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ABSTRACT

We study the use of reinforcement learning to learn the optimal leader’s strat-
egy in Stackelberg games. Learning a leader’s strategy has an innate stationarity
problem—when optimizing the leader’s strategy, the followers’ strategies might
shift. To circumvent this problem, we model the followers via no-regret dynamics
to converge to a Bayesian Coarse-Correlated Equilibrium (B-CCE) of the game
induced by the leader. We then embed the followers’ no-regret dynamics in the
leader’s learning environment, which allows us to formulate our learning problem
as a standard POMDP. We prove that the optimal policy of this POMDP achieves
the same utility as the optimal leader’s strategy in our Stackelberg game. We solve
this POMDP using actor-critic methods, where the critic is given access to the joint
information of all the agents. Finally, we show that our methods are able to learn
optimal leader strategies in a variety of settings of increasing complexity, includ-
ing indirect mechanisms where the leader’s strategy is setting up the mechanism’s
rules.

1 INTRODUCTION

In many economic settings, there’s an inherent asymmetry between two or more participants—in
market settings buyers are price takers, while sellers post a price, which can be dynamically updated
by the sellers according observed changes in supply and demand. In matching mechanisms (school
choice, residency assignment, etc.) the mechanism takes input from both sides in some form (e.g.,
truncated preference lists) and matches using a predetermined rule (e.g., running the Gale-Shapley
algorithm). In these settings, and many others, one of the participants, the leader, has power to
commit to a strategy (a seller or the matching mechanism), while others, the followers (buyers
or participants in matching settings), respond to the strategy committed to by the leader. These
problems are captured by the concept of Stackelberg games, where the leader has commitment
power, and the followers reach an equilibrium with respect to the game induced by the leader’s
strategy. Stackelberg games have been extensively studied in the computer science literature, with
applications to security (Sinha et al., 2018), wildlife conservation (Fang et al., 2016), and taxation
policies (Zhou et al., 2019; Wang, 1999) among others.

While several works suggested an optimization-based approaches to computing Stackelberg equi-
libria (Vorobeychik & Singh, 2012; Conitzer & Sandholm, 2006; Sabbadin & Viet, 2016; Goktas
& Greenwald, 2021; Basilico et al., 2017, e.g.), a more recent line of papers has shifted to using
learning methods, which allow for the follower behavior to arise through learning dynamics rather
than as the solution to an optimization problem. In particular, a major line of work has focused on
normal form games (Letchford et al., 2009; Blum et al., 2014; Peng et al., 2019; Fiez et al., 2019,
e.g.). However, normal form games can only be used to model a restricted set of leader-followers
interactions. In our work, we consider more general settings where followers have private types and
interactions with the leader occur across multiple rounds. We support a complex strategy space for
the leader, where each strategy corresponds to a policy; in our most elaborated settings, the leader’s
problem is one of mechanism design, inducing a game with emergent communication between fol-
lowers and the leader and where the leader adaptively chooses the order of play for followers and the
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prices they see.1 Mguni et al. (2019); Cheng et al. (2017); Shi et al. (2020) and Shu & Tian (2019)
also consider more general leader-followers interactions, but with few convergence results. To our
knowledge, this work is the first one to provide a framework that supports a proof of convergence to
a Stackelberg policy in multi-stage stochastic games.2

The main challenge with optimizing the leader’s strategy in a Stackelberg game is that one needs to
take into account the adaptation of follower strategies. In particular, we choose in this paper to model
the followers as no-regret learners. Our crucial insight is the following: Since followers compute
their strategies by querying the leader’s policy, this allows us to formulate these no-regret dynamics
as a part of an extended POMDP (the “Stackelberg POMDP”), to be solved by the designer, where
the policy’s actions determine both the equilibrium play of followers and the reward to the leader.
We prove that the optimal policy of this extended POMDP forms a Stackelberg equilibrium. This
approach allows us to model a population of followers with types sampled from a distribution, and
to support highly complex, and adaptive, leader policies.

We demonstrate the robustness and flexibility of this algorithmic framework by demonstrating suc-
cess in finding optimal leader strategies across a wide variety of settings of increasing complexity:
(a) Normal form games, where the leader chooses a row and the follower chooses a column; (b)
Matrix design games, where the leader modifies payoffs of a payoff matrix to impose a certain dom-
inant strategy equilibrium; (c) Message-allocation mechanisms, where the leader assigns an item to
the follower based on the follower’s message to the leader; and (d) Sequential price mechanisms
with messages, where the leader sets the rule of a sequential price mechanism based on an initial
communication from the followers. The latter setting includes many of the common aspects of in-
direct mechanisms, such as limited communication and turn-taking play by the agents.3 A detailed
description of each of these experimental settings appears in Section 2.1.

For training, we use a modified actor-critic approach, where the actor does not have access to the
internal state of the agents while the critic is given access to the full POMDP state, as is required
for the critic to correctly evaluate the current state. This approach is based on the paradigm of
centralized training and decentralized execution (CTDE), and is similar to the one proposed for
DDPG (Lowe et al., 2017). Our experiments show that this use of CTDE leads to better performance
than the use of an unmodified actor-critic algorithm.

