

SLayR: Scene Layout Generation with Rectified Flow

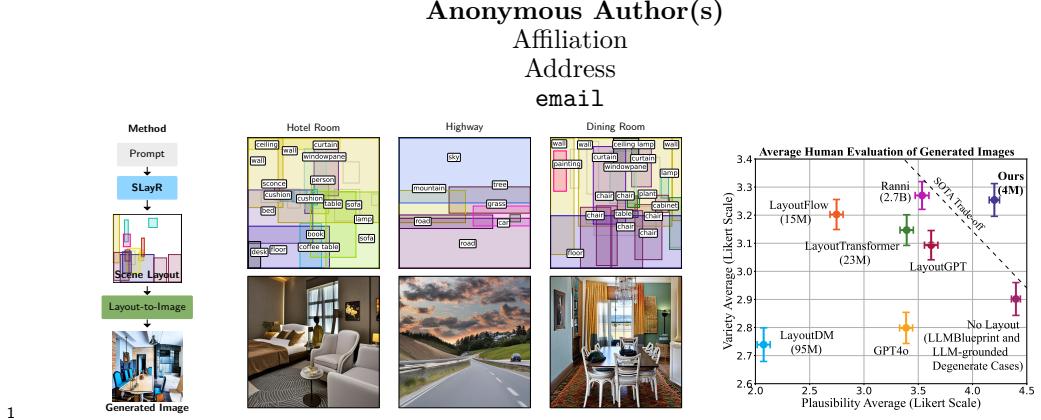


Figure 1: **Left:** We introduce **SLayR**, a method for scene layout generation via rectified flow. **Middle:** SLayR generates scene layouts for unconstrained prompts, which can be rendered using a layout-to-image generator. **Right:** Our method sets a new state of the art in generating more varied and yet plausible scenes than baselines, including LLMs.

Abstract

We introduce SLayR, **S**cene **L**ayout **G**eneration with **R**ectified flow, a novel transformer-based model for text-to-layout generation, which can integrate into a complete text-to-image pipeline. SLayR addresses a domain in which current text-to-image pipelines struggle: generating scene layouts that are of significant variety and plausibility, when the given prompt is ambiguous and does not provide constraints on the scene. In this setting, SLayR surpasses existing baselines, including LLMs. To accurately evaluate the layout generation, we introduce a new benchmark suite, including numerical metrics and a carefully designed repeatable human-evaluation procedure that assesses the plausibility and variety of images that are generated. We show that our method sets a new state of the art for achieving high plausibility and variety simultaneously, while being at least $3\times$ times smaller in the number of parameters.

1 Introduction

Recent advances in text-to-image modeling have focused on training denoising diffusion models [49, 14, 50] to generate images from a prompt encoding and image noise [42, 43, 44, 6, 61, 45], as well as incorporating finer-grained control modalities [15, 21, 37, 63, 33, 48, 34, 55]. Building upon these advancements, prior works have demonstrated the editability and interpretability advantages of a multistage text-to-layout-to-image model, where the user can view and manipulate an intermediate layout consisting of bounding boxes for object-level scene elements [26, 7, 66, 10, 60, 67, 1]. These works use LLMs as text-to-layout generators, and focus on parsing multi-object prompts (e.g. “two dogs next to a cat”). However, a closer inspection reveals that these models do not generate high variety (see fig. 1, right) or

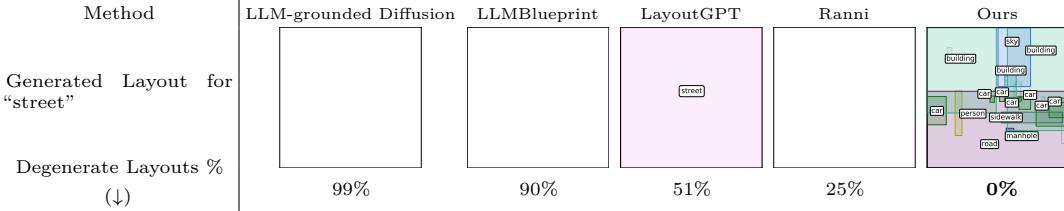


Figure 2: Degenerate layouts (where zero or one trivial bounding box is present) for the prompt “street” from LLM-grounded Diffusion [26], LLM Blueprint [9], LayoutGPT [7], and Ranni [8] vs. our layouts. The bottom shows percentages of degenerate layouts from our unconstrained prompt benchmark (See section 4). As visible, LLM approaches for constrained prompts do not generalize to the unconstrained setting.

25 collapse entirely (see Figure 2), when presented with prompts that have few constraints and
26 leave a high degree of ambiguity. We see this as a critical problem: the models in these cases
27 fail to present knowledge about the structure of scenes as they cannot rely on the prompt
28 for specific information.
29 This motivates us to propose SLayR, a novel lightweight text-to-layout generation model for
30 expanding unconstrained prompts (e.g. “a park”, “a beach”) into a variety of plausible scene
31 layouts (see Figure 1, left and middle). Given a CLIP [41] embedding of a global scene prompt,
32 we generate the layout using rectified flow [30], with a Diffusion Transformer (DiT) [38]. As
33 unconstrained text-to-layout generation for general images has not been explored before, we
34 assess our layout’s plausibility and variety against both LLM-centric baselines and adapted
35 UI/document generation. The experiments show that our method produces a very high
36 variety, while achieving state-of-the-art plausibility in spatial arrangement.
37 Next, we combine our generated layouts with available layout-to-image generation models
38 [52, 25, 56, 26] to create a complete text-to-image pipeline. We show that the generated
39 images achieve the highest scores in CMMD [17], FID [13], KID [3], and HPSv2 [54] compared
40 to the baselines. As true assessment of the image content is only possible by humans, we
41 introduce a comprehensive and repeatable human-evaluation study. The ratings show that
42 our model yields the state-of-the-art trade-off in generating images that are both diverse
43 and plausible. In addition, our pipeline is significantly more lightweight than baselines and
44 can be conditioned on partial layouts and directional constraints, while also providing the
45 ability to edit layouts.
46 In summary, our contributions are: **1)** we introduce the first model for rectified flow-based
47 text-to-layout generation and show that it produces a large variety of highly plausible layouts
48 for challenging unconstrained prompts, **2)** we establish a well-designed human-evaluation
49 study that can be repeated by others, and **3)** demonstrate that integrating our method into
50 a complete text-to-layout-to-image pipeline yields state-of-the-art in achieving variety and
51 plausibility together. See our supplement to access source code.

52 2 Related Work

53 **LLMs in Scene Layout Generation.** Prior works in 2D layout generation leverage
54 LLMs to parse multi-object prompts into layouts, typically leveraging in-context learning
55 [26, 9, 7, 8]. Querying these models with unconstrained prompts frequently yields degenerate
56 solutions without meaningful layout information (See fig. 2). Given that LLM-grounded
57 Diffusion [26] and LLM Blueprint [9] degenerate in 90% or more cases, we do not evaluate
58 them further. Results on LayoutGPT [7] and Ranni [8] are provided. To control for the shift
59 to the unconstrained prompt domain, we also adapt the prompt template from [26] with
60 in-context examples from our domain, and encouragement of chain-of-thought reasoning [53],
61 to meaningfully assess an LLM’s capabilities for this task. For the underlying LLM, we use
62 GPT4o [35].

63 **Adapting UI Generation.** Our task of scene layout generation is distinct from User
64 Interface (UI) generation: scene and object captions are from open sets, whereas UI layouts
65 lack global captions and have labels from a small fixed set. Nevertheless, they can serve as
66 interesting baselines, and we adapt several of these models using their conditional generation

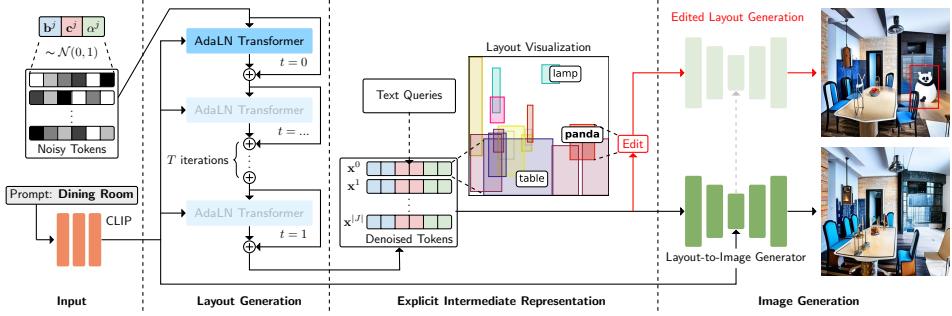


Figure 3: **Method Overview.** Our layout generation model takes a set of noisy tokens and a prompt encoded as a global CLIP embedding as input. The tokens are partitioned into bounding box information \mathbf{b}^j , reduced CLIP embeddings \mathbf{c}^j , and opacities α^j , with j being the object index. The tokens are then subsequently denoised from $t = 0$ to $t = 1$ using a transformer. For visualization purposes, the user can query the generated layout with labels and edit boxes by adding, moving or removing them. Finally, the generated layout is passed through an off-the-shelf layout-to-image generator.

67 capabilities. We use LayoutTransformer [12] as a representative for autoregressive transformer
 68 approaches, which completes a partial sequence of object bounding boxes to form an image
 69 layout. LayoutFormer++ [18] extends LayoutTransformer with added conditioning, but
 70 this is not the focus of our assessment of adapted UI generation, and thus it is a redundant
 71 baseline. We also adapt LayoutDM [16] and LayoutFlow [11] as representative baselines
 72 for diffusion-based methods for UI generation [62, 4, 23]. For GAN-based approaches [24],
 73 while LayoutGAN++ [20] supports inter-bounding-box relationships, the Lagrange multiplier
 74 constraint formulation cannot be adapted to support global conditioning. In contrast to our
 75 method, UI generation models by design do not extend into the open world scenario.

76 **Rectified Flow.** Diffusion modeling has inspired numerous variants and improvements,
 77 one of which is rectified flow [30]. Prior works on the related text-to-image generation task
 78 [31, 6]. An initial ablation on DDIM [50], indicates that rectified flow outperforms traditional
 79 diffusion approaches [14] in this setting. See the supplement for details.

80 **Layout-to-Image Generation.** We demonstrate that SLayR integrates well into down-
 81 stream conditional diffusion models to form a complete text-to-image pipeline, with the
 82 added benefits of an interpretable and controllable intermediate layout phase. To control
 83 for the effect which the image generator has on the final generated image, we evaluate
 84 our layouts across multiple layout-to-image models. Although there are a wide variety of
 85 such models, [5, 59, 64, 51, 2, 57] we select four which are publically available and have
 86 been used successfully with LLM-driven layouts [26, 7] or have shown SOTA performance:
 87 InstanceDiffusion [52], GLIGEN [25], BoxDiff [56], and LMD+ [26].

88 3 Method

89 The central part of our work is the text-to-layout generation module, which we combine
 90 with the existing layout-to-image generators to form a complete text-to-image pipeline. An
 91 overview is provided in fig. 3, and we explain the details below.

92 **Layout Representation.** We start with defining a scene representation as the basis for
 93 our generative architecture. A training sample (\mathbf{x}, P) is composed of a global image caption
 94 prompt P and a set of J object tokens $\mathbf{x} = \{\mathbf{x}^j \in \mathbb{R}^{d+5}\}_{j \in J}$. The token representation of
 95 any single object is composed of

$$\mathbf{x}^j = (\mathbf{b}^j \parallel \mathbf{c}^j \parallel \alpha^j), \quad (1)$$

96 where $\mathbf{b}^j = (x^j, y^j, w^j, h^j) \in \mathbb{R}^4$ encodes the bounding box coordinates, $\mathbf{c}^j \in \mathbb{R}^d$ is a PCA-
 97 reduced CLIP [41] embedding, and $\alpha^j \in \mathbb{R}$ is an opacity value that defines the existence of a
 98 specific bounding box.

99 **Rectified Flow Preliminaries.** We briefly recap the basics of rectified flow introduced
 100 in [30]. Let I be a set of training sample indices and $\{\mathbf{x}_i\}_{i \in I}$ the ground-truth samples

101 whose distribution we would like to learn using our model v . We linearly interpolate between
 102 Gaussian noise $\mathbf{x}_i(0)$ and samples $\mathbf{x}_i(1) \equiv \mathbf{x}_i$ across timesteps $t \in [0, 1]$ as follows:

$$\mathbf{x}_i(t) = (1 - t) \cdot \mathbf{x}_i(0) + t \cdot \mathbf{x}_i(1). \quad (2)$$

103 The model v is trained to take $(\mathbf{x}_i(t), t)$ as input and to predict the derivative of the path
 104 between $\mathbf{x}_i(0)$ and $\mathbf{x}_i(1)$, which according to Equation 2 is $\mathbf{x}_i(1) - \mathbf{x}_i(0)$. The training
 105 objective is:

$$\min_v \int_0^1 \mathbb{E}_i [\|(\mathbf{x}_i(1) - \mathbf{x}_i(0)) - v(\mathbf{x}_i(t), t)\|^2] dt \quad (3)$$

106 and is optimized with stochastic gradient descent. This optimization is carried out across
 107 all available samples of the ground-truth distribution. Following [30], noisy values $\mathbf{x}_i(0)$ are
 108 resampled at each epoch. The end result is a network v , which is effective at predicting the
 109 direction from a noisy sample at an intermediate timestep towards the target distribution.
 110 Since a single evaluation may be noisy, the inference is performed by integrating over T
 111 timesteps:

$$\mathbf{x}_i(1) = \mathbf{x}_i(0) + \sum_{t=1}^T v(\mathbf{x}_i(\frac{t-1}{T}), \frac{t}{T}) \cdot \frac{1}{T}. \quad (4)$$

112 **Our Model Architecture.** Our rectified flow model is built from multihead AdaLN
 113 transformer blocks, which can process tokens $\{\mathbf{x}_i^j\}_{j \in J}$ to iteratively denoise them [38].
 114 The timestep t , bounding box coordinates $\mathbf{b}_i^j(t)$, and opacity values $\alpha_i^j(t)$ are sinusoidally
 115 encoded. The timestep t and a linear projection of the global P_i 's CLIP encoding are passed
 116 as conditioning of the adaptive layer normalization of the transformer blocks. The tokens
 117 represent the objects in the layout and are processed all at once.

