
Revealing the Limitations of Exploiting Causal Effects
to Resolve Linguistic Spurious Correlations

Fengxiang Cheng1, Haoxuan Li2, Alina Leidinger1, Robert van Rooij1

1 Institute for Logic, Language and Computation, University of Amsterdam,
2 Center for Data Science, Peking University

f.cheng@uva.nl, hxli@stu.pku.edu.cn, a.j.leidinger@uva.nl, r.a.m.vanrooij@uva.nl

Abstract

Identifying causal relationships rather than spurious correla-
tions between words and class labels plays a crucial role in
building robust text classifiers. Previous studies proposed us-
ing causal effect to distinguish words that are causally related
to the sentiment, and then building robust text classifiers using
words with high causal effects. However, we find that when a
sentence has multiple causally related words simultaneously,
the magnitude of causal effects will be significantly reduced,
which limits the applicability of previous causal effect-based
methods in distinguishing causally related words from spuri-
ous correlated ones. To fill this gap, in this paper, we introduce
both the probability of necessity (PN) and probability of suffi-
ciency (PS), aiming to answer the counterfactual question that
‘if a sentence has a certain sentiment in the presence/absence
of a word, would the sentiment change in the absence/presence
of that word?’. Specifically, we first derive the identifiability
of PN and PS under different sentiment monotonicities, and
calibrate the estimation of PN and PS via the estimated aver-
age treatment effect, finally the robust text classifier is built
by removing a certain percentage of words with the lowest
estimated PN and PS. Extensive experiments are conducted
on public datasets to validate the effectiveness of our method.

Introduction
Distinguishing between spurious correlations and causal re-
lationships in linguistics is crucial for building robust text
classifiers (Sridhar et al. 2018; Roberts, Stewart, and Nielsen
2020). For example, in the Movies dataset (Maas et al.
2011) containing IMDB movie reviews, and is found to have
a stronger correlation with positive sentiment than excel-
lent (Paul 2017). However, from the semantics, it should be
excellent instead of and that causes a positive sentiment of a
movie review, and the word and itself does not necessarily
affect the review’s sentiment. This motivates the construc-
tion of robust text classifiers by identifying and using words
that are causally related to sentiment rather than spurious
correlated ones (Olteanu, Varol, and Kiciman 2017).

To identify words that are causally related to the sentiment,
previous methods propose to consider a specific word as the
treatment word and estimate the causal effect on the class
labels, whereas sentences containing the specific word are
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Positive sentiment words Negative sentiment words

# Pos−Neg ATE # Neg−Pos ATE

0 0.547 0 −0.493
1 0.459 1 −0.498
2 0.289 2 −0.325
3 0.239 3 −0.207

Table 1: The average ATE of positive and negative sentiment
words as treatments on the Kindle dataset (He and McAuley
2016), grouped by the difference in the number of positive
and negative sentiment words excluding the treatment word.

considered as belonging to the treatment group and other-
wise to the control group. Typical causal effect estimation
methods include text or propensity matching (De Choudhury
et al. 2016; Saha et al. 2019), augmented inverse propen-
sity weighting (AIPW) (Pham and Shen 2017; Sridhar and
Getoor 2019), and representation learning based methods (Jo-
hansson, Shalit, and Sontag 2016; Veitch, Sridhar, and Blei
2020; Wang et al. 2024). These methods also demonstrate
impressive performance in domains such as recommender
systems (Schnabel et al. 2016; Li et al. 2023a,b) and com-
puter vision (Hu et al. 2022; Duan et al. 2023).

However, a critical issue when using causal effects to iden-
tify causally related words is that when multiple causally
related words appear in the same sentence, the causal effect
of each causal word on sentiment drops dramatically, making
it difficult to identify these words. For example, consider a
sentence with positive sentiment – This movie is excellent
and marvelous. When estimating the causal effect of word ex-
cellent on sentiment, the matched sentences without the word
excellent may be – This movie is [token] and marvelous, in
which [token] is a word other than excellent, and this sentence
may also be recognized as positive sentiment. Therefore, the
causal effect of word excellent on the sentence sentiment will
be unexpectedly small because other positive words (e.g.,
marvelous) also appear in the sentence. This poses a great
challenge to the effectiveness of previous methods of identi-
fying causally related words by comparing the causal effects
of different words on sentence sentiment.

