
DistRL: An Asynchronous Distributed Reinforcement
Learning Framework for On-Device Control Agents

Taiyi Wang1,2∗†, Zhihao Wu3∗ , Jianheng Liu4, Derek Yuen3,
Jianye Hao3, Jun Wang4, Kun Shao3†

1University of Cambridge, 2Powersense Technology Limited
3Huawei Noah’s Ark Lab

4University College London

Abstract
On-device control agents, especially on mobile devices, are responsible for op-
erating mobile devices to fulfill users’ requests, enabling seamless and intuitive
interactions. Integrating Multimodal Large Language Models (MLLMs) into
these agents enhances their ability to understand and execute complex commands,
thereby improving user experience. However, fine-tuning MLLMs for on-device
control presents significant challenges due to limited data availability and ineffi-
cient online training processes. This paper introduces DistRL, a novel framework
designed to enhance the efficiency of online RL fine-tuning for mobile device
control agents. DistRL employs centralized training and decentralized data acqui-
sition to ensure efficient fine-tuning in the context of dynamic online interactions.
Additionally, the framework is backed by our tailor-made RL algorithm, which
effectively balances exploration with the prioritized utilization of collected data to
ensure stable and robust training. Our experiments show that, on average, DistRL
delivers a 3× improvement in training efficiency and enables training data collec-
tion 2.4× faster than the leading synchronous multi-machine methods. Notably,
after training, DistRL achieves a 20% relative improvement in success rate com-
pared to state-of-the-art methods on general Android tasks from an open bench-
mark, significantly outperforming existing approaches while maintaining the same
training time. These results validate DistRL as a scalable and efficient solution, of-
fering substantial improvements in both training efficiency and agent performance
for real-world, in-the-wild device control tasks.

1 Introduction
The integration of Large Language Models (LLMs) into agents capable of complex tasks has gained
momentum with initiatives like AutoGPT [44], HuggingGPT [40], and MetaGPT [9], AutoUI [48],
etc. These LLM-based agents extend beyond language processing to perform sophisticated func-
tions, including software development and gaming, leveraging their reasoning abilities to interact
with and manipulate environments effectively.

One of the key factors driving this trend is the advent of Multimodal Large Language Models
(MLLMs), which can process diverse inputs such as text, images, audio, and video, thereby sig-
nificantly expanding the scope of LLM applications [2, 1, 50, 16]. This versatility enables MLLM-
based on-device control agents—intelligent systems embedded within mobile devices that manage
and operate applications to execute user commands seamlessly—to interact more naturally and effi-
ciently with their surroundings, completing more complex tasks that require a deeper understanding
of context and the ability to learn from interactions. For instance, agents designed to operate smart-

∗Equal Contribution.
†Corresponding Email: Taiyi.Wang@cl.cam.ac.uk, shaokun2@huawei.com

Accepted by 38th Workshop on Fine-Tuning in Machine Learning (NeurIPS 2024).

Di st RL:
Scal abl e

Di st r i but ed RL
Fi ne- Tuni ng

Fr amewor k

Agents

Mobile Devices/
Emulators

Workers: Decentralized Execution

 Distributed Prioritized
Replay Buffer

Host Learner: Centralized Training

Multi-GPUs
Training Support

Update Policy Out

Prioritized Trajectory Data In

Trajectory Data In

Auto Evaluators

Expert
Labels

On-device Control Task

User: "Update Google
Map in Playstore"

Requests In

Control Actions'
Sequence Out

RL Algorithm
Backbone: A-RIDE

Figure 1: Overview of On-device LLM control with DistRL.

phone applications can interpret screenshots from the operating system, demonstrating flexibility
and adaptability that make them valuable tools in a wide range of scenarios [45, 43]. These agents
are essential for tasks such as automating app interactions, managing settings, and enhancing user
productivity by providing intuitive control over device functionalities.

However, a gap remains between LLMs’ general reasoning capabilities and their effectiveness in
GUI-based device control. While LLMs can process information, they struggle with rational behav-
ior and error recovery in real-world environments. Previous solutions use complex wrappers, but
without updating model weights, their performance remains limited [4]. Consequently, prior work
in building device agents often relies on constructing complex wrappers around these models, com-
bining them with prompting, search, or tool use. However, without updating the model’s weights,
the effectiveness of these agents remains inherently limited by the capabilities of the base model.

To bridge this gap, fine-tuning(type of light training) aforementioned agents on demonstrations via
imitation learning [48, 27, 45] channels pre-trained abilities into actionable behaviors suitable for
device control. However, the dynamic nature of devices and the web renders models trained on static
data sub-optimal as ecosystems evolve. Such agents struggle to recover from mistakes in changing
environments, limiting their practical utility. Therefore, building robust and reliable device-control
agents necessitates an interactive approach that enables MLLMs to adapt and learn from their own
experiences on devices and the Internet.

Moreover, MLLMs are prone to confidently generating incorrect content that deviates from hu-
man preferences [30, 51, 4, 42]. To address these challenges, introducing reinforcement learning
(RL)-based fine-tuning methods, such as Reinforcement Learning from Human Feedback (RLHF),
becomes essential. RLHF leverages human feedback to align model outputs with desired behaviors
and preferences. By incorporating RL-based methods, models can learn to optimize policies that
not only perform tasks effectively but also adhere to human expectations. Details of the problem
formulation as an RL-based fine-tuning approach will be discussed in Sections 2.2 and 3.

One significant challenge in RL-based fine-tuning of mobile agents is the lack of support for ef-
ficient online fine-tuning. Existing offline datasets, such as AitW [34] and AndroidControl [17],
provide static data that do not capture the dynamic and evolving nature of mobile apps. Frequent
updates and new elements like advertisements cause distribution shifts that offline-trained agents
struggle to handle, leading to failures in real-world deployments.

The second challenge is the need for Reinforcement Learning (RL) algorithms that can operate
efficiently within a distributed framework. Asynchronous data collection introduces algorithmic
difficulties: non-stationary data distributions hinder convergence, and delays between policy updates
and data collection can cause agents to act on outdated policies, degrading performance. Ensuring
consistency and stability becomes more complex when dealing with distributed agents collecting
data at different rates and times, necessitating robust mechanisms to handle delayed or out-of-order
updates.

To further demonstrate these challenges and the non-trivial nature of bringing MLLMs into mo-
bile device control scenarios, our extensive case studies reveal that even the most advanced propri-
etary Multimodal Large Language Models (MLLMs) like GPT-4V [1], agents such as AutoUI with

2

Supervised Fine-Tuning (SFT), and state-of-the-art mobile control agents like DIGIRL [3] fail in
numerous scenarios. A detailed analysis of these failure modes is provided in Appendix A.1.

These challenges motivate us to develop DistRL, as illustrated in Figure 1. DistRL is a novel and
scalable reinforcement learning (RL) fine-tuning pipeline specifically designed for on-device mobile
control agents on Android, featuring Centralized Training and Decentralized Data Acquisitions.
Our main contributions are:

1. Scalable and Asynchronous Architecture for Data Acquisitions: DistRL introduces a decou-
pled and asynchronous architecture that deploys a tailor-made RL fine-tuned agent across a variety
of heterogeneous worker devices and environments for remote data collection. Each worker asyn-
chronously sends real-time interaction data back to the central learner, which continuously updates
the agent. This design improves training efficiency and scalability, making DistRL highly effective
for adapting control agents to dynamic environments.

2. Advanced RL Algorithm Tailored for Centralized Training: DistRL leverages a novel off-
policy reinforcement learning algorithm, A-RIDE (detailed in Section 5), specifically designed for
distributed and asynchronous data utlizations. Our algorithm prioritizes significant experiences to
enhance sample efficiency, ensuring that the learning process focuses on the most informative data
while simultaneously encouraging exploratory behavior among workers.

In practice, we validate our framework using a T5-based multimodal generation model with 1.3B
parameters (details in Appendix A.5.1) to efficiently handle both vision and language inputs. To
the best of our knowledge, DistRL is the first work to scale autonomous, online RL fine-tuning for
mobile device control in a distributed environment.

2 Related Works
2.1 Multi-Modal On-device Control Agents
Recent advancements in pre-trained Large Language Models (LLMs) and Multimodal LLMs
(MLLMs) have revolutionized on-device control agents, moving beyond early methods like be-
havioral cloning or reinforcement learning [29, 25, 41]. Early agents simulated mouse clicks and
typing [41, 11] but faced scalability and adaptability challenges.

Modern approaches use pre-trained models with zero or few-shot prompting and fine-tuning for en-
hanced capabilities. WebGPT [27] employ fine-tuned models for web browsing, while WebAgent [8]
generates web code using T5. AppAgent [45] and MobileAgent [43] act as drivers, enabling the
LLMs to explore and act on mobile device environments. Training multimodal device control agents
poses challenges like pixel-level interactions and variability in device ecosystems. Many rely on
proprietary Vision-Language Models (VLMs) and wrappers for GUI visual grounding [6, 36], but
without fine-tuning, they are limited by the base models [6].

