Under review as a conference paper at ICLR 2025

é OPENCARBONEVAL: How MUCH CO; WILL YOUR
LARGE MODEL EXHALE IN TRAINING PROCESS?

Anonymous authors
Paper under double-blind review

ABSTRACT

Data, model and hardware are crucial components in the development of large scale
machine learning models. The training of such models necessitates substantial
computational resources, energy consumption, and raw materials, resulting in
significant environmental implications. However, the environmental impact of
these models has been largely overlooked due to a lack of assessment and analysis
of their carbon footprint. In this paper, we present OpenCarbonEval, a carbon
emission estimation tool to quantify the environmental implications of large scale
machine learning models given their total training computations and hardware
configurations. In OpenCarbonEval, we conducted a comprehensive dynamic
analysis of the interrelationships among data, models, and hardware throughout
the model training process, aiming to forecast the carbon emission of large scale
models more accurately. We validated our approach on real-world dataset, and
experimental results demonstrate that OpenCarbonEval can predict energy costs
and carbon emissions more accurately than previous methods. Furthermore, it can
be seamlessly applied to various machine learning tasks without a precision decline.
By quantifying the environmental impact of large-scale models, OpenCarbonEval
promotes sustainable Al development and deployment, contributing to a more
environmentally responsible future for the Al community.

OpenCarbonEval’s Carbon Footprint Timeline: Al Models' Environmental Impact

© Chat A Object detection @ Image dlassification GcmiK'Ullra
+] A Language model () Image generation <> Text autocompletion GP‘-*l

0 X . MegaScale fProduction)

8" QO Proteins ’ Translation @ Zero-shot image classification x
o~ <> Weather prediction © Text-to-image /\ Image completion Infletion? Inflegkion2.5
8 QO Code generation /\ Visual question answering QO StarCraft PEW 2 A g /0B

GPT-3.5 (texjdavinci-003) |

E p ey 10x for years !

= GPT3]7§(davina) .

o) Mcgalron-Tng NLG530B XTrimoP@GL M -100B
. a LaMDA Llartep2-70B

@ AL BLOGK768 Fa
é‘ T VT2

i gGPT
10 Mg&na ESMa:158 Gomberg :)
M @ IGIAXL s»(.}ch ProtfaXXL i & Pangu{}eatheﬁkykam
amngo

o ! FLANI37B ¢ Starged

o Tur|n®Y\LG CoggNet Taiyi-StaleDiffusion tageyder
,D AIP@‘M Stable-Diffusiga(LDM-KL-8-G)

—~

IS CLIP (VIT jg}14@336px) BAgFL Flan-T5 11B L7
U Ghardens) 9" an

NjaL.B
e
2020-01 2020-07 2021-01 2021-07 2022-01 2022-07 2023-01 2023-07 2024-01 2024-07

Realease time (Year-Month)

Figure 1: Large-scale models’ environmental impact covering 42 large-scale Al models across 15
tasks. The carbon footprint of large-scale ML models has significantly increased over time, with
annual growth rates exceeding tenfold. A detailed analysis is in Section[d.3]

Under review as a conference paper at ICLR 2025

1 INTRODUCTION

Recently, large scale ML models like Large Language Models (LLMs) (OpenAlL |2023)) and Multi-
modal Large Language Models (MLLMs) (Chen et al., 2023)) have exhibited remarkable intelligence
across a wide range of tasks, largely attributed to the advancement of their scaling laws (Henighan
et al.}2020; [Kaplan et al.| 2020; |Zhai et al., 2022). However, as the scale of model parameters and
training sets increases, the computational overhead of training and maintaining large-scale models
becomes exorbitantly huge, resulting in significant environmental impacts. For instance, training a
GPT-3 (Brown et al., 2020) with 175B parameters will consume nearly 1300MWh of electricity (Pat;
terson et al., 2021)), roughly equivalent to the annual electricity consumption of 130 households in the
US. Meanwhile, its corresponding carbon dioxide equivalent (CO2eq) is about 552 tons (Patterson
et al.,|2021)), which is three times the CO2eq emissions of jet plane round trip between San Francisco
and New York. Therefore, the ML community should pay greater attention to the energy consumption
and environmental impact of these large-scale ML models.

Previous works, such as MLCO2 (Lacoste et al.l [2019) and GreenAlgorithm (Lannelongue et al.|
2021), have proposed to calculate the carbon emission of ML tasks based on some key parameters
like GPU usage, training duration, and data center efficiency. These methods heavily rely on exact
information about the training process, implying that only model developers can use these tools to
estimate the energy consumption and carbon emissions of their trained models. To break away from
this limitation, LLMCarbon (Faiz et al.| 2023) presents an end-to-end approach for estimating carbon
emissions before model training. It inputs the key architecture parameters of LLM into its specially
designed FLOP-model and efficiency-model, which can be used to predict the training duration and
carbon emission. However, the key steps of this method are all designed for LLM, and the polynomial
fitting coefficients in its efficiency-model are completely unsuitable for other ML tasks, e.g. image
generation. Furthermore, these estimation methods often assume a static or average workload, failing
to capture the dynamic nature of the training process of large scale ML models. This oversight can
lead to significant inaccuracies in energy consumption and carbon emission estimates.

To ensure a comprehensive comparison and analysis for the energy and carbon footprint of various
past and future large-scale models, we have identified key challenges: an accurate and transparent
anticipatory approach is needed, which can use basic information of training to predict energy
consumption and carbon emissions accurately. This approach should also produce fair and comparable
results across diverse ML tasks in various fields.

In this paper, we propose OpenCarbonEval, a carbon emission estimation tool to quantify the
environmental implications of large scale ML models given their total training computations and
hardware configurations. In OpenCarbonEval, our contributions are summarized as follows:

* A Carbon Emission Estimation Method for Various ML Tasks We propose a novel
method to accurately estimate the dynamic power consumption and carbon emission of large
scale ML models across various ML tasks, using two basic information including training
computation and hardware configuration.