118 Inference begins at $t = 0$ with the set of tokens $\{\mathbf{x}_i^j(t)\}_{j \in J} \equiv \{\mathbf{x}_i^j(0)\}_{j \in J}$ initialized from
 119 Gaussian noise. Our model then iteratively processes and updates the tokens from $t = 0$
 120 to $t = 1$ over T iterations using eq. (4) based on the global prompt conditioning P_i . We
 121 project this output back to the dimension of $\mathbf{x}_i^j(t)$ before sinusoidal encoding, in order for the
 122 module to serve as the rate of change of $\mathbf{x}_i^j(t)$. A single inference step can be summarized as:

$$\{\mathbf{x}_i^j(t)\}_{j \in J} \leftarrow \{\mathbf{x}_i^j(t - \frac{1}{T})\}_{j \in J} + v(\{\mathbf{x}_i^j(t - \frac{1}{T})\}_{j \in J}, t - \frac{1}{T}, P_i) \cdot \frac{1}{T}, \quad (5)$$

123 Following eq. (5) until $t = 1$ yields the final layout $\{\mathbf{x}_i^j(1)\}_{j \in J}$ that contains PCA-reduced
 124 CLIP embeddings, bounding boxes, and opacities. Tokens with $\alpha_i^j(1) < 0.5$ are considered
 125 unused and discarded, please see the supplement for further explanation. For image generation,
 126 we unproject each $\mathbf{c}_i^j(1)$ from the PCA space back into the CLIP feature space and pass the
 127 embeddings directly into the downstream image generation module.

128 For visualization of the layouts, we follow the common practice when interpreting visual
 129 representations in natural language [19, 39] and decode CLIP embeddings to text by com-
 130 paring them to label queries from the user, and selecting the closest query in the embedding
 131 space. In the supplement, we explain the RePaint [32, 46] technique for rectified flow to
 132 enable *partial layout conditioning*. This enables our model to be guided by partial layouts
 133 where only some boxes or labels are given (see fig. 6). We additionally show how we can
 134 impose inter-bounding box positional constraints (i.e, place A to the *left* of B) by adding a
 135 directional drift on the bounding boxes during inference. The ability to control our model
 136 through these conditions allows it to also work in concert with an LLM to handle complex
 137 prompts, where the role of the LLM is to extract the constraints from the prompt, and our
 138 method takes care of generating the remaining unspecified scene details.

139 **Training.** To construct a training sample from the ground-truth image layout i , we create
 140 \mathbf{c}_i^j and \mathbf{b}_i^j for each bounding box j , and initialize α_i^j to 1. To ensure a consistent amount of
 141 tokens, we pad the samples by adding tokens with $\alpha_i^j = 0$ and $\mathbf{b}_i^j = 0$, and \mathbf{c}_i^j to the null
 142 string embedding. We now treat $\{\mathbf{x}_i^j\}_{j \in J} \equiv \{\mathbf{x}_i^j(1)\}_{j \in J}$, sample $\{\mathbf{x}_i^j(0)\}_{j \in J}$ from Gaussian
 143 noise, draw t uniformly from $[0, 1]$, and compute the set of tokens $\{\mathbf{x}_i^j(t)\}_{j \in J}$ by adapting the

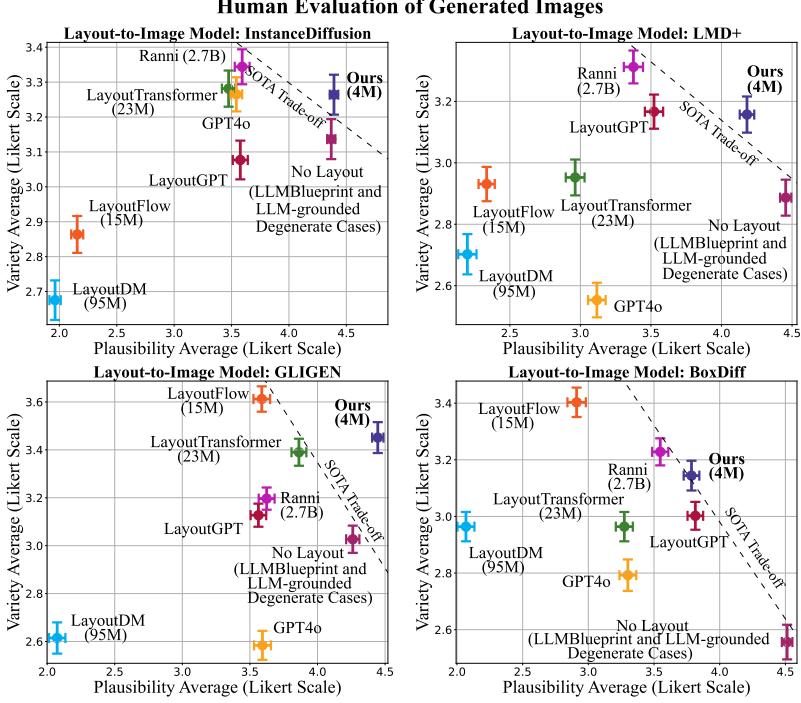


Figure 4: **Human Survey Results.** Our method offers an equal or superior trade-off between plausibility and variety across all measured layout-to-image generators, while being a much smaller model. The error bars indicate standard error.

144 formula from eq. (2), which are then passed to the model as input. We refer to the output
 145 of the model as $v(\{\mathbf{x}_i^j(t)\}_{j \in J}, t, P_i)$ and compute the training loss derived from eq. (3):

$$\mathcal{L} = \sum_{i \in I, j \in J} \|\mathbf{x}_i^j(1) - \mathbf{x}_i^j(0) - v(\{\mathbf{x}_i^j(t)\}_{j \in J}, t, P_i)_j\|^2. \quad (6)$$

146 **Human Evaluation.** Given the novelty of our problem domain, we argue that human
 147 evaluation is most reliable for assessing the plausibility and variety of layouts and therefore
 148 introduce a human-evaluation study which can be repeated by others. Assessing human
 149 opinions for these criteria directly on layouts is challenging: the evaluators require time to
 150 understand the layout diagrams and explain them, and furthermore, assessments are hard
 151 to make without actually seeing the image. Following the design principles presented by
 152 Otani *et al.* [36] in their work on human evaluation of text-to-image generation: 1) *the*
 153 *(evaluation) task should be simple*, and 2) *results should be interpretable*. Therefore, we show
 154 participants only images, and omit the underlying image layouts entirely, which may take
 155 effort to understand. To make the results interpretable, participants rate these images for
 156 their *plausibility* and *variety* on a Likert scale (as recommended in Otani *et al.* [36]) from 1
 157 to 5. Image qualities that are assessed in other studies (for example, the overall quality and
 158 aesthetic appeal of the image in Liang *et al.* [27]) are highly dependent on the conditioned
 159 image generator. Therefore, we consider these misleading for our case.

160 The study is approved by the Ethics Review Board of our institution and complies with local
 161 wage regulations. To keep the cost of a survey below 250 USD, we survey 60 participants, who
 162 each assess four text-to-layout generation methods at once, each providing ten plausibility
 163 questions and ten variety ratings. To increase the stability of the results and test on a larger
 164 sample set, each rating is for a collection of three images from the same prompt. The subset
 165 of collections, as well as the order they are displayed to the participant, are randomized to
 166 control for any potential effects of a fixed ordering. An expanded explanation of our survey
 167 design, including the text instructions and screenshots of the survey, can be found in the
 168 supplemental material.

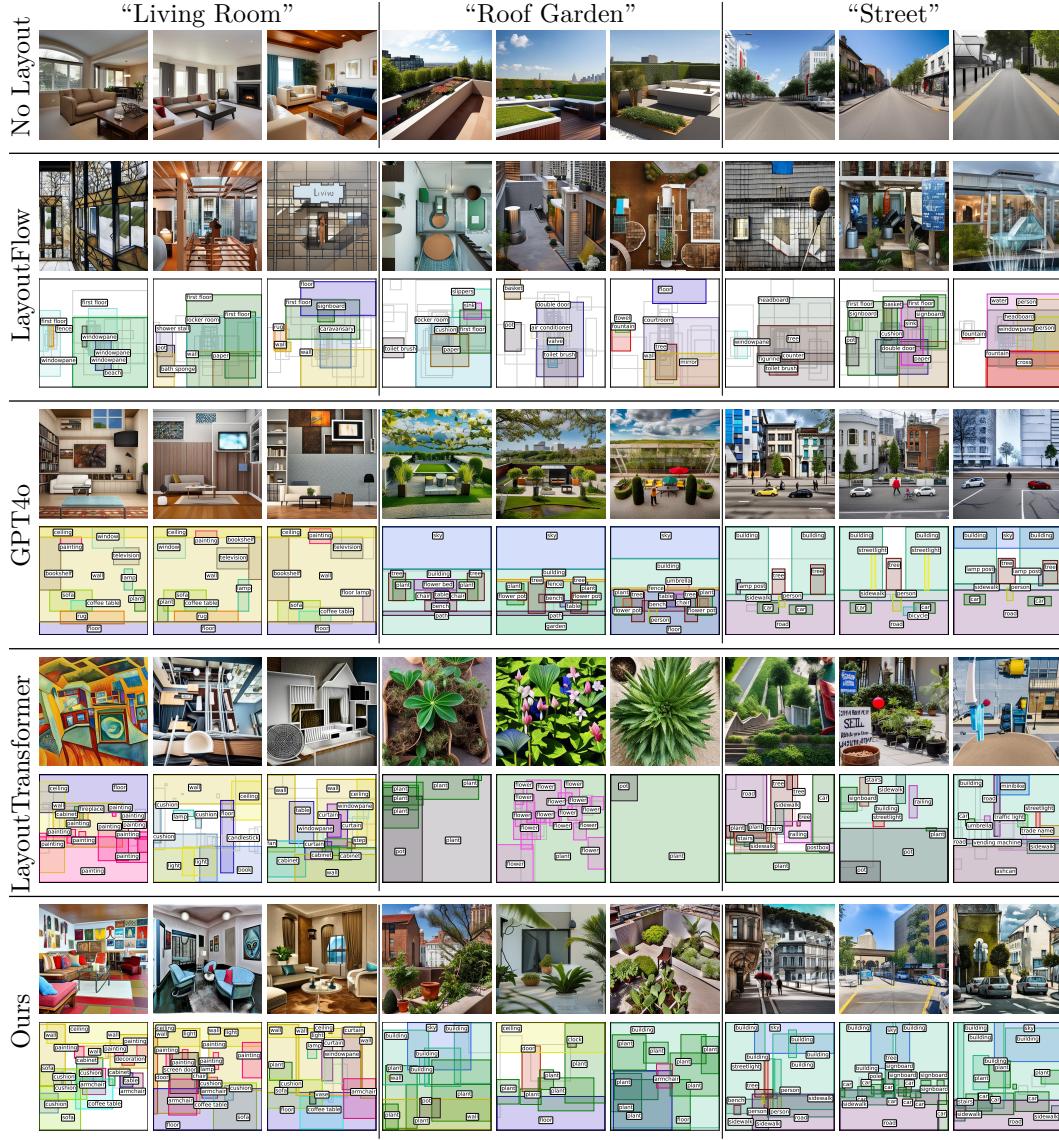


Figure 5: **Qualitative comparison** (Best viewed up close). Layout objects that are depicted in the generated image are highlighted and labeled. From a visual inspection, having no layout produces scenes of little variation in content. LayoutFlow’s layouts do not appear to capture scene structure. GPT4o’s layouts lack variety. Layout Transformer produces layouts with implausible arrangements of objects, leading to images which do not depict the global prompt accurately. Our method creates plausible and varied layouts, leading to images that are diverse and look realistic. These observations are supported by our human evaluation in fig. 4. Zoomed-in versions of these layouts for printing are available in the supplemental.

169 4 Experiments

170 **Dataset.** We test our method’s ability to learn a variety of plausible scene layouts by both
 171 training and evaluating on the full ADE20K dataset [65], which contains approximately 27K
 172 images and ground-truth layouts for indoor and outdoor scenes, and a rich collection of object
 173 arrangements. The sample captions reflect the scene category with no additional constraints
 174 (e.g., “beach”, “lecture room”). We use the top 30 largest bounding boxes per sample, as
 175 this is the default maximum number of bounding boxes supported by InstanceDiffusion
 176 [52] and we pad samples with fewer bounding boxes. For evaluation, we use the 15 highest

177 represented categories and add in five randomly selected categories to include the dataset’s
 178 long tail distribution. For each evaluated model, we generate 30 layouts for all 20 selected
 179 prompts, and an image conditioned on each layout and corresponding global prompt. The
 180 size of this collection of images makes it feasible to assess the results with human evaluation.

Model	CMMMD (↓)	FID (↓)	KID (10^{-2}) (↓)	HSPv2 (↑)	Image Reward (↑)	VQA (↑)
LayoutFlow	0.25	0.80	0.88	0.23	-1.01	0.80
LayoutDiffusion	0.40	1.08	1.99	0.19	-2.11	0.34
LayoutTransformer	<u>0.06</u>	<u>0.44</u>	0.30	0.23	-1.00	0.75
GPT4o	0.09	0.94	0.45	0.25	-0.51	0.88
Ranni	0.07	0.71	0.30	0.25	-0.34	0.90
LayoutGPT	0.29	2.83	1.76	0.25	-0.26	0.93
Ours	0.03	0.17	0.16	0.25	-0.32	0.88

Table 1: **Image Metrics Comparison.** We evaluate traditional metrics and compare the images generated from layouts of different layout generators. To avoid biases of the image generator, we show the best score among the layout-to-image generators InstanceDiffusion [52], GLIGEN [25], BoxDiff [56], and LMD+ [26] for each layout generator. Our method achieves strong or state-of-the-art numbers for measured metrics. Although their metrics are strong, Ranni and LayoutGPT are susceptible to degenerate solutions (see fig. 2)

181 **Baselines.** We compare our method against prior works which are capable of unconstrained
 182 layout generation. For LLM-baselines, we evaluate against LayoutGPT [7] and Ranni [8],
 183 but discard LLM-grounded Diffusion [26] and LLM Blueprint [9], as these give degenerate
 184 cases in 90%+ of measured cases in our domain (see fig. 2). To see if LLM performance
 185 can be improved with proper in-context examples, we adapt the template from [26] with
 186 relevant in-context-learning examples from ADE20K. For the underlying LLM, we select the
 187 large-scale LLM GPT4o [35], and refer to this baseline simply as GPT4o. The full template
 188 is in the supplement. We test against the UI generators LayoutTransformer [12], LayoutDM
 189 [16] and LayoutFlow [11] by treating the global caption as a scene-wide bounding box and
 190 conditioning the model on this bounding box during inference. When training models, we
 191 stuck to their respective provided training settings.

192 **Human Evaluation.** As shown in fig. 4, our model achieves a state-of-the-art balance in
 193 image plausibility and variety across all measured layout-to-image generators: InstanceDiffusion
 194 [52], GLIGEN [25], BoxDiff [56], and LMD+ [26]. The error bars indicate standard
 195 error ($s = \frac{\sigma}{\sqrt{n}}$) of the mean human rating, calculated using `numpy`. We assume normally
 196 distributed errors. display the approximate number of model parameters added to the full
 197 text-to-layout-to-image pipeline by the layout generators that can be locally run. Our model
 198 is the smallest by over a factor 3.