2 PRELIMINARIES

Setup. In a Stackelberg game, there is a leader with a strategy space L (which, in general, may
include randomized strategies), and n followers, each with strategy spaces F = F1,F2, . . . ,Fn.
There is a payoff function, P : L × F → <n+1

≥0 , mapping the joint strategy profile into payoffs
for each of the leader and followers. We denote by P0 as the leader’s component in P , and by Pi,
i ∈ [n], as the ith follower’s component in P . A Stackelberg game gives the leader the power to first
commit to a strategy ` ∈ L. Subsequently, the followers play an equilibrium in the game defined by
the induced payoff function P (`, ·).4 Let EQ(`) ∈ F be a function that takes a leader’s action and
computes a resulting equilibrium (possibly in a randomized way). The goal of the leader is to play
` that maximizes P0(`,EQ(`)).

We also consider a Bayesian extension, where followers have payoff types, t = (t1, . . . , tn), sam-
pled from a possibly correlated type distribution D. The payoff function is accordingly augmented
as P (t, `,a) for a ∈ F and ` ∈ L, and similarly for EQ(`, t). The goal of the leader is also adjusted,
and becomes that of choosing ` to maximize Et∼D[P0(`, t,EQ(`, t))]. We sometimes consider cases
where a follower’s payoff is only a function of their own type and the joint actions and omit other
followers’ types in an individual follower payoff component.

1Bai et al. (2021) also consider a game with multiple rounds of interaction, but their methods, which are
based on bandits approaches, are only practical when the leader’s action space is finite and relatively small, and
do not support Bayesian settings.

2Zhong et al. (2021) recently gave algorithms that support convergence for Markov games, but they restrict
their followers to be myopic, and not to maximize their payoff in the game.

3An indirect mechanism is one in which agents communicate by sending messages that report less than their
complete private information, for example sending a ‘0’ or a ‘1’, or selecting an item to purchase given prices.

4We will define our equilibrium concept in Definition 2.
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Algorithm 1 Iterative No Regret Dynamics (Hartline et al., 2015)
parameters: number of iterations T
repeat T times

Sample type profile t = (t1, . . . , tn) from distribution D
Each agent i simultaneously and independently chooses an action ai ∈ Ai using a no-regret
algorithm that is specific for type ti
Each agent i obtains payoff Pi(ti,a), and updates their strategy, feeding the no-regret algorithm
Pi(ti, (a

′
i,a−i)) for every a′i ∈ Ai.

end

Remark: In the rest of the section (Definitions 1, 2, Proposition 2.1 and Algorithm 1), we give
general definitions and claims for games without a leader and omit the leader’s strategy ` from the
notation. In our context, we use these definitions to give the equilibrium concept, arising from the
convergence dynamics that the followers follow in the game induced by the leader’s action.

Bayesian coarse correlated equilibrium. The equilibrium concept that we adopt in modeling the
followers’ strategies is the coarse-correlated equilibrium and its Bayesian extension (as proposed
by Hartline et al. (2015) for games of incomplete information).

Definition 1 (Coarse correlated equilibrium) Consider a game with n agents, each with action
space Ai (A = ×Ai), and a payoff function Pi : A → R. Let σ be a joint randomized strategy
profile from which the actions are sampled. σ is a Coarse-Correlated Equilibrium (CCE) if for every
a′i ∈ Ai, we have Ea∼σ[Pi(a)] ≥ Ea∼σ[Pi(a

′
i,a−i)].

Definition 2 (Bayesian coarse correlated equilibrium) Consider a Bayesian game with n agents,
each with type space Ti (T = ×Ti), action space Ai (A = ×Ai), and a payoff function Pi :
Ti ×A → R. Let D be the joint type distribution of the agents, and D|ti the type distribution of all
agents but i, conditioned on agent i having type ti. Let σ : T → A be a joint randomized strategy
profile that maps the type profile of all agents to an action profile. σ is a Bayesian Coarse-Correlated
Equilibrium (B-CCE) if for every ai ∈ Ai, and for every ti ∈ Ti, we have

Et−i∼D|ti [Pi(σ(t), ti)] ≥ Et−i∼D|ti [Pi((ai, σ(t)−i), ti)],

where σ(t)−i is a mapping from type profile to action, excluding agent i’s action.

In the above, agents jointly map their realized types to actions. This concept generalizes many other
known solution concepts such as a Mixed Nash Equilibrium and a Bayes-Nash Equilibrium (BNE),
where σ =

∏
σi and σ(t) =

∏
σi(ti), respectfully; that is, each agent chooses an action using a sep-

arate strategy σi, without correlating the action with other agents. These coarse correlated solution
concepts are of interest because they arise naturally from agents iteratively updating their strategies
using no-regret dynamics. This was observed for complete information games and CCE, and was
extended for incomplete information games with independent type distributions and B-CCE (Hart-
line et al., 2015); in Proposition 2.1, we give a more general convergence result than Hartline et al.
(2015) that holds for arbitrary, possibly correlated, type distributions.

Iterative no-regret dynamic. When updating agents’ strategies, we invoke an iterative no-regret
dynamics for Bayesian games, as described by Hartline et al. (2015). In these dynamics, each agent
independently runs a no-regret algorithm for each of the types that the agent might have. Roughly
speaking, at each round, a type profile t = (t1, . . . , tn) of agents is sampled from D. Then agents
simultaneously choose their actions using the strategy associated with the sampled type ti. After
observing all other agents’ actions, each agent then privately uses a no-regret algorithm to update
their strategy for their own type ti. We provide further details in Algorithm 1. In Appendix B, we
show that Iterative No Regret Dynamics converges to a B-CCE for any type distribution, which is a
more general convergence result than the one shown in Hartline et al. (2015).