¢ The first Open Source Dataset about the Carbon Footprint of Large Scale ML. Models
We collect and open source the OpenCarbonEval dataset comprising 110 real-world data of
large scale ML models across 20 ML tasks on their carbon footprint.

* Empirical Validation on the Method of Carbon Emission Estimation We conduct a
statistical analysis of the benefits and limitations of carbon emission methods, providing
valuable insights for future research.

The results of our analysis demonstrate that the predictions generated by OpenCarbonEval exhibit a
high accuracy with real-world data, enabling us to produce more accurate predictions for various ML
Tasks. Furthermore, to promote a more transparent and sustainable ML community, we will open
source all the OpenCarbonEval dataset and the estimation tools used.

2 RELATED WORK

Over the past decade, deep learning has experienced remarkable advancements, particularly with the
recent dominance of large-scale models. These models have significantly increased in model size

Under review as a conference paper at ICLR 2025

and training data (Villalobos et al.||2024). While their performance has improved dramatically, the
computational costs have grown exponentially (Sevilla et al.,2022). This surge in computational
demand results in substantial energy consumption, leading to considerable greenhouse gas emissions.
As we continue to develop more and larger AI models in the foreseeable future, understanding their
energy costs and environmental impact becomes crucial.

Previous works (Wu et al.|, 2022; Luccioni et al., [2023)) usually divide the carbon footprint of Al
models into two parts: operational carbon and embodied carbon. Operational carbon includes the
carbon emissions generated by producing the electricity required for training an AI model and using
it for inference on computing devices. Embodied carbon means the equivalent carbon emissions
from manufacturing the computing devices. During the training phase of large models, the primary
contributor to carbon emissions is operational carbon, which results indirectly from the energy
consumption of Al computing chips. It can be calculated by multiplying the energy cost for Al
computing F (kW h) by the regional carbon intensity I(kgCO2eq/kW h).

Related works have proposed some methods for calculating the energy cost and carbon footprint of
training Al models, we can broadly categorize them into three types:

Retrospective Calculation Method: MLCO?2 (Lacoste et al., 2019) and GreenAlgorithm (Lanne-
longue et al., [2021) can estimate the energy consumption and carbon footprint of ML tasks based on
user input information such as device type, training duration, and power grid area. The difference
is that the latter accounts for additional CPU and memory consumption. Although these inputs are
independent of the model, their application is significantly limited. This is because, aside from model
developers, others may not have access to the exact training duration. Consequently, we can not apply
these estimates to models that have not been trained or those without reported training duration.

Real-time Monitoring Method: CodeCarbon (Courty et al.,|2024), Carbontracker (Anthony et al.|
2020), and Eco2AI (Budennyy et al., 2022) are designed to run in parallel with ML tasks for real-time
monitoring. Each provides a Python library that can be integrated into existing training scripts
to capture dynamic hardware energy consumption throughout the process. While this approach
is theoretically precise, its intrusive nature or lack of integration with existing distributed training
frameworks may limit widespread adoption. This method also cannot be used to analyze existing
models or predict future models’ carbon emissions.

Anticipatory Estimation Method: LLMCarbon (Faiz et al., 2023 is first end-to-end approach for
estimating model carbon emissions before training. It is specifically designed for LLM architectures,
which includes a FLOP-model to estimate total computation and an efficiency-model to estimate
average hardware computation speed. By combining them, this anticipatory method can predict
training time and carbon footprint based on the model’s key information before training. However,
since the FLOP-model and efficiency-model are tailored to LLM frameworks, the polynomial
coefficients used in the method are difficult to apply to other hardware types or task architectures.

Our OpenCarbonEval is also an anticipatory method, this general framework leverages existing
model training statistics and approximates the dynamic computation processes of hardware, which
can predict training times for AI models across various architectures and tasks. This enables fair and
comparable estimate results of energy consumption and carbon footprint.

3 OPENCARBONEVAL

Building on previous research (Faiz et al., 2023} [Luccioni et al., [2023)), we categorize the overall
carbon emissions during the training process of ML models into two main components: operational
carbon emissions from energy consumption and embodied carbon emissions associated with the
materials and processes involved in hardware production.

3.1 OPERATIONAL CARBON

Operational carbon, produced by generating the electricity necessary for powering model training, is
a significant component of the environmental impact associated with machine learning and artificial
intelligence systems. This type of carbon emission arises from the energy consumption required to
run the computational processes involved in training ML models, which could be calculated as:

Under review as a conference paper at ICLR 2025

Coperational =F-I (1)

where Coperational indicates the amount of emitted carbon dioxide (kgC'O2eq), E (kW h) indicates
the energy consumed for model training and I(kgCO2eq/kW h) indicates the emitted COy per
kW h energy consumed.

3.2 DyNAaMIC POWER CONSUMPTION

In Eq. (1), the grid’s carbon intensity I is a coefficient (kgCO2eq/kW h) depends on the electricity
source that powers training process which is often related to the region where the data center is
located. The energy consumption E is often calculated by multiplying the number of GPU hours
used by the thermal design power (TDP) of those GPUs and the carbon intensity (/) of the energy
grid used to power the hardware, which can be written as follows:

E=TDP. Ttrain . NGPU (2)

where T},,;n indicate the training time of the model and Ngpy is the number of all hardware involved
in training process. In Eq. (2), TDP and Ngpuy are typically constants that are independent of time.
Therefore, we mainly study the energy consumption over the training time 7%,,;i, in this section.