199 **Visual Results.** We provide a qualitative overview of the generated layouts and the final
 200 images in fig. 5, with InstanceDiffusion [52] as the layout-to-image model. We label bounding
 201 boxes by querying with all text labels present within ADE20K. From a visual inspection,
 202 LayoutTransformer struggles with arranging objects in spatially plausible manner. GPT4o
 203 layouts appear somewhat flat, while struggling to make a variety of layouts. Our method
 204 appears to produce both plausible and diverse images across a range of global prompts of
 205 indoor and outdoor settings.

206 **Generated Image Metrics.** We compute established image generation metrics CMMMD
 207 [17], FID [13], KID [3], VQA [29], HPSv2 [54], and ImageReward [58]. CMMMD, FID
 208 and KID compare the distribution of generated images with a ground-truth distribution,
 209 while VQA, HPSv2 and ImageReward assess general image quality and alignment with a
 210 global caption. Since the conditioned image generator may itself lead to biases in image
 211 generation quality, for CMMMD, FID, and KID, we establish the ground-truth images
 212 by running the layout-to-image generator on the ground-truth layouts. For each layout
 213 generator, we display the optimal score over the possible combinations of layout and image
 214 generator ([52, 25, 56, 26]). Images from degenerate layouts from Ranni and LayoutGPT
 215 are discarded to more clearly assess the layout’s influence. The results are shown in table 1,
 216 with state-of-the-art performance in CMMMD, FID, KID and HPSv2, and strong results in
 217 ImageReward and VQA.

218

219 **Scene Layout Metrics, and Speed.** We consider how to best assess scene layouts
 220 for unconstrained prompts. The traditional UI generation metrics of Alignment [22] and

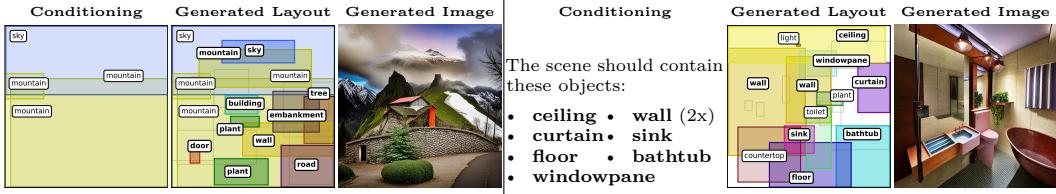


Figure 6: **Disentangled Generation.** Disentangled generation for scenes with the prompt *Snowy Mountain* with a partial layout (**Left**), and *Bathroom* with a *bag of words* (**Right**).

Overlap [24] scores are not salient, as real world images often have misaligned or overlapping bounding boxes. Likewise, the layout-FID [13] metric requires a layout-GAN discriminator to compute, which we do not have in this new domain. We compute a standard mIoU [20] averaged across sampled scene categories. To provide a more complete evaluation, we introduce metrics aimed to quantify a generated layout’s *plausibility* and *variety* that we describe in full in the supplementary material. We measure the model’s generation time on batches of 30 layout samples on an Nvidia A6000 GPU with 32 AMD Ryzen 9 5950X CPUs, 125 GB RAM, except for GPT4o that is accessed through an API. Numerical results are provided in the supplement. Notably, we achieve the highest performance in positional likelihood (how plausibly objects are arranged) and mIoU. Our method ranks second in speed only to LayoutFlow, but we observe no definitive improvement in its layout statistics when the number of inference steps are raised to match our model’s speed.

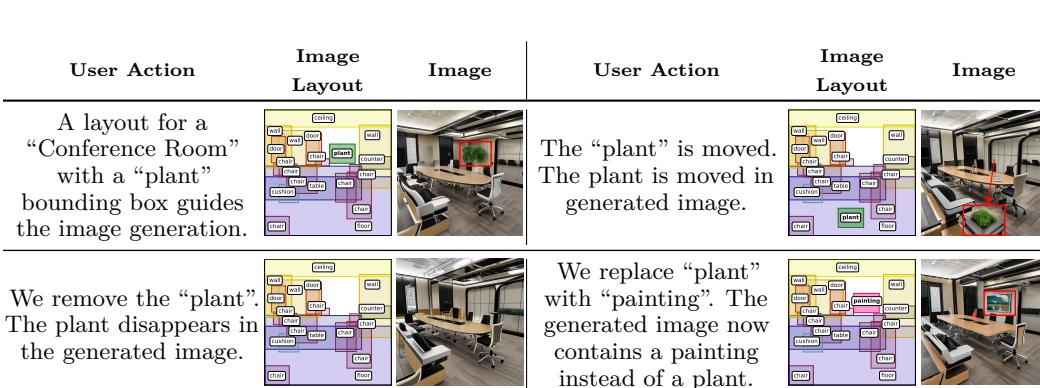


Figure 7: **Editing.** We show how our pipeline enables user editing of images by altering the intermediate scene layout representation. Individual objects can be easily moved, removed, and replaced.

Additional Model Features. We briefly highlight qualities of SLayR which make it appealing to use: In fig. 6, we show examples of our model’s performance in different partial layout generation settings. This feature gives users even more fine-grained control over the image generation process. Additionally, we demonstrate how a text-to-layout-to-image pipeline allows for editing of generated images in fig. 7. This is accomplished through modifying the intermediate scene layout, and rerunning layout-to-image generator with the original seed and global prompt.

5 Conclusion

We have introduced a text-to-layout model, incorporating it into a text-to-image pipeline with an intermediate and controllable layout representation. With a substantially smaller model, we can generate images with a start-of-the-art balance in plausibility and variety, while achieving high or state-of-the-art performance in generated image quality metrics among competing baselines. In addition, we have introduced a suite of metrics for the new task of scene layout generation, with which we established the foundation to explore image generation pipelines with explicit intermediate layouts in the future.

249 **References**

250 [1] Rio Aguina-Kang, Maxim Gumin, Do Heon Han, Stewart Morris, Seung Jean Yoo, Aditya
251 Ganeshan, R. Kenny Jones, QiuHong Anna Wei, Kailiang Fu, and Daniel Ritchie. Open-universe
252 indoor scene generation using llm program synthesis and uncurated object databases, 2024.

253 [2] Omer Bar-Tal, Lior Yariv, Yaron Lipman, and Tali Dekel. Multidiffusion: Fusing diffusion
254 paths for controlled image generation, 2023.

255 [3] Mikołaj Bińkowski, Danica J. Sutherland, Michael Arbel, and Arthur Gretton. Demystifying
256 mmd gans, 2021.

257 [4] Shang Chai, Liansheng Zhuang, and Fengying Yan. Layoutdm: Transformer-based diffusion
258 model for layout generation, 2023.

259 [5] Minghao Chen, Iro Laina, and Andrea Vedaldi. Training-free layout control with cross-attention
260 guidance, 2023.

261 [6] Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini,
262 Yam Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, Dustin Podell, Tim Dockhorn, Zion
263 English, Kyle Lacey, Alex Goodwin, Yannik Marek, and Robin Rombach. Scaling rectified flow
264 transformers for high-resolution image synthesis, 2024.

265 [7] Weixi Feng, Wanrong Zhu, Tsu jui Fu, Varun Jampani, Arjun Akula, Xuehai He, Sugato Basu,
266 Xin Eric Wang, and William Yang Wang. Layoutgpt: Compositional visual planning and
267 generation with large language models, 2023.

268 [8] Yutong Feng, Biao Gong, Di Chen, Yujun Shen, Yu Liu, and Jingren Zhou. Ranni: Taming
269 text-to-image diffusion for accurate instruction following, 2024.

270 [9] Hanan Gani, Shariq Farooq Bhat, Muzammal Naseer, Salman Khan, and Peter Wonka. Llm
271 blueprint: Enabling text-to-image generation with complex and detailed prompts, 2024.

272 [10] Gege Gao, Weiyang Liu, Anpei Chen, Andreas Geiger, and Bernhard Schölkopf. Graphdreamer:
273 Compositional 3d scene synthesis from scene graphs, 2024.

274 [11] Julian Jorge Andrade Guerreiro, Naoto Inoue, Kento Masui, Mayu Otani, and Hideki Nakayama.
275 Layoutflow: Flow matching for layout generation, 2024.

276 [12] Kamal Gupta, Justin Lazarow, Alessandro Achille, Larry Davis, Vijay Mahadevan, and Abhinav
277 Shrivastava. Layouttransformer: Layout generation and completion with self-attention, 2021.

278 [13] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
279 Gans trained by a two time-scale update rule converge to a local nash equilibrium, 2018.

280 [14] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models, 2020.

281 [15] Drew A. Hudson, Daniel Zoran, Mateusz Malinowski, Andrew K. Lampinen, Andrew Jaegle,
282 James L. McClelland, Loic Matthey, Felix Hill, and Alexander Lerchner. Soda: Bottleneck
283 diffusion models for representation learning, 2023.

284 [16] Naoto Inoue, Kotaro Kikuchi, Edgar Simo-Serra, Mayu Otani, and Kota Yamaguchi. Layoutdm:
285 Discrete diffusion model for controllable layout generation, 2023.

286 [17] Sadeep Jayasumana, Srikumar Ramalingam, Andreas Veit, Daniel Glasner, Ayan Chakrabarti,
287 and Sanjiv Kumar. Rethinking fid: Towards a better evaluation metric for image generation,
288 2024.

289 [18] Zhaoyun Jiang, Jiaqi Guo, Shizhao Sun, Huayu Deng, Zhongkai Wu, Vuksan Mijovic, Zi-
290 jiang James Yang, Jian-Guang Lou, and Dongmei Zhang. Layoutformer++: Conditional
291 graphic layout generation via constraint serialization and decoding space restriction. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages
292 18403–18412, 2023.

294 [19] Justin Kerr, Chung Min Kim, Ken Goldberg, Angjoo Kanazawa, and Matthew Tancik. Lerf:
295 Language embedded radiance fields, 2023.

296 [20] Kotaro Kikuchi, Edgar Simo-Serra, Mayu Otani, and Kota Yamaguchi. Constrained graphic
297 layout generation via latent optimization. In *Proceedings of the 29th ACM International
298 Conference on Multimedia*, page 88–96. ACM, 2021.

299 [21] Mingi Kwon, Jaeseok Jeong, and Youngjung Uh. Diffusion models already have a semantic
300 latent space, 2023.

301 [22] Hsin-Ying Lee, Lu Jiang, Irfan Essa, Phuong B Le, Haifeng Gong, Ming-Hsuan Yang, and
302 Weilong Yang. Neural design network: Graphic layout generation with constraints, 2020.

303 [23] Elad Levi, Eli Brosh, Mykola Mykhailych, and Meir Perez. Dlt: Conditioned layout generation
304 with joint discrete-continuous diffusion layout transformer, 2023.

305 [24] Jianan Li, Jimei Yang, Aaron Hertzmann, Jianming Zhang, and Tingfa Xu. Layoutgan:
306 Generating graphic layouts with wireframe discriminators, 2019.

307 [25] Yuheng Li, Haotian Liu, Qingyang Wu, Fangzhou Mu, Jianwei Yang, Jianfeng Gao, Chunyuan
308 Li, and Yong Jae Lee. Gligen: Open-set grounded text-to-image generation, 2023.

309 [26] Long Lian, Boyi Li, Adam Yala, and Trevor Darrell. Llm-grounded diffusion: Enhancing
310 prompt understanding of text-to-image diffusion models with large language models, 2024.

311 [27] Youwei Liang, Junfeng He, Gang Li, Peizhao Li, Arseniy Klimovskiy, Nicholas Carolan, Jiao
312 Sun, Jordi Pont-Tuset, Sarah Young, Feng Yang, Junjie Ke, Krishnamurthy Dj Dvijotham,
313 Katie Collins, Yiwen Luo, Yang Li, Kai J Kohlhoff, Deepak Ramachandran, and Vidhya
314 Navalpakkam. Rich human feedback for text-to-image generation, 2024.

315 [28] Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross Girshick, James Hays,
316 Pietro Perona, Deva Ramanan, C. Lawrence Zitnick, and Piotr Dollár. Microsoft coco: Common
317 objects in context, 2015.

318 [29] Zhiqiu Lin, Deepak Pathak, Baiqi Li, Jiayao Li, Xide Xia, Graham Neubig, Pengchuan Zhang,
319 and Deva Ramanan. Evaluating text-to-visual generation with image-to-text generation, 2024.

320 [30] Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate
321 and transfer data with rectified flow, 2022.

322 [31] Xingchao Liu, Xiwen Zhang, Jianzhu Ma, Jian Peng, and Qiang Liu. Instaflow: One step is
323 enough for high-quality diffusion-based text-to-image generation, 2024.

324 [32] Andreas Lugmayr, Martin Danelljan, Andres Romero, Fisher Yu, Radu Timofte, and Luc Van
325 Gool. Repaint: Inpainting using denoising diffusion probabilistic models, 2022.

326 [33] Grace Luo, Trevor Darrell, Oliver Wang, Dan B Goldman, and Aleksander Holynski. Readout
327 guidance: Learning control from diffusion features, 2024.

328 [34] Rameshwar Mishra and A V Subramanyam. Image synthesis with graph conditioning: Clip-
329 guided diffusion models for scene graphs, 2024.

330 [35] OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, et al. Gpt-4 technical report, 2024.

331 [36] Mayu Otani, Riku Togashi, Yu Sawai, Ryosuke Ishigami, Yuta Nakashima, Esa Rahtu, Janne
332 Heikkilä, and Shin'ichi Satoh. Toward verifiable and reproducible human evaluation for text-to-
333 image generation, 2023.

334 [37] Yong-Hyun Park, Mingi Kwon, Jaewoong Choi, Junghyo Jo, and Youngjung Uh. Understanding
335 the latent space of diffusion models through the lens of riemannian geometry, 2023.

336 [38] William Peebles and Saining Xie. Scalable diffusion models with transformers, 2023.

337 [39] Minghan Qin, Wanhua Li, Jiawei Zhou, Haoqian Wang, and Hanspeter Pfister. Langsplat: 3d
338 language gaussian splatting, 2024.

339 [40] Qualtrics. Qualtrics xm platform, 2024. Computer software.

340 [41] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
341 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya
342 Sutskever. Learning transferable visual models from natural language supervision, 2021.

343 [42] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark
344 Chen, and Ilya Sutskever. Zero-shot text-to-image generation, 2021.

345 [43] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer.
346 High-resolution image synthesis with latent diffusion models, 2022.

347 [44] Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily Denton, Seyed
 348 Kamyar Seyed Ghasemipour, Burcu Karagol Ayan, S. Sara Mahdavi, Rapha Gontijo Lopes, Tim
 349 Salimans, Jonathan Ho, David J Fleet, and Mohammad Norouzi. Photorealistic text-to-image
 350 diffusion models with deep language understanding, 2022.