Proposition 2.1 For every type distributionD, the empirical distribution over the history of actions
in the iterative no regret dynamics algorithm for any type profile t converges to a B-CCE. That is,
for every D, i, ti, and ai,

lim
T→∞

Et−i∼D|ti [Pi(σ
emp(t), ti)] − Et−i∼D|ti [Pi((ai, σ

emp(t)−i), ti)] ≥ 0,
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Setting Followers Bayesian Leader Strategy
Normal form games Single No Choose a row
Matrix design games Multiple No Modify table payoffs

Simple allocation mechanism Single Yes Map message to allocation
µSPM Multiple Yes Map messages to an SPM

Table 1: A taxonomy of the different experimental settings that we study.

where σemp is the empirical distribution after T steps.

The specific no-regret algorithm that we use for updating agents’ strategies is the multiplicative-
weights algorithm (see Appendix D).

In the paper, we present a POMDP formulation whose optimal policy gives asymptotic convergence
to Stackelberg Equilibrium where the followers form an approximate B-CCE. In order to define
what asymptotic convergence means, we introduce the following definitions.

Definition 3 (ε-Approximate B-CCE) A joint strategy profile σ is an ε-approximate B-CCE for
ε > 0 if, for every ai ∈ Ai, and for every ti ∈ Ti, we have

Et−i∼D|ti [Pi(σ(t), ti)] ≥ Et−i∼D|ti [Pi((ai, σ(t)−i), ti)]− ε,
where σ(t)−i is a mapping from type profile to action, excluding agent i’s action.

An alternative way to frame Proposition 2.1 is that for every ε there exists T (ε) such that for every
T ′ ≥ T , the empirical distribution of the T ′-rounds no-regret dynamics is an ε-approximate BCCE
in expectation.

Definition 4 (ε-Approximate Optimal Leader Strategy) Let ε-EQ(`, t) be a function that takes
leader strategy ` and followers’ types t and returns an ε-approximate B-CCE for some ε > 0. The
goal of the leader is to choose ` to maximize

Et∼D[P0(`, t, ε-EQ(`, t)].

2.1 STACKELBERG SETTINGS

Going forward, when referring to a Stackelberg setting or Stackelberg equilibrium we mean in a
CCE or B-CCE of the game that is induced by a leader’s strategy. In the following, we cover the
Stackelberg settings that appear in our experimental results (see also Table 1).

Normal form games. In a normal form game, the agent payoffs are specified via a matrix. The
leader’s strategy is to choose a row, and as a response the follower chooses a column. In the ran-
domized variant, the leader’s strategy space is the set of distributions over the rows. Notice that in
both cases, the follower’s optimal strategy is deterministic; i.e., to choose a single row.

Matrix design game. In a matrix design game, and inspired by Monderer & Tennenholtz (2003),
the leader is given a game matrix to be played by the followers. The leader can then modify the
payoff matrix by changing some of the payoffs in the matrix by a positive amount. The followers
then choose an equilibrium in the matrix with the modified matrix game. Crucially, the leader’s goal
is to maximize followers’ welfare without actually making monetary transfers in equilibrium (i.e.,
the leader modifies payoffs, in a way where the followers do not choose, in equilibrium, a matrix
cell where the payoff was changed).

Simple allocation mechanism. In this type of mechanism, a leader needs to allocate one of k items
to a single follower who is interested in only one of them. When the game begins, the follower’s
item of interest (i.e., their type) is sampled uniformly at random. The follower observes their item
of interest and sends a message µ ∈ {1, ..,m} to the leader, and the leader allocates one of the items
to the follower. If the follower receives their item of interest, the utility of both agents is 1, and 0
otherwise. Importantly, the number of messages available to the follower m can be much smaller
than k.
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Sequential price mechanisms with messages. Here we consider the family of sequential price
mechanisms as studied in Brero et al. (2021), extended here to include an additional messaging
round similar to the one used for our simple allocation mechanisms. There is some set of indivisible,
distinct items to allocate to a set of agents. In the first round, each agent i simultaneously sends a
message µi ∈ {1, ..,m} to the mechanism, for some choice of m > 1. The mechanism then visits
each agent in turn in each of the following rounds, possibly in some adaptive order. In each of
these rounds, the mechanism picks an unvisited agent i, and posts a price pj for each item j that
remains available. Then, agent i picks the bundle of items that maximizes their utility, and is charged
accordingly. The goal of the mechanism is to maximize the expected social welfare. In this setting,
the leader’s strategy is to pick a µSPM , and the followers respond by choosing their messaging
strategy.

3 FORMULATION AS A SINGLE AGENT PROBLEM

In this section, we show how to formulate the problem of finding an optimal leader strategy—which,
in its straightforward form involves multiple agents—as a single-agent problem. Our Stackelberg
POMDP (Section 4) builds on this single-agent formulation. For concreteness, we instantiate the
formulation to the µSPM setting, which is the most complicated setting we investigate.

Consider a partially observable stochastic game (Hansen et al., 2004) among the n followers and a
leader. The game state, sτ , in round τ is a tuple consisting of the type profile t, the (initially empty)
action profile a, and the other parameters required to represent the specific Stackelberg setting at
hand. For instance, for µSPM , we keep the current partial allocation, and the residual setting
consisting of agents not yet visited and items not yet allocated.