Little’s Law in training process In the training process of a ML model, the hardware initially loads
the model and data from memory. This process then rapidly transitions to a steady state for efficient
processing, analogous to a queuing system. In the early stages of a queuing system, when the queue is
empty, no waiting is necessary. However, once the queue reaches capacity, subsequent data must wait
in line. This waiting period effectively constitutes the training time, denoted as 7},,in. Therefore, we
simulate the queuing process and use Little’s Law [Little & Graves| (2008)) to model the relationship
between total computation, training speed and GPU time during the model training process. Consider
a short interval (¢,t + At) within the training time T,ain, We can get a product relationship from
little’s law as follows: ~

Lasr =X At 3)
where L is the total computation processed by GPUs and A is the average training speed during At.
In our approach, we divide Tt,,i, into the same n parts and use At; = At and)\; to denote the i-th
time interval and the average speed. By adding up all the time intervals according to Eq. (3), we have

Lcomputation = Z 5\1 - At (4)

=0

However, it is not straightforward to calculate their average speed 5_1 for all At;. Hence, we calculate
the form of formula 4 when At — 0, where the average speed A; is an instantaneous speed that
changes over time f(t). This process can be written as:

Train
Lcomputation = / f(t)dt (5)
0

From Eq. (5), we can solve for the training time T%,,in and bring it into Eq. (T)) to obtain operational
carbon if f(t) is available. However, the train speed f () is often difficult to estimate due to different
hardware configurations and training setups. Therefore, we focus on the selection of f(t) and validate
its effectiveness in the following sections of this paper.

The inspiration from real-world training process In the training process of an ML model, the
hardware initially loads the model and data from memory. Subsequently, the hardware quickly
reaches a steady state, efficiently processing the gradients and other tensors generated during model
training. To simulate this process, the function f(¢) we choose should satisfy the requirement of
quickly entering a relatively stable state, which could be expressed as follows:

Jim f'(#) =0 (6)

The challenge of insufficient data After identifying the general trend of f(¢), we need to determine
the parameters in f(t) based on real-world data points. However, there is limited discussion within

Under review as a conference paper at ICLR 2025

Throughput-GPUTime Curve Throughput-GPUTime Curve Throughput-GPUTime Curve

n N/

Throughput(TFLOPS/s)

— Real GPU Throughput — Real GPU Throughput — Real GPU Throughput
0 — fih=in(1+at), a=1es | ¢ — fih=in(1+at), a=1e30 | — f(H=In(L+at), a=1e47

[500 1000 1500 2000 0 500 1000 1500 2000 [500 1000 1500 2000
Time Time Time

Figure 2: The comparison between real-world training speed and f(¢) = In(1 4+ «t) under different
training setting. More detailed analysis of « in shown in Section[4.2]

the open-source community regarding the training details and carbon footprint of large-scale ML
models, making it difficult to find enough real-world data to fit f(¢). Therefore, due to the lack of
enough real-world data, we could not set too many parameters in f(¢).

Combining the above two considerations, our f(t) is formulated as follows:

£(t) = In(1 + at) @

where only one parameter « is used to determine the shape of f(t). As shown in Fig.|2| we conducted
experiments under various settings and compared the results with the function f(t) = in(1 + at). To
reflect the correlation between different values of o and the hardware, we collect the avaliable data of
all large-scale machine learning models from EpochAl as of August 2024, totaling 110 examples.
We will open-source the data we used to the community. A detailed discussion of the findings from
these data is provided in Section [

3.3 EMBODIED CARBON

Embodied carbon, representing the emission associated with hardware manufacturing and the pro-
cesses involved in producing given hardware. While the production of these emissions is exclusively
limited to the manufacturing process, this total amount is usually spread over the time during which
equipment is used by dividing the total embodied emissions by the time of use. this process can be
calculated as follows:

Clifelon
g
. Ttrain . NGPU (8)

C’embodied = T
lifelong

where Cembodied and Tiyain indicate the embodied carbon and training time of the model to be
estimated respectively, Clifelong and Tiitelong represent the product carbon and life time of the GPUs
respectively, and Ngpy is the number of all hardware involved in training process. With other
information already known, the key to predicting Cempbodied becomes similar to that of Cyperationals
i.e., predict the training time Tiyqip -

4 VALIDATION

4.1 DATASET

OpenCarbonEval Dataset We collect the key parameters from EpochAI’s "Notable AI Models"
datasetﬂ including Training Compute, Training Time, Training Hardware and Hardware Quantity.
For over 800 entries in EpochAl, we drop the null value and keep 110 records to obtain the statistical
information for our method. The remaining dataset encompasses 20 ML tasks and the majority of
common model frameworks, such as LLMs, vision, image generation, multimodal, speech, and video.
It also covers 26 different hardware devices, e.g. NVIDIA V100, A100, and Google TPU v4 and so
on. We estimate the o parameter for all records, allowing users to select the « value from a record
with similar configurations to their model, or use the mean value for their hardware type, as we do.
Using the statistical information from the dataset and OpenCarbonEval estimation method, we can
predict the carbon emissions for any ML model that provides the total computation and hardware

'"https://epochai.org/data/notable-ai-models?view=table

https://epochai.org/data/notable-ai-models?view=table

Under review as a conference paper at ICLR 2025

—eo=Mean Ig(a) 110.'91

Peak TFLOPs/s !
100 = 89

80 —

@
5 - @
s :
§ [=
< - 376 %
32.98 ' o]
— o

/

20— 312
275
8.3

228 "

-0.52/__./
0- -6.60 '4'.20 "4'.1_7/—' 125 123
/— S —
.
46
5.6 6.69 212
20 -
AWIDIATes® 80 AWIDIAGT T NIDIAPIO e TPUYZ (DAY e TPUYE oge TPUYE (UIDIAROD ipiAR1O0

Training Hardware

Figure 3: Comparison between mean estimated « values(blue color) and theoretical peak speeds in
real world(orange color) for different hardware devices. It shows the high consistency in the trends of
the two values across different devices, which validates the effectiveness of using the o parameter to
model computation speed. Note that peak speed information is invisible in our model, and the peak
speed is typically unattainable during the training process.

type. In our experiments, we use Training Time for Tt ,,in, and Training Compute for L.omputation
and Hardware Quantity for Ngpy. By substituting Tirain and Leomputation into Eq. (EI), we can
estimate the value of the @ parameter in f(¢).