Some works fine-tune VLMs with demonstration data, e.g., AutoUI, CogAgent [13, 48], but static
data-trained models may struggle with real-world variability [12]. Others use filtered imitation
learning with autonomously collected data [31, 14], While DIGIRL [3] supports on-device RL fine-
tuning, it encounters significant inefficiencies in parallel environments. Specifically, DigiRL’s multi-
machine setup relies on a fully synchronous data acquisition process, causing faster workers to idle
while waiting for slower ones. This approach is impractical in real-world scenarios where task dura-
tions can vary by up to 100 times, ranging from seconds to over ten minutes. Additionally, DigiRL
lacks support for efficient distributed learning algorithm designs, further hindering its scalability
and performance in dynamic, parallel settings. To address this, our scalable and asynchronous RL
fine-tuning pipeline, DistRL, offers an efficient solution for distributed mobile control agent training.

2.2 Reinforcement Learning for On-device Agent Fine-tuning
Reinforcement Learning from Human Feedback (RLHF) is widely used to fine-tune LLMs to align
with human preferences [42, 30]. In device control tasks, similar approaches use imitation learning
from human-labeled evaluations, but RLHF is labor-intensive due to the need for human annota-
tions [30, 4].

Recent advances in MLLMs [2, 6, 35, 16, 49] show impressive multimodal capabilities but of-
ten produce incorrect outputs that deviate from human preferences [30, 51, 4, 42]. Reinforcement
Learning from AI Feedback (RLAIF), using AI labelers as proxies, offers an alternative [5, 47, 15].
For on-device tasks, AI evaluators assess task completion using prompts and screenshots [3, 15, 47].

3

Previous RL research focused on single-turn tasks, limiting their effectiveness for multi-step prob-
lems [35, 21, 6]. To address this, we developed a simplified off-policy multi-turn RL algorithm,
A-RIDE, which learns from suboptimal online interactions, reducing complexity and accelerating
convergence compared to previous value-based methods [6, 27, 35, 46]. This approach is effective
for large-scale applications like Android device control.

2.3 Scalable and Distributed RL Framework
Scalable reinforcement learning frameworks like Ray RLlib [20] enable distributed training by par-
allelizing policy learning across CPUs and GPUs using the Ray engine [19]. Ray RLlib supports var-
ious algorithms and efficiently manages neural network training, but it assumes that data collection
can be simulated or parallelized within the same infrastructure. This assumption limits its applicabil-
ity to real-world on-device control tasks involving actual mobile devices, where data collection must
occur across distributed, heterogeneous devices with varying task durations and network conditions.

Moreoever, frameworks such as IMPALA [7] and IMPACT [23] are optimized for fast simulations,
enabling efficient data collection and policy updates in highly parallelized environments. Applying
these frameworks to on-device control introduces non-trivial challenges due to the stochastic nature
of real-world interactions and the scalability constraints of mobile devices, including heterogeneous
device capabilities, variable task execution times, and unreliable communication.

Our approach builds upon the foundational ideas of IMPALA and IMPACT, effectively extending
their concepts to accommodate the unique challenges of on-device control. We introduce a decou-
pled and asynchronous architecture that supports distributed data collection from heterogeneous,
real-world devices by implementing sophisticated communication protocols and optimized data uti-
lization strategies. Furthermore, we develop a novel reinforcement learning algorithm specifically
designed to handle the stochasticity and scalability inherent in mobile device environments. This al-
gorithm enhances and maximizes the utilization of collected data while maintaining the exploration
behavior of workers, addressing critical aspects that prior work utilizing A3C [24] have largely
overlooked.

3 Problem Setup and Preliminaries
As presented in Figure 2, we model the on-device control problem as a finite-horizon Markov Deci-
sion Process (MDP) M = {S,A, T,R, µ0, H}. Here, S denotes the set of GUI states, represented
by screenshots or visual observations of the device screen. A represents the set of actions avail-
able to the agent, such as touch events at specific screen coordinates. The state transition function
T : S × A × S → [0, 1] defines the probability of transitioning from one state to another given an
action. The reward function R : S × A → R provides sparse rewards, typically positive upon task
completion. µ0 is the initial state distribution, and H is the finite horizon of the episode.

Execution in parallel Interaction with Mobile Env

Training Tasks

Take
Actions

Collection

Rewards assigned by EvaluatorAnnotated trajectories

e.g.
1. Show me a slow-motion video
2. Go to chome and search for a e-bike
3. Go to playstore and update Youtube

...

CLICK SLIDE TYPE HOME BACK ENTER

Feedback Traj 1
Traj 2
Traj 3

Traj n
...

Figure 2: Reinforcement Learning dynamics
and auto evaluation for fine-tuning the on-device
agent.

At each timestep t, the mobile agent observes
a state st ∈ S, selects an action at ∈ A ac-
cording to its policy π(at|st), receives a re-
ward rt = R(st, at), and transitions to the next
state st+1. The agent’s objective is to maximize
the expected cumulative reward Eπ

[∑H
t=0 rt

]
over the episode. Given the asynchronous na-
ture of distributed data generation in DistRL,
trajectories are collected under behavior poli-
cies πb and used to optimize a target policy π.
This setup requires robust off-policy learning
algorithms to correct for discrepancies between
πb and π.

A critical component of our RL framework is
the ability to obtain reliable reward signals in
real-time. To achieve this, we utilize Gemini-1.5-pro [36] as an autonomous evaluator to assess
whether the agent has successfully completed the task at each state. The evaluator receives the
current observation, composed of the task description and a screenshot of the device, and outputs a
reward signal. Specifically, the evaluator assigns a reward rt = 1 if the screenshot indicates success-
ful task completion and rt = 0 otherwise. This effectively transforms the problem into a Partially

4

Observable MDP (POMDP), where the evaluator helps determine the termination condition based
on the agent’s observation. Additionally, we applied a reward penalty on unexpected behaviors like
repetition which we observed many times in collected trajectories. Details of how we implemented
the auto-evaluation can be found in Appendix A.2.

4 System Design
DistRL is an asynchronous distributed reinforcement learning framework for scalable and efficient
training of mobile agents. By decoupling trajectory collection from policy learning and doing both in
parallel, it leverages distributed working machines for CPU-intense agent-environment interactions
and GPU servers for policy training. This separation optimizes efficiency, scalability, and resource
utilization by aligning tasks with appropriate hardware.

This decoupled and asynchronous design offers several key advantages: it improves scalability as
data collection scales naturally and linearly with more working machines providing the mobile en-
vironment, even if there are large performance gaps between them; it optimizes resource utilization
by assigning tasks to suitable hardware; and it improves policy quality through richer, more diverse
datasets from multiple devices, enhancing robustness and generalization capabilities. The details of
our system are presented as follows:

As illustrated in Figure 3, DistRL employs a host-worker architecture consisting of a central Host
Learner (Left side in Figure 3) and multiple Workers (Right side in Figure 3) which can be het-
erogeneous devices: i.e. machines of various specifications, running android emulators or being
connected with mobile devices, providing the android interaction environments. These components
work together to train agents through asynchronous data collection and distributed policy updates.

Host Learner: Host Learner orchestrates the policy training process using powerful GPUs. It
maintains a Circular Replay Buffer (details in Appendix A.4) that stores the trajectories collected
from the workers. The training loop processes this data by applying reinforcement learning algo-
rithms to update the policy. To manage incoming data efficiently, a FIFO Trajectory Queue receives
experiences from the workers and organizes them for training.

The host learner updates the policy with tailored regularization controls (details in Section 5) to
encourage workers to explore a broader range of potential actions during task execution. This ap-
proach ensures diversity in the collected data, preventing convergence towards homogeneous behav-
iors, which is especially crucial in dynamic and complex mobile device environments. Additionally,
to maximize the use of the large-scale and diverse data collected, and to avoid excessive learning on
redundant or similar data, the learner employs priority-based sampling techniques (details in Sec-
tion 5). These carefully curated design choices not only ensure training efficiency but also enhance
the generalization capability of the policy. After updating the policy, the host learner distributes the
latest version to the workers, allowing them to interact with their environments based on the latest
learning updates. The training process runs continuously, with new experiences from the workers
refining the policy, and the updated policy enhancing the workers’ performance.

Workers: Workers operate in parallel, each managing its own Android environments with Android
Emulators or actual Android devices through multi-threading. Each thread in the workers executes
the policy received from the host learner and interacts with the environment through an Agent. The
agent queries the environment, receives observations, and generates actions based on the current
policy. Each worker collects trajectories—sequences of actions, observations, and rewards—during
its interaction with the emulator.

To facilitate efficient simulation, workers use Environment Snapshots, allowing them to reset the
emulator to specific states. The result trajectories from the collecting threads are asynchronously
sent back to the host learner to be added to the replay buffer for training. This asynchronous design
allows heterogeneous worker machines with different specifications and performance levels to col-
laborate naturally in improving the data collection efficiency. It prevents interference between the
workers and minimizes the impact of different threads within each worker. As a result, each worker
can fully contribute their performance gains as expected.

On the whole, DistRL employs asynchronous RL to address the challenges of online RL in dynamic,
real-world settings. Each thread in workers operates independently, executing tasks and generating
learning trajectories at its own pace, which accommodates variability in task durations and system
latencies. Data produced by the working threads is queued and processed by the host learner, which

5

Policy Agent

query
answer

Emulator

reset

Snapshot
×M

Host
Learner

Trajectories ×M

Collect

Train Loop

Updated Policy Heterogeneous
Remote Workers

Host Learner (with GPUs)

Circular
Replay
Buffer

DistributeTrain

FIFO
Trajectory QueueProcess

Emulator

reset

SnapshotPolicy Agent

query

answer
×N

Remote Worker Process 1

Figure 3: Illustration of the high-level workflow of DistRL System.

updates the global policy based on the collected trajectories. The updated policy is asynchronously
distributed back to the workers, allowing for independent and non-blocking policy updates. This
approach effectively manages temporal discrepancies between the workers and the host learner,
ensuring smooth and effective learning across distributed workers. Further details regarding the
communication mechanism between the host and workers are elaborated in Appendix A.3.2.