In round 0, each follower observes their own type and picks an action ai simultaneously with other
followers, and according to an equilibrium strategy induced by the leader. In round 1, the leader
observes the followers’ actions. In any round τ ≥ 1, the leader takes action aτ . The set of actions
the leader takes represents the leader’s strategy.

State transitions are deterministic. The first state transition simply consists of adding followers’
actions to the state. Then, in any round τ > 0, the state sτ+1 is obtained by changing the game’s
parameters according to the leader’s action at the previous state. For the µSPM setting, it is obtained
by adding the bundle selected by agent to their allocation to form a new partial allocation, and the
items and agent are removed from the residual setting.

Since the followers’ strategies are a function of the leader’s policy, we can write the optimization
problem as an optimization over the policy’s parameters θ. Let σθ an equilibrium induced by a policy
represented by parameters θ. Let tr = (s0, a0, s1, a1, . . . , sT , aT ) be a trajectory of an episode of
the stochastic game. Our objective is to find θ that maximizes

J(θ) = Etr∼pθ

[
T∑
τ=0

r(sτ , aτ )

]
, where (1)

pθ(tr)=pθ(s
0)

T∏
τ=0

πθ(a
τ |oτ )p(sτ+1|sτ , aτ ) = p(t)σθ(a | t)

T∏
τ=0

πθ(a
τ |oτ )p(sτ+1|sτ , aτ ). (2)

Observation 3.1 Consider θ∗ that maximizes Equation 1, then when the leader adopts this policy,
and the followers use strategies σθ∗ , the tuple (θ∗, σθ∗) forms a Bayesian Stackelberg equilibrium.

This follows immediately, since each follower best responds to the policy and other followers’ strate-
gies, and by the optimality of θ∗, there is no policy that could achieve better by switching to θ′ and
and letting followers play according to the new equilibrium σθ′ .

To model followers’ strategies, we use no-regret dynamics (via multiplicative-weights, MW) to
compute the equilibrium of the game induced by a particular leader’s policy with parameters θ. We
wish to optimize the leader’s policy πθ using policy gradient methods. The reason we cannot directly
differentiate the objective is that the follower actions depend on their strategies, which means that
we need to differentiate follower strategies as a result of the policy change.
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The crucial insight is that we can now expand σθ to be the initial part of a POMDP that calls the
policy multiple times to compute followers’ strategies through no-regret dynamics. Note that in
no-regret dynamics, followers update their strategies by accessing their payoff vector produced by
examining their payoffs for the outcome produced by the policy for different possible actions they
might take; therefore, this can actually be computed by rolling out the policy itself. By doing this,
we can apply RL methods to optimize over the parameters of the policy that solves this POMDP. In
the next section, we give the POMDP formulation of this problem. This gives rise to a single agent
RL problem that we can solve using standard gradient descent methods (as per Appendix A, where
we provide an actor-critic approach).

4 STACKELBERG POMDP

Our POMDP, which we name the Stackelberg POMDP, has a long episode that consists of multiple
sub-episodes. A sub-episode consists of rolling out the policy to determine a payoff for the followers.
We have two types of sub-episodes:

1. Equilibrium sub-episodes: The first set of sub-episodes are used by the followers to find
the equilibrium of the game given the current leader policy, where for some T rounds of
no-regret dynamics:

(a) Followers’ types are drawn (this is meaningful only in Bayesian settings),
(b) Followers jointly sample their actions according to their current strategy,
(c) Each follower runs an algorithm that minimizes its external-regret5 where the no-

regret algorithm has access to all possible payoffs6: it computes the payoff it would
have received for every possible message sent, fixing all other agents’ messages. The
agent then uses this payoff vector to update its strategy using a no-regret algorithm.

2. Reward sub-episode: After running T equilibrium sub-episodes, we run one or more sub-
episodes where the policy gets a reward for followers playing the current messaging strat-
egy (as determined in the first T rounds).

We note that this is a POMDP since the policy is not aware of the followers’ strategies, whether we
are in an equilibrium sub-episode or a reward sub-episode, and in Bayesian settings, the followers’
private types which are all part of the state of the POMDP.

In Appendix C, we give a full description of the Stackelberg POMDP. The following proposition
shows that the optimal solution of the Stackelberg POMDP gives the desired result.

Definition 5 (Asymptotic convergence to optimal leader strategy) We say the Stackelberg
POMDP achieves an asymptotic convergence to optimal leader strategy if for every ε there exists
T = T (ε) such that the following holds. For every T ′ > T , if the Stackelberg POMDP uses T ′
equlibrium sub-episodes, then the optimal policy for the POMDP is an ε-approximate optimal
leader strategy in expectation (Definition 4).

Proposition 4.1 The Stackelberg POMDP achieves an asymptotic convergence to an optimal leader
strategy.

Proof 4.1 Fix ε > 0. By Proposition 2.1, there exists some T = T (ε) for which if we run no-regret-
dynamics for T rounds, then the resulting followers’ strategies an ε-approximate B-CCE. Let θ∗T be
the optimal policy for the Stackelberg POMDP for T first phase steps, and σθ∗T the strategies implied
by running the first phase with policy θ∗T for T time steps. Since followers play an ε-approximate B-
CCE with respect to leader’s strategy, the leader strategy is an ε-approximate optimal leader strategy
and the Stackelberg POMDP achieves an asymptotic convergence to an optimal leader strategy.