To empirically reveal the limitations of exploiting average
treatment effects (ATEs) to identify causally related words,



we compute the average ATE of positive and negative sen-
timent words as treatments on the Kindle dataset (He and
McAuley 2016). As shown in Table 1, each row shows the
average ATE with a specific gap between the total positive
sentiment words number and the total negative sentiment
words number in the sentence without computing the treat-
ment word. Despite the average ATE for positive sentiment
words as treatments is positive in each subgroup, we find
that the absolute value of average ATE decreases signifi-
cantly as more positive words are contained in the sentence,
particularly decreasing from 0.547 to 0.239. Similar conclu-
sions also hold for the cases of negative sentiment words as
treatments. Importantly, this observation reveals an inherent
limitation of using ATE as a proxy to identify the causally
related words, which is irrelevant to ATE estimation meth-
ods. Consequently, if the absolute value of the ATE for some
causally related words as treatments decreases below a cer-
tain threshold, the causally related words may be incorrectly
identified as spurious correlated words, thus decreasing the
text classifier robustness.

To fill this gap, we aim to answer the counterfactual ques-
tion, i.e., the highest level in the causal ladder (Pearl 2009),
‘if a sentence has a certain sentiment in the presence/absence
of a word, would the sentiment change in the absence/pres-
ence of that word?’, instead of the interventional question as
in the previous studies, i.e., the second level in the causal lad-
der. We introduce both the probability of necessity (PN) and
probability of sufficiency (PS) (Pearl 2022) and theoretically
derive the identifiability results of PN and PS under differ-
ent sentiment monotonicities. We further propose a novel
robust text classification approach, in which the signs of the
estimated ATEs correspond to different sentiment monotonic-
ities, and words with the lowest estimated PN and PS are
considered as spurious correlated words and thus removed
to achieve robust text classification. Extensive experiments
are conducted on four public datasets, demonstrating the su-
periority of our proposal on both spurious correlated words
identification and robust text classification.

Preliminaries
Robust Text Classification
In this paper, we consider the task of binary text classifica-
tion on the dataset D = {(s1, y1), ..., (sn, yn)}. We ignore
subscripts for simplicity without ambiguity. For each sen-
tence s consisting of k words, its sentiment label is binary,
i.e., y ∈ {0, 1}, where 0 denotes negative sentiment and 1
denotes positive sentiment. By exploiting a feature encoder
g : s 7→ x, we first transform a sentence s into a dense fea-
ture vector x. To classify the sentiment of the sentence, we
train a binary classifier fθ : x 7→ {0, 1} parameterized by
θ by minimizing a pre-defined training loss L(D; θ), which
predicts the sentiment label with each feature vector x.

To enhance the robustness and transferability of the clas-
sifier, we consider the more fine-grained word-level rela-
tionships to the sentiment label, aiming to distinguish the
causally related words from the spurious correlated words.
For instance, the word and is spurious correlated with the
positive sentiment label in the IMDB movie reviews, but not

in the Kindle book reviews. On the opposite, the causally
related words have robust relationships with the class la-
bel across different domains, upon which we can build a
more robust text classifier. LetW = {w1, w2, . . . , wA} be
all the words in the training data, we seek to find the words
W ′ = {w′

1, w
′
2, . . . , w

′
S} ⊆ W most likely to be spuriously

correlated to the sentiment label and remove them from the
sentences for training a robust text classifier f(g(s \W ′); θ).

Causal Formulation
We formulate the causally related words identification prob-
lem using the Neyman-Rubin causal framework (Imbens and
Rubin 2015). Given a specific word w, the treatment is set
to T = 1 if w appears in the sentence, otherwise T = 0 if w
does not appear. Let the sentence removing w be the covariate
X , i.e., X = s \ {w} ∈ X . Using the Neyman-Rubin causal
framework, in addition to the observed sentiment label Y ,
we denote Y (0) and Y (1) as the potential outcomes when
receiving treatment T = 0 and T = 1, respectively.