351 [45] Axel Sauer, Frederic Boesel, Tim Dockhorn, Andreas Blattmann, Patrick Esser, and Robin
 352 Rombach. Fast high-resolution image synthesis with latent adversarial diffusion distillation,
 353 2024.

354 [46] Philipp Schröppel, Christopher Wewer, Jan Eric Lenssen, Eddy Ilg, and Thomas Brox. Neural
 355 point cloud diffusion for disentangled 3d shape and appearance generation, 2024.

356 [47] Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross Wightman,
 357 Mehdi Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, Patrick
 358 Schramowski, Srivatsa Kundurthy, Katherine Crowson, Ludwig Schmidt, Robert Kaczmarczyk,
 359 and Jenia Jitsev. Laion-5b: An open large-scale dataset for training next generation image-text
 360 models, 2022.

361 [48] Guibao Shen, Luozhou Wang, Jiantao Lin, Wenhong Ge, Chaozhe Zhang, Xin Tao, Yuan Zhang,
 362 Pengfei Wan, Zhongyuan Wang, Guangyong Chen, Yijun Li, and Ying-Cong Chen. Sg-adapter:
 363 Enhancing text-to-image generation with scene graph guidance, 2024.

364 [49] Jascha Sohl-Dickstein, Eric A. Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep
 365 unsupervised learning using nonequilibrium thermodynamics, 2015.

366 [50] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models, 2022.

367 [51] Tristan Sylvain, Pengchuan Zhang, Y. Bengio, R Devon Hjelm, and Shikhar Sharma. Object-
 368 centric image generation from layouts, 2020.

369 [52] Xudong Wang, Trevor Darrell, Sai Saketh Rambhatla, Rohit Girdhar, and Ishan Misra. In-
 370 stancediffusion: Instance-level control for image generation, 2024.

371 [53] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi,
 372 Quoc Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language
 373 models, 2023.

374 [54] Xiaoshi Wu, Yiming Hao, Keqiang Sun, Yixiong Chen, Feng Zhu, Rui Zhao, and Hongsheng
 375 Li. Human preference score v2: A solid benchmark for evaluating human preferences of
 376 text-to-image synthesis, 2023.

377 [55] Yang Wu, Pengxu Wei, and Liang Lin. Scene graph to image synthesis via knowledge consensus.
 378 *Proceedings of the AAAI Conference on Artificial Intelligence*, 37(3):2856–2865, 2023.

379 [56] Jinheng Xie, Yuexiang Li, Yawen Huang, Haozhe Liu, Wentian Zhang, Yefeng Zheng, and
 380 Mike Zheng Shou. Boxdiff: Text-to-image synthesis with training-free box-constrained diffusion,
 381 2023.

382 [57] Zhexiao Xiong, Wei Xiong, Jing Shi, He Zhang, Yizhi Song, and Nathan Jacobs. Grounding-
 383 booth: Grounding text-to-image customization, 2024.

384 [58] Jiazheng Xu, Xiao Liu, Yuchen Wu, Yuxuan Tong, Qinkai Li, Ming Ding, Jie Tang, and Yuxiao
 385 Dong. Imagereward: Learning and evaluating human preferences for text-to-image generation,
 386 2023.

387 [59] Zhengyuan Yang, Jianfeng Wang, Zhe Gan, Linjie Li, Kevin Lin, Chenfei Wu, Nan Duan,
 388 Zicheng Liu, Ce Liu, Michael Zeng, and Lijuan Wang. Reco: Region-controlled text-to-image
 389 generation, 2022.

390 [60] Xuening Yuan, Hongyu Yang, Yueming Zhao, and Di Huang. Dreamscape: 3d scene creation
 391 via gaussian splatting joint correlation modeling, 2024.

392 [61] Chenshuang Zhang, Chaoning Zhang, Mengchun Zhang, and In So Kweon. Text-to-image
 393 diffusion models in generative ai: A survey, 2023.

394 [62] Junyi Zhang, Jiaqi Guo, Shizhao Sun, Jian-Guang Lou, and Dongmei Zhang. Layoutdiffusion:
 395 Improving graphic layout generation by discrete diffusion probabilistic models, 2023.

396 [63] Lvmmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image
397 diffusion models, 2023.

398 [64] Bo Zhao, Lili Meng, Weidong Yin, and Leonid Sigal. Image generation from layout, 2019.

399 [65] Bolei Zhou, Hang Zhao, Xavier Puig, Tete Xiao, Sanja Fidler, Adela Barriuso, and Antonio
400 Torralba. Semantic understanding of scenes through the ade20k dataset, 2018.

401 [66] Xiaoyu Zhou, Xingjian Ran, Yajiao Xiong, Jinlin He, Zhiwei Lin, Yongtao Wang, Deqing Sun,
402 and Ming-Hsuan Yang. Gala3d: Towards text-to-3d complex scene generation via layout-guided
403 generative gaussian splatting, 2024.

404 [67] Başak Melis Öcal, Maxim Tatarchenko, Sezer Karaoglu, and Theo Gevers. Sceneteller: Language-
405 to-3d scene generation, 2024.

406 **Supplementary Material**

407 The supplementary material is structured as follows. First, we present the full details
408 of the human evaluation study performed to judge the generation quality in appendix A.
409 Next, we introduce details about our partial conditioning procedure in appendix B. We
410 provide the formulae and reasoning for our novel layout metrics in appendix C. We further
411 provide detailed information about training data and hyperparameters in appendix D,
412 provide access to our source code in appendix E discuss limitations in appendix F, broader
413 impacts in appendix G, safe guards in appendix H, licenses in appendix I, discussions about
414 LayoutTransformer and GPT4o temperatures in appendix J and appendix K, respectively,
415 and the GPT4o query template in appendix L. In appendix O, we compare editing generated
416 images in a text-to-layout-to-image pipeline against a drag-editing method. In appendix P,
417 we analyze the distribution of token opacities that our model produces to justify $\alpha_i^j(1) < 0.5$
418 as our token discarding threshold. Last, we provide a comparison between rectified flow and
419 DDIM in appendix M and high-resolution results in appendix N and appendix Q.

420 At the end, we supply the checklist (Jump to appendix Q)

421 **A Human Evaluation Details**

422 **Study Goal.** Although our method achieves optimal performance in table 1, we aim to
423 confirm that these metrics, which were designed for measuring the quality of text-to-image
424 models, are applicable to text-to-layout-to-image models. We also want to control for the
425 effect which the layout-to-image model could have on the final quality, and assess how
426 effective the underlying layouts are in the image generation process. To this end, we provide
427 a human-evaluation study that can be repeated by others.

428 In general, we want a text-to-layout model to generate layouts that appear plausible and
429 are also of a large variety. However, assessing human opinions for these criteria directly on
430 layouts is challenging: the evaluators require time to understand the layout diagrams and
431 explain them, and furthermore, assessments are hard to make without actually seeing the
432 image. To make the study effective, we measure the effect of our model on the downstream
433 generated images. Image qualities that are assessed in other studies (for example, the overall
434 quality and aesthetic appeal of the image in Liang *et al.* [27]) are highly dependent on
435 the conditioned image generator. Therefore, we consider these misleading for our case and
436 introduce a suitable study in the following.

437 **Design Principles.** We follow the design principles presented by Otani *et al.* [36]
438 in their work on human evaluation of text-to-image generation: 1) *the (evaluation) task*
439 *should be simple*, and 2) *results should be interpretable*. Following these principles, we show
440 participants only images, and omit the underlying image layouts entirely, which may take
441 some effort to understand. To make the results interpretable, participants rate these images
442 for their plausibility and variety on a Likert scale (as specifically recommended in Otani *et al.*
443 [36]) from 1 to 5. This way, average ratings for different layout generation models can
444 be meaningfully compared to each other, which would be more difficult in other systems (e.g.
445 using non-numbered ranking). To ensure cost efficiency, our survey must be small enough
446 that the data can be collected quickly and repeatedly throughout the model development,
447 and thus we show participants collections of images rather than singletons. We kept all of
448 these constraints in mind when designing our study, which is explained in further detail
449 below.

450 **Study Description.** Our study was developed using Qualtrics [40], a standard survey
451 platform. Each participant answers ten plausibility questions and ten variety questions,
452 meaning they rate 80 image collections in total. Each collection contains three images. We
453 survey 60 participants. The prompts, image collection index, and the order in which the
454 collections are displayed to participants is randomized to control for any potential effects of
455 a fixed ordering.

456 Survey data is selected as described in section 4. As shown in fig. 9, each survey question
457 shows collections of three images from each of the four methods listed above, where every
458 image on the screen has the same global prompt. Given the instructions from fig. 8, the

459 participant must rate each collection for either their plausibility or variety. Ratings are on
460 a Likert scale (1 to 5, where 1 corresponds to very implausible/very low variance, and 5
461 corresponds to very plausible/very high variance). For plausibility, we instructed participants
462 to consider the overall realism of the collection, as well as how effectively it depicts the global
463 text prompt. For variety, we instructed users to consider the spatial arrangement of objects
464 in an image and implied camera angle in addition to overall image appearance.

465 **Participant Selection and Ethics.** Participants were recruited through Connect
466 CloudResearch, a crowdsourcing service built on Amazon Mechanical Turk that imple-
467 ments rigorous quality control procedures to enhance the reliability of the participant pool
468 in line with the study recommendations given by Otani *et al.* [36]. The study was approved
469 by the Ethics Review Board of our institution, ensuring compliance with ethical standards.
470 Prior to engaging in the tasks, all participants were informed about the content of the survey,
471 and then provided their informed consent. We did not see any risks that could be incurred
472 by participation in the survey, and therefore had no risks to disclose. The study was designed
473 to be completed within 15 minutes by each participant, who were compensated at an hourly
474 rate of 13.02 USD, complying with local wage regulations. This results in a total cost of 245
475 USD per run to assess four text-to-layout generation methods at once. Participants were
476 anonymized, and we did not collect any personally-identifiable information.

Section 1: Plausibility

“For the following section of the survey, you will be asked to rate collections of images based on how **plausible** they appear to be, from **very implausible** to **very plausible**. An image is considered plausible if objects within the image are **realistically and organically** placed, and it is a **reasonable match to the presented caption**. The images do not have to be photorealistic to be considered plausible. You will perform ratings on 10 categories of images, and each page will contain 4 collections that you must rate separately.”

Section 2: Variety

“For the following section of the survey, you will be asked to rate collections of images based on their perceived **variance**, from **very low variance** to **very high variance**. When judging the variance, consider criteria such as the differences in the **spatial arrangement** of objects, the differences in **camera perspective**, and the differences in the **overall image appearance** across the collection. You will perform ratings on 10 categories of images, and each page will contain 4 collections that you must rate separately.”

Figure 8: Full instructions to participants for both sections of the survey. Our instructions clearly define the task and give users detailed information on what to assess

477 B Implementation of Partial Conditioning

478 We explain our adaptation of the RePaint [32] technique mentioned in section 3, which
479 was used for the partial layout conditioning examples in fig. 6. An overview is presented in
480 algorithm 1. At every timestep, the intermediate sample $\mathbf{x}_i(t)$ is first updated with the rate
481 of change provided by our model (v). Then the sample is slightly adjusted to conform to a
482 path which will yield the values of the partial conditioning layout \mathbf{y}_i at non-null entries after
483 inference.

484 Some additional algorithm notation: The partial layout representation $\mathbf{y}_i = \{\mathbf{y}_i^j\}_{j \in J}$ is
485 defined like the layout representation in section 3 extended by null values \emptyset , a placeholder
486 value for entries of \mathbf{y}_i tokens where no conditioning is provided. To give an example, consider
487 a partial conditioning layout where the token \mathbf{y}_i^j enforces that a bounding box with the
488 label *chair* must be present in the final layout, but can have any coordinates. We set
489 $\mathbf{b}_i^j = (\emptyset, \emptyset, \emptyset, \emptyset)$, \mathbf{c}_i^j to be the PCA-reduced CLIP embedding of the word *chair* and $\alpha_i^j = 1$,

Figure 9: An example question page from our survey. Users must rate collections of 3 images from very implausible to very plausible. The underlying layout generators for the collections shown are (from top to bottom): No Layout, GPT4o, LayoutTransformer, and our method. Collection order was randomized for each question presented to the participant. Users click the button to select their rating.

490 and write:

$$\mathbf{y}_i^j = (\mathbf{b}_i^j \parallel \mathbf{c}_i^j \parallel \alpha_i^j). \quad (7)$$

491 The mask variable M on line 5 of our algorithm tracks which values of \mathbf{y}_i are null-values,
 492 and masks these values out during the update on line 12. To perform this masking, we define
 493 the arithmetic on \emptyset as follows:

$$\begin{aligned}\emptyset + a &= \emptyset \text{ for } a \in \mathbb{R}, \\ \emptyset * a &= \emptyset \text{ for } a \in \mathbb{R} - \{0\}, \\ \emptyset * 0 &= 0.\end{aligned}\tag{8}$$

494 We construct the drift vector \mathbf{d}_i which encodes the directional constraints. We begin by
 495 initializing \mathbf{d}_i to 0 in all entries. Then, we add constraints. For example, if there is a
 496 constraint that bounding box j must be left of bounding box j' , then

$$\mathbf{d}_i^j \leftarrow \mathbf{d}_i^j + (\lambda, 0, 0, 0 \parallel 0 \parallel 0), \quad (9)$$

$$\mathbf{d}_i^{j'} \leftarrow \mathbf{d}_i^{j'} + (-\lambda, 0, 0, 0 \parallel 0 \parallel 0), \quad (10)$$

498 where λ is a small constant.

499 In the special case when no conditioning is provided or directional constraints are provided
500 ($\mathbf{y}_i \equiv \emptyset, \mathbf{d}_i = 0$), this algorithm is identical to the rectified flow inference presented in
501 section 3 of our main paper.

Algorithm 1 Partially Conditioned Layout Generation

```

1: conditionedInference(  $P_i$  ,  $\mathbf{y}_i$  ,  $\mathbf{d}_i$  ):
2:  $T \leftarrow 1200$ 
3:  $\Delta t \leftarrow 1/T$ 
4:  $t \leftarrow 0$ 
5:  $M \leftarrow 0$  where  $\mathbf{y}_i = \emptyset$  otherwise 1 //Create a binary mask for the conditioning layout
6:  $\mathbf{x}_i(0) \sim \mathcal{N}(0, I)$  //Sample the starting noise
7: while  $t < 1$  do
8:    $\frac{d\mathbf{x}_i(t)}{dt} \leftarrow v(\mathbf{x}_i(t), t, P_i)$  //Calculate the rate of change of  $\mathbf{x}_i(t)$  at timestep t
9:    $t \leftarrow t + \Delta t$  //Update timestep t
10:   $\mathbf{x}_i(t) \leftarrow \mathbf{x}_i(t - \Delta t) + \frac{d\mathbf{x}_i(t - \Delta t)}{dt} \cdot \Delta t$  //Calculate  $\mathbf{x}_i(t)$  for the next timestep
11:   $\mathbf{y}_i(t) \leftarrow \mathbf{y}_i \cdot t + \mathbf{x}_i(0) \cdot (1 - t)$  //Calculate conditioning update  $\mathbf{y}_i(t)$ 
12:   $\mathbf{x}_i(t) \leftarrow \mathbf{y}_i(t) \odot M + \mathbf{x}_i(t) \odot (1 - M)$  //Update  $\mathbf{x}_i(t)$  with conditioning in masked area
13:   $\mathbf{x}_i(t) \leftarrow \mathbf{x}_i(t) + \mathbf{d}_i$  //Apply drift for all given directional constraints
14: end while
15: Return  $\mathbf{x}_i(1)$ 

```

502 **C Generated Layout Metrics**

503 In the following, we introduce four metrics to assess the generated scenes layouts' plausibility
504 and variety, and display their results alongside the models' generation times.