Evaluation Set We curated a diverse evaluation set of open-source large-scale models, varying in
functionality, input data, geographical region, and computing device used for training to serve as test
data points. We present results from an array of open-sourced LLMs, such as ChatGLM [Zeng et al.
(2022)) with 130 billion parameters, BLOOM (Workshop et al.,|2022) with 176 billion parameters,
StarCoder (L1 et al.,2023), a generative model for code synthesis and LLaMa-3-70B (Al@Meta,
2024), a model trained on Meta’s large-scale Al clusters which takes data and scale to new heights.
While the scaling laws of language models have been well-established, those of visual models remain
an active area of exploration, with a notable absence of carbon emission predictions for this type of
model. So we also add two iconic models, Vision Transformer (ViT-L/16) (Dosovitskiy et al., [2020)
and Swin Transformer (Swin-L) (Liu et al.| 2021)) into our validation.

4.2 THE IMPACT OF HARDWARE

To investigate the impact of hardware, we first extract the total computation Leomputation and training
time Tiyain from our OpenCarbonEval dataset. Subsequently, we bring them to Eq. (@) and Eq. (7) to
obtain the value of « for each large scale ML model that is categorize by the training hardware.

The values of o exhibit a similar upward trend to the real-world hardware training speed,
indicating a positive correlation To demonstrate the correlation between the parameter « and
the real-world hardware performance, we compared the mean estimated « values from different
devices with their theoretical peak speeds. As illustrated in Fig.[3] the values of « naturally exhibit
the same trend with the hardware peak training speed (TFLOPs/s). It indicates that o values can
show significant discrepancies due to differences in GPU performance, i.e., devices with better
actual performance will have larger estimated « values. This further validates the effectiveness
of the function form f(¢) and the parameter o, and demonstrates their potential to adapt to future
advancements in computing hardware.

Under review as a conference paper at ICLR 2025

0 Ig(a) Distribution by Training Hardware

60

std: 25.94
40 mean: 37.06
—
std: 32.32
mean: 32.98

Ig(a)

2 o
0 std: 5.89

mean: 8.30
std: 6.1
meary. 2.28 ’—_—L‘

& 0.70 std: 0.8683 ——
std: 1.44 std: 0. mean: -0. o
0 std: 0.01 mean: -4.20 mean: -4.17 — S
:-6. T
mean: -6.60 A .
o
-20
NVIDIATesla K80 NVIDIA GTX Titan NVIDIA P100 Google TPU v2 NVIDIA V100 Google TPU v3 Google TPU v4 NVIDIAAT00

Training Hardware

Figure 4: The « distribution by different training hardware. We estimated the parameter o values for
each record in the dataset and conducted statistical analysis based on hardware types. The « values
differ significantly across different hardware categories. Within each hardware, the range of « values
also varies, reflecting the diversity of real-world samples. Hardware types with only one record have
been omitted in this figure.

The value of « is predominantly determined by the specific training hardware. As illustrated
in Figure Fig. @ Different types of hardware often exhibit distinct alpha ranges, which can vary
significantly based on their architectural and design characteristics. However, when the computing
power of the hardware is comparable, these alpha ranges tend to overlap e.g. TPUv4 and NVIDIA
A100, indicating a convergence in performance metrics despite the underlying differences. For the
purpose of facilitating analysis, we hereafter utilize the mean « values for each hardware type, as
presented in Fig. d] to compute the energy consumption and carbon emissions of various ML models.

4.3 OPERATIONAL CARBON FOOTPRINT VALIDATION

Table[T] presents the result of OpenCarbonEval on various large-scale models. We have compiled a
comprehensive table that outlines all the parameters necessary for carbon emission estimation. Within
this table, ZettaFLOPs represents the total computation amount required for effective model training,
parameter represents the number of model parameter and I(gCO2eq/kW h) represents the carbon
intensity in Eq. (I). From the Table[I] we have the following observations:

Compared with LLMCarbon, OpenCarbonEval exhibits a significantly lower relative error in
predicting carbon emissions across different compute devices. In contrast to the actual CO2eq
emissions, LLMCarbon exhibited significant errors, with a notable discrepancy of up to 114.5% in
predicting the LLaMa-3’s carbon footprint. This is attributed to its modeling approach not being
transferable to new GPUs. In contrast, OpenCarbonEval demonstrates remarkable accuracy, with
small relative errors at all test data points, thereby validating its effectiveness.

OpenCarbonEval consistently achieves low relative errors in its predictions for both visual
and language models, demonstrating its versatility and robustness across different modalities.
Notably, when predicting the carbon footprint of visual models such as ViT/16-L and Swin-L,
OpenCarbonEval still outperforms LLMCarbon, achieving relatively accurate predictions. This
superiority can be attributed to OpenCarbonEval’s unique strength in establishing a unified task set
that can accommodate all modalities. The error rate on ViT-L/16 may be mainly attributed to the
significant differences in TPUv3 types or abnormal data in our dataset. We believe this result can be
further improved by more available open source data.

Under review as a conference paper at ICLR 2025

Table 1: Operational carbon of various models on different GPU. The result of the best method is
bolded. Error rate represents the relative error between the predicted value and the actual value. We
use the self-reported results whenever available.

