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ABSTRACT

Data, model and hardware are crucial components in the development of large scale
machine learning models. The training of such models necessitates substantial
computational resources, energy consumption, and raw materials, resulting in
significant environmental implications. However, the environmental impact of
these models has been largely overlooked due to a lack of assessment and analysis
of their carbon footprint. In this paper, we present OpenCarbonEval, a carbon
emission estimation tool to quantify the environmental implications of large scale
machine learning models given their total training computations and hardware
configurations. In OpenCarbonEval, we conducted a comprehensive dynamic
analysis of the interrelationships among data, models, and hardware throughout
the model training process, aiming to forecast the carbon emission of large scale
models more accurately. We validated our approach on real-world dataset, and
experimental results demonstrate that OpenCarbonEval can predict energy costs
and carbon emissions more accurately than previous methods. Furthermore, it can
be seamlessly applied to various machine learning tasks without a precision decline.
By quantifying the environmental impact of large-scale models, OpenCarbonEval
promotes sustainable AI development and deployment, contributing to a more
environmentally responsible future for the AI community.

10x for years !

Figure 1: Large-scale models’ environmental impact covering 42 large-scale AI models across 15
tasks. The carbon footprint of large-scale ML models has significantly increased over time, with
annual growth rates exceeding tenfold. A detailed analysis is in Section 4.5
.
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1 INTRODUCTION

Recently, large scale ML models like Large Language Models (LLMs) (OpenAI, 2023) and Multi-
modal Large Language Models (MLLMs) (Chen et al., 2023) have exhibited remarkable intelligence
across a wide range of tasks, largely attributed to the advancement of their scaling laws (Henighan
et al., 2020; Kaplan et al., 2020; Zhai et al., 2022). However, as the scale of model parameters and
training sets increases, the computational overhead of training and maintaining large-scale models
becomes exorbitantly huge, resulting in significant environmental impacts. For instance, training a
GPT-3 (Brown et al., 2020) with 175B parameters will consume nearly 1300MWh of electricity (Pat-
terson et al., 2021), roughly equivalent to the annual electricity consumption of 130 households in the
US. Meanwhile, its corresponding carbon dioxide equivalent (CO2eq) is about 552 tons (Patterson
et al., 2021), which is three times the CO2eq emissions of jet plane round trip between San Francisco
and New York. Therefore, the ML community should pay greater attention to the energy consumption
and environmental impact of these large-scale ML models.

Previous works, such as MLCO2 (Lacoste et al., 2019) and GreenAlgorithm (Lannelongue et al.,
2021), have proposed to calculate the carbon emission of ML tasks based on some key parameters
like GPU usage, training duration, and data center efficiency. These methods heavily rely on exact
information about the training process, implying that only model developers can use these tools to
estimate the energy consumption and carbon emissions of their trained models. To break away from
this limitation, LLMCarbon (Faiz et al., 2023) presents an end-to-end approach for estimating carbon
emissions before model training. It inputs the key architecture parameters of LLM into its specially
designed FLOP-model and efficiency-model, which can be used to predict the training duration and
carbon emission. However, the key steps of this method are all designed for LLM, and the polynomial
fitting coefficients in its efficiency-model are completely unsuitable for other ML tasks, e.g. image
generation. Furthermore, these estimation methods often assume a static or average workload, failing
to capture the dynamic nature of the training process of large scale ML models. This oversight can
lead to significant inaccuracies in energy consumption and carbon emission estimates.

To ensure a comprehensive comparison and analysis for the energy and carbon footprint of various
past and future large-scale models, we have identified key challenges: an accurate and transparent
anticipatory approach is needed, which can use basic information of training to predict energy
consumption and carbon emissions accurately. This approach should also produce fair and comparable
results across diverse ML tasks in various fields.

In this paper, we propose OpenCarbonEval, a carbon emission estimation tool to quantify the
environmental implications of large scale ML models given their total training computations and
hardware configurations. In OpenCarbonEval, our contributions are summarized as follows:

• A Carbon Emission Estimation Method for Various ML Tasks We propose a novel
method to accurately estimate the dynamic power consumption and carbon emission of large
scale ML models across various ML tasks, using two basic information including training
computation and hardware configuration.