505 **Object Numeracy.** Our metric O_{Num} assesses whether generated layouts contain the
506 objects at the expected frequencies. We sample across a collection of global prompts ($\{P_i\}$).
507 The probability distribution for expected occurrences of the object-label ℓ in layouts generated
508 from the global prompt P_i is written q_i^ℓ , and the probability distribution derived from ground-
509 truth layouts is p_i^ℓ . Our metric is the normalized sum of KL-divergence between these two
510 distributions:

$$O_{\text{Num}} := \frac{\sum_{i,\ell} KL(p_i^\ell || q_i^\ell)}{|\{P_i\}|} \quad (11)$$

511 where lower scores indicate that the model produces layouts with more plausible object
512 numeracy. For display purposes, O_{Num} is scaled by 10^2 in table 2

513 **Positional Likelihoods.** We introduce $l_{\text{Pos}}^{(1)}$ and $l_{\text{Pos}}^{(2)}$ to measure how plausible the objects
514 in a generated layout are arranged. Let m index all bounding boxes of object-label ℓ for
515 prompt i . For each object-label ℓ , we obtain a distribution k_i^ℓ with KDE of the object's
516 bounding box $(\mathbf{b}_i^\ell)_m$ in all layouts with global prompt i . We compute the average likelihood
517 over all objects and all global prompts, to measure the *first-order positional likelihood*:

$$l_{\text{Pos}}^{(1)} = \frac{\sum_{i,\ell,m} k_i^\ell((\mathbf{b}_i^\ell)_m)}{|\{(\mathbf{b}_i^\ell)_m\}|}. \quad (12)$$

518 A higher value for $l_{\text{Pos}}^{(1)}$ means that object bounding boxes are placed in reasonable locations
519 in the layout.

520 We also want to measure the likelihood of spatial relationships between objects. Let m^*
521 index all bounding boxes of object-label ℓ' . For each object-label pair (ℓ, ℓ') , we obtain a
522 distribution estimated with KDE $k_i^{\ell,\ell'}$ for the difference in the bounding box dimensions. We
523 compute the average likelihood over all objects and all global prompts from our distributions
524 to measure the *second order positional likelihood*:

$$l_{\text{Pos}}^{(2)} = \frac{\sum_{i,\ell \neq \ell', m, m^*} k_i^{\ell,\ell'}((\mathbf{b}_i^\ell)_m - (\mathbf{b}_i^{\ell'})_{m^*})}{|\{(\mathbf{b}_i^\ell)_m\}|(|\{(\mathbf{b}_i^\ell)_m\}| + 1)/2}. \quad (13)$$

Model	Object Numeracy (↓)	Positional Variance (↑)	1st Order Positional Likelihood (↑)	2nd Order Positional Likelihood (↑)	mIoU (↑)	Time (s) (↓)
Ranni	3.83	218	2.10	0.56	0.04	214
LayoutGPT	3.76	134	3.18	0.81	0.06	81
GPT4o	3.71	93	4.17	1.42	0.10	111.0
LayoutDM	2.12	65	1.47	0.71	0.00	138.0
LayoutFlow	3.01	142	1.48	0.72	0.01	0.5
LayoutFlow (More steps)	2.96	143	1.44	0.65	0.01	15.5
LayoutTransformer	0.90	231	3.09	1.21	0.15	25.0
Ours	1.14	187	4.76	1.93	0.17	15.5

Table 2: **Layout Metrics, and Inference Speed.** A comparison of our metrics introduced in section 4. Our method achieves the best on mIoU, 1st and 2nd Order Positional Likelihood, while LayoutTransformer is highest Object Numeracy and Positional Variance. Closer inspections in table 1, fig. 4 reveal that LayoutTransformer falls short in terms of plausibility and image quality, indicating that it generates a large variety with plausible objects but physically implausible layouts.

525 A higher value for $l_{\text{Pos}}^{(2)}$ means that pairs of objects are plausibly positioned relative to one
 526 another. We conduct a grid search across bandwidths with 5-fold cross validation to optimize
 527 the KDE bandwidths for both $l_{\text{Pos}}^{(1)}$ and $l_{\text{Pos}}^{(2)}$.

528 **Positional Variance.** Our metric σ_{Pos}^2 measures the variety of bounding boxes. For
 529 every bounding box $(\mathbf{b}_i^\ell)_m$, we find the bounding box in layouts with global prompt i and
 530 object label ℓ that is closest in Euclidean distance to the bounding box. We now redefine
 531 $\{m^*\}$ as the set of indices of bounding boxes in other samples which minimize the term
 532 $\|(\mathbf{b}_i^\ell)_m - (\mathbf{b}_i^{\ell'})_{m^*}\|$. We compute all of these Euclidean distances and take the average:

$$\sigma_{\text{Pos}}^2 = \frac{\sum_{i,\ell,m} \sum_{\{m^*\}} \|(\mathbf{b}_i^\ell)_m - (\mathbf{b}_i^{\ell'})_{m^*}\|}{\sum_{i,\ell,m} |\{m^*\}|} \quad (14)$$

533 If this metric is small, it means that the variance is low.

534 We provide results in table 2. We achieve the highest performance in positional likelihood
 535 scores and mIoU. While LayoutTransformer outperforms our model on *object numeracy* and
 536 *positional variance*, we observe that the layouts lack spatial plausibility (first and second
 537 order positional likelihood in table 2). This is also reflected in fig. 5: for example, the floor
 538 in the leftmost example appears at the top and the ashcan on the rightmost example is
 539 significantly too large. Our method ranks second in speed only to LayoutFlow, but we
 540 observe no definitive improvement in its layout statistics when the number of inference steps
 541 are raised to match our model’s speed.

542

543 D Training Data and Hyperparameters

544 Our model consists of 20 AdaLN transformer blocks with 12-headed attention. For a
 545 token \mathbf{x}^j , we sinusoidally encode \mathbf{b}^j into \mathbb{R}^{72} , and α^j into \mathbb{R}^{18} . \mathbf{c}^j consists of the 30 top
 546 principal components of the object-label’s CLIP embedding, which accounts for 77.35% of
 547 the explainable variance of our embeddings found in our training data. The timestep t
 548 is sinusoidally encoded into \mathbb{R}^9 , while the CLIP embedding of a global prompt ℓ is down-
 549 projected by a trainable linear layer into \mathbb{R}^{17} before interfacing with the AdaLN block.

550 When reporting model parameters, we include all transformer block weights and attached
 551 linear layers, including the PCA projection matrices. Given that CLIP dominates the number
 552 of parameters, it is a necessary subcomponent for InstanceDiffusion, and needed to form any
 553 complete text-to-image pipeline, we factor it out.

554 We train our model for 2000 epochs using stochastic gradient descent with learning rate
 555 $\lambda = 0.0005$ and a batch size of 32, using the Adam optimizer. We train on a Nvidia A100 GPU
 556 with 16 Intel Xeon Platinum Prozessor 8360Y CPUs with 244 GB RAM for approximately
 557 20 hours. Baselines were trained according to their original training regimes on these same
 558 resources.

559 Due to limited compute, we did not have the resources to ablate these hyperparameters,
 560 and chose them as they yielded stable training and computational efficiency. In future work,

561 we hope to do so. Additionally, we evaluate on the full split of ADE20K, as splitting into
562 evaluation, and then further splitting up into scene categories needed for evaluation, would
563 leave very few samples left, causing concerns about stability. In future work, we hope to
564 address this issue by scaling to larger datasets.

565 **E Data and Code Access**

566 We provide the code to our method, baselines, evaluations, and model weights at <https://huggingface.co/AnonymousSubmission42/SLayR>. Please download and unzip all files,
567 and begin with the README.md in SLayr.zip.

569 **F Limitations**

570 One limitation of our work is that we do not currently scale up to large scale datasets such
571 as MSCOCO [28] or LAION 5B [47] after it is passed through a layout annotation pipeline
572 as in [52]. We did not scale up due both to lack of sufficient compute resources, and because
573 our UI generation baselines CANNOT scale to an open set of captions. Therefore, to study
574 the largest possible range of models, we focus primarily on this smaller dataset. For future
575 work, we would like to investigate how the model scales up.

576 Another limitation is that SLayR does not directly produce text, rather a CLIP embedding
577 which must then be mapped to text. However, this is standard practice in other vision
578 fields such as 3D language fields ([19, 39]). In future work, we hope to experiment with text
579 decoders to directly produce text.

580 As mentioned in appendix D, we did not have enough compute to conduct desired ablations
581 on our hyperparameters. In future work, we hope to optimize the hyperparameter search
582 space.

583 **G Broader Impacts**

584 We acknowledge that research towards text-to-image generative AI can be misused for the
585 purposes of deep fakes or plagiarism of artistic content.

586 **H Safeguards**

587 We have trained our model exclusively on publicly available and curated datasets to mitigate
588 the risk of generating inappropriate content.

589 In our code README, we also implore users to refrain from using our model for deep fake
590 generation.

591 **I Licenses**

592 Models:

593

- 594 • LayoutTransformer [12]: <https://github.com/kampta/DeepLayout>, Apache 2.0
595 <https://www.apache.org/licenses/LICENSE-2.0>
- 596 • LayoutFlow [11]: <https://github.com/JulianGuerreiro/LayoutFlow>, MIT
597 <https://opensource.org/license/mit>
- 598 • LayoutDM [16]: <https://github.com/CyberAgentAILab/layout-dm> Apache 2.0
599 <https://www.apache.org/licenses/LICENSE-2.0>
- 600 • Ranni [8]: <https://github.com/ali-vilab/Ranni>, Apache 2.0 <https://www.apache.org/licenses/LICENSE-2.0>

- LLM-Blueprint [9], <https://github.com/hananshafi/llmblueprint>, no license could be found, however use of the repo, with proper citation, is encouraged in README.md.
- LayoutGPT [7]: <https://github.com/weixi-feng/LayoutGPT>, MIT <https://opensource.org/license/mit>
- LLM-GroundedDiffusion [26]: <https://github.com/TonyLianLong/LLM-groundedDiffusion>, no license could be found, however use of the repo, with proper citation, is encouraged in README.md.

610 Metrics:

- CMMMD [17]: <https://github.com/sayakpaul/cmmmd-pytorch>, Apache 2.0 <https://www.apache.org/licenses/LICENSE-2.0>
- FID [13]: <https://github.com/Lightning-AI/torchmetrics/blob/master/src/torchmetrics/image/inception.py>, Apache 2.0 <https://www.apache.org/licenses/LICENSE-2.0>
- KID [3]: <https://github.com/Lightning-AI/torchmetrics/blob/master/src/torchmetrics/image/kid.py>, Apache 2.0 <https://www.apache.org/licenses/LICENSE-2.0>
- VQA [29]: https://github.com/linzhiqiu/t2v_metrics, Apache 2.0 <https://www.apache.org/licenses/LICENSE-2.0>
- HPSv2 [54] : <https://github.com/tgxs002/HPSv2>, Apache 2.0 <https://www.apache.org/licenses/LICENSE-2.0>
- ImageReward [58]: <https://github.com/zai-org/ImageReward>, Apache 2.0 <https://www.apache.org/licenses/LICENSE-2.0>

626 Packages:

- matplotlib: BSD <https://github.com/nilearn/nilearn/blob/main/LICENSE>
- pytorch: <https://github.com/pytorch/pytorch/blob/main/LICENSE>

630 Datasets:

- ADE20K[65]: <https://ade20k.csail.mit.edu/> BSD-3 <https://opensource.org/license/BSD-3-Clause>

633 J LayoutTransformer Temperature

634 Throughout our main paper, we maintained LayoutTransformer defaulttemperature parameter equal to one. However, the question arises whether the generated layouts would be 635 higher quality at lower temperatures, where the model’s output is more stable. As shown 636 in table 3 even when we select the lowest temperature of zero for optimal stability, we are 637 still not measuring a decisive improvement across numerical metrics, therefore we kept the 638 temperature at its original setting of one to remain as faithful as possible to the prior work. 639

Model	FID (↓)	KID (10^{-2}) (↓)	CMMMD (↓)	O_{Num} (↓)	$l_{\text{Pos}}^{(1)}(10^{-11})$ (↑)	$l_{\text{Pos}}^{(2)}(10^{-11})$ (↑)	σ_{Pos}^2 (↑)
LayoutTransformer temp= 1	0.44	0.94	1.34	0.90	3.09	1.21	231
LayoutTransformer temp= 0	0.48	0.92	1.77	4.11	3.73	1.53	0
Ours	0.17	0.27	0.03	1.14	4.76	2.03	187

Table 3: Comparison of metrics LayoutTransformer with a temperature of one (model default) and a temperature of zero. Even when the temperature is zero, we see that our method still performs better across our metrics.

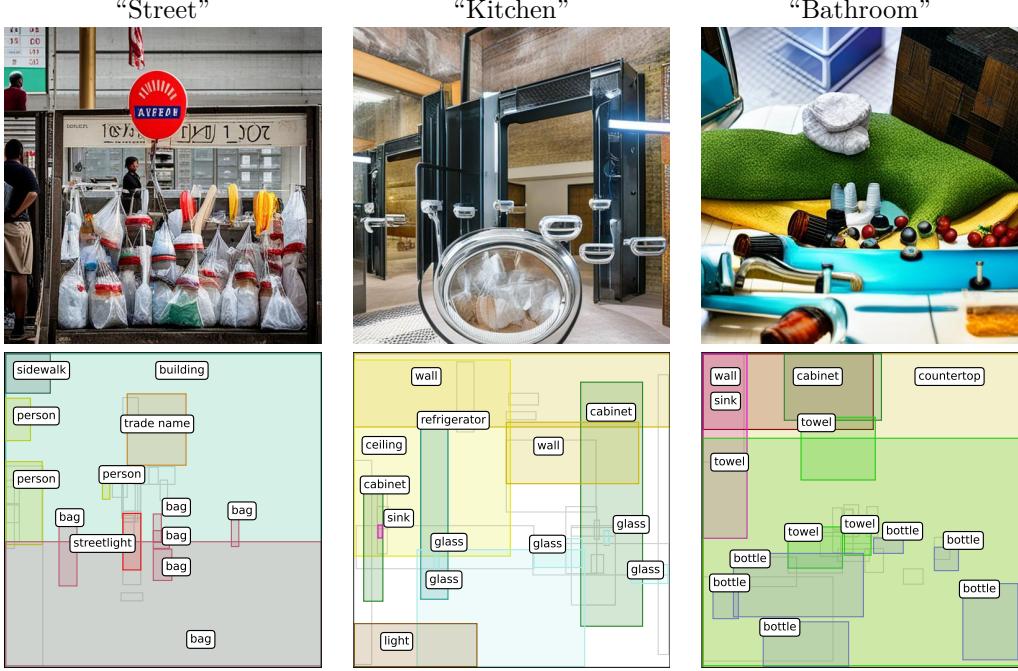


Figure 10: Example layouts and images for LayoutTransformer when $\text{temp}=0$. Even at the most stable setting, the images appear implausible. Objects that are typically small details, such as *bag*, *glass*, or *bottle* repeated many times across the layout.