Method | GLM BLOOM StarCoder LLaMa-3 | ViT-L/16 Swin-L
Params 130B 176B 15B 70B 307M 197M
ZettaFLOPs 312 387 93 6300 0.53 0.40
Hardware A100 A100 A100 H100 TPUvV3 V100
I (gCO2eq/kW h) 581 57 155 424 369 369
Actual CO2eq (t) ‘ 257 24.7 17.26 1900 ‘ 2.71 0.80
LLMCarbon 153.11 19.89 14.14 4074.63 0.20 0.10
Error Rate -40.4% -19.4% -18.1% +114.5% -92.6% -87.5%
OpenCarbonEval 189.75 23.04 15.26 1866.90 0.39 0.59
Error Rate -26.1% -6.7 % -11.6% -1.7% -85.5% -26.8%

Table 2: Different embodied carbon prediction results on various models by OpenCarbonEval. We
use the self-reported results whenever available.

| GLM BLOOM StarCoder LLaMa-3 | ViT-L/16 Swin-L
Hardware Type A100 A100 A100 H100 TPUvV3 V100
TSMC process 7 nm 7 nm 7 nm 4 nm 16 nm 12 nm
Die Size 826 mm? 826 mm? 826 mm? 814 mm?2 | 700 mm? 815 mm?
Clifelong/Tlifelong 1.5 1.5 1.5 1.7 0.8 1.1
Actualembodied | 163450 163123 48038 108800 | 13.06 7.92

COqeq (kg)

LLMCarbon 898.37 1090.65 285.23 21211.80 0.88 0.91
Error Rate -45.0% -33.1% -40.6% +95.0% -93.3% -88.5%
OpenCarbonEval | 1224.75 1516.11 369.24 10693.14 3.40 5.82
Error rate -25.1% -7.1% -23.1% -1.7% -74.0% -26.5%

4.4 EMBODIED CARBON FOOTPRINT VALIDATION

By reviewing LLMCarbon and obtaining specifications for different types of hardware materials, we
calculated the embodied carbon footprint using Eq. (8), assuming a 1-year effective lifespan for each
hardware component. This approach allows us to account for the embodied carbon emissions resulting
from the manufacturing process, which is an essential aspect of comprehensive carbon evaluation.
As shown in Table [2| although embodied carbon constitutes a relatively small proportion of the total
carbon evaluation, OpenCarbonEval can still maintain high prediction accuracy, demonstrating the
effectiveness of our approach approach in estimating carbon emissions for large scale ML model.

4.5 CASE STUDY

In this section, we conduct a carbon footprint estimation for 42 models across 15 different tasks,
using necessary information such as total computation, hardware type, and training location, which
correspond to the Leomputation. f (t) With parameter «, and carbon intensity I in our method. As
illustrated in Fig. [T] the carbon footprint of large-scale ML models has significantly increased
over time, with annual growth rates exceeding tenfold. While language models (LLMs) remain
the largest contributors to carbon emissions, other models such as image generation and visual
question answering (VQA) are also adding to this escalating impact. Consequently, a comprehensive
framework like OpenCarbonEval, which uniformly assesses all ML tasks and devices, is crucial for
advancing sustainability in the Al community.

Under review as a conference paper at ICLR 2025

S5 DISCUSSION AND LIMITATIONS

Insufficient Real-world Data While OpenCarbonEval provides a unified framework for estimating
carbon emissions, it is not without its limitations. For example, due to the limited availability of
real-world data on ML models, significant deviations in predictions are possible in some scenarios.
Besides, various training setups, such as deep learning frameworks and distributed parallel strategies,
can significantly impact training speeds and duration. However, the current scarcity of real-world
data hinders a comprehensive analysis of these factors. So our framework is not primarily focused on
accuracy, but rather on the predictability and universality it provides. For Al developers who require
precise values of their model’s energy consumption and carbon emissions, we recommend using the
real-time monitoring methods (Courty et al.,2024) mentioned in Section [2] to obtain more reliable
results and report their results.

Carbon Footprint more than GPU Previous works (Lannelongue et al.l[2021; [Faiz et al., [2023))
assumed that devices such as CPUs and memories operated at constant power, and incorporated the
energy consumption caused by these devices into Eq. (2)) to account for the carbon footprint brought
by additional equipment. Alternatively, from the perspective of the data center (Wu et al.| [2022), the
energy consumption generated by GPUs can be multiplied by Power Usage Effectiveness (PUE), to
obtain the overall energy consumption. Both of them are feasible solutions, but due to the ground
truth of the carbon footprint model in real-world data is mainly calculated by GPU consumption, we
did not incorporate these additional consumptions into our framework.

Broder Impact on Environmental Sustainability The increasing carbon footprint of large-scale
Al models has significant implications for the environment and sustainability. Our analysis using
OpenCarbonEval reveals a concerning trend of growing carbon emissions associated with the devel-
opment and deployment of these models. This highlights the need for the Al community to prioritize
environmental sustainability alongside performance and efficiency. Furthermore, the environmental
impact of Al models can have far-reaching consequences, including contributing to climate change,
air pollution, and e-waste generation. By providing a unified framework for predicting carbon emis-
sions, OpenCarbonEval can facilitate the development of more environmentally friendly Al models
and encourage responsible Al practices. This includes promoting transparency and accountability
in Al development, encouraging sustainable Al design and deployment, and fostering a culture of
environmental responsibility within the Al community.

6 CONCLUSION

In this paper, we present OpenCarbonEval, a carbon emission estimation tool to quantify the en-
vironmental implications of large scale ML models in their training process. OpenCarbonEval is
able to accurately estimate the carbon emission and energy consumption of various large scale
ML models across various ML tasks, resulting in a more carbon-transparent training process. By
leveraging OpenCarbonEval, we collect the first open source carbon footprint dataset comprising
the carbon footprint for training large scale ML models. Furthermore, our systematic analysis of
the estimation for carbon emissions across various ML tasks provides valuable insights for future
research, contributing to the development of more sustainable large scale ML models.

Under review as a conference paper at ICLR 2025

REFERENCES

Daniel Adiwardana, Minh-Thang Luong, David R So, Jamie Hall, Noah Fiedel, Romal Thoppilan,
Zi Yang, Apoorv Kulshreshtha, Gaurav Nemade, Yifeng Lu, et al. Towards a human-like open-
domain chatbot. arXiv preprint arXiv:2001.09977, 2020.