• The first Open Source Dataset about the Carbon Footprint of Large Scale ML Models
We collect and open source the OpenCarbonEval dataset comprising 110 real-world data of
large scale ML models across 20 ML tasks on their carbon footprint.

• Empirical Validation on the Method of Carbon Emission Estimation We conduct a
statistical analysis of the benefits and limitations of carbon emission methods, providing
valuable insights for future research.

The results of our analysis demonstrate that the predictions generated by OpenCarbonEval exhibit a
high accuracy with real-world data, enabling us to produce more accurate predictions for various ML
Tasks. Furthermore, to promote a more transparent and sustainable ML community, we will open
source all the OpenCarbonEval dataset and the estimation tools used.

2 RELATED WORK

Over the past decade, deep learning has experienced remarkable advancements, particularly with the
recent dominance of large-scale models. These models have significantly increased in model size
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and training data (Villalobos et al., 2024). While their performance has improved dramatically, the
computational costs have grown exponentially (Sevilla et al., 2022). This surge in computational
demand results in substantial energy consumption, leading to considerable greenhouse gas emissions.
As we continue to develop more and larger AI models in the foreseeable future, understanding their
energy costs and environmental impact becomes crucial.

Previous works (Wu et al., 2022; Luccioni et al., 2023) usually divide the carbon footprint of AI
models into two parts: operational carbon and embodied carbon. Operational carbon includes the
carbon emissions generated by producing the electricity required for training an AI model and using
it for inference on computing devices. Embodied carbon means the equivalent carbon emissions
from manufacturing the computing devices. During the training phase of large models, the primary
contributor to carbon emissions is operational carbon, which results indirectly from the energy
consumption of AI computing chips. It can be calculated by multiplying the energy cost for AI
computing E(kWh) by the regional carbon intensity I(kgCO2eq/kWh).

Related works have proposed some methods for calculating the energy cost and carbon footprint of
training AI models, we can broadly categorize them into three types:

Retrospective Calculation Method: MLCO2 (Lacoste et al., 2019) and GreenAlgorithm (Lanne-
longue et al., 2021) can estimate the energy consumption and carbon footprint of ML tasks based on
user input information such as device type, training duration, and power grid area. The difference
is that the latter accounts for additional CPU and memory consumption. Although these inputs are
independent of the model, their application is significantly limited. This is because, aside from model
developers, others may not have access to the exact training duration. Consequently, we can not apply
these estimates to models that have not been trained or those without reported training duration.

Real-time Monitoring Method: CodeCarbon (Courty et al., 2024), Carbontracker (Anthony et al.,
2020), and Eco2AI (Budennyy et al., 2022) are designed to run in parallel with ML tasks for real-time
monitoring. Each provides a Python library that can be integrated into existing training scripts
to capture dynamic hardware energy consumption throughout the process. While this approach
is theoretically precise, its intrusive nature or lack of integration with existing distributed training
frameworks may limit widespread adoption. This method also cannot be used to analyze existing
models or predict future models’ carbon emissions.

Anticipatory Estimation Method: LLMCarbon (Faiz et al., 2023) is first end-to-end approach for
estimating model carbon emissions before training. It is specifically designed for LLM architectures,
which includes a FLOP-model to estimate total computation and an efficiency-model to estimate
average hardware computation speed. By combining them, this anticipatory method can predict
training time and carbon footprint based on the model’s key information before training. However,
since the FLOP-model and efficiency-model are tailored to LLM frameworks, the polynomial
coefficients used in the method are difficult to apply to other hardware types or task architectures.

Our OpenCarbonEval is also an anticipatory method, this general framework leverages existing
model training statistics and approximates the dynamic computation processes of hardware, which
can predict training times for AI models across various architectures and tasks. This enables fair and
comparable estimate results of energy consumption and carbon footprint.