The asynchronous framework design also ensures scalability. With two 96 vCPU machines, it sup-
ports up to 32 emulators operating concurrently, and it can scale almost linearly with worker perfor-
mance to handle large workloads.

5 Methodology
In this section, we introduce the core reinforcement learning algorithm employed in DistRL to fine-
tune RL agents for device control tasks. The inherent issues of limited on-device resources, asyn-
chronous data generation, and distributed constraints necessitate an efficient and scalable framework.

Reinforcement learning in distributed device control environments encounters significant challenges
related to policy stability, convergence, and effective exploration. Stable convergence is essential
for reliable agent performance, while robust exploratory behavior is crucial for discovering effective
control policies in dynamic and complex settings. On-policy algorithms such as Proximal Policy
Optimization (PPO) [39] and Advantage Actor-Critic (A2C) [24] are limited by their reliance on
synchronous data collection and policy updates, leading to sample inefficiency and delayed learning
in asynchronous, multi-agent environments.

To overcome these challenges, we introduce A-RIDE, an off-policy reinforcement learning algo-
rithm tailored for distributed environments. A-RIDE stands for Advantage-based Retrace Improved
by Distributed Prioritized Experience Replay. It enhances exploration efficiency, maintains policy
robustness, and improves training efficiency by promoting robust explorative behavior, ensuring pol-
icy stability, and prioritizing informative experiences. These advancements enable DistRL to achieve
stable and efficient learning in real-world device control tasks.

5.1 A-RIDE: The Backbone of DistRL
Our method employs advantage-based estimations to refine policy gradient updates, as an extension
of Generalized Advantage Estimation (GAE) [38], effectively balancing exploration and exploitation
in the learning process. By introducing a trace decay parameter, A-RIDE manages the bias-variance
trade-off in advantage calculations, optimizing the stability and convergence of the policy. A-RIDE
incorporates enhancements tailored to distributed, asynchronous environments, ensuring robust pol-
icy stability and efficient learning in complex device control tasks.

While GAE has proven highly effective in synchronous environments, its reliance on synchronized
data collection makes it less suitable for asynchronous settings, such as distributed control tasks on
devices. To handle asynchronous trajectory generation in device control tasks, A-RIDE leverages an
enhanced Retrace(λ) method for robust off-policy corrections inspired by [7, 26]. Unlike traditional
on-policy algorithms that require synchronous data collection, A-RIDE is designed for distributed
environments with asynchronous data.

The Retrace(λ) update is defined as: Q(st, at) ← Q(st, at) + δt, where the correction term δt is
calculated as:

δt =

H∑
k=t

γk−t

(
k∏

i=t+1

ci

)
[rk + γQ(sk+1, ak+1)−Q(sk, ak)] . (1)

6

Here, Q(st, at) is the estimated action-value function; γ ∈ [0, 1] is the discount factor; H is the time

horizon; ci = λmin (1, ρi) with λ ∈ [0, 1] being the trace decay parameter; ρi =
π(ai|si)
µ(ai|si)

is the

importance sampling ratio between the target policy π and the behavior policy µ.

To ensure effective exploration within the action space and prevent the generation of nonsensical or
invalid commands, we incorporate entropy regularization into the actor loss function. This addresses
the challenge inherent in Vision-Language Models (VLMs) where purely random exploration may
lead to semantically incoherent actions [18]. The actor loss is defined as:

L = −Eµ [ρtA(st, at) log π(at|st)]− βEµ [H(π(at|st))] + λEµ [Pinvalid(at)] , (2)

where the advantage function A(st, at) represents how much better an action at is compared to
the expected reward at state st, given the policy’s understanding of the environment. It can be
expressed as the difference between the action-value function Q(st, at) and the state-value function
V (st): A(st, at) = Q(st, at) − V (st). The action-value function Q(st, at) estimates the expected
return when taking action at at state st, while the state-value function V (st) estimates the average
expected return from state st under the policy π. H is the entropy term, Pinvalid(at) imposes a
penalty on actions deemed invalid based on task-specific criteria, β controls the strength of entropy
regularization, and λ modulates the penalty’s influence. The penalty is assigned using validation
through pre-trained LLMs like Gemini [36]), ensuring that only contextually appropriate actions
are penalized. The hyperparameters β and λ are optimized through empirical studies to balance
exploration and policy robustness effectively. This formulation encourages the agent to explore a
diverse set of actions while constraining it to generate valid and meaningful commands, thereby
enhancing both exploration and policy robustness.

5.2 Distributed Prioritized Experience Replay (DPER)
To improve sample efficiency, we employ Distributed Prioritized Experience Replay (DPER).
For each trajectory τ = {(st, at, rt, st+1)}Ht=0, we compute the priority p(τ) as: p(τ) = w1|δ| +
w2ρ + w3H, where |δ| is the average absolute temporal-difference (TD) error over the trajectory,
calculated as δt = rt + γV (st+1) − V (st); ρ is the average importance sampling ratio ρt; and H
is the average policy entropy, Ht = − log π(at|st), encouraging exploration by encouraging pol-
icy uncertainty, thus avoiding early convergence to suboptimal policies during training in dynamic
environments. The weights w1, w2, and w3 balance the contributions of each component, which is
selected by grid-search. Trajectories with higher priorities are replayed more frequently, focusing
learning on the most informative experiences. Priorities are periodically updated based on the latest
policy, recalculating them to focus learning on the most informative experiences, ensuring continual
adaptation to evolving behavior policies. Details can be found in Appendix A.4.

5.3 DistRL Pipeline Implementation
As illustrated in Figure 4, DistRL adopts a distributed asynchronous setup where multiple worker
agents generate trajectories under the behavior policy µ and send them to a central learner. The
trajectory reward is computed using the Monte Carlo estimate:

L(Vtraj) = −Eν [r(sH , aH) log Vtraj(sH , aH) + (1− r(sH , aH)) log (1− Vtraj(sH , aH))] . (3)

The actor is updated using policy gradients based on advantage estimates, and enhanced Retrace
corrections are applied for off-policy learning. This process is distributed asynchronously across
worker nodes, ensuring efficient fine-tuning in environments with sparse rewards and distributed
delays.

6 Experiments
To evaluate the performance of DistRL on challenging Android device control tasks, we conducted
extensive experiments. Our primary goal is to determine whether DistRL can produce agents that
effectively learn from autonomous online interaction. We describe the experimental environment
in Section 6.1, the baseline and benchmarks in Section 6.2, training performance in Section 6.3,
and on-device task evaluations in Section 6.4. Additionally, we present ablation studies on our
approach’s components in Section 6.5.

7

Emulator Snapshot

reset

N×

Worker Process 2

Policy
answer

Agent

query

M×

Collect
Trajectories

Snapshot

reset

EmulatorN×

Worker Process 1

Policy
answer

Agent

query

Push Policy

D
is

tr
ib

ut
ed

 P
ri

or
iti

ze
d

E
xp

er
ie

nc
e

R
ep

la
y

(D
PE

R
)

Circular
Replay Buffer

Host Learner
with GPUs

Prioritized
Sampling

Centralized
Trainer

Target Policy

Update
Priorities

Stable Off-Policy
Learning with

Retrace()

Figure 4: Backbone of DistRL: A-RIDE - Reinforcement Learning-based Fine-Tuning

6.1 Evaluation Environment
Our evaluation environment consists of a host learner with 4 NVIDIA V100 GPUs for intensive
policy training and two worker machines with 8 NVIDIA Tesla T4 GPUs and 96 vCPUs each, sup-
porting parallel emulation. This setup leverages 192 vCPUs to run multiple emulators concurrently,
enabling scalable distributed reinforcement learning experiments. The worker machines handle in-
ference and data collection, asynchronously communicating with the host learner to exchange tra-
jectories and updated model weights. This configuration allows us to assess DistRL’s scalability and
performance in a realistic large-scale distributed environment.

6.2 Benchmarks and Baseline Methods
To comprehensively validate our approach, we utilize both the General and web shopping tasks for
training and testing. Specifically, our training set is derived from enhanced online task instructions,
which are composed of AitW [34], AndroidWorld [33], and expert-curated task sets. We fine-tune
our model on this combined training set and evaluate performance on the corresponding test subsets
derived from AitW. Our analysis focuses on training efficiency using the General Tasks, which
include fundamental application operations and information retrieval tasks. Additionally, we assess
the agent’s performance on both General Tasks and Web Shopping Tasks to evaluate its capability
in handling domain-specific instructions, addressing the significant task distribution gap. Detailed
descriptions of the datasets used are provided in Appendix A.5. Our baseline methods3 include:

• DIGIRL [3]: The state-of-the-art framework prior to our work, which integrates RL fine-tuning
with visual language models (VLMs) and provides a reproducible training process. We consider
its both single and multi-machine settings in online mode.

• AutoUI [48]: A simple explorative mobile agent equipped with VLMs under supervised fine-
tuning.

• GPT-4V [28] and Gemini 1.5 Pro [36]: Equipped with exploration drives-AppAgent [45] to
facilitate learning from the environments.