640 K GPT4o Temperature

641 Because we observed low image variance for GPT4o layouts, we also considered what would
 642 happen if we raised the temperature of GPT4o from the default 0.25 as set in LLM-grounded
 643 Diffusion to achieve more variety.

644 We experimented with increasing the temperature from 0.2 in increments of 0.1. We found
 645 that at a temperature of 1, GPT4o failed to produce a parsable layout 14% of the time.
 646 However, these mistakes were easy to catch and query the model again. Temperatures higher
 647 than 1 caused more frequent parsing failures, and began to produce long, tangential sentences
 648 rather than proper object labels. Without a method to heuristically filter these responses,
 649 we settled on a temperature of one as a reasonable upper limit for operation temperature of
 650 GPT4o on this task.

651 We compare the performance of GPT4o with a temperature of one with our method, and
 652 GPT4o with the default temperature in table 4. Our model still outperforms GPT4o
 653 when the temperature is one in FID and KID. While raising the temperature improves the
 654 object numeracy score O_{Num} and the positional variance score σ_{Pos}^2 improve in GPT4o when
 655 the temperature is raised, they are still worse than our method, and come at the cost of
 656 decreased performance in the positional likelihood scores $l_{\text{Pos}}^{(1)}$ and $l_{\text{Pos}}^{(2)}$. Therefore, raising
 657 the temperature does not offer a clear advantage on our numerical metrics.

658 We also visualized outputs of GPT4o with the raised temperature in fig. 11. Although
 659 there is some increase in the variation of scenes, the effect does not appear to be noticeably
 660 pronounced. Therefore, we choose to stick with a temperature of 0.25 for our human
 661 evaluation, as this is the most faithful adaptation of our LLM-grounded Diffusion baseline,
 662 without neglecting a clear optimization.

Model	FID (↓)	KID (10^{-2}) (↓)	CMMMD (↓)	O_{Num} (↓)	$l_{\text{Pos}}^{(1)}(10^{-11})$ (↑)	$l_{\text{Pos}}^{(2)}(10^{-11})$ (↑)	σ_{Pos}^2 (↑)
GPT4o temp=0.25	<u>0.94</u>	<u>0.99</u>	<u>1.34</u>	3.71	<u>4.37</u>	<u>1.49</u>	93
GPT4o temp=1	1.47	1.62	1.35	<u>2.86</u>	4.02	1.35	<u>142</u>
Ours	0.17	0.27	0.03	1.14	4.76	2.03	187

Table 4: Comparison of metrics GPT4o with a temperature of 0.25 (adapted model default) and one (highest stable temperature). At increased temperatures, GPT4o performs worse on the FID and KID metrics. Although increasing the temperature of GPT4o improves O_{Num} (the object frequencies are closer to the ground truth) and σ_{Pos}^2 (the layouts are more varied overall), performance on $l_{\text{Pos}}^{(1)}$ and $l_{\text{Pos}}^{(2)}$ drops (the positions of the objects are less plausible). Our method still performs better in all displayed metrics.

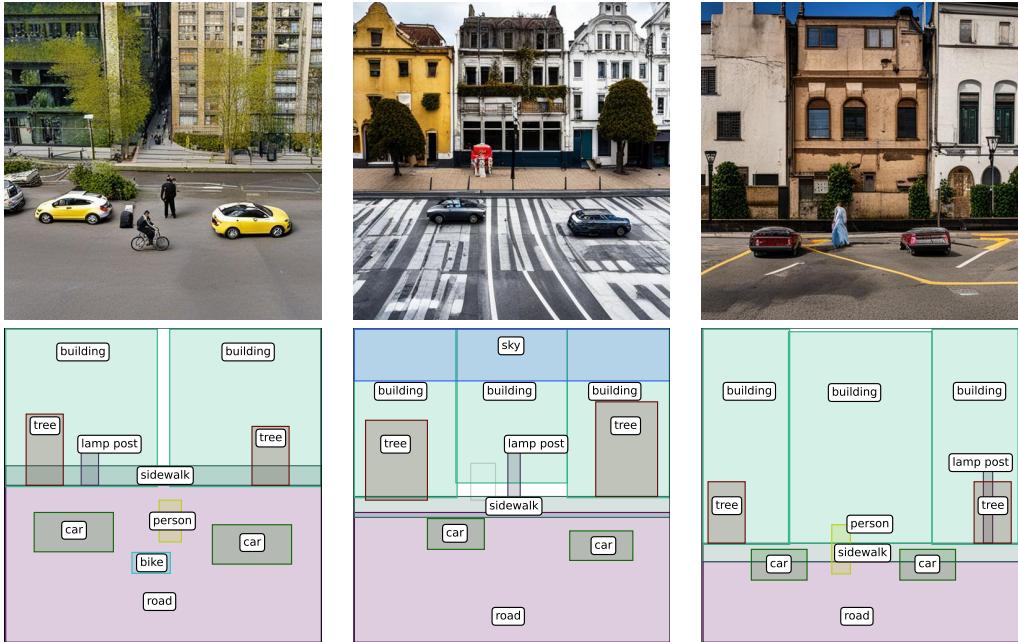


Figure 11: Example images and underlying layouts of the prompt *street* for GPT4o when the temperature is one, the highest stable temperature. Visually, there is slightly more variation than at a temperature of 0.25, (see fig. 24), but this is not a pronounced effect: positions and quantities of objects, and implied camera angle, are still very repetitive.

663 L GPT4o Query Template

664 We adapted the prompt template from LLM-grounded Diffusion by replacing the old scene
 665 caption and layout examples with ground truth data from ADE20k and encourage chain of
 666 thought reasoning [53]. Our LLM prompt is listed in fig. 12. Our in-context examples are
 667 listed in table 5.

```
1 Task Description and Rules
2 You are a smart program for automatic image layout generation. I provide you
   with a global prompt which describes the entire image. The image
   layout has a height of 512 and a width of 512. The coordinate system
   assumes the origin (0,0) is in the top left corner. Bounding box
   coordinates are specified in the format (x,y,w,h), where x and y are
   the top left corner coordinate, and w and h are the full width and
   height of the box. Your task is to imagine which objects reasonably
   belong in an image with a global prompt, and arrange these objects in
   into a layout which could plausibly be for a real image.
3
4 Meta Command
5 Reason about the objects added to the layout For each object reason about its
   position in the layout relative to the other objects, and why it is
   likely. In general maintain a plausible configuration of the objects
   within the image layout such that the coordinates obey our coordinate
   convention. Do not number the objects, instead put them in a list
   in the exact format shown below. Remember to include the caption,
   background prompt and negative prompt in the layout.
6
7 [ In - context Examples ]
8
9 Question
10 Provide the layout for a "{prompt}"
```

Figure 12: Our full prompt to the LLM for layout generation. LLM starts completions from “Objects.”

1 Provide a layout for an "airport terminal"
2 Answer:
4 Caption: An airport terminal
5 Objects: [('ceiling',[1, 0, 510, 292]), ('floor',[0, 360, 468, 151]), ('wall',[0, 337, 152, 152]), ('wall',[3, 193, 182, 100]), ('first floor',[353, 262, 158, 96]), ('wall',[353, 207, 158, 86]), ('first floor',[0, 264, 136, 93]), ('plant',[177, 398, 158, 78]), ('fountain',[197, 376, 122, 79]), ('first floor',[134, 310, 265, 30]), ('wall',[398, 343, 68, 117]), ('wall',[467, 330, 44, 172]), ('wall',[190, 270, 157, 42]), ('column',[65, 159, 30, 157]), ('column',[0, 76, 19, 242]), ('column',[442, 153, 30, 141]), ('wall',[275, 336, 123, 33]), ('wall',[134, 340, 129, 31]), ('fence',[331, 394, 44, 83]), ('first floor',[110, 282, 86, 39]), ('column',[404, 171, 23, 139]), ('wall',[239, 499, 272, 12]), ('column',[113, 175, 22, 144]), ('seat',[187, 478, 134, 17]), ('column',[380, 193, 19, 117]), ('fence',[134, 403, 40, 53]), ('column',[145, 196, 18, 116]), ('tree',[345, 324, 34, 45]), ('tree',[43, 404, 30, 49]), ('tree',[150, 329, 32, 45])]
6 Background prompt: an airport terminal
7 Negative prompt: empty
8 Reasoning: Airport terminals contain many walls and columns, and have a floor and ceiling. They also contain seats for passengers to wait in as well as decorative trees
9
10 Provide a layout for an "schoolhouse"
11 Answer:
12 Caption: schoolhouse
13 Objects: [('sky',[0, 0, 510, 431]), ('building',[22, 23, 460, 465]), ('tree',[1, 0, 173, 200]), ('grass',[0, 449, 510, 61]), ('tree',[422, 129, 83, 281]), ('tree',[1, 202, 44, 254]), ('path',[0, 478, 308, 27]), ('grass',[0, 469, 201, 27]), ('plant',[42, 412, 71, 76]), ('plant',[399, 417, 56, 69]), ('person',[229, 412, 33, 64]), ('car',[3, 444, 40, 29]), ('tree',[0, 431, 41, 23]), ('tree',[472, 426, 37, 23])]
14 Background prompt: schoolhouse
15 Negative prompt: empty
16 Reasoning: A schoolhouse is typically a building. The layout could include a path, students, trees, plants, and a car in the schoolyard.
17
18 Provide a layout for an "ball pit"
19 Answer:
20 Caption: ball pit
21 Objects: [('inflatable park',[1, 0, 510, 510]), ('person',[85, 42, 313, 398]), ('ball',[451, 292, 48, 69]), ('ball',[77, 253, 46, 61]), ('ball',[416, 278, 40, 58]), ('ball',[475, 265, 34, 68]), ('ball',[371, 240, 39, 55]), ('ball',[430, 246, 40, 47])]
22 Background prompt: ball pit
23 Negative prompt: empty

24 Reasoning: A ball pit is an inflatable park with balls and
25 people. The layout could include a person playing in
26 the ball pit and colorful balls scattered around the
27 inflatable park.

28 Provide a layout for an "jail cell"
29 Answer:
Caption: jail cell
Objects: [('bar', [0, 0, 510, 512]), ('floor', [24, 304, 390, 206]), ('wall', [296, 16, 156, 482]), ('wall', [72, 4, 232, 302]), ('bed', [174, 256, 234, 196]), ('cell', [462, 26, 48, 484]), ('wall', [20, 4, 50, 458]), ('shelf', [66, 48, 242, 20]), ('sink', [152, 194, 40, 54])]

30 Background prompt: jail cell
31 Negative prompt: empty
32 Reasoning: A jail cell typically has bars, walls, a floor, and
a bed. The layout could include a cell door, a shelf,
and a sink.

33 Provide a layout for an "badlands"
34 Answer:
Caption: badlands
Objects: [('earth', [0, 199, 334, 267]), ('earth', [58, 201, 453, 144]), ('hill', [0, 106, 512, 118]), ('sky', [0, 0, 512, 116]), ('earth', [194, 334, 316, 177]), ('water', [34, 218, 301, 128]), ('tree', [0, 369, 236, 142]), ('rock', [0, 381, 97, 83]), ('person', [463, 273, 18, 71]), ('tripod', [450, 289, 5, 38]), ('photo machine', [449, 283, 8, 8])]

38 Background prompt: badlands
39 Negative prompt: empty
40 Reasoning: Badlands are characterized by eroded rock
formations, so the layout could include earth, hills,
rocks, and trees. The badlands may also have water,
a person, a tripod, and a photo machine.

41 Provide a layout for an "art gallery"
42 Answer:
Caption: art gallery
Objects: [('wall', [224, 36, 287, 360]), ('floor', [0, 323, 512, 188]), ('wall', [0, 84, 226, 261]), ('ceiling', [0, 0, 511, 112]), ('board', [306, 153, 205, 140]), ('board', [0, 170, 250, 102]), ('double door', [251, 176, 55, 168]), ('grill', [378, 260, 21, 91]), ('grill', [338, 257, 20, 85]), ('vent', [248, 22, 47, 19]), ('drawing', [490, 196, 21, 40]), ('spotlight', [453, 32, 17, 49]), ('drawing', [8, 194, 18, 35]), ('spotlight', [381, 54, 14, 43]), ('drawing', [456, 241, 22, 25]), ('spotlight', [279, 83, 15, 35]), ('spotlight', [320, 71, 14, 38]), ('drawing', [391, 187, 17, 30]), ('drawing', [314, 201, 20, 26]), ('vent', [6, 45, 36, 13]), ('spotlight', [259, 88, 12, 34]), ('drawing', [420, 196, 14, 28]), ('drawing', [445, 204, 18, 22]), ('drawing', [409, 239, 13, 28]), ('spotlight', [234, 97, 11, 32]), ('drawing', [43, 195, 18, 18]), ('drawing', [351, 181, 12, 27]), ('drawing', [135, 237, 17, 19]), ('drawing', [40, 227, 14, 23]), ('drawing', [205, 200, 11, 27])]

```

46      Background prompt: art gallery
47      Negative prompt: empty
48      Reasoning: An art gallery is indoors, so it has walls, a
49      floor, and a ceiling. It can also have boards for
50      displaying art, doors, grills, vents, and spotlights.
51      The art gallery may have drawings on the walls and
52      spotlights to illuminate the art.
53      Provide a layout for an "art gallery"
54      Answer:
55      Caption: window seat
56      Objects: [('seat',[2, 172, 507, 337]),('floor',[28, 322,
57      482, 187]),('wall',[102, 0, 266, 228]),('wall',[0,
58      0, 109, 510]),('person',[222, 20, 133,
59      390]),('wall',[363, 0, 146, 324]),('windowpane',[140,
60      0, 204, 69]),('windowpane',[0, 0, 102,
61      122]),('windowpane',[388, 0, 122, 75]),('hat',[375,
62      157, 80, 69])]

63      Background prompt: window seat
64      Negative prompt: empty
65      Reasoning: A window seat typically has a seat, walls, and a
66      floor. The layout could include a person sitting on
67      the seat, looking out the window, and wearing a hat.