3 OPENCARBONEVAL

Building on previous research (Faiz et al., 2023; Luccioni et al., 2023), we categorize the overall
carbon emissions during the training process of ML models into two main components: operational
carbon emissions from energy consumption and embodied carbon emissions associated with the
materials and processes involved in hardware production.

3.1 OPERATIONAL CARBON

Operational carbon, produced by generating the electricity necessary for powering model training, is
a significant component of the environmental impact associated with machine learning and artificial
intelligence systems. This type of carbon emission arises from the energy consumption required to
run the computational processes involved in training ML models, which could be calculated as:

3
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Coperational = E · I (1)

where Coperational indicates the amount of emitted carbon dioxide (kgCO2eq), E (kWh) indicates
the energy consumed for model training and I(kgCO2eq/kWh) indicates the emitted CO2 per
kWh energy consumed.

3.2 DYNAMIC POWER CONSUMPTION

In Eq. (1), the grid’s carbon intensity I is a coefficient (kgCO2eq/kWh) depends on the electricity
source that powers training process which is often related to the region where the data center is
located. The energy consumption E is often calculated by multiplying the number of GPU hours
used by the thermal design power (TDP) of those GPUs and the carbon intensity (I) of the energy
grid used to power the hardware, which can be written as follows:

E = TDP · Ttrain ·NGPU (2)

where Ttrain indicate the training time of the model and NGPU is the number of all hardware involved
in training process. In Eq. (2), TDP and NGPU are typically constants that are independent of time.
Therefore, we mainly study the energy consumption over the training time Ttrain in this section.

Little’s Law in training process In the training process of a ML model, the hardware initially loads
the model and data from memory. This process then rapidly transitions to a steady state for efficient
processing, analogous to a queuing system. In the early stages of a queuing system, when the queue is
empty, no waiting is necessary. However, once the queue reaches capacity, subsequent data must wait
in line. This waiting period effectively constitutes the training time, denoted as Ttrain. Therefore, we
simulate the queuing process and use Little’s Law Little & Graves (2008) to model the relationship
between total computation, training speed and GPU time during the model training process. Consider
a short interval (t, t +∆t) within the training time Ttrain, we can get a product relationship from
little’s law as follows:

L∆t = λ̄ ·∆t (3)
where L∆t is the total computation processed by GPUs and λ̄ is the average training speed during ∆t.
In our approach, we divide Ttrain into the same n parts and use ∆ti = ∆t and λ̄i to denote the i-th
time interval and the average speed. By adding up all the time intervals according to Eq. (3), we have

Lcomputation =

n∑
i=0

λ̄i ·∆t (4)

However, it is not straightforward to calculate their average speed λ̄i for all ∆ti. Hence, we calculate
the form of formula 4 when ∆t → 0, where the average speed λ̄i is an instantaneous speed that
changes over time f(t). This process can be written as:

Lcomputation =

∫ Ttrain

0

f(t)dt (5)

From Eq. (5), we can solve for the training time Ttrain and bring it into Eq. (1) to obtain operational
carbon if f(t) is available. However, the train speed f(t) is often difficult to estimate due to different
hardware configurations and training setups. Therefore, we focus on the selection of f(t) and validate
its effectiveness in the following sections of this paper.

The inspiration from real-world training process In the training process of an ML model, the
hardware initially loads the model and data from memory. Subsequently, the hardware quickly
reaches a steady state, efficiently processing the gradients and other tensors generated during model
training. To simulate this process, the function f(t) we choose should satisfy the requirement of
quickly entering a relatively stable state, which could be expressed as follows:

lim
t→∞

f ′(t) = 0 (6)

The challenge of insufficient data After identifying the general trend of f(t), we need to determine
the parameters in f(t) based on real-world data points. However, there is limited discussion within
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Figure 2: The comparison between real-world training speed and f(t) = ln(1 + αt) under different
training setting. More detailed analysis of α in shown in Section 4.2.

the open-source community regarding the training details and carbon footprint of large-scale ML
models, making it difficult to find enough real-world data to fit f(t). Therefore, due to the lack of
enough real-world data, we could not set too many parameters in f(t).