5External regret compares the performance of a sequence of actions to the performance of the best single
action in hindsight.

6This can be changed to an internal regret minimization in the case where the no-regret algorithm only has
access to the payoff of the actual joint actions chosen by the agents. In this case, the algorithm will need more
steps to get convergence.
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Observation 4.1 Our Stackelberg POMDP models followers to use no-regret-dynamics and the so-
lution concept we get to is a Stackelberg Equilibrium where the followers’ equilibrium is a Bayesian
CCE. Since we deal with Bayesian settings where agents have private types, a Bayesian solution
concept is appropriate. When our methods are applied to non-Bayesian settings, then the solution
concept would change to the non-Bayesian counterpart (i.e., in the normal-form games and ma-
trix design games scenarios). If the agents use “no swap regret” to update their strategy instead
of “no external regret”, then the solution concept would further change from coarse correlated
equilibrium to the widely studied correlated equilibrium solution concept. The reason we chose to
model agents as no external regret agents is because no external regret algorithms have stronger
convergence guarantees than their no-swap regret counterparts. More generally, we note that our
Stackelberg POMDP is well formed as long as the re-equilibration behavior of the sellers can be
modeled through Markovian dynamics and integrated into the Stackelberg POMDP states. For ex-
ample, one can imagine using other common methods to derive sellers’ response strategies such
as Q-learning—as already successfully experimented in a follow-up work (Brero et al., 2022)—or
other reinforcement learning approaches.

5 EXPERIMENTAL RESULTS

In this section, we demonstrate the robustness and flexibility of our learning approach via different
experiments. The set of settings we consider is described in Section 2.1.

We train the platform policy with MAPPO, which is a multi-agent variant of the Proximal Policy
Optimization (PPO) algorithm described by Schulman et al. (2017). To implement MAPPO, we
start from the PPO version implemented in Stable Baselines3 (Raffin et al., 2021, MIT License) and
modify it to let the critic network access the followers’ internal information.7 In the remainder of
this section, we use standard PPO as a baseline and compare its training performance with MAPPO.

We train for 10 million steps, unless otherwise specified. We log rewards in the reward phase of
a separate Stackelberg POMDP episode that we run every 10k training steps. These evaluation
episodes use the current leader policy, and operate it executing the action with the highest weight
given each observation.

The number of equilibrium steps in our Stackelberg POMDPs is always large enough to guarantee
convergence of the followers’ MW dynamics. This means 100 steps in the matrix experiments of
Section 5.1 and Section 5.2, and 1000 steps in the economic design experiments of Section 5.3 and
Section 5.4. The larger number of equilibrium steps in our economic design experiments is due to
the fact that we sample followers’ private types at the beginning of each game. This also motivates a
larger number of reward steps (100) in our economic design experiments compared to the ones used
in the matrix ones (10).

5.1 NORMAL FORM GAMES

We consider the second matrix game described in Zhang et al. (2019) (see Table 2).8 Here, the
optimal deterministic leader action is A, with the follower responding with action A and generating
payoff 20 to the leader. However, the leader can further improve her payoff by picking a randomized
action. Indeed, they can play A with probability 0.25 + ε and B with probability 0.75 − ε. In this
scenario, the follower is still maximizing his payoff by playing A and the leader’s expected utility
is 27.5 + ε. We then also consider the scenario where the leader can randomize over rows. For this,
we formulate a POMDP where the leader actions are weights over rows, and derive randomized
game actions by normalizing these weights. The results are given in Figure 1. MAPPO immediately
learns to play the optimal strategy when actions are deterministic. At the same time, the randomized
scenario requires a short learning phase before reaching the optimal performance after around 100k
training steps. Similar results can be achieved by running PPO instead of MAPPO.

7Furthermore, to reduce variance in followers’ responses (due to non-deterministic policy behavior of the
leader), we maintain an observation-action map throughout each episode. When a new observation is encoun-
tered during the episode, the policy chooses an action following the default training behavior and stores this
new observation-action pair in the map. Otherwise, the policy simply uses the action stored in the map.

8We present the results for the first matrix game described in Zhang et al. (2019) in Appendix E.
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A B C

A (20, 15) (0, 0) (0, 0)

B (30, 0) (10, 5) (0, 0)

C (0, 0) (0, 0) (5, 10)

Table 2: Matrix game 2.

Figure 1: Training curves for matrix game in Table 2 averaged
over 10 runs when the leader policy is trained using MAPPO. Re-
wards are normalized between 0 and 1.

A B

A (3 + τ, 3) (6, 4)

B (4, 6) (2, 2 + τ)

Table 3: Matrix game (Monderer & Tennen-
holtz, 2003)

Figure 2: Training curve for matrix game in Table 3 averaged over
10 runs. Rewards are normalized between 0 and 1. Payment τ is
chosen from set {0, 1, .., 10}.