```

Table 5: Our in-context examples. We use fixed in-context examples for layout generation.

668 M Comparison to DDIM

669 We initially considered a DDIM [50] based approach rather than rectified flow. However,
670 early experiments showed less promise in this direction. DDIM models struggled with
671 generating the correct CLIP embeddings, leading to meaningless images that did not match
672 the prompt, whereas rectified flow-based approaches were more successful without needing
673 to search the hyperparameter space.

674 We provide an example here, from a model with an identical architecture to our presented
675 model (including all hyperparameters specified in appendix D, except it is trained with a
676 DDIM training objective and performs DDIM inference (with a log-linear noise schedule
677 from $\sigma = 0.02$ to $\sigma = 1$). This is not an exhaustive search by any means, but is intended as
678 a point-of-reference for other researchers.

679 We show our statistics in table 6, and some visual examples from the model in fig. 13. We
680 speculate that the straighter transit paths of samples rectified flow [30] increases the model's
681 ability to effectively learn high dimensional data like the PCA-reduced CLIP embeddings.

Model	FID (\downarrow)	KID (10^{-2}) (\downarrow)	CMMID (\downarrow)	$O_{\text{Num}}(\downarrow)$	$l_{\text{Pos}}^{(1)}(\uparrow)$	$l_{\text{Pos}}^{(2)}(\uparrow)$	$\sigma_{\text{Pos}}^2(\uparrow)$
Ours (DDIM)	0.95	8.60	1.77	7.89	4.33	0.01	239
Ours (Rectified Flow)	0.17	0.27	0.03	1.91	4.76	2.03	187

Table 6: Generated image metrics, and our generated layout numerical metrics applied on our model architecture with DDIM or rectified flow. Our model performs better on everything except positional variance σ_{Pos}^2 , but this is at the cost of the layouts being largely nonsense (see fig. 13)

682 N Additional Images and Layouts

683 Here we present additional examples of our model's generated layouts, and conditionally
684 generated images, for the prompts *bedroom* (fig. 14), *mountain* (fig. 15), and *kitchen* (fig. 16).

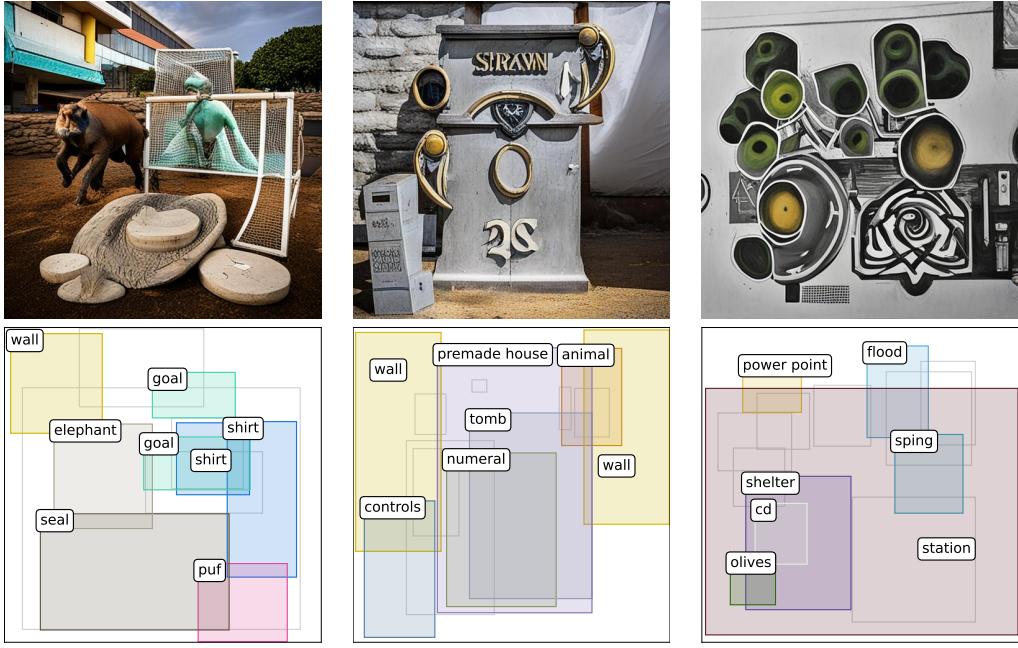


Figure 13: Our Model with DDIM instead of Rectified Flow - Street. The bounding box labels match poorly to the desired scene, and the resulting images appear to be implausible.

685 O Editing Capabilities: Comparison with Drag-based 686 Manipulation Methods

687 In fig. 7, we show how a pipeline using our model supports image editing functionalities
688 like relocating or removing objects. Here, we compare these capabilities against Readout
689 Guidance [33], which enables users to move visual elements via guidance arrows.

690 As shown in fig. 17, Readout Guidance fails to relocate the plant to the floor when instructed,
691 wheras our method succeeds. We also try to fully remove objects with Readout Guidance
692 by dragging them to the far edge of the image. In this case, the former plant location is
693 replaced with a black patch, not a realistic inpainting.

694 Results in Readout Guidance are primarily for small transformations, and our case study
695 suggests it might struggle with longer range manipulations. Thus, text-to-layout-to-image
696 approach with explicit layout-based explicit control can be a more attractive approach to
697 editing generated images, as it seems to perform more strongly.

698 P Selecting the Opacity Threshold 0.5

699 We visualize the distribution of generated $\alpha_i^j(1)$ of our model on the ADE20K benchmark in
700 fig. 18. The values cluster around 0 and 1, meaning the model makes a strong distinction
701 between which tokens should be recognized or ignored in a scene layout. We select $\alpha_i^j(1) < 0.5$
702 as a unbiased threshold.

703 Q Print-ready Main Results Diagram

704 For readers who prefer the document on paper, we include our visual results diagram from
705 fig. 5 at a size where the annotations are large enough to be printed clearly. The annotations
706 can also be zoomed into on our main document.

Figure 14: Ours - Bedroom.

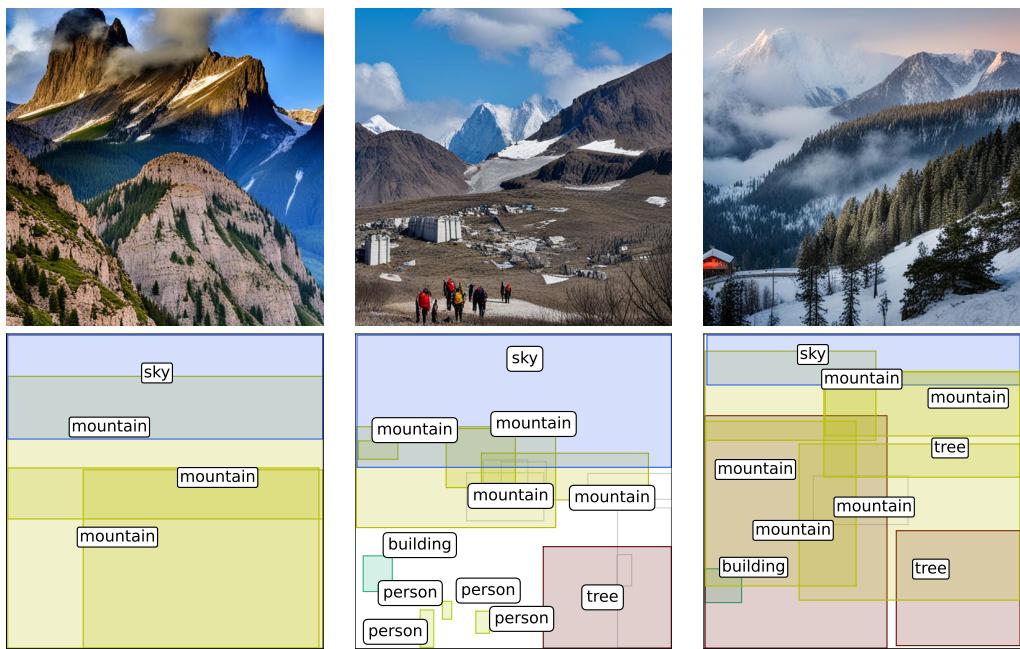


Figure 15: Ours - Mountain.

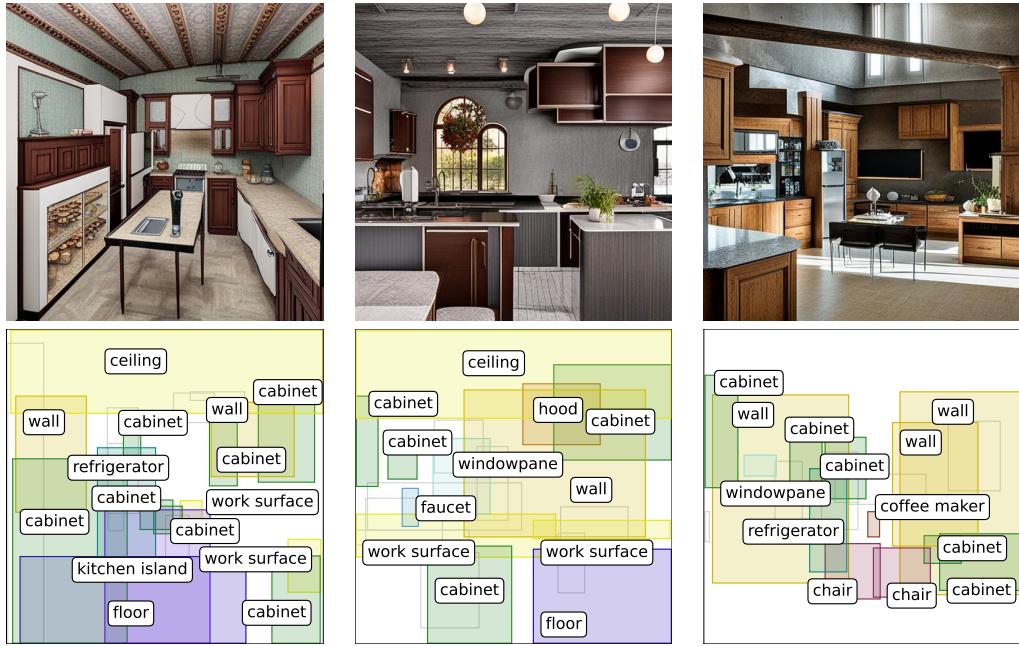


Figure 16: Ours - Kitchen.

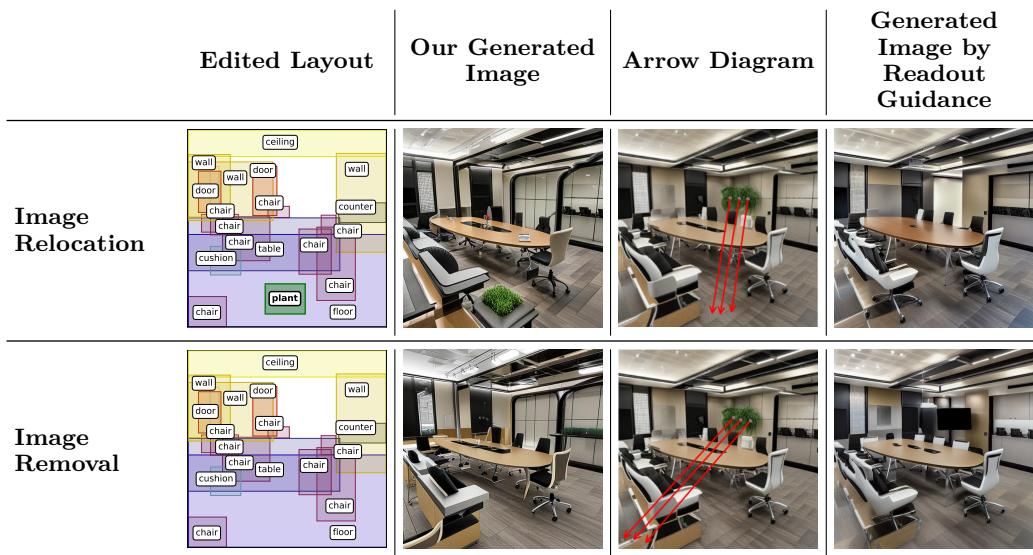


Figure 17: Comparison of editing abilities. Each row corresponds to an editing task: **Top:** relocating the plant, **Bottom:** removing the plant.

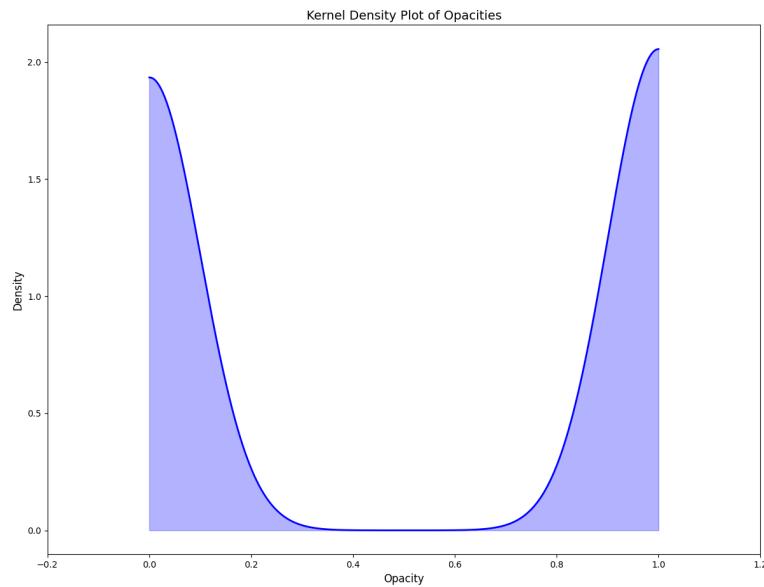


Figure 18: **Opacity KDE** Opacities generated by our model cluster towards 0 and 1, the ground truth opacities shown during training.

Figure 19: No Layout - Living Room.