Note that for each sentence one can only observe one
sentiment label Y = (1−T )Y (0)+TY (1), but not both Y (0)
and Y (1), which is also known as the fundamental problem
of causal inference (Holland 1986; Morgan 2015). We also
assume the unconfoundedness that (Y (0), Y (1)) ⊥⊥ T | X
and let 0 < P(T = 1|X = x) < 1 for all x ∈ X . That is,
given the sentence removing the treatment word, the presence
or non-presence of the word w is independent of the potential
outcomes, and the probabilities of presence and non-presence
of the treatment word are both positive.

The most common estimands for measuring the impact of
one specific treatment word on the sentiment label are causal
effects. Specifically, the conditional average treatment effect
(CATE) with given covariate X is defined as E(Y (1)−Y (0) |
X), and the average treatment effect (ATE) is defined as
E(Y (1) − Y (0)), which is the average of CATEs over all
possible covariate X . Previous works use the causal effects
as auxillary metrics to distinguish the causally related words
from spuriously related words (Falavarjani et al. 2017; Wood-
Doughty, Shpitser, and Dredze 2018; Pryzant et al. 2021)–
when a word has a relatively large causal effect on the class
label, it is predicted as a causally related word. Oppositely, a
word strongly correlated with the class label but not causally
related is regarded as a spuriously correlated word.

Proposed Method
Unfortunately, when there are more than one positive or
negative sentiment words in one sentence, the magnitude of
both CATE and ATE will be significantly reduced, which
challenges the causally related words identification. In this
paper, instead of directly using causal effects, we propose
to identify the causally related words via the probability
of necessity (PN) and the probability of sufficiency (PS).
Specifically, we first theoretically derive the identification
results under different sentiment monotonicities, and further
propose an robust text classification algorithm by accurately
estimating the PN and PS and removing a certain percentage
of words with the lowest estimated PN and PS.

Definition 1 (Probability of Necessity (Pearl 2022)). The



T Y Y (0) Y (1) Necessity Sufficiency

0 0 0 0 ? ×
0 0 0 1 ? ✓
0 1 1 0 ? ✓
0 1 1 1 ? ×
1 0 0 0 × ?
1 0 1 0 ✓ ?
1 1 0 1 ✓ ?
1 1 1 1 × ?

Table 2: The sentences can be divided into eight strata accord-
ing to the treatment T , observed outcome Y , and potential
outcomes Y (0) and Y (1), with the unobserved one high-
lighted in red. For each stratum, counterfactual necessity and
sufficiency either hold (✓), do not hold (×), or unknown (?).

probability of necessity is the probability that sentiment Y =
y would not occur in the absence of word (denoted as T = 0),
in the case where the word and sentiment Y = y did occur,
i.e., P(Y (0) = 1− y | T = 1, Y = y,X).
Definition 2 (Probability of Sufficiency (Pearl 2022)). The
probability of sufficiency is the probability of the capacity of
a word to produce sentiment Y = 1− y, in the case where
the word is absent (denoted as T = 0) with sentiment Y = y,
i.e., P(Y (1) = 1− y | T = 0, Y = y,X).

Based on the definition of PN and PS, we can analyze the
necessity and sufficiency of the treatment word for the senti-
ment of the sentence, as Table 2 shows. Since PN and PS are
at the counterfactual level, we require one more assumption
than standard causal inference for treatment effects.
Assumption 1 (Monotonicity). For each word as treatment,
either the word is positively monotonic to the class label
Y (1) ≥ Y (0) or negatively monotonic Y (1) ≤ Y (0).

We argue that this assumption is not strong since it only
requires the sentiment of a word would be either positive
or negative across different sentence contexts, but can with
varying causal effect values. For example, the causal effect
of the word excellent to the positive sentiment may change
according to different sentence contexts, but barely be nega-
tive. Next, we derive the identifiability of PN and PS under
different sentiment monotonicities as follows.
Theorem 1 (Identifiability Under Monotonicity). Under As-
sumption 1 that Y (1) ≥ Y (0), the probability of necessity
and the probability of sufficiency are identifiable:

P(Y (0) = 0 | T = 1, Y = 1, X) = 1 +
P(Y = 0 | T = 0, X)− 1

P(Y = 1 | T = 1, X)
,

P(Y (1) = 1 | T = 0, Y = 0, X) = 1 +
P(Y = 1 | T = 1, X)− 1

P(Y = 0 | T = 0, X)
.