Combining the above two considerations, our f(t) is formulated as follows:

f(t) = ln(1 + αt) (7)

where only one parameter α is used to determine the shape of f(t). As shown in Fig. 2, we conducted
experiments under various settings and compared the results with the function f(t) = ln(1 +αt). To
reflect the correlation between different values of α and the hardware, we collect the avaliable data of
all large-scale machine learning models from EpochAI as of August 2024, totaling 110 examples.
We will open-source the data we used to the community. A detailed discussion of the findings from
these data is provided in Section 4.

3.3 EMBODIED CARBON

Embodied carbon, representing the emission associated with hardware manufacturing and the pro-
cesses involved in producing given hardware. While the production of these emissions is exclusively
limited to the manufacturing process, this total amount is usually spread over the time during which
equipment is used by dividing the total embodied emissions by the time of use. this process can be
calculated as follows:

Cembodied =
Clifelong

Tlifelong
· Ttrain ·NGPU (8)

where Cembodied and Ttrain indicate the embodied carbon and training time of the model to be
estimated respectively, Clifelong and Tlifelong represent the product carbon and life time of the GPUs
respectively, and NGPU is the number of all hardware involved in training process. With other
information already known, the key to predicting Cembodied becomes similar to that of Coperational,
i.e., predict the training time Ttrain.

4 VALIDATION

4.1 DATASET

OpenCarbonEval Dataset We collect the key parameters from EpochAI’s "Notable AI Models"
dataset1, including Training Compute, Training Time, Training Hardware and Hardware Quantity.
For over 800 entries in EpochAI, we drop the null value and keep 110 records to obtain the statistical
information for our method. The remaining dataset encompasses 20 ML tasks and the majority of
common model frameworks, such as LLMs, vision, image generation, multimodal, speech, and video.
It also covers 26 different hardware devices, e.g. NVIDIA V100, A100, and Google TPU v4 and so
on. We estimate the α parameter for all records, allowing users to select the α value from a record
with similar configurations to their model, or use the mean value for their hardware type, as we do.
Using the statistical information from the dataset and OpenCarbonEval estimation method, we can
predict the carbon emissions for any ML model that provides the total computation and hardware

1https://epochai.org/data/notable-ai-models?view=table
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Figure 3: Comparison between mean estimated α values(blue color) and theoretical peak speeds in
real world(orange color) for different hardware devices. It shows the high consistency in the trends of
the two values across different devices, which validates the effectiveness of using the α parameter to
model computation speed. Note that peak speed information is invisible in our model, and the peak
speed is typically unattainable during the training process.

type. In our experiments, we use Training Time for Ttrain, and Training Compute for Lcomputation

and Hardware Quantity for NGPU. By substituting Ttrain and Lcomputation into Eq. (5), we can
estimate the value of the α parameter in f(t).

Evaluation Set We curated a diverse evaluation set of open-source large-scale models, varying in
functionality, input data, geographical region, and computing device used for training to serve as test
data points. We present results from an array of open-sourced LLMs, such as ChatGLM Zeng et al.
(2022) with 130 billion parameters, BLOOM (Workshop et al., 2022) with 176 billion parameters,
StarCoder (Li et al., 2023), a generative model for code synthesis and LLaMa-3-70B (AI@Meta,
2024), a model trained on Meta’s large-scale AI clusters which takes data and scale to new heights.
While the scaling laws of language models have been well-established, those of visual models remain
an active area of exploration, with a notable absence of carbon emission predictions for this type of
model. So we also add two iconic models, Vision Transformer (ViT-L/16) (Dosovitskiy et al., 2020)
and Swin Transformer (Swin-L) (Liu et al., 2021) into our validation.

4.2 THE IMPACT OF HARDWARE

To investigate the impact of hardware, we first extract the total computation Lcomputation and training
time Ttrain from our OpenCarbonEval dataset. Subsequently, we bring them to Eq. (4) and Eq. (7) to
obtain the value of α for each large scale ML model that is categorize by the training hardware.