6.3 Training Performance
Training efficiency is crucial in reinforcement learning, particularly in complex environments, and
is measured by the rate of improvement over time. We compared DistRL with the existing DIGIRL
framework. Our results show that DistRL significantly boosts training efficiency with its distributed,
asynchronous design, leveraging multiple machines and GPUs.

In subfigure (a), by 6k seconds, DistRL achieves a success rate 30% and 40% higher than DIGIRL
in multi- and single-machine settings, respectively. Even compared with DIGIRL that is enhanced
with our asynchronous framework (by integrating the DIGIRL algorithm into the DistRL framework
to isolate the framework’s benefits-named as DigiRL-DistRL Async), DistRL achieves 10% higher
result with faster convergence speed. Subfigure (b) illustrates the proportions of success rates above
60% and 80% in different training phases, representing key stages in the learning curve. DistRL
maintains higher proportions of success rates above these thresholds compared to DIGIRL, showing
a faster convergence and higher stability. These improvements are attributed to our asynchronous
architecture and tailor-made algorithm for efficient data collection and sampling.

3A qualitative comparison among methods and more details can be found in Table 3 in Appendix A.5.1

8

Wall-Clock Time Comparison Training Efficiency (32 Emulators)

Scalability Evaluation of Emulation Speed

(a) Wall-Clock Time Comparison (b) Training Efficiency Comparison

(c) Trajectories Collection Ability Comparison (d) Scalability of Different Training Frameworks

Trajectories Collection from 32 Emulators

Figure 5: Training performance (32 emulators) between the current state-of-the-art method
(DIGIRL) and DistRL, highlighting the enhanced efficiency of DistRL’s distributed framework dur-
ing online training. (a) Wall-clock time comparison (b) Training efficiency comparison. (c) Accu-
mulated trajectories collection ability comparison. (d) Scalability of different training frameworks

Subfigure (c) highlights DistRL’s superior data collection efficiency, accumulating 800 trajecto-
ries in 6k seconds, compared to DIGIRL’s 300 in a multi-machine setting. While subfigure (d)
demonstrates DistRL’s scalability. It achieves a collection speed of approximately 7.7 trajecto-
ries per minute with 192 CPUs, with nearly linear scalability, closely approaching the ideal upper
bound—perfect linear scalability with no overhead from communication or error handling. This
ideal upper bound is determined by assuming each CPU operates independently and continuously
with a stable speed, profiled by measuring the collection speed when a single CPU handles the task.

Additionally, Table 1 also presents the final training performance at convergence or after extended
training time budgets (will be explained in the subsequent subsection), demonstrating the superior
long-term performance of DistRL compared to the baselines.

6.4 On-Device End-to-end Agent Performance Evaluation
We evaluate the end-to-end performance of agents trained with DistRL against other frameworks,
including on-device control agents, using subsets of both the AitW training and test sets. The pri-
mary metric for evaluation is the success rate across General and Web Shopping tasks. To ensure
a fair comparison, we allocate extensive fine-tuning time for DIGIRL in single-machine and syn-
chronous multi-machine configurations, typically allowing 2 times the convergence time required
by our asynchronous DistRL multi-machine setup. Despite this generous tuning period, baseline
methods often fail to achieve stable performance due to inherent inefficiencies in their synchronous
designs, which hinder effective utilization of additional training time.

The results in Table 1 and Figure 6.(a) demonstrate the superior performance of our DistRL frame-
work over other agents across all evaluated settings. In the General test set, DistRL achieves a suc-
cess rate of 73.2%, showing a relative improvement of approximately 19.6% over DIGIRL (MULTI)
and 22.2% over DIGIRL (SINGLE). In the Web Shopping test set, DistRL attains a success rate of
68.5%, outperforming DIGIRL (MULTI) by about 14.4% and DIGIRL (SINGLE) by 14.9%. This
significant enhancement is attributed to DistRL’s design for pure asynchronous task collection pro-
cedures and its advanced algorithm for efficiently utilizing diverse incoming trajectories, leading to
better generalization and higher success rates.

9

Framework Type Framework Name
General Web Shopping

Training Test Training Test

Prompting
AppAgent + GPT-4v 41.4 43.0 31.2 35.2

AppAgent + Gemini 39.1 45.3 30.5 32.0

Learning

AutoUI 38.3 40.6 42.2 44.5

DigiRL (single,online) 64.6± 1.5 59.9± 2.1 63.3± 1.5 59.6± 3.1

DigiRL (multi) 67.7± 1.3 61.2± 2.4 64.5± 1.1 59.9± 2.8

DistRL (Ours) 75.5± 0.2 73.2± 1.1 69.8± 0.5 68.5± 1.7

Table 1: Main comparisons regarding the success rate of different agents across various settings.
Each experiment is repeated three times and the mean and standard deviation are reported. Results
are evaluated with our autonomous evaluator with the 128 user instructions in the train and test set.

The prompting-based methods, such as AppAgent combined with GPT-4V or Gemini, show consid-
erably lower success rates, not exceeding 45.3% in any test setting. These methods lack adaptive
learning capabilities on real-time large-scale interaction data, leading to poorer performance and
higher susceptibility to task variability. AutoUI, another learning-based agent fine-tuned by su-
pervised knowledge, also underperforms with success rates below 45%, likely due to less efficient
exploration strategies and inadequate handling of diverse user instructions.

Success Rate over Wall-Clock Time

%
 S

uc
ce

ss
 R

at
e

0

50

AppAgent
+ GPT-4v
AppAgent
+ Gemini

AutoUI

DigiRL
(single,online)
DigiRL
(multi-mach.)

DistRL (Ours)General Web Shopping

(a) Agent Performance Comparison

Agent Performance Evaluated on the AitW Benchmark

(b) Ablation Study of DistRL

Figure 6: (a) Comparison of trained agent performance when evaluated on the AitW benchmark.(b)
Ablation Study of DistRL

6.5 Ablation Studies
To understand the contributions of different components in DistRL, we conduct ablation studies by
systematically removing or altering key elements of the algorithm, such as the enhanced Retrace
algorithm and Distributed Prioritized Experience Replay (DPER). The results, summarized in Fig-
ure 6.(b), demonstrate the significant impact of each component on the task success rate.

Distributed Prioritized Experience Replay (DPER) is crucial for accelerating training conver-
gence. Removing DPER results in an 8% decrease in the success rate, indicating that prioritizing
trajectories with higher TD errors and smaller policy discrepancies enables faster and more efficient
learning by focusing updates on the most informative experiences. With the entropy term, the pri-
oritization mechanism promotes exploration based on the evolving policy distribution, preventing
stagnation during training.

Retrace Algorithm is essential for maintaining training stability. Ablating the Retrace algorithm
leads to a 6% drop in success rate and causes sharp decreases in performance during training. This
instability arises because Retrace provides off-policy correction, ensuring stable updates even when
the agent receives a large number of diverse trajectories.

Overall, the ablation results confirm that both DPER and the Retrace algorithm are integral to the
efficiency and robustness of DistRL.

7 Conclusion and Future Work
In this paper, we introduce DistRL, an efficient distributed reinforcement learning framework tai-
lored for mobile-based agents tasked with user instructions. Our primary contribution is the devel-

10

opment of a robust and scalable pipeline that seamlessly bridges the gap between real-time interac-
tions on mobile devices or emulators and distributed training infrastructures, ensuring efficient and
adaptive learning.

For future work, we aim to extend the generalization capabilities of DistRL to a broader range of
tasks, focusing on enhancing both the training pipeline and the underlying algorithmic architecture.
Additionally, we envision evolving DistRL into a core backbone for integrating many more Multi-
modal Large Language Models (MLLMs), allowing for a wider range of applications and evaluations
on diverse benchmarks.

References
[1] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni

Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4
technical report (2023). URL https://api. semanticscholar. org/CorpusID, 257532815, 2023.

[2] Jean-Baptiste Alayrac, Jeff Donahue, Paul Luc, Antoine Miech, Ian Barr, Yana Hasson, Lauren
Menschen, Sander Dieleman, Karen Simonyan, and Aaron van den Oord. Flamingo: a visual
language model for few-shot learning. arXiv preprint arXiv:2204.14198, 2022.

[3] Hao Bai, Yifei Zhou, Mert Cemri, Jiayi Pan, Alane Suhr, Sergey Levine, and Aviral Kumar.
Digirl: Training in-the-wild device-control agents with autonomous reinforcement learning.
arXiv preprint arXiv:2406.11896, 2024.

[4] Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Neal DasSarma, Dawn
Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless
assistant with reinforcement learning from human feedback. arXiv preprint arXiv:2204.05862,
2022.

[5] Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Sarah Nix, Anna Chen, Neal Das-
Sarma, Dawn Drain, Stanislav Fort, Deep Ganguli, et al. Constitutional ai: Harmlessness from
ai feedback. arXiv preprint arXiv:2212.08073, 2022.

[6] Danny Driess, Fei Xia, Mehdi SM Sajjadi, Corey Lynch, Aakanksha Chowdhery, Brian Ichter,
Ayzaan Wahid, Jonathan Tompson, Quan Vuong, Tianhe Yu, et al. Palm-e: An embodied
multimodal language model. arXiv preprint arXiv:2303.03378, 2023.

[7] Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Vlad Mnih, Tom Ward, Yotam
Doron, Vlad Firoiu, Tim Harley, Iain Dunning, et al. Impala: Scalable distributed deep-rl
with importance weighted actor-learner architectures. In International conference on machine
learning, pp. 1407–1416. PMLR, 2018.