Under Assumption 1 that Y (1) ≤ Y (0), the probability of
necessity and the probability of sufficiency are identifiable:

P(Y (0) = 1 | T = 1, Y = 0, X) = 1 +
P(Y = 1 | T = 0, X)− 1

P(Y = 0 | T = 1, X)
,

P(Y (1) = 0 | T = 0, Y = 1, X) = 1 +
P(Y = 0 | T = 1, X)− 1

P(Y = 1 | T = 0, X)
.

Algorithm 1: Robust text classification using words
with high probability of necessity and sufficiency

Input: training data D = {(s1, y1), . . . , (sn, yn)};
1 Train an initial classifier f(x; θ) on training data D;
2 Extract from f(x; θ) the words {w1, . . . , wM} that

are most strongly associated with each class
according to the initial classifier;

3 for m ∈ {1, . . . ,M} do
4 Estimate P̂(Y | T = 0, X) and P̂(Y | T = 1, X);
5 Estimate average treatment effect τ̂m of word wm;
6 if τ̂m ≥ 0 then
7 PNm ← 1 + 1

npos

∑
i:yi=1

P̂(Y=0|T=0,X)−1

P̂(Y=1|T=1,X)
;

8 PSm ← 1 + 1
nneg

∑
i:yi=0

P̂(Y=1|T=1,X)−1

P̂(Y=0|T=0,X)
;

9 else
10 PNm ← 1 + 1

nneg

∑
i:yi=0

P̂(Y=1|T=0,X)−1

P̂(Y=0|T=1,X)
;

11 PSm ← 1 + 1
npos

∑
i:yi=1

P̂(Y=0|T=1,X)−1

P̂(Y=1|T=0,X)
;

12 end
13 end
14 Remove the words with the lowest KPN% PN and the

lowest KPS% PS;
15 Train a robust f(x; θ) using the remaining words;

Output: robust transferable text classifier f(x; θ).

Proof. Without loss of generality, we only prove the iden-
tification of P(Y (0) = 0 | T = 1, Y = 1, X) under the
sentiment monotonicity Y (1) ≥ Y (0) in below:

P(Y (0) = 0 | T = 1, Y = 1, X)

=
P(Y (0) = 0, Y = 1 | T = 1, X)

P(Y = 1 | T = 1, X)

=
P(Y (0) = 0, Y (1) = 1 | T = 1, X)

P(Y = 1 | T = 1, X)

=
P(Y (0) = 0, Y (1) = 1 | X)

P(Y = 1 | T = 1, X)
, (1)

where the first equality holds directly from the definition
of conditional probability, the second equality is from the
consistency assumption, and the third equality is from the
strong ignorability assumption.

For the P(Y (0) = 0, Y (1) = 1 | X) term in the numera-
tor, we have the following identifiability results:

P(Y (0) = 0, Y (1) = 1 | X)

=
(
P(Y (0) = 0, Y (1) = 1 | X) + P(Y (0) = 1, Y (1) = 1 | X)

)
+

(
P(Y (0) = 0, Y (1) = 0 | X) + P(Y (0) = 0, Y (1) = 1 | X)

)
−

(
P(Y (0) = 0, Y (1) = 0 | X) + P(Y (0) = 0, Y (1) = 1 | X)

+ P(Y (0) = 1, Y (1) = 0 | X)︸ ︷︷ ︸
equals to 0 because Y (1)≥Y (0)

+P(Y (0) = 1, Y (1) = 1 | X)
)

= P(Y (1) = 1 | X) + P(Y (0) = 0 | X)− 1

= P(Y = 1 | T = 1, X) + P(Y = 0 | T = 0, X)− 1. (2)



# docs # top words # causal # spurious

IMDB 10,662 366 174 90
Kindle 20,232 270 100 119
Toxic 15,216 329 63 40

Toxic Tweets 6,774 341 45 72

Table 3: Datasets summary.

Combining Eq. (1) and Eq. (2) identifies the PN as:

P(Y (0) = 0 | T = 1, Y = 1, X) = 1 +
P(Y = 0 | T = 0, X)− 1

P(Y = 1 | T = 1, X)
.

The rest of the identifiability results can be obtained by fol-
lowing a similar argument.