The values of α exhibit a similar upward trend to the real-world hardware training speed,
indicating a positive correlation To demonstrate the correlation between the parameter α and
the real-world hardware performance, we compared the mean estimated α values from different
devices with their theoretical peak speeds. As illustrated in Fig. 3, the values of α naturally exhibit
the same trend with the hardware peak training speed (TFLOPs/s). It indicates that α values can
show significant discrepancies due to differences in GPU performance, i.e., devices with better
actual performance will have larger estimated α values. This further validates the effectiveness
of the function form f(t) and the parameter α, and demonstrates their potential to adapt to future
advancements in computing hardware.
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Figure 4: The α distribution by different training hardware. We estimated the parameter α values for
each record in the dataset and conducted statistical analysis based on hardware types. The α values
differ significantly across different hardware categories. Within each hardware, the range of α values
also varies, reflecting the diversity of real-world samples. Hardware types with only one record have
been omitted in this figure.

The value of α is predominantly determined by the specific training hardware. As illustrated
in Figure Fig. 4, Different types of hardware often exhibit distinct alpha ranges, which can vary
significantly based on their architectural and design characteristics. However, when the computing
power of the hardware is comparable, these alpha ranges tend to overlap e.g. TPUv4 and NVIDIA
A100, indicating a convergence in performance metrics despite the underlying differences. For the
purpose of facilitating analysis, we hereafter utilize the mean α values for each hardware type, as
presented in Fig. 4, to compute the energy consumption and carbon emissions of various ML models.

4.3 OPERATIONAL CARBON FOOTPRINT VALIDATION

Table 1 presents the result of OpenCarbonEval on various large-scale models. We have compiled a
comprehensive table that outlines all the parameters necessary for carbon emission estimation. Within
this table, ZettaFLOPs represents the total computation amount required for effective model training,
parameter represents the number of model parameter and I(gCO2eq/kWh) represents the carbon
intensity in Eq. (1). From the Table 1, we have the following observations:

Compared with LLMCarbon, OpenCarbonEval exhibits a significantly lower relative error in
predicting carbon emissions across different compute devices. In contrast to the actual CO2eq
emissions, LLMCarbon exhibited significant errors, with a notable discrepancy of up to 114.5% in
predicting the LLaMa-3’s carbon footprint. This is attributed to its modeling approach not being
transferable to new GPUs. In contrast, OpenCarbonEval demonstrates remarkable accuracy, with
small relative errors at all test data points, thereby validating its effectiveness.

OpenCarbonEval consistently achieves low relative errors in its predictions for both visual
and language models, demonstrating its versatility and robustness across different modalities.
Notably, when predicting the carbon footprint of visual models such as ViT/16-L and Swin-L,
OpenCarbonEval still outperforms LLMCarbon, achieving relatively accurate predictions. This
superiority can be attributed to OpenCarbonEval’s unique strength in establishing a unified task set
that can accommodate all modalities. The error rate on ViT-L/16 may be mainly attributed to the
significant differences in TPUv3 types or abnormal data in our dataset. We believe this result can be
further improved by more available open source data.

7
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Table 1: Operational carbon of various models on different GPU. The result of the best method is
bolded. Error rate represents the relative error between the predicted value and the actual value. We
use the self-reported results whenever available.

Method GLM BLOOM StarCoder LLaMa-3 ViT-L/16 Swin-L
Params 130B 176B 15B 70B 307M 197M
ZettaFLOPs 312 387 93 6300 0.53 0.40
Hardware A100 A100 A100 H100 TPUv3 V100
I (gCO2eq/kWh) 581 57 155 424 369 369

Actual CO2eq (t) 257 24.7 17.26 1900 2.71 0.80

LLMCarbon 153.11 19.89 14.14 4074.63 0.20 0.10
Error Rate -40.4% -19.4% -18.1% +114.5% -92.6% -87.5%

OpenCarbonEval 189.75 23.04 15.26 1866.90 0.39 0.59
Error Rate -26.1% -6.7% -11.6% -1.7% -85.5% -26.8%

Table 2: Different embodied carbon prediction results on various models by OpenCarbonEval. We
use the self-reported results whenever available.