Al@Meta. Llama 3 model card. https://llama.meta.com/llama3, 2024. URL https://githubl
com/meta-llama/llama3/blob/main/MODEL_CARD.md.

Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, lain Barr, Yana Hasson, Karel
Lenc, Arthur Mensch, Katherine Millican, Malcolm Reynolds, et al. Flamingo: a visual language
model for few-shot learning. Advances in neural information processing systems, 35:23716-23736,
2022.

Rohan Anil, Andrew M Dai, Orhan Firat, Melvin Johnson, Dmitry Lepikhin, Alexandre Passos,
Siamak Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng Chen, et al. Palm 2 technical report. arXiv
preprint arXiv:2305.10403, 2023.

Lasse F Wolff Anthony, Benjamin Kanding, and Raghavendra Selvan. Carbontracker: Tracking and
predicting the carbon footprint of training deep learning models. arXiv preprint arXiv:2007.03051,
2020.

Kaifeng Bi, Lingxi Xie, Hengheng Zhang, Xin Chen, Xiaotao Gu, and Qi Tian. Pangu-weather:
A 3d high-resolution model for fast and accurate global weather forecast. arXiv preprint
arXiv:2211.02556, 2022.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877-1901, 2020.

Semen Andreevich Budennyy, Vladimir Dmitrievich Lazarev, Nikita Nikolaevich Zakharenko,
Aleksei N Korovin, OA Plosskaya, Denis Valer’evich Dimitrov, VS Akhripkin, IV Pavlov,
Ivan Valer’evich Oseledets, Ivan Segundovich Barsola, et al. Eco2ai: carbon emissions tracking of
machine learning models as the first step towards sustainable ai. In Doklady Mathematics, volume
106, pp. S118-S128. Springer, 2022.

Bo Chen, Xingyi Cheng, Pan Li, Yangli-ao Geng, Jing Gong, Shen Li, Zhilei Bei, Xu Tan, Boyan
Wang, Xin Zeng, et al. xtrimopglm: unified 100b-scale pre-trained transformer for deciphering the
language of protein. arXiv preprint arXiv:2401.06199, 2024.

Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, and Ilya Sutskever.
Generative pretraining from pixels. In International conference on machine learning, pp. 1691—
1703. PMLR, 2020.

Zhe Chen, Jiannan Wu, Wenhai Wang, Weijie Su, Guo Chen, Sen Xing, Muyan Zhong, Qinglong
Zhang, Xizhou Zhu, Lewei Lu, Bin Li, Ping Luo, Tong Lu, Yu Qiao, and Jifeng Dai. Internvl:
Scaling up vision foundation models and aligning for generic visual-linguistic tasks. arXiv preprint
arXiv:2312.14238, 2023.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Yunxuan Li,
Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, et al. Scaling instruction-finetuned language
models. Journal of Machine Learning Research, 25(70):1-53, 2024.

Marta R Costa-jussa, James Cross, Onur Celebi, Maha Elbayad, Kenneth Heafield, Kevin Heffernan,
Elahe Kalbassi, Janice Lam, Daniel Licht, Jean Maillard, et al. No language left behind: Scaling
human-centered machine translation. arXiv preprint arXiv:2207.04672, 2022.

Benoit Courty, Victor Schmidt, Sasha Luccioni, Goyal-Kamal, MarionCoutarel, Boris Feld, Jérémy
Lecourt, LiamConnell, Amine Saboni, Inimaz, supatomic, Mathilde Léval, Luis Blanche,
Alexis Cruveiller, ouminasara, Franklin Zhao, Aditya Joshi, Alexis Bogroff, Hugues de La-
voreille, Niko Laskaris, Edoardo Abati, Douglas Blank, Ziyao Wang, Armin Catovic, Marc
Alencon, Michat Stechty, Christian Bauer, Lucas Otdvio N. de Aradjo, JPW, and Minerv-
aBooks. mlco2/codecarbon: v2.4.1, May 2024. URL https://doi.org/10.5281/
zenodo.11171501.

10

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://doi.org/10.5281/zenodo.11171501
https://doi.org/10.5281/zenodo.11171501

Under review as a conference paper at ICLR 2025

Zihang Dai, Hanxiao Liu, Quoc V Le, and Mingxing Tan. Coatnet: Marrying convolution and
attention for all data sizes. Advances in neural information processing systems, 34:3965-3977,
2021.

Mostafa Dehghani, Josip Djolonga, Basil Mustafa, Piotr Padlewski, Jonathan Heek, Justin Gilmer,
Andreas Peter Steiner, Mathilde Caron, Robert Geirhos, Ibrahim Alabdulmobhsin, et al. Scaling
vision transformers to 22 billion parameters. In International Conference on Machine Learning,
pp- 7480-7512. PMLR, 2023.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image
is worth 16x16 words: Transformers for image recognition at scale. In International Conference
on Learning Representations, 2020.

Ahmed Elnaggar, Michael Heinzinger, Christian Dallago, Ghalia Rehawi, Wang Yu, Llion Jones, Tom
Gibbs, Tamas Feher, Christoph Angerer, Martin Steinegger, Debsindhu Bhowmik, and Burkhard
Rost. Prottrans: Towards cracking the language of lifes code through self-supervised deep learning
and high performance computing. IEEE Transactions on Pattern Analysis and Machine Intelligence,
pp. 1-1, 2021. doi: 10.1109/TPAMI.2021.3095381.

Epoch Al Key trends and figures in machine learning, 2023. URL https://epochai.org/
trends. Accessed: 2024-05-20.

Ahmad Faiz, Sotaro Kaneda, Ruhan Wang, Rita Chukwunyere Osi, Prateek Sharma, Fan Chen, and
Lei Jiang. Llmcarbon: Modeling the end-to-end carbon footprint of large language models. In The
Twelfth International Conference on Learning Representations, 2023.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. Journal of Machine Learning Research, 23(120):1-39,
2022.