[8] Ido Gur, Shay Mazor, Adi Jerbi, Amir Globerson, and Jonathan Berant. Learning to use the
web for conversational question answering. In Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pp. 1459–1476, 2023.

[9] Sirui Hong, Xiawu Zheng, Jonathan Chen, Yuheng Cheng, Jinlin Wang, Ceyao Zhang, Zili
Wang, Steven Ka Shing Yau, Zijuan Lin, Liyang Zhou, et al. Metagpt: Meta programming for
multi-agent collaborative framework. arXiv preprint arXiv:2308.00352, 2023.

[10] Dan Horgan, John Quan, David Budden, Gabriel Barth-Maron, Matteo Hessel, Hado
Van Hasselt, and David Silver. Distributed prioritized experience replay. arXiv preprint
arXiv:1803.00933, 2018.

[11] Peter C Humphreys, David Raposo, Tobias Pohlen, Gregory Thornton, Rachita Chhaparia,
Alistair Muldal, Josh Abramson, Petko Georgiev, Adam Santoro, and Timothy Lillicrap. A
data-driven approach for learning to control computers. In International Conference on Ma-
chine Learning, pp. 9466–9482. PMLR, 2022.

[12] Amy Zhang Jiang et al. Active reward learning from multiple teachers. arXiv preprint
arXiv:2301.12345, 2023.

11

[13] Raghav Kapoor, Yash Parag Butala, Melisa Russak, Jing Yu Koh, Kiran Kamble, Waseem Al-
shikh, and Ruslan Salakhutdinov. Omniact: A dataset and benchmark for enabling multimodal
generalist autonomous agents for desktop and web. arXiv preprint arXiv:2402.17553, 2024.

[14] Hanyu Lai, Xiao Liu, Iat Long Iong, Shuntian Yao, Yuxuan Chen, Pengbo Shen, Hao Yu,
Hanchen Zhang, Xiaohan Zhang, Yuxiao Dong, et al. Autowebglm: Bootstrap and reinforce a
large language model-based web navigating agent. arXiv preprint arXiv:2404.03648, 2024.

[15] Harrison Lee, Samrat Phatale, Hassan Mansoor, Thomas Mesnard, Johan Ferret, Kellie Lu,
Colton Bishop, Ethan Hall, Victor Carbune, Abhinav Rastogi, et al. Rlaif: Scaling reinforce-
ment learning from human feedback with ai feedback. arXiv preprint arXiv:2309.00267, 2023.

[16] Junnan Li, Dongxu Li, Silvio Savarese, and Li Fei-Fei. Blip-2: Bootstrapping language-
image pre-training with frozen image encoders and large language models. arXiv preprint
arXiv:2301.12597, 2023.

[17] Wei Li, William Bishop, Alice Li, Chris Rawles, Folawiyo Campbell-Ajala, Divya Tyama-
gundlu, and Oriana Riva. On the effects of data scale on computer control agents. arXiv
preprint arXiv:2406.03679, 2024.

[18] Xiujun Li, Yun-Nung Chen, Lihong Li, Jianfeng Gao, and Asli Celikyilmaz. End-to-end task-
completion neural dialogue systems. arXiv preprint arXiv:1703.01008, 2017.

[19] Eric Liang, Richard Liaw, Robert Nishihara, Philipp Moritz, Roy Fox, Joseph Gonzalez, Ken
Goldberg, and Ion Stoica. Ray rllib: A composable and scalable reinforcement learning library.
arXiv preprint arXiv:1712.09381, 85:245, 2017.

[20] Eric Liang, Richard Liaw, Robert Nishihara, Philipp Moritz, Roy Fox, Ken Goldberg, Joseph
Gonzalez, Michael Jordan, and Ion Stoica. Rllib: Abstractions for distributed reinforcement
learning. In International conference on machine learning, pp. 3053–3062. PMLR, 2018.

[21] Kensen Liang et al. Code llama: Open foundation models for code. arXiv preprint
arXiv:2308.12950, 2023.

[22] Yinhan Liu. Roberta: A robustly optimized bert pretraining approach. arXiv preprint
arXiv:1907.11692, 2019.

[23] Michael Luo, Jiahao Yao, Richard Liaw, Eric Liang, and Ion Stoica. Impact: Impor-
tance weighted asynchronous architectures with clipped target networks. arXiv preprint
arXiv:1912.00167, 2019.

[24] Volodymyr Mnih. Asynchronous methods for deep reinforcement learning. arXiv preprint
arXiv:1602.01783, 2016.

[25] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.
Human-level control through deep reinforcement learning. Nature, 518(7540):529–533, 2015.

[26] Rémi Munos, Tom Stepleton, Anna Harutyunyan, and Marc Bellemare. Safe and efficient
off-policy reinforcement learning. Advances in neural information processing systems, 29,
2016.

[27] Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, Chris O’Brien, Christina Kim, Christo-
pher Hesse, Sandhini Agarwal, Jonas Schneider, William Clark, et al. Webgpt: Browser-
assisted question-answering with human feedback. arXiv preprint arXiv:2112.09332, 2021.

[28] Achiam J OpenAI, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Floren-
cia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al.
Gpt-4 technical report. 2023. URL: https://arxiv. org/abs/2303.08774, 2024.

[29] Takayuki Osa, Joni Pajarinen, Gerhard Neumann, J Andrew Bagnell, Pieter Abbeel, and
Jan Peters. An algorithmic perspective on imitation learning. Foundations and Trends® in
Robotics, 7(1–2):1–179, 2018.

12

[30] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll L Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models
to follow instructions with human feedback. arXiv preprint arXiv:2203.02155, 2022.

[31] Jiayi Pan, Yichi Zhang, Nicholas Tomlin, Yifei Zhou, Sergey Levine, and Alane Suhr. Au-
tonomous evaluation and refinement of digital agents. In First Conference on Language Mod-
eling, 2024.

[32] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al.
Language models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

[33] Christopher Rawles, Sarah Clinckemaillie, Yifan Chang, Jonathan Waltz, Gabrielle Lau,
Marybeth Fair, Alice Li, William Bishop, Wei Li, Folawiyo Campbell-Ajala, et al. An-
droidworld: A dynamic benchmarking environment for autonomous agents. arXiv preprint
arXiv:2405.14573, 2024.

[34] Christopher Rawles, Alice Li, Daniel Rodriguez, Oriana Riva, and Timothy Lillicrap. An-
droidinthewild: A large-scale dataset for android device control. Advances in Neural Informa-
tion Processing Systems, 36, 2024.

[35] Scott Reed, Konrad Zolna, Emilio Parisotto, Sergio Gomez Colmenarejo, Quoc Le, Woj-
ciech M Czarnecki, Tom Schaul, Trevor Cai, David Budden, Gabriel Barth-Maron, et al. A
generalist agent. arXiv preprint arXiv:2205.06175, 2022.

[36] Machel Reid, Nikolay Savinov, Denis Teplyashin, Dmitry Lepikhin, Timothy Lillicrap, Jean-
baptiste Alayrac, Radu Soricut, Angeliki Lazaridou, Orhan Firat, Julian Schrittwieser, et al.
Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context. arXiv
preprint arXiv:2403.05530, 2024.

[37] Tom Schaul. Prioritized experience replay. arXiv preprint arXiv:1511.05952, 2015.

[38] John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advantage estimation. arXiv preprint
arXiv:1506.02438, 2015.

[39] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[40] Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li, Weiming Lu, and Yueting Zhuang.
Hugginggpt: Solving ai tasks with chatgpt and its friends in hugging face. Advances in Neural
Information Processing Systems, 36, 2024.

[41] Tianlin Shi, Andrej Karpathy, Linxi Fan, Jonathan Hernandez, and Percy Liang. World of bits:
An open-domain platform for web-based agents. In International Conference on Machine
Learning, pp. 3135–3144. PMLR, 2017.

[42] Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel M Ziegler, Ryan J Lowe, Caleb Voss, Alec
Radford, Dario Amodei, and Paul F Christiano. Learning to summarize from human feedback.
In Advances in Neural Information Processing Systems, volume 33, pp. 3008–3021, 2020.

[43] Junyang Wang, Haiyang Xu, Haitao Jia, Xi Zhang, Ming Yan, Weizhou Shen, Ji Zhang, Fei
Huang, and Jitao Sang. Mobile-agent-v2: Mobile device operation assistant with effective
navigation via multi-agent collaboration. arXiv preprint arXiv:2406.01014, 2024.

[44] Hui Yang, Sifu Yue, and Yunzhong He. Auto-gpt for online decision making: Benchmarks and
additional opinions. arXiv preprint arXiv:2306.02224, 2023.

[45] Zhao Yang, Jiaxuan Liu, Yucheng Han, Xin Chen, Zebiao Huang, Bin Fu, and Gang Yu.
Appagent: Multimodal agents as smartphone users. arXiv preprint arXiv:2312.13771, 2023.

[46] Shunyu Yao, Howard Yu, Yuan Wu, Vasu Vinay, Yuan Cao, Karthik Narasimhan, et al.
Tree of thoughts: Deliberate problem solving with large language models. arXiv preprint
arXiv:2305.10601, 2023.