GLM BLOOM StarCoder LLaMa-3 ViT-L/16 Swin-L
Hardware Type A100 A100 A100 H100 TPUv3 V100
TSMC process 7 nm 7 nm 7 nm 4 nm 16 nm 12 nm
Die Size 826 mm2 826 mm2 826 mm2 814 mm2 700 mm2 815 mm2

Clifelong/Tlifelong 1.5 1.5 1.5 1.7 0.8 1.1

Actual embodied 1634.50 1631.23 480.38 10880.0 13.06 7.92
CO2eq (kg)

LLMCarbon 898.37 1090.65 285.23 21211.80 0.88 0.91
Error Rate -45.0% -33.1% -40.6% +95.0% -93.3% -88.5%

OpenCarbonEval 1224.75 1516.11 369.24 10693.14 3.40 5.82
Error rate -25.1% -7.1% -23.1% -1.7% -74.0% -26.5%

4.4 EMBODIED CARBON FOOTPRINT VALIDATION

By reviewing LLMCarbon and obtaining specifications for different types of hardware materials, we
calculated the embodied carbon footprint using Eq. (8), assuming a 1-year effective lifespan for each
hardware component. This approach allows us to account for the embodied carbon emissions resulting
from the manufacturing process, which is an essential aspect of comprehensive carbon evaluation.
As shown in Table 2, although embodied carbon constitutes a relatively small proportion of the total
carbon evaluation, OpenCarbonEval can still maintain high prediction accuracy, demonstrating the
effectiveness of our approach approach in estimating carbon emissions for large scale ML model.

4.5 CASE STUDY

In this section, we conduct a carbon footprint estimation for 42 models across 15 different tasks,
using necessary information such as total computation, hardware type, and training location, which
correspond to the Lcomputation, f(t) with parameter α, and carbon intensity I in our method. As
illustrated in Fig. 1, the carbon footprint of large-scale ML models has significantly increased
over time, with annual growth rates exceeding tenfold. While language models (LLMs) remain
the largest contributors to carbon emissions, other models such as image generation and visual
question answering (VQA) are also adding to this escalating impact. Consequently, a comprehensive
framework like OpenCarbonEval, which uniformly assesses all ML tasks and devices, is crucial for
advancing sustainability in the AI community.

8
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5 DISCUSSION AND LIMITATIONS

Insufficient Real-world Data While OpenCarbonEval provides a unified framework for estimating
carbon emissions, it is not without its limitations. For example, due to the limited availability of
real-world data on ML models, significant deviations in predictions are possible in some scenarios.
Besides, various training setups, such as deep learning frameworks and distributed parallel strategies,
can significantly impact training speeds and duration. However, the current scarcity of real-world
data hinders a comprehensive analysis of these factors. So our framework is not primarily focused on
accuracy, but rather on the predictability and universality it provides. For AI developers who require
precise values of their model’s energy consumption and carbon emissions, we recommend using the
real-time monitoring methods (Courty et al., 2024) mentioned in Section 2 to obtain more reliable
results and report their results.

Carbon Footprint more than GPU Previous works (Lannelongue et al., 2021; Faiz et al., 2023)
assumed that devices such as CPUs and memories operated at constant power, and incorporated the
energy consumption caused by these devices into Eq. (2) to account for the carbon footprint brought
by additional equipment. Alternatively, from the perspective of the data center (Wu et al., 2022), the
energy consumption generated by GPUs can be multiplied by Power Usage Effectiveness (PUE), to
obtain the overall energy consumption. Both of them are feasible solutions, but due to the ground
truth of the carbon footprint model in real-world data is mainly calculated by GPU consumption, we
did not incorporate these additional consumptions into our framework.