Tom Henighan, Jared Kaplan, Mor Katz, Mark Chen, Christopher Hesse, Jacob Jackson, Heewoo
Jun, Tom B Brown, Prafulla Dhariwal, Scott Gray, et al. Scaling laws for autoregressive generative
modeling. arXiv preprint arXiv:2010.14701, 2020.

Ziheng Jiang, Haibin Lin, Yinmin Zhong, Qi Huang, Yangrui Chen, Zhi Zhang, Yanghua Peng, Xiang
Li, Cong Xie, Shibiao Nong, et al. Megascale: Scaling large language model training to more than
10,000 gpus. arXiv preprint arXiv:2402.15627, 2024.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott
Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

Alexandre Lacoste, Alexandra Luccioni, Victor Schmidt, and Thomas Dandres. Quantifying the
carbon emissions of machine learning. arXiv preprint arXiv:1910.09700, 2019.

Loic Lannelongue, Jason Grealey, and Michael Inouye. Green algorithms: quantifying the carbon
footprint of computation. Advanced science, 8(12):2100707, 2021.

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang,
Maxim Krikun, Noam Shazeer, and Zhifeng Chen. Gshard: Scaling giant models with conditional
computation and automatic sharding. arXiv preprint arXiv:2006.16668, 2020.

Raymond Li, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao Mou, Marc Marone,
Christopher Akiki, LI Jia, Jenny Chim, Qian Liu, et al. Starcoder: may the source be with you!
Transactions on Machine Learning Research, 2023.

Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Nikita Smetanin,
Robert Verkuil, Ori Kabeli, Yaniv Shmueli, et al. Evolutionary-scale prediction of atomic-level
protein structure with a language model. Science, 379(6637):1123-1130, 2023.

John DC Little and Stephen C Graves. Little’s law. Building intuition: insights from basic operations
management models and principles, pp. 81-100, 2008.

11

https://epochai.org/trends
https://epochai.org/trends

Under review as a conference paper at ICLR 2025

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the
IEEE/CVF international conference on computer vision, pp. 10012-10022, 2021.

Alexandra Sasha Luccioni, Sylvain Viguier, and Anne-Laure Ligozat. Estimating the carbon footprint
of bloom, a 176b parameter language model. Journal of Machine Learning Research, 24(253):
1-15, 2023.

Deepak Narayanan, Mohammad Shoeybi, Jared Casper, Patrick LeGresley, Mostofa Patwary, Vijay
Korthikanti, Dmitri Vainbrand, Prethvi Kashinkunti, Julie Bernauer, Bryan Catanzaro, et al.
Efficient large-scale language model training on gpu clusters using megatron-lm. In Proceedings of
the International Conference for High Performance Computing, Networking, Storage and Analysis,
pp- 1-15, 2021.

OpenAl. Gpt-4 technical report, 2023.

David Patterson, Joseph Gonzalez, Quoc Le, Chen Liang, Lluis-Miquel Munguia, Daniel Rothchild,
David So, Maud Texier, and Jeff Dean. Carbon emissions and large neural network training. arXiv
preprint arXiv:2104.10350, 2021.

Hieu Pham, Zihang Dai, Qizhe Xie, and Quoc V Le. Meta pseudo labels. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pp. 11557-11568, 2021.

Hieu Pham, Zihang Dai, Golnaz Ghiasi, Kenji Kawaguchi, Hanxiao Liu, Adams Wei Yu, Jiahui Yu,
Yi-Ting Chen, Minh-Thang Luong, Yonghui Wu, et al. Combined scaling for zero-shot transfer
learning. Neurocomputing, 555:126658, 2023.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748-8763. PMLR, 2021.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: Memory optimizations
toward training trillion parameter models. In SC20: International Conference for High Performance
Computing, Networking, Storage and Analysis, pp. 1-16. IEEE, 2020.

Xiaozhe Ren, Pingyi Zhou, Xinfan Meng, Xinjing Huang, Yadao Wang, Weichao Wang, Pengfei Li,
Xiaoda Zhang, Alexander Podolskiy, Grigory Arshinov, et al. Pangu-{\Sigma}: Towards trillion
parameter language model with sparse heterogeneous computing. arXiv preprint arXiv:2303.10845,
2023.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bjorn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684-10695, 2022.

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar
Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Photorealistic
text-to-image diffusion models with deep language understanding. Advances in neural information
processing systems, 35:36479-36494, 2022.

Jaime Sevilla, Lennart Heim, Anson Ho, Tamay Besiroglu, Marius Hobbhahn, and Pablo Villalobos.
Compute trends across three eras of machine learning. In 2022 International Joint Conference on
Neural Networks (IJCNN), pp. 1-8, 2022. doi: 10.1109/IICNN55064.2022.9891914.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu, Radu
Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly capable
multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Romal Thoppilan, Daniel De Freitas, Jamie Hall, Noam Shazeer, Apoorv Kulshreshtha, Heng-Tze

Cheng, Alicia Jin, Taylor Bos, Leslie Baker, Yu Du, et al. Lamda: Language models for dialog
applications. arXiv preprint arXiv:2201.08239, 2022.

12

Under review as a conference paper at ICLR 2025

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Pablo Villalobos, Anson Ho, Jaime Sevilla, Tamay Besiroglu, Lennart Heim, and Marius Hobbhahn.
Will we run out of data? limits of llm scaling based on human-generated data, 2024.

Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaél Mathieu, Andrew Dudzik, Junyoung
Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster level in
starcraft ii using multi-agent reinforcement learning. Nature, 575(7782):350-354, 2019.

Tianwen Wei, Liang Zhao, Lichang Zhang, Bo Zhu, Lijie Wang, Haihua Yang, Biye Li, Cheng Cheng,
Weiwei Lii, Rui Hu, et al. Skywork: A more open bilingual foundation model. arXiv preprint
arXiv:2310.19341, 2023.