5.2 MATRIX DESIGN GAME

We consider the first example presented by Monderer & Tennenholtz (2003). The followers’ game
is described in Table 3. We notice that, when the leader does not intervene (i.e., τ = 0), the
game has no dominant strategy equilibrium. At the same time, when τ ≥ 4, actions A and B
become dominant strategies for the row and the column players, respectively. Following Monderer
& Tennenholtz (2003), we assume that the leader’s goal is to have the followers play different actions
and for this we set the leader’ reward to 1 when this is the case and 0 otherwise. The results are
displayed in Figure 2. Here MAPPO significantly outperforms PPO, learning to play τ ≥ 4 after
around 200k training steps. PPO has an oscillatory behavior and does not always provide optimal
leader behavior. This is expected, since as the RL algorithm does not have access to the full state,
which includes agents’ strategies, the critic in PPO cannot correctly evaluate the current state of the
MDP. This is addressed through the centralized critic of MAPPO.9

5.3 SIMPLE ALLOCATION MECHANISMS

We consider the simple allocation mechanisms described in Section 2 with 3 items (k = 3). We
start by testing the performance of MAPPO when varying m in {1, 2, 3}. The results are displayed
in Figure 3a. When m = 1, the follower cannot inform the leader, which chooses a random item
and succeeds only one third of the time. When m = 2, the follower can signal its item of interest
one third of the time, allowing the leader to increase her expected reward to 0.6̄. When m = 3, the
follower can signal his type, and the leader can always realize her maximum reward (i.e., 1). As
we can notice, MAPPO always realizes this optimal payoffs after a relatively short training phase.

9See Appendix F for a more accurate analysis of the critic network performance.
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(a) Message spaces comparison. (b) MAPPO vs. PPO, message space size m = 3.

Figure 3: Training curves for Simple Allocation Mechanisms, averaged over 10 runs.

Figure 4: µSPM training curves averaged over 10 runs.

We also compare MAPPO and PPO in the scenario with m = 3. As we can see from Figure 3b,
MAPPO significantly outperforms PPO.

5.4 SEQUENTIAL PRICE MECHANISMS WITH MESSAGES

We consider the setting introduced by Agrawal et al. (2020) in their Example 1. We have two
agents and one item. Each agent’s type corresponds to his value for the item. Agent 1’s type, t1,
has support {1/2, 1/(2ε)} with probabilities {1 − ε, ε}, and agent 2’s value, t2, has support {0, 1}
with probabilities {1/2, 1/2}. In our experiments, we use ε = 0.2. The welfare-optimal allocation
cannot always be realized when followers cannot signal their types.10 However, there exists an
µSPM with m = 2 in which agents are properly incentivized to communicate their types and
where the allocation always optimizes welfare:

1. If agent 1 sends message 0, then the mechanism uses a minimal price (e.g., 0.1) in each
round, and visits agent 2 first;

2. Otherwise, the mechanism uses a price between 1/2 and 1/(2ε) in the first round and visits
agent 1 first.

In the equilibrium, the optimal allocation is always achieved if agent 1 bids 0 when their value is
low. At the same time, agent 1 is only motivated to bid 0 when their value is low, given that the price
offered in (2.) would be too high in this case. As previously done by Brero et al. (2021), albeit in
a setting without communication, we set the leader’s reward to the welfare loss (and not welfare).
To avoid exploding gradients, we reduce the default PPO learning rate by a factor of 100, and we
train for a longer period (20M steps). As we can see from Figure 4, MAPPO reaches an optimal
performance while PPO is still not stable at the end of our training run.

10The welfare-optimal sequential price mechanism without messaging visits agent 2 first and then agent 1,
using price zero in both cases. Here, the welfare-optimal allocation is not implemented when v1 = 1/2 and
v2 = 1/(2ε).
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REPRODUCIBILITY STATEMENT

All source code used for experiments will be submitted as part of the supplementary material, along
with detailed instructions on how to recreate the experiments presented in this paper. We plan to
release the source code of our experiments under an open-source license upon acceptance.
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A AN ACTOR-CRITIC APPROACH

In Section 4, the entire optimization problem is formulated as a POMDP, where the only actions
are the actions of the policy. Let tr = (s0, a0, . . . , sT , aT ) be a trajectory of the POMDP described
above. We can express the trajectory probability of the optimization problem in equation 1 in a
standard way

pθ(tr) = p(s0)

T∏
t=0

πθ(a
t|ot)p(st+1|st, at),

where p(s0) now doesn’t depend on θ, and the states and observations are defined by the Stackelberg
POMDP described above. The gradient of J(θ) with respect to θ can be expressed as

∇θJ(θ) = Etr∼pθ

[
∇θ log pθ(tr)

(
T∑
t′=1

r(st
′
, at
′
)

)]

= Etr∼pθ

[
T∑
t=1

∇θ log πθ(a
t|ot)

(
T∑
t′=1

r(st
′
, at
′
)

)]

= Etr∼pθ

[
T∑
t=1

∇θ log πθ(a
t|ot)

(
T∑
t′=t

r(st
′
, at
′
)

)]
,

where the last equality follows since future actions do not affect past rewards in an POMDP.∇θJ(θ)
is approximated by sampling ` different trajectories tr1, .., tr`:

∇θJ(θ) ≈ 1

`

∑̀
k=1

T `∑
t=1

∇θ log πθ(a
t
k|otk)

 T `∑
t′=t

r(st
′

k , a
t′

k )

 .

One problem with this approach is that its gradient approximation has high variance as its value
depends on sampled trajectories. A common solutionis to replace each term

∑T
t′=t r(s

t′

k , a
t′

k ) with
Qθ(stk, a

t
k), where

Qθ(s, a) = Es′∼p(·|s,a)[r(s, a) + γEa′∼πθ(s′)[Qθ(s′, a′)]] (3)

is the “critic”. Note that Qθ(s, a) can be accessed at training time as we have access to the full state
of the POMDP. This approach based on centralized training and decentralized execution is similar
to the one proposed for DDPG by Lowe et al. (2017).