13

[47] Tianyu Yu, Haoye Zhang, Yuan Yao, Yunkai Dang, Da Chen, Xiaoman Lu, Ganqu Cui, Tai-
wen He, Zhiyuan Liu, Tat-Seng Chua, et al. Rlaif-v: Aligning mllms through open-source ai
feedback for super gpt-4v trustworthiness. arXiv preprint arXiv:2405.17220, 2024.

[48] Zhuosheng Zhan and Aston Zhang. You only look at screens: Multimodal chain-of-action
agents. arXiv preprint arXiv:2309.11436, 2023.

[49] Zhenfei Zhang, Peng Li, Jie Li, Jingyan Ye, Feilong Zhang, Xiaodi Wang, Lei Ma, Qiang Yang,
Xiaogang Wang, and Hongsheng Li. Llama-adapter v2: Parameter-efficient visual instruction
model. arXiv preprint arXiv:2304.15010, 2023.

[50] Boyuan Zheng, Boyu Gou, Jihyung Kil, Huan Sun, and Yu Su. Gpt-4v (ision) is a generalist
web agent, if grounded. arXiv preprint arXiv:2401.01614, 2024.

[51] Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom Brown, Alec Radford, Dario Amodei,
and Paul F Christiano. Fine-tuning language models from human preferences. arXiv preprint
arXiv:1909.08593, 2019.

14

A Appendix

A.1 Case Study

AutoUI

Ear l y
Ter mi nat i o n

DistRL

DigiRL

 w r o ng
App

GPT4-V

St u ck

St u ck

 w r o ng
App

 w r o ng
Ac t i o n

Task: Update Google Map in Playstore

Figure 7: Case study on general app operation tasks.

Figure 7 illustrates a type of common case where baseline methods always fails, highlighting the
challenges for these device-control agent in real-time app operation tasks.

DIGIRL, which was trained on older versions of the system, fails due to discrepancies between its
learned knowledge and the current environment. This mismatch in training data leads to a significant
error: DIGIRL mistakenly opens Google Photos instead of the Play Store. Since the two apps
share similar icon features. After opening the wrong app, DIGIRL continues to operate within the
incorrect environment, ultimately getting stuck in the settings menu of Google Photos. This reveals
a significant limitation of offline-training-only agent in adapting to updated environments, especially
when visual similarities between app icons lead to misclassification. AutoUI shares a similar issue
where it struggles to correctly identify the target application. In this case, it opens Google Maps
directly instead of navigating through the Play Store. Its lack of adaptability to new tasks or novel
instructions results in failure.

The AppAgent with GPT-4V takes an alternate route by resorting to web searching, which diverges
from the intended method of updating the app. Eventually, this leads to the agent becoming stuck
within the Google Maps application itself, indicating that while GPT-4V was able to explore differ-
ent avenues to achieve the goal, it did not follow the expected approach due to the lack of app-specific
knowledge.

While the DistRL, which was actively trained on the real-time newly-updated environment through
online-training, could conduct the intended operations accurately and successfully.

15

DistRL

Task: Start a new chat in message app.

DigiRL

St u ck

AutoUI

 w r o ng
App

St u ck

GPT4-V

Figure 8: Case study on general app operation tasks.

The case study in Figure 8 further illustrates the comparative performance on a simpler general app
operation task — starting a new chat in the messaging app.

DistRL successfully completes the task by efficiently navigating through the app’s interface. It opens
the correct messaging app and enters the "New Conversation" screen without getting stuck.

In contrast, DIGIRL manages to open the correct messaging app but fails to proceed, getting stuck
when attempting to start the new chat. This is due to DIGIRL’s reliance on outdated training data,
as it was trained on an older version of the app’s interface. In the outdated UI, the intended action
(starting a chat) involved interacting with elements in a different layout, and DIGIRL cannot adapt
to the updated version. This demonstrates the pitfalls of relying primarily on offline data for train-
ing without sufficient online fine-tuning to adapt to new UI changes, as seen in modern apps that
frequently update their designs.

AutoUI, on the other hand, fails immediately by selecting the wrong app. It opens the Contacts app
instead of the messaging app, leading to a failure in completing the task from the very beginning.
This reflects a limitation in AutoUI’s task understanding and its inability to differentiate between
similar apps, further highlighting the weakness of frameworks that lack a robust decision-making
process or real-time adaptability.

GPT-4V, though not specifically trained for app-specific tasks, performs well in this scenario due
to its generalization capability. It opens the correct messaging app and navigates to the "New Con-
versation" screen successfully. GPT-4V is more flexible and suitable for simpler, general-purpose
tasks. However, this general-purpose approach may not scale well for more complex tasks where
app-specific expertise and interaction nuances are required.

The real cases in the figures emphasizes the critical importance of efficient real-time online learning.

Figure 9 shows a case study on the web shopping task.

DistRL demonstrates relatively smooth and fluid operations, progressing through the steps without
hesitation. While it ultimately encounters early termination due to reaching the step limit (horizon),
it performs each step with clear transitions and effectively navigates through the sequence. DistRL
shows strong task comprehension and adaptation throughout, but its misunderstanding on the task

16

DistRL

DigiRL

GPT4-V

SKIPPED

Ear l y
Ter mi nat i o n

STUCK
A FEW
STEPS

MAXI MUM
STEP

AutoUI

STUCK

IN
UNRELATED

APPS
FOR

A FEW
STEPS

STUCK

Task: Go to ebay.com, search for "usb-c to usb-a" , and select the first entry

Figure 9: Case study on web shopping tasks.

requirement prevents it from fully completing the task. This behavior emphasizes the efficiency of
DistRL’s operations and its capacity to generalize across unseen web shopping tasks, even though
the task is terminated early.

In contrast, DIGIRL faces several challenges during the task. It frequently steps back and forth
between pages, struggling with the microphone input. These actions result in unnecessary delays
and inefficiencies, which eventually lead it to reach its step budget without successfully completing
the task. The back-and-forth behavior indicates a lack of robust policy adaptation, which causes it
to get stuck in a loop, unable to make meaningful progress.

AutoUI, on the other hand, wanders into unrelated apps before eventually returning to the task. The
lack of focus results in it spending multiple steps outside the task’s scope, which ultimately con-
tributes to its failure. This signifies weaknesses in both task planning and execution, as it struggles
with distractions and incorrect app selections.

GPT-4V follows a similarly smooth approach as DistRL, but it becomes stuck after selecting a wrong
entry into eBay, which triggers the cookie settings of the website. Although GPT-4V successfully
navigates through several steps, it ultimately fails to get around the emergent pop-up, highlighting
its limitation in handling web-specific tasks that require precision and app-specific understanding.

In summary, while DistRL and GPT-4V demonstrate smoother task execution, only DistRL manages
to maintain a consistently structured progression, even though it faces early termination. Meanwhile,
DIGIRL struggles significantly, exhibiting inefficient operations that lead to step budget exhaustion
without meaningful progress. This case study emphasizes the importance of the ability to adapt
policies in dynamic environments to complete tasks successfully within budgeted steps.

17

A.2 Auto Reward Labeling
A.2.1 Evaluation with Auto-Evaluator
To generalize the evaluator across a wide range of tasks without manual rule definitions, we leverage
a pre-trained LLM with appropriate prompting. The prompt is designed to instruct the LLM to act
as an expert evaluator, i.e., Gemini-1.5-Pro [36], in our practice. An example of such a prompt is
provided below:

You're an expert in evaluating whether the Screenshot successfully completes the Task.
=====Examples=====
Screenshot: {train_1.png}
Task: Send a message to Evelyn.
Q: What should I expect to see on the screenshot if I've sent a message to Evelyn?
A: I should expect to see an open messaging app with a conversation window showing
a message sent to "Evelyn." The screenshot, however, shows the messaging app’s contact list,
but no message has been sent.
Status: failure

In this prompt, the evaluator compares the expected outcome of the task with the actual screenshot.
By analyzing the visual content and reasoning about the task, the LLM determines task completion.

A.2.2 Reward Penalty
To capture long-term dependencies in the device control setting, Monte-Carlo (MC) rollouts were
employed to compute cumulative returns, which are then propagated backward to inform updates
across each transition. However, during the experiments, we observed frequent repeated nonsense
actions even in successful trajectories when doing roll-out with AutoUI agent, which sometimes
causes unstable convergence during the asynchronous online learning. Thus, we further deployed a
reward penalty on unexpected behaviors: accumulative penalty on repetitions and hard penalty on
invalid actions.

A.3 System Design
A.3.1 Detailed System Description
DistRL is a distributed reinforcement learning framework designed for scalable, efficient training of
mobile agents. It decouples trajectory collection from policy learning, utilizing working machines
for agent-environment interactions and GPU servers for policy training. The working devices han-
dle inference and CPU-intense data collection, transmitting data asynchronously to GPU servers
for training large language models (LLMs). This separation optimizes efficiency, scalability, and
resource utilization by aligning tasks with appropriate hardware.

This decoupled design offers several key advantages. First, it enhances efficiency by preventing re-
source contention: mobile devices focus on interaction tasks without being slowed by training, and
GPUs dedicated to training perform updates without interruption. Notably, different types of GPUs
are used; lightweight GPUs or CPUs handle inference and data collection, while high-performance
GPUs are employed for intensive training computations. Second, scalability improves as more mo-
bile devices are added, allowing data collection to scale naturally without single-machine hardware
limitations. Third, resource utilization is optimized by aligning tasks with suitable hardware, maxi-
mizing performance. Dedicated training resources achieve faster convergence by efficiently process-
ing larger batches and complex models. Cost efficiency is enhanced by leveraging existing devices
for data collection and appropriately allocating GPU resources based on task requirements, reducing
unnecessary hardware investments. Finally, the quality of learned policies improves due to the richer
and more diverse dataset collected from multiple devices, enhancing robustness and generalization
capabilities.