BigScience Workshop, Teven Le Scao, Angela Fan, Christopher Akiki, Ellie Pavlick, Suzana Ilié,
Daniel Hesslow, Roman Castagné, Alexandra Sasha Luccioni, Frangois Yvon, et al. Bloom: A
176b-parameter open-access multilingual language model. arXiv preprint arXiv:2211.05100, 2022.

Carole-Jean Wu, Ramya Raghavendra, Udit Gupta, Bilge Acun, Newsha Ardalani, Kiwan Maeng,
Gloria Chang, Fiona Aga, Jinshi Huang, Charles Bai, et al. Sustainable ai: Environmental
implications, challenges and opportunities. Proceedings of Machine Learning and Systems, 4:
795-813, 2022.

Shijie Wu, Ozan Irsoy, Steven Lu, Vadim Dabravolski, Mark Dredze, Sebastian Gehrmann, Prabhan-
jan Kambadur, David Rosenberg, and Gideon Mann. Bloomberggpt: A large language model for
finance. arXiv preprint arXiv:2303.17564, 2023.

Jiahui Yu, Zirui Wang, Vijay Vasudevan, Legg Yeung, Mojtaba Seyedhosseini, and Yonghui Wu.
Coca: Contrastive captioners are image-text foundation models. arXiv preprint arXiv:2205.01917,
2022a.

Jiahui Yu, Yuanzhong Xu, Jing Yu Koh, Thang Luong, Gunjan Baid, Zirui Wang, Vijay Vasudevan,
Alexander Ku, Yinfei Yang, Burcu Karagol Ayan, et al. Scaling autoregressive models for content-
rich text-to-image generation. arXiv preprint arXiv:2206.10789, 2(3):5, 2022b.

Aohan Zeng, Xiao Liu, Zhengxiao Du, Zihan Wang, Hanyu Lai, Ming Ding, Zhuoyi Yang, Yifan Xu,
Wendi Zheng, Xiao Xia, et al. GIm-130b: An open bilingual pre-trained model. In The Eleventh
International Conference on Learning Representations, 2022.

Xiaohua Zhai, Alexander Kolesnikov, Neil Houlsby, and Lucas Beyer. Scaling vision transformers.

In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp.
12104-12113, 2022.

Jiaxing Zhang, Ruyi Gan, Junjie Wang, Yuxiang Zhang, Lin Zhang, Ping Yang, Xinyu Gao, Ziwei
Wu, Xiaoqun Dong, Junqing He, Jianheng Zhuo, Qi Yang, Yongfeng Huang, Xiayu Li, Yanghan
Wu, Junyu Lu, Xinyu Zhu, Weifeng Chen, Ting Han, Kunhao Pan, Rui Wang, Hao Wang, Xiaojun
Wu, Zhongshen Zeng, and Chongpei Chen. Fengshenbang 1.0: Being the foundation of chinese
cognitive intelligence. CoRR, abs/2209.02970, 2022.

13

Under review as a conference paper at ICLR 2025

APPENDIX

A ADDITIONAL INFORMATION OF THE EVALUATED MODEL

The information of evaluated models Fig. [T]are mostly from EpochAlI (Epoch ATl [2023).

Figure 1 provides a comprehensive overview of the carbon footprint of large-scale Al models,
spanning 42 models across 15 tasks, as systematically classified by EpochAl 2023).

Chat LLaMa-3-70B (AI@Metal 2024), Inflection 2.5 El

Language model Gemini Ultra (Team et al.} 2023), MegaScale (Prduction) (Jiang et al.} [2024),
Inflection 2! , GPT-4 10penAIL 2023), PaLM-2 (Anil et al.|, 2023), GPT-3.5, Flan-PaLM 540B,

Flan-T5-11B, Flan-137B (Chung et al., [2024), Megatron-Turing NLG 530B (Narayanan et al., 2021]
LaMDA 2023), LLaMa (Touvron et al}, 2023).L LaMa-2 2003
BLOOM (Workshop et al.| 2022), Skywork-13B (Wei et al.| 2023)), BloombergGPT 2023).

Proteins ProT5-XXL (Elnaggar et al) [2021), ESM2-15B 2023), xTrimoPGLM -
100B 2024).

Weather prediction Pangu Weather (Bi et al., 2022).
Code generation Pangu-3 (Ren et al.| [2023)), StarCoder (Li et al.| [2023]).

Object detection ViT-22B (Dehghani et al., [2023)

Image generation Stable Diffusion (LDM-KL-8-G) (Rombach et al,[2022), Taiyi-Stable Diffu-
sion (Zhang et al. [2022)

Translation Gshard (dense) (Lepikhin et al.,[2020), NLLB (Costa-jussa et al., 2022)
Text-to-image Imagen (Saharia et al.,[2022)), Parti (Yu et al.} 2022b).
Visual question answering Flamingo (Alayrac et al.,[2022).

Image classification Meta Pseudo Label (Pham et al),2021), CoAtNet 2021)), CoCa
20224), BASIC-L 2023).

Text autocompletion GPT-3-175B (Brown et al., [2020), Turing-NLG (Rajbhandari et al.| [2020),
Meena (Adiwardana et al,[2020), Switch (Fedus et al.,[2022).

Zero-shot image classification CLIP (ViT L/14@336px) (Radford et al} 2021).
Image completion iGPT-XL 2020).
StarCraft AlphaStar (Vinyals et al} 2019).

*https://inflection.ai/

14

	Introduction
	Related Work
	OpenCarbonEval
	Operational Carbon
	Dynamic Power Consumption
	Embodied Carbon

	Validation
	Dataset
	The Impact of Hardware
	Operational Carbon Footprint Validation
	Embodied Carbon Footprint Validation
	Case Study

	Discussion and Limitations
	Conclusion
	Additional information of the evaluated model

