031 5068 13074 12250 13540 11825 4702 15800
Boxing 0 12 8 78 70 78 80 70 87 71
Breakout 2 30 16 20 84 31 16 302 133 62
Chopper Command 811 7388 979 1697 1565 420 1888 1183 1370 990
Crazy Climber 10780 35829 62584 71820 59324 97190 66776 57854 99168 75380
Demon Attack 152 1971 208 350 2034 303 165 533 288 498
Freeway 0 30 17 24 31 0 34 31 33 31
Frostbite 65 4335 237 1476 259 909 1316 279 274 221
Gopher 258 2412 597 1675 2236 3730 8240 6445 5898 14702
Hero 1027 30826 2657 7254 7037 11161 11044 7049 5622 7655
James Bond 29 303 100 362 463 445 509 309 427 195
Kangaroo 52 3035 51 1240 838 4098 4208 2269 5382 8780
Krull 1598 2666 2205 6349 6616 7782 8413 5978 8610 7600
Kung Fu Master 258 22736 14862 24555 21760 21420 26182 21534 18714 22822
Ms Pacman 307 6952 1480 1588 999 1327 2673 1067 1958 1710
Pong –21 15 13 19 15 18 11 20 20 20
Private Eye 25 69571 35 87 100 882 7781 103 114 100
Qbert 164 13455 1289 3331 746 3405 4522 1444 4499 1245
Road Runner 12 7845 5641 9107 9615 15565 17564 10414 20673 6620
Seaquest 68 42055 683 774 661 618 525 827 551 468
Up N Down 533 11693 3350 15982 3546 7600 7985 4072 3856 5227

Superhuman 0 N/A 1 8 10 9 10 11 11 11
Normed Mean (%) 0 100 33 96 105 112 127 139 146 134
Normed Median (%) 0 100 13 51 29 49 58 53 37 51

19