Figure 20: No Layout - Roof Top

Figure 21: No Layout - Street

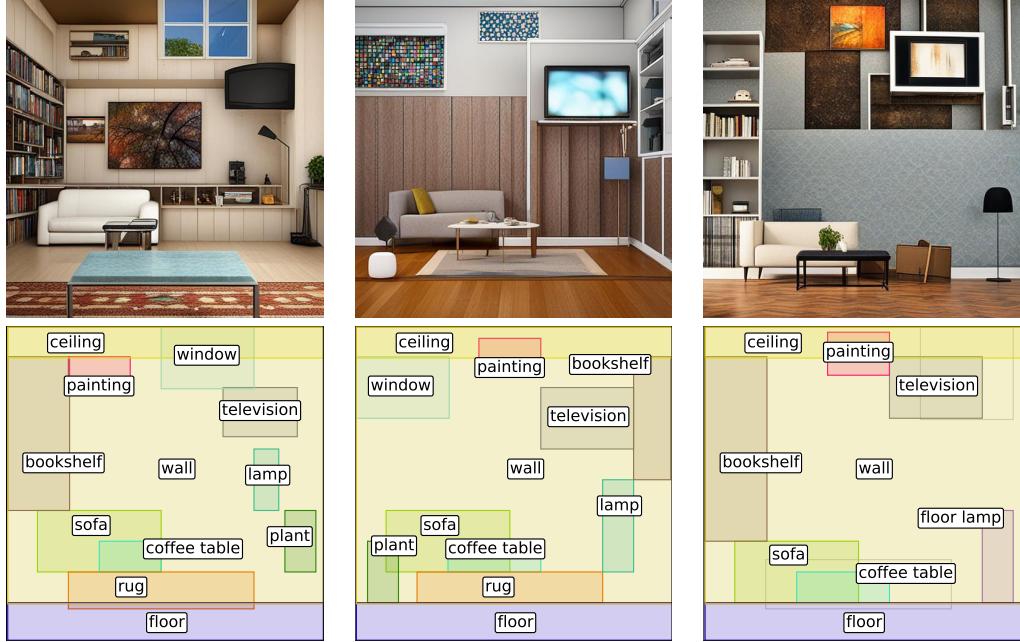


Figure 22: GPT4o - Living Room.

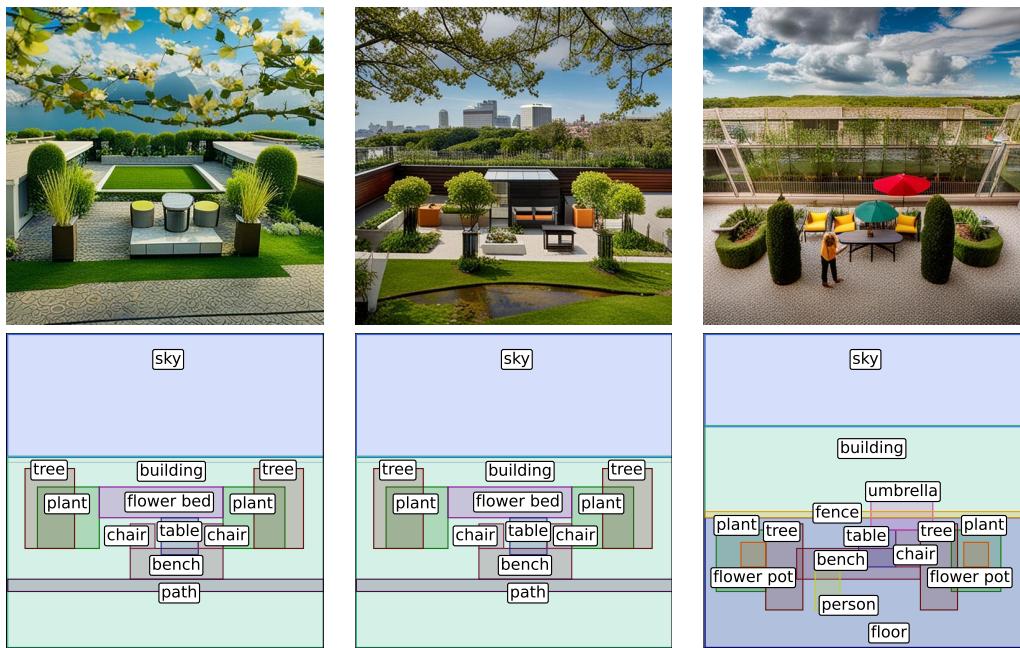


Figure 23: GPT4o - Roof Top.

Figure 24: GPT4o - Street.

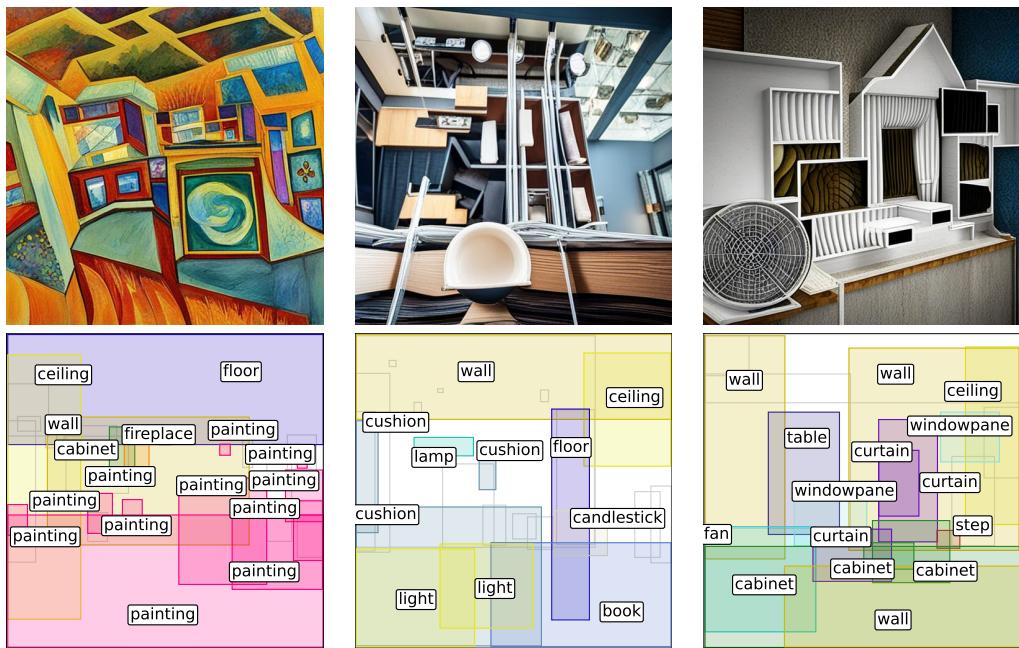


Figure 25: Layout Transformer - Living Room.

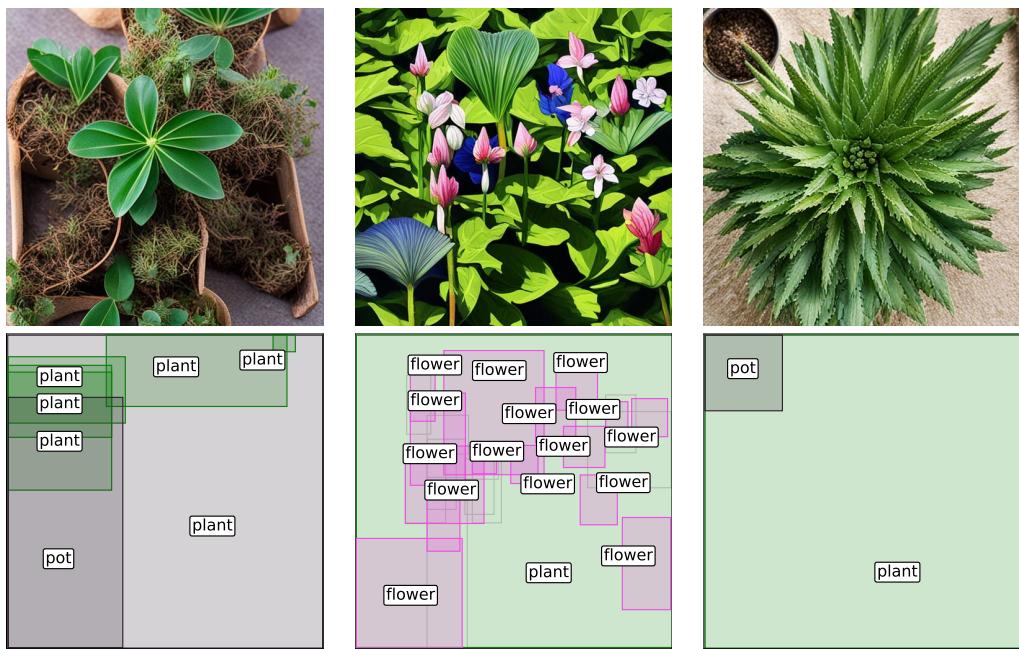


Figure 26: Layout Transformer - Roof Top.

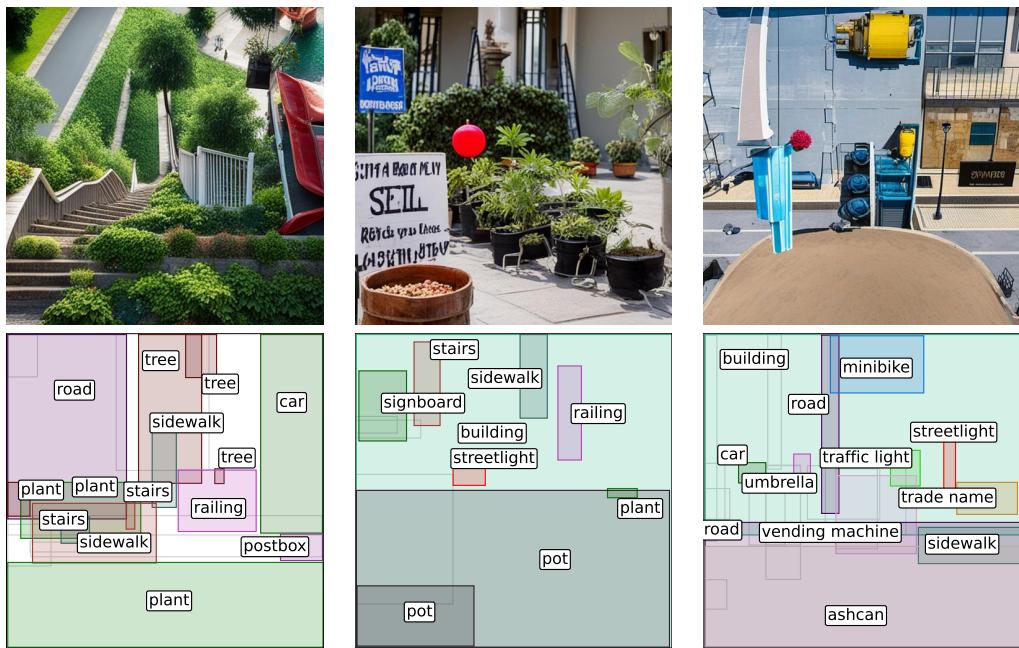


Figure 27: Layout Transformer - Street.

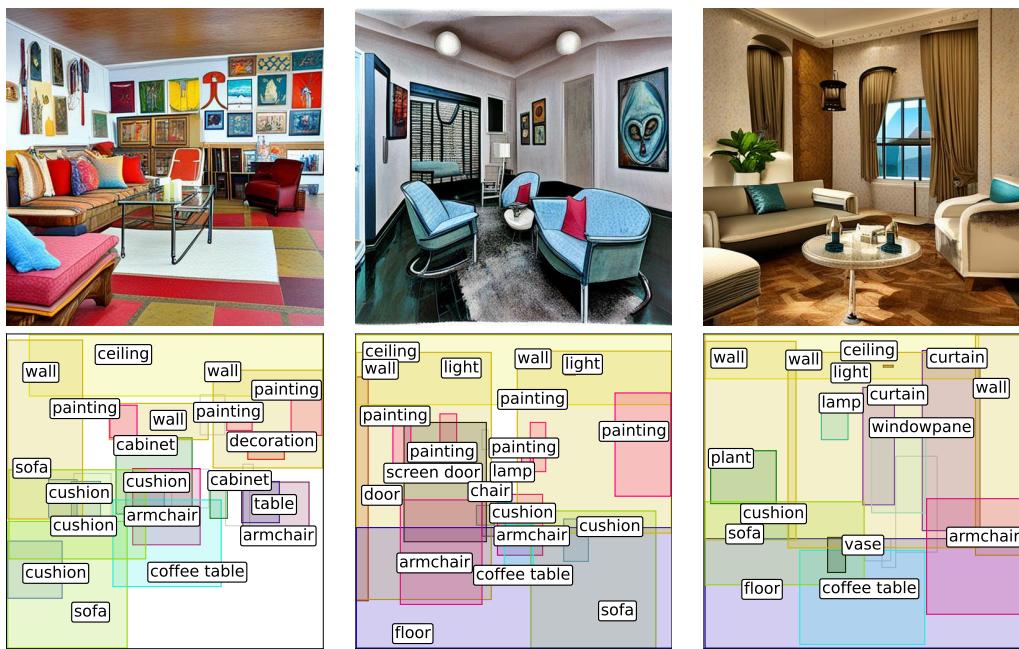


Figure 28: Ours - Living Room.

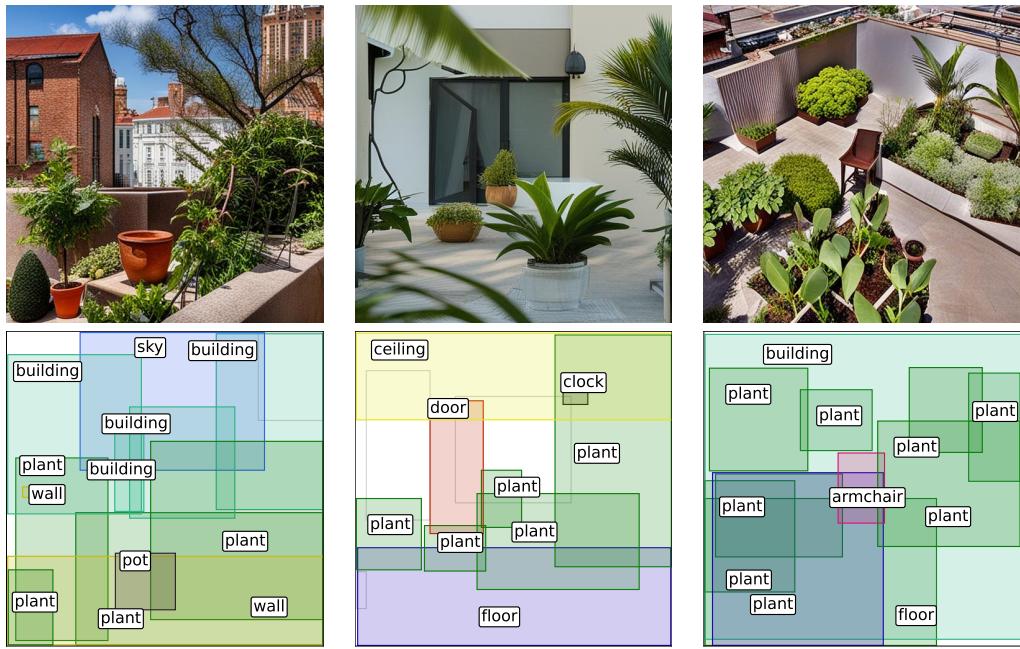


Figure 29: Ours - Roof Top.