From Theorem 1, we note that the identification results
under Y (1) ≤ Y (0) (negative sentiment words) and Y (1) ≥
Y (0) (positive sentiment words) are different. This motivates
us to first determine whether Y (1) ≥ Y (0) or Y (1) ≤ Y (0),
which is obtained by the sign of estimated ATE τ̂m (line
6), then estimate the PN and PS for each treatment word.
To reduce computational cost, with the training data D, we
first train an initial classifier f(x; θ) to find the candidate
words {w1, . . . , wM} which are mostly correlated with the
class label (lines 1 to 2). Then we take each candidate word
wm,m ∈ {1, 2, . . . ,M} as the treatment word and estimate
its PN and PS (lines 3 to 13). To obtain the robust text clas-
sifier, we finally remove the words with the lowest PN and
PS by a certain percentage (line 14) and re-train the text clas-
sifier f using the remained sentence contexts (line 15). We
summarize the overall algorithm in Algorithm 1.

Notice that the proposed algorithm does not require accu-
rate estimations of PN, PS, or ATE. For PN (PS), we only
need to make sure the bottom KPN% (KPS%) words have
smaller PN (PS) than the upper 1 − KPN% (1 − KPS%)
words. While for ATE, the only requirement is that the sign
of τ̂m is correct. This further enhance the robustness of our
algorithm in addition to the advantages of the metrics PN and
PS themselves over the widely adopted causal effects.

Experiments
Dataset and Preprocessing
Following Wang and Culotta (2020), we conduct experiments
on four public datasets for binary classification tasks, specif-
ically using the IMDB and Kindle datasets for sentiment
classification and the Toxic and Toxic Tweets datasets for
toxicity detection, with the detailed information as below:

• IMDB: This dataset includes sentences labeled with
sentiment polarity (positive/negative) from movie re-
views (Pang and Lee 2005).

• Kindle: This dataset collected product reviews from Ama-
zon Kindle Store reviews (He and McAuley 2016). The
original reviews are labeled as five-scale from 1 to 5. We
follow Wang and Culotta (2020) to label the sentences
with ratings 4 and 5 as positive, whereas 1 and 2 as nega-
tive, and remove the other sentences with rating 3.

• Toxic: This dataset collected comments from Wikipedia’s
talk page (Wulczyn, Thain, and Dixon 2017), in which the
toxicity is labeled by human raters. Each comment was
displayed to up to 10 raters with the original ratings from
0.0 to 1.0. For each comment, we take the average of the
human-annotated ratings and label the comment as toxic
(positive) if the average toxicity score is larger than 0.7
and as non-toxic (negative) if the average toxicity score is
lower than 0.5. Similarly, we ignore the comments with
the average toxicity score between 0.5 and 0.7.

• Toxic Tweets: This dataset collected comments from Twit-
ter Streaming API and labeled toxic/non-toxic also by
human raters (Radfar, Shivaram, and Culotta 2020).

In addition, Wang and Culotta (2020) manually labeled
some of the words by identifying whether they are causally
related or spurious correlated for each dataset. We summarize
the summary statistics of the four datasets in Table 3.

Baselines
Despite there are many ATE-based methods for learning
robust text classifiers, considering that the purpose of this
paper is not to estimate more accurate ATEs, but to exploit
PNs and PSs to determine whether words are causally related
or spuriously correlated, we only compare our method with
the matching-based ATE estimation methods (Falavarjani
et al. 2017; Wang and Culotta 2020) for illustrative purposes.

Specifically, given the estimated ATEs for words that are
most strongly associated with the class labels, a straightfor-
ward approach is to rank the absolute values of the estimated
ATEs of these words and predict words with ATEs less than
a certain threshold as spuriously correlated words, named
model-free method. To further exploit the human-annotated
labels of whether words are causally related or spurious corre-
lated, we train a new word classification model using logistic
regression for predicting the probability of a word being
causally related, by augmenting the estimated ATEs to have
more diverse input features, e.g., the ATE restricted to the
top-5 most similar matches for sentences, the word’s coef-
ficient from the initial sentence classifier using a logistic
regression with the bag-of-words as features to predict the
sensitment/toxicity label (Wang and Culotta 2020). We rank
the probability of being spurious derived from the word clas-
sification model and predict words with predicted probability
of being spurious less than a given threshold as spuriously
correlated words, named model-based method.

We also apply the Oracle method that identifies the spuri-
ous words with the ground truth label as baseline.