Broder Impact on Environmental Sustainability The increasing carbon footprint of large-scale
AI models has significant implications for the environment and sustainability. Our analysis using
OpenCarbonEval reveals a concerning trend of growing carbon emissions associated with the devel-
opment and deployment of these models. This highlights the need for the AI community to prioritize
environmental sustainability alongside performance and efficiency. Furthermore, the environmental
impact of AI models can have far-reaching consequences, including contributing to climate change,
air pollution, and e-waste generation. By providing a unified framework for predicting carbon emis-
sions, OpenCarbonEval can facilitate the development of more environmentally friendly AI models
and encourage responsible AI practices. This includes promoting transparency and accountability
in AI development, encouraging sustainable AI design and deployment, and fostering a culture of
environmental responsibility within the AI community.

6 CONCLUSION

In this paper, we present OpenCarbonEval, a carbon emission estimation tool to quantify the en-
vironmental implications of large scale ML models in their training process. OpenCarbonEval is
able to accurately estimate the carbon emission and energy consumption of various large scale
ML models across various ML tasks, resulting in a more carbon-transparent training process. By
leveraging OpenCarbonEval, we collect the first open source carbon footprint dataset comprising
the carbon footprint for training large scale ML models. Furthermore, our systematic analysis of
the estimation for carbon emissions across various ML tasks provides valuable insights for future
research, contributing to the development of more sustainable large scale ML models.

9
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APPENDIX

A ADDITIONAL INFORMATION OF THE EVALUATED MODEL

The information of evaluated models Fig. 1 are mostly from EpochAI (Epoch AI, 2023).

Figure 1 provides a comprehensive overview of the carbon footprint of large-scale AI models,
spanning 42 models across 15 tasks, as systematically classified by EpochAI (Epoch AI, 2023).

Chat LLaMa-3-70B (AI@Meta, 2024), Inflection 2.5 2.

Language model Gemini Ultra (Team et al., 2023), MegaScale (Prduction) (Jiang et al., 2024),
Inflection 21 , GPT-4 (OpenAI, 2023), PaLM-2 (Anil et al., 2023), GPT-3.5, Flan-PaLM 540B,
Flan-T5-11B, Flan-137B (Chung et al., 2024), Megatron-Turing NLG 530B (Narayanan et al., 2021),
LaMDA (Thoppilan et al., 2022), LLaMa (Touvron et al., 2023),LLaMa-2 (Touvron et al., 2023),
BLOOM (Workshop et al., 2022), Skywork-13B (Wei et al., 2023), BloombergGPT (Wu et al., 2023).

Proteins ProT5-XXL (Elnaggar et al., 2021), ESM2-15B (Lin et al., 2023), xTrimoPGLM -
100B (Chen et al., 2024).

Weather prediction Pangu Weather (Bi et al., 2022).

Code generation Pangu-Σ (Ren et al., 2023), StarCoder (Li et al., 2023).

Object detection ViT-22B (Dehghani et al., 2023)

Image generation Stable Diffusion (LDM-KL-8-G) (Rombach et al., 2022), Taiyi-Stable Diffu-
sion (Zhang et al., 2022)

Translation Gshard (dense) (Lepikhin et al., 2020), NLLB (Costa-jussà et al., 2022)

Text-to-image Imagen (Saharia et al., 2022), Parti (Yu et al., 2022b).

Visual question answering Flamingo (Alayrac et al., 2022).

Image classification Meta Pseudo Label (Pham et al., 2021), CoAtNet (Dai et al., 2021), CoCa (Yu
et al., 2022a), BASIC-L (Pham et al., 2023).

Text autocompletion GPT-3-175B (Brown et al., 2020), Turing-NLG (Rajbhandari et al., 2020),
Meena (Adiwardana et al., 2020), Switch (Fedus et al., 2022).

Zero-shot image classification CLIP (ViT L/14@336px) (Radford et al., 2021).

Image completion iGPT-XL (Chen et al., 2020).

StarCraft AlphaStar (Vinyals et al., 2019).

2https://inflection.ai/
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