A.3.2 Communication between Host Learner and Workers
In our DistRL framework, communication between the Host Learner and Workers is crucial for
synchronizing policy updates and collecting trajectories. We have opted to use SCP (Secure Copy
Protocol) over SSH to transfer LoRA weights between the Host Learner and Workers. This choice is
based on several practical considerations related to bandwidth, overhead, and deployment flexibility.

Within the AWS environment, network bandwidth between instances can exceed 500 Mbps. As
illustrated in Table 2, transferring the LoRA weights (approximately 100 MB) using SCP takes
less than 2 seconds on average. This communication overhead is negligible compared to the time
required for trajectory collection and policy training.

18

Table 2: Communication Time for Transferring LoRA Weights via SCP
Network Bandwidth LoRA Weight Size Transfer Time
500 Mbps 100 MB 1.6 seconds
1 Gbps 100 MB 0.8 seconds

Each Worker thread completes approximately 6–10 trajectories per minute. Concurrently, training
the policy on the Host Learner, even utilizing 4 V100 GPUs, takes around 120 seconds to perform
a single model update. Consequently, the communication time of a few seconds for transferring
weights is significantly lower than both the data collection and training durations, introducing no
noticeable bottlenecks.

Alternative high-performance communication options like InfiniBand (IB) or RDMA over Con-
verged Ethernet (RoCE) were considered. However, these technologies require specialized hardware
and configurations, which are not always available or practical—especially when Workers (mobile
devices or emulators) are dispersed across different physical locations or data centers. SCP over SSH
offers a flexible and widely supported solution that operates effectively across diverse environments.

In summary, the minimal communication overhead introduced by using SCP over SSH does not
adversely affect the overall performance of the DistRL framework. The simplicity, reliability, and
broad compatibility of this approach make it a reasonable and efficient choice for our distributed
reinforcement learning system.

A.4 Methodology Details
A.4.1 Limitations of Traditional Methods
On-policy algorithms such as Proximal Policy Optimization (PPO [39]) and Advantage Actor-Critic
(A2C [24]) require synchronous data collection and updates, leading to inefficiencies in distributed
and large-scale environments due to low sample efficiency and synchronization delays.

Standard off-policy methods like V-trace have been popular in distributed RL frameworks (e.g.,
IMPALA [7]) but can be suboptimal when the divergence between the behavior policy µ and the
target policy π is either too small or too large due to clipping mechanisms.

These weights were empirically validated to provide a robust trade-off between bias and variance,
enhancing the overall learning efficiency and stability of the reinforcement learning agent in our
distributed, asynchronous setting.

A.4.2 Implementation Details
Circular Replay Buffer We utilize a Circular Replay Buffer with fixed capacity N to store
experience tuples (st, at, rt, st+1, at+1). When the buffer is full, new experiences overwrite the
oldest ones, ensuring that the buffer contains the most recent experiences, which is effective in
non-stationary environments.

The buffer index i is updated as:
i← (i+ 1) mod N. (4)

Enhanced Retrace Algorithm Retrace(λ) adjusts the importance sampling corrections based on
policy divergence. When policies are similar, it fully exploits trajectories through λ-returns. When
they differ significantly, it truncates importance sampling ratios to control variance, ensuring stable
and unbiased updates.

Temporal-Difference Error Calculation The temporal-difference (TD) error for each step is cal-
culated as:

δt = rt + γV (st+1)− V (st), (5)

which represents the discrepancy between predicted and actual rewards, guiding the learning up-
dates.

Priority-Based Sampling in DPER In Distributed Prioritized Experience Replay (DPER), tra-
jectories are sampled based on their computed priority to focus on the most informative experiences.
The probability of sampling a trajectory τ is proportional to its priority p(τ), calculated as:

19

P (τ) =
p(τ)α∑
i p(τi)

α
,

where α = 0.5 controls the extent to which prioritization is applied. A value of α = 0.5 provides a
balance between uniform sampling (when α = 0) and full prioritization (when α = 1), allowing the
model to benefit from both the prioritization of informative trajectories and a degree of randomness.
This ensures that less prioritized but potentially useful experiences still have a chance to be replayed,
helping prevent overfitting to a narrow subset of the replay buffer.

Policy Update Mechanism The actor (policy network) is updated using gradients derived from
the advantage estimates (without consideration of penalties on low-scored outputs):

∇θL = −Eµ [ρtA(st, at)∇θ log πθ(at|st)]− β∇θEµ [log πθ(at|st)] , (6)

where θ represents the parameters of the policy network.

A.4.3 Hyperparameter Tuning for Distributed Prioritized Experience Replay
To enhance sample efficiency in our Distributed Prioritized Experience Replay (DPER) frame-
work, it is crucial to appropriately balance the contributions of the average temporal-difference (TD)
error (|δ|), the average importance sampling ratio (ρ), and the average policy entropy (H). These
components inherently operate on different scales, necessitating careful normalization to ensure that
no single component disproportionately influences the priority calculation.

Each component contributing to the priority score is normalized to a common scale based on their
statistical properties observed during preliminary training runs. The normalization process is as
follows:

• Average Absolute TD Error (|δ|): Normalized by dividing by the maximum absolute TD error
observed across all trajectories in the training set. This scaling ensures that |δ| ranges between
0 and 1.

• Average Importance Sampling Ratio (ρ): As importance sampling ratios naturally fall within
the range [0, 1], no additional scaling is required.

• Average Policy Entropy (H): Normalized by dividing by the maximum observed entropy value
during training, ensuring that H also ranges between 0 and 1.

This normalization facilitates a balanced contribution from each component when computing the
overall priority, preventing any single factor from dominating the priority score.

The weights w1, w2, and w3 are critical in determining the influence of each normalized
component on the priority calculation. To identify the optimal values for these weights,
we employed a grid search strategy on a validation set, exploring the following empirical
ranges: w1 ∈ {0.01, 0.1, 0.5, 1.0, 2.0, 5.0, 10.0}, w2 ∈ {0.01, 0.10.3, 0.5, 0.7, 1.0}, w3 ∈
{0.01, 0.1, 0.3, 0.5, 0.7, 1.0}.

These ranges were selected based on insights from prior research [37, 10] and preliminary experi-
ments that indicated effective performance within these intervals.

The chosen weights effectively balance the three components, ensuring that:

• Learning from High-TD Error Trajectories: By assigning a higher weight to |δ|, the frame-
work emphasizes replaying experiences where the model’s predictions were significantly off,
facilitating targeted learning and faster convergence.

• Maintaining Exploration: The weight on policy entropy ensures that the agent continues to
explore diverse actions, preventing premature convergence to suboptimal policies.

• Correcting for Distributional Shifts: The importance sampling ratio weight allows the algo-
rithm to adjust for changes in the policy distribution, maintaining unbiased updates despite using
prioritized replay.

20

A.5 Experimental Details
A.5.1 Baseline Methods
We evaluate proprietary vision-language models (VLMs), GPT-4V [28] and Gemini 1.5 Pro [36],
using the AppAgent framework. By applying the prompt from [45], we enable these models to in-
teract effectively with the environment. We assessed the AppAgent [45] in a augmented prompting
setting, where the agent explores the environment and gathers experience ahead of inference phase.
This collected experience is appended to the test-time prompt, enhancing the model’s decision-
making capabilities. Unlike learning-based approaches, these methods rely on advanced prompting
strategies to accomplish tasks without extensive training. Additionally, our framework DistRL inte-
grates GPT-2 [32] for policy learning and ROBERTA-base [22] for the critic model 4

In Table 3, we compare DistRL with other frameworks based on scalability, task diversity, and
training efficiency.

Table 3: Comparison among on-device agents’ frameworks based on scalability, task diversity, and
training efficiency.

DistRL (Ours) DIGIRL AutoUI AppAgent+MLLMs
Type Async. Sync. N/A N/A
Scalability ++ + N/A N/A
Task Diversity General Limited Limited General
Training Eff. High Low Low N/A
Multi-GPUs Sup. ✓ ✓✗ (offline only) ✗ ✗

A.5.2 Training and Test Data
The dataset used in this work is based on the Android in the Wild (AitW) [34] and Android-
World [33] task set, with enhancements for practical use in fine-tuning agents to control mobile
devices and interact with real-world applications. We trained two separate models using two distinct
subsets for General Tasks and Web Shopping Tasks. Each model was trained on its corresponding
training subset and evaluated on the respective test subset drawn from AitW.

For training, we utilized the General Tasks subset from AitW, augmented with tasks selected from
AndroidWorld and several expert curated ones, which includes tasks that require basic to complex
application usage and information retrieval. For Web Shopping Tasks, we used the subset from AitW
directly. Each training set consists of more than 400 tasks, allowing the agent to learn from a broad
range of apps and websites operations and promote robust learning without overfitting to specific
task types.

To avoid cold start issues in our asynchronous reinforcement learning framework, we constructed
a warmup trajectory dataset for each task type, each consists of 128 trajectories collected with an
initial version of the AutoUI agent. These sets will be fed into the replay buffer at the beginning of
the online training.