Hyperparameters and Implementation Details
First, following Wang and Culotta (2020), we use a logistic
regression model with bag-of-words as the features to predict
the sentiment/toxicity of the sentence and extract words that
are most strongly associated with the class, named top words.
For IMDB and Kindle datasets, words with coefficients larger
than 1.0/lower than −1.0 are chosen as positive/negative top
words, and for Toxic and Toxic Tweets, words with coeffi-
cients larger than 1.0/0.7 are selected as top words. Note that
we do not consider the word with large negative coefficients



Figure 1: Performance of sentiment/toxicity classifications on test sets for four datasets.

because the goal of these two datasets are only to identify the
toxic words and regard the other words as non-toxic.

Second, for each top word that appears in more than 10
sentences in each dataset, we estimate the PN and PS for our
method using the Algorithm 1. To compute P̂(Y | T = 1, X)
and P(Y | T = 0, X) within the estimators of PN and PS,
we first use principle component analysis (PCA) on the Bert
embeddings for each sentence to obtain the covariates X ,
and then fit two logistic regression models separately on
sentences with and without the top word of interest. We tune
the PCA dimension in {3, 5, 10, 20, 30, 40, 50}.

Finally, for both model-free and model based method iden-
tified by estimated ATEs and estimated PNs and PSs, we
replace the spurious correlated words by the <blank> token
in the sentence, and then train a final sentiment/toxicity clas-
sification model. Motivated by (Wang and Culotta 2020),
we select the sentence where spurious word is negatively
related to the sentiment/toxicity label, that is, the spurious
positive/negative word in the negative/positive sentiment or
toxic/non-toxic sentence as the test set.

Performance Comparison
Sentiment Classification and Toxicity Detection We se-
quentially replace the words with the highest predicted prob-
abilities of being spurious to <blank> token and examine the
classification performance after replacing words identified
as spuriously correlated words with model-based methods.
Figure 1 shows the classification performance on the test
set of four datasets with the varying numbers of replaced
words. The results show that both the ATE-based and PN&PS-
based method can increase the classification accuracy in test
sets when as the number of replaced spurious words increas-
ing. This highlights the importance of discovering spurious
words and replacing spuriously correlated words in classifica-
tion. The PN&PS-based method outperforms the ATE-based
method, suggesting that PN and PS can better facilitate the
classification task compared with the ATE.

Word Classification To investigate the reasons of the sen-
timent/toxicity classification performance improvement, an
important question is whether our method can distinguish

IMDB Kindle Toxic Toxic Tweets

ATE (model-free) 0.348 0.445 0.421 0.625
PN&PS (model-free) 0.393 0.454 0.289 0.611

ATE (model-based) 0.315 0.370 0.553 0.736
PN&PS (model-based) 0.461 0.412 0.632 0.750

Table 4: Causal/spurious word classification performance
measured by accuracy with the outperforming results bolded.

the spuriously correlated words more accurately than the
ATE-based baselines. Table 4 shows the accuracy for each
classifier on four datasets. To ensure the fair comparison, we
fix the number of the replaced words as the overall number
of manually labeled spurious words as shown in Table 3.
The accuracy are measured by the proportion of spurious
words among all replaced words. The results indicate that our
PN&PS-based approaches perform better than the ATE-based
approaches in distinguishing spurious words for sentiment
datasets (IMDB and Kindle). On toxic datasets, though the
model-free models perform poorly, the model-based meth-
ods can greatly enhance the word classification performance,
which still can demonstrate the effectiveness of identifying
causal words of our PN&PS-based methods.

Conclusion
This paper proposes a robust text classification approach us-
ing PN and PS to distinguish causally related words from
spuriously correlated words. Theoretically, we derive the
identifiability results of PN and PS under different sentiment
monotonicities. Empirically, we conduct extensive experi-
ments to validate the superiority of our approach in causally
related words identification and downsteam tasks such as
sentiment classification and toxicity detection. One possible
limitation of this paper is that the monotonicity assumption
may be violated for a few sentences with the presence of
words like not, never and hardly. Another limitation of this
paper, which also served as our future research direction, is to
explore a more effective way to utilize the estimated PN and
PS for robust text classification rather than simply removing
the words with PN and PS lower than a given threshold.
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