B CONVERGENCE TO EQUILIBRIUM

Hartline et al. (2015) consider using a no-regret dynamic on a fixed game of incomplete information.
They show that, for independent valuations, the time-averaged history of agents’ actions converges
to a B-CCE (see Definition 2) if each agent follows a no-regret learning algorithm for each of her
types. They assume independent type distributions for their analysis. We extend their theory to show
that no-regret dynamics also converge to a B-CCE for arbitrary type distributions.

Proposition 2.1 For every type distributionD, the empirical distribution over the history of actions
in the iterative no regret dynamics algorithm for any type profile t converges to a B-CCE. That is,
for every D, i, ti, and ai,

lim
T→∞

Et−i∼D|ti [Pi(σ
emp(t), ti)] − Et−i∼D|ti [Pi((ai, σ

emp(t)−i), ti)] ≥ 0,

where σemp is the empirical distribution after T steps.

Proof Fix agent i, and a type ti. Let τ(ti) denote the set of time steps at which ti was sampled
as the type of agent i, τ(t) denote the set of time steps at which t was sampled as the type profile,
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and τ(t,a) denote the set of time steps at which t was sampled and a were the agents’ actions. The
expected value of agent i with type ti when playing the agent’s action according to the empirical
distribution of actions σemp is:

Et−i∼D|ti [Pi(σ
emp(t), ti)] =

∑
t−i

Pr[t−i]
∑
a

Pr[σemp(t) = a]Pi(a, ti)

=
∑
t−i

|τ(t)|
|τ(ti)|

∑
a

Pr[σemp(t) = a]Pi(a, ti) +

(
Pr[t−i]−

|τ(t)|
|τ(ti)|

)∑
a

Pr[σemp(t) = a]Pi(a, ti). (4)

Notice that by the Glivenko-Cantelli Theorem, as T → ∞,
(

Pr[t−i]− |τ(t)|
|τ(ti)|

)
→ 0. Since it is

multiplied by Pr[σemp(t) = a]Pi(a, ti) ≤ Pr[σemp(t) = a]Pi(a, ti), a bounded term, the second
summand of Eq. (4) goes to 0 as T →∞.

As for the first summand, we have∑
t−i

|τ(t)|
|τ(ti)|

∑
a

Pr[σemp(t) = a]Pi(a, ti) =
∑
t−i

|τ(t)|
|τ(ti)|

∑
a

|τ(t,a)|
|τ(t)|

Pi(a, ti)

=

∑
t−i

∑
a

|τ(t,a)|Pi(a, ti)

 /|τ(ti)|

=

∑
t−i

∑
a

∑
τ∈τ(t)

Pi(a, ti) · 1at=a

 /|τ(ti)|

=

∑
t−i

∑
τ∈τ(t)

∑
a

Pi(a, ti) · 1aτ=a

 /|τ(ti)|

=

∑
t−i

∑
τ∈τ(t)

Pi(a
τ , ti)

 /|τ(ti)|

=
∑

τ∈τ(ti)

Pi(a
τ , ti)/|τ(ti)|.

Therefore, we can write Eq. (4) as

Et−i∼D|ti [Pi(σ
emp(t), ti)] =

∑
τ∈τ(ti)

Pi(a
τ , ti)/|τ(ti)| + α(T ),

where α(T )→ 0 as T →∞.

By replacing σemp(t)i with an arbitrary fixed action a′i in the above derivation, we get that

Et−i∼D|ti [Pi((a
′
i, σ

emp(t)−i), ti)] =
∑

τ∈τ(ti)

Pi((a
′
i,a

τ
−i), ti)/|τ(ti)| + β(T ),

where β(T )→ 0 as T →∞.

Since agent i uses a no-regret algorithm for each type ti, we have that for T → ∞ (which implies
|τ(ti)| → ∞),

Ea1,...,aT

 ∑
τ∈τ(ti)

Pi(a
τ , ti)/|τ(ti)|

 ≥ Ea1,...,aT

 ∑
τ∈τ(ti)

Pi((a
′
i,a

τ
−i), ti)/|τ(ti)|

 − o(1),
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for every a′i, where the expectation is over the randomization of the no regret algorithm. Therefore,
we have that as T →∞,

Ea1,...,aTEt−i∼D|ti [Pi(σ
emp(t), ti)] = Ea1,...,aT

 ∑
τ∈τ(ti)

Pi(a
τ , ti)/|τ(ti)|

+ α(T )

≥ Ea1,...,aT

 ∑
τ∈τ(ti)

Pi((a
′
i,a

τ
−i)ti)/|τ(ti)|

+ α(T )− o(1)

= Ea1,...,aTEt−i∼D|ti [Pi((a
′
i, σ

emp(t)−i), ti)] + α(T )− β(T )− o(1)

= Ea1,...,aTEt−i∼D|ti [Pi((a
′
i, σ

emp(t)−i), ti)]− o(1),

which implies that as T →∞, the iterative no-regret dynamics converge to a B-CCE.

C STACKELBERG POMDP FOR µSPM

In this section, we show how the Stackelberg POMDP can be used to support finding an optimal
µSPM . For the purpose of µSPM a game state s contains.