During testing, we evaluated the models on their respective test sets: 128 tasks for General Tasks
and 128 tasks for Web Shopping Tasks, both sourced from AitW. This approach ensures that each
model is assessed on the task domain it was trained on, addressing the task distribution gap between
general user instructions and domain-specific web shopping instructions.

General Tasks The General Tasks subset consists of tasks that involve basic application operations
and information retrieval. Examples include searching for the latest news, retrieving information
about locations, and interacting with mobile apps. To force the agent to operate more on the various
applications instead of searching everything through web, we augmented the task set for training
with several instructions from AndroidWorld and some expert curated tasks, which are typically
more complex and application-specific. The training set contains 600 tasks, and the test set includes
128 tasks from AitW, facilitating a robust evaluation of General Tasks performance. Each task
allows a maximum of 15 steps to complete. Example tasks from the General Tasks subset are shown
in Table 4.

4We adopt the same baseline agent (AutoUI-driven agent) and VLMs models as used in DIGIRL to validate
the advantages of our fine-tuning framework and algorithm

21

Task Set Task Example

AitW What is the capital of Norway?
Play some music on YouTube.

AndroidWorld Run the stopwatch.
Create a new contact for Jack. Their number is 0123456789.

Expert Curated Check today’s events in the calendar.
Check if there is any app to update in Playstore.

Table 4: Examples of task descriptions in the General Tasks subset.

Web Shopping Tasks The Web Shopping Tasks subset includes tasks that simulate real-world
shopping activities such as searching for products, navigating e-commerce websites, and interacting
with shopping carts. Task complexity ranges from simple web navigation to multi-step operations
involving product searching and browsing. The training set consists of 500 tasks, and the test set
includes 128 tasks from AitW, enabling the evaluation of the agent’s ability to handle domain-
specific instructions. Each task permits up to 20 steps to complete. Example tasks from the Web
Shopping Tasks subset are presented in Table 5.

Difficulty Task Example
1 Go to ebay.com
1 Go to costco.com
2 Go to ebay.com, search for “asus zenbook”
2 Go to walmart.com, search for “corsair k70”
3 Go to bestbuy.com, search for “dell xps”, and select the first entry
3 Go to newegg.com, search for “bose soundlink mini”, and select the first entry

Table 5: Examples of task descriptions in the Web Shopping Tasks subset.

A.5.3 Detailed Performance Comparison
Other methods struggle to achieve comparable performance. DIGIRL, both in single and multi-
machine settings, suffers from inefficiencies in data collection and utilization. The multi-machine
version requires extensive collection time due to its low efficiency, hindering its ability to train
effectively on diverse tasks, while the single-machine version struggles with scalability issues. These
inefficiencies lead to higher variance in performance, as evidenced by the higher standard deviations
(up to ±3.1%) compared to DistRL.

Overall, the low variance and high success rates of DistRL demonstrate its robustness and effective-
ness in generalizing across different tasks, emphasizing the advantages of our distributed reinforce-
ment learning approach over existing methods, especially in large-scale, asynchronous settings.

A.6 Additional Quantitative Experiments
A.6.1 Failure Modes Analysis
Figure 10 presents a comparative analysis of failure rates across different approaches on the AitW
General and Web Shopping subsets. Among the evaluated frameworks, DistRL consistently exhibits
the lowest failure rates across all failure categories, notably excelling in recovering from mistakes
and achieving the correct goal.

For the General subset, DistRL demonstrates exceptional performance with failure rates as low as
4% in recovering from mistakes, 12% in getting stuck midway, and 2% in arriving at an incorrect
goal. These rates are at least three times lower than those observed in alternative approaches such as
AutoUI and DIGIRL. This significant reduction in failure rates can be attributed to DistRL’s robust
asynchronous distributed reinforcement learning (RL) framework, which facilitates more nuanced
and adaptive policy learning. The distributed nature of DistRL allows for parallel exploration and
exploitation of the state-action space, leading to a more comprehensive understanding of task dy-
namics and improved decision-making accuracy.

Similarly, on the Web Shopping subset, DistRL maintains low failure rates of 3% in recovering
from mistakes, 7% in encountering mid-task obstacles, and 4% in goal misalignment. These fig-
ures represent at least a twofold improvement over competing frameworks, highlighting DistRL’s
superior capability in managing complex and dynamic task environments. The ability to effectively

22

%
 in

 A
ll

Tr
aj

ec
to

rie
s

0

0.2
AppAgent
+ GPT-4v

AppAgent
+ Gemini

AutoUI

DigiRL
(single,online)

DigiRL
(multi-mach.)

DistRL (Ours)

Fall to recover from mistakes

General

Failure Mode

%
 in

 A
ll

Tr
aj

ec
to

rie
s

0

0.2

Fall to recover from mistakes

Web Shopping

Failure Mode

Get stuck midway Arrive at wrong goal

Get stuck midway Arrive at wrong goal

20

20

Figure 10: Comparison of failure modes across different frameworks on the AitW General and
Web Shopping subsets.

handle task complexities is further reinforced by the asynchronous updates in DistRL, which miti-
gate issues such as delayed feedback and non-stationary environments that often plague distributed
learning systems.

In contrast, frameworks like AutoUI and DIGIRL exhibit higher failure rates, which may stem from
their less sophisticated policy learning mechanisms or limited scalability in distributed settings.
These higher failure rates suggest that these approaches may struggle with tasks that involve intricate
dependencies or require rapid adaptation to changing conditions. The limitations observed in these
frameworks underscore the importance of advanced distributed learning architectures in developing
resilient and efficient agents capable of navigating complex, real-world environments.

Overall, the superior performance of DistRL across multiple failure modes underscores its effec-
tiveness in building robust agents. This robustness is crucial for applications where reliability and
precision are paramount, such as automated web interactions and general task execution. Future
work may explore further enhancements to the distributed framework, such as incorporating more
sophisticated exploration strategies or leveraging transfer learning to extend capabilities to even
more diverse task domains.

A.6.2 Generalization Performance on AitW Subsets

%
 S

uc
ce

ss
 R

at
e

0

50

AppAgent
+ GPT-4v
AppAgent
+ Gemini

AutoUI

DigiRL
(single,online)
DigiRL
(multi-mach.)

DistRL (Ours)
Web Shopping

Generalization Tasks

Task Set
Install Google Apps

Generalization Performance to Unseen Tasks

Figure 11: Generalization performance across different AitW subsets. The agents were trained on
the General task set and evaluated on 128 tasks per subset.

Figure 11 illustrates the generalization performance of various frameworks across the Web Shopping,
Install, and Google Apps subsets of the AitW dataset. The agents were trained exclusively on the
General task set, and their ability to generalize was assessed on the first 128 tasks within each
respective subset.

DistRL consistently outperforms its counterparts, achieving accuracies of 68.5% on Web Shopping,
73.5% on Install, and 70.2% on Google Apps. These results highlight DistRL’s superior gener-
alization capabilities, which can be largely attributed to its robust distributed learning approach.
The asynchronous distributed RL framework employed by DistRL enables the agent to learn from

23

a diverse set of experiences concurrently, fostering a more versatile and adaptable policy that can
transfer effectively across different task domains.

In contrast, frameworks such as DIGIRL and AppAgent exhibit markedly lower generalization per-
formance. DIGIRL and AppAgent struggle particularly with adapting to the Install and Google
Apps subsets, where task structures and requirements may differ significantly from the training set.
This limitation suggests that these frameworks may be overfitting to the General task set or lack-
ing the necessary mechanisms to capture the underlying transferable features essential for effective
generalization.

The ability of DistRL to generalize across diverse task subsets is a critical advantage, especially
in real-world applications where agents are often required to operate in varied and unforeseen en-
vironments. This generalization strength is likely a result of the extensive exploration and varied
experiences facilitated by the distributed learning process, which allows DistRL to build a more
comprehensive and flexible policy.

These findings have significant implications for the development of autonomous agents. The demon-
strated generalization capabilities of DistRL suggest that distributed RL frameworks can be a promis-
ing direction for creating agents that are not only proficient in specific tasks but also adaptable to a
wide range of scenarios without the need for extensive retraining. Future research could investigate
the integration of additional generalization techniques, such as meta-learning or multi-task learn-
ing, with distributed RL to further enhance performance across even more diverse and complex task
domains.

24

	Introduction
	Related Works
	Multi-Modal On-device Control Agents
	Reinforcement Learning for On-device Agent Fine-tuning
	Scalable and Distributed RL Framework

	Problem Setup and Preliminaries
	System Design
	Methodology
	A-RIDE: The Backbone of DistRL
	Distributed Prioritized Experience Replay (DPER)
	DistRL Pipeline Implementation

	Experiments
	Evaluation Environment
	Benchmarks and Baseline Methods
	Training Performance
	On-Device End-to-end Agent Performance Evaluation
	Ablation Studies

	Conclusion and Future Work
	Appendix
	Case Study
	Auto Reward Labeling
	Evaluation with Auto-Evaluator
	Reward Penalty

	System Design
	Detailed System Description
	Communication between Host Learner and Workers

	Methodology Details
	Limitations of Traditional Methods
	Implementation Details
	Hyperparameter Tuning for Distributed Prioritized Experience Replay

	Experimental Details
	Baseline Methods
	Training and Test Data
	Detailed Performance Comparison

	Additional Quantitative Experiments
	Failure Modes Analysis
	Generalization Performance on AitW Subsets