• tf : a flag that indicates whether we’re running the policy to compute a new equilibrium, or
to get reward.

• σ: the messaging strategies of the agents.

• v: the valuations of agents in the current sub-episode.

• µ: the messages sampled by the current agents’ strategies.

• xt−1: the partial allocation in the current sub-episode

• ρt−1: the agents and items left in the current sub-episode

• ti : the current agent for which we compute the equilibrium (used only when tf = true).

• µi: the current action taken for computing utility (used only when tf = true).

• u: the utility vector of player ti (used only when tf = true).

The state transitions are defined as follows:

1. σ initialized.

2. For t ∈ [T1] (no-regret sub-episodes):

• v is sampled according to the value distribution.
• µ is sampled according to σ and v.
• ui = 0 for every agent i.
• For i ∈ [n] (agent), k ∈ |Ti| (action):

– st,i,k0 = (tf = 1, σ,v, µ,x = ∅, ρ = (1n+m), ti = i, µi = k, u = ui).
– given st,i,k` , the mechanism takes action a` = (i`, p`), where i` is the next selected

bidder and p` is the vector of posted prices. Bidder i` chooses a set of items x`
at prices p`, which is observed by the mechanism (o` = x`−1). The state st,i,k`+1 is
obtained by adding the bundle x` selected by agent i` to the partial allocation x`−1

to form a new partial allocation x`, and the items and agent are removed from the
residual setting ρ`−1 to form ρ`.

– After all items are taken or all agents have been visited, we add the utility of agent
i to ui[k]

• Update strategies σ according to the uis.

3. sr0 = (tf = 0, σ,v, µ,x = ∅, ρ = (1n+m)) (u, ti, µi are also in the state, but disregarded).
v is sampled from the value distribution, and µ is sampled according to σ and v. This is
the initial state of the reward sub-episode.
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4. At sr` , the mechanism takes action a` = (i`, p`), where i` is the next selected bidder and
p` is the vector of posted prices. Bidder i` chooses a set of items x` at prices p`, which is
observed by the mechanism (o` = x`−1). The state sr`+1 is obtained by adding the bundle
x` selected by agent i` to the partial allocation x`−1 to form a new partial allocation x`,
and the items and agent are removed from the residual setting ρ`−1 to form ρ`

5. The reward r(s, a) is zero in all states except for terminal states of the reward sub-phase,
where no agents or items are left. It can capture any objective of the designer; i.e., social
welfare or revenue.

D ITERATIVE MULTIPLICATIVE WEIGHTS

We now describe the multiplicative-weights algorithm that we use to update followers’ strategies
(Algorithm 2). The algorithm has three parameters: The payoff function of the agents (in our case,
this is the payoff function of the game induced a leader’s policy `) which determines the game played
by our agents, a real number ε > 0 controlling the magnitude of the weight updates, and an integer
T > 1 determining the number of iterations. Each follower i is assigned a weight matrix wi of
size |Ti| by |Fi| where all entries are initialized to 1. The following procedure is repeated T times:
First, a type profile (t1, .., tn) is sampled from distribution D. Then, for each follower i an action
ai is sampled according to weights wi[ti][ai]. Finally, we compute each agent i’s payoffs when
choosing any action a′i and when the other agents are playing a−i; we scale each weight wi[ti][a′i]
accordingly.

Algorithm 2 No Regret Multiplicative Weights
parameters: The payoff function P , update parameter ε, number of iterations T for each agent i,
initialize weights wi[ti][ai] = 1 for each type ti ∈ Ti and action ai ∈ Ai repeat T times

sample valuation profile t = (t1, .., tn) from distribution D generate action profile a =
(a1, .., an) where each ai is sampled with probability wi[ti][ai]/

∑
a′i
wi[ti][a

′
i] foreach agent

i ∈ [n] do
foreach action a′i ∈ Ai do

let Pi be agent i’s payoff under payoff function Pi when she has type ti and the action
profile is (a′i, a−i)
update weight wi[ti][a′i] = wi[ti][a

′
i] ∗ (1 + ε)Pi

end
end

end

E ADDITIONAL NORMAL FORM GAMES

This appendix integrates our experimental section by also considering the first game described in
Zhang et al. (2019), which we present in Table 4. Here, the optimal leader action is row C. Indeed,
if the leader chooses C, the follower responds with column C and both follower and leader realize
their maximum payoff. As we can see from Figure 5, the leader learns to play row C immediately,
both when trained with MAPPO and PPO.

F MATRIX DESIGN GAME: CRITIC NETWORK TRAINING PERFORMANCE

In this section, we investigate the training performance of the critic network in our Matrix Design
Game experiments (Section 5.2). To do so, we consider how the value function loss (i.e., the mean
loss of the value function described by the critic network) evolves during training. The results are
reported in Figure 6. As we can see from Figure 6, using a centralized critic dramatically improves
the accuracy of the critic network, with value loss dropping below 0.2 since the early training stages.
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A B C

A (15, 15) (10, 10) (0, 0)

B (10, 10) (10, 10) (0, 0)

C (0, 0) (0, 0) (30, 30)

Table 4: Matrix game 1.

Figure 5: Training curves for matrix game in Table 4 averaged
over 10 runs. Rewards are normalized between 0 and 1.

Figure 6: Value loss in Matrix Design Experiments.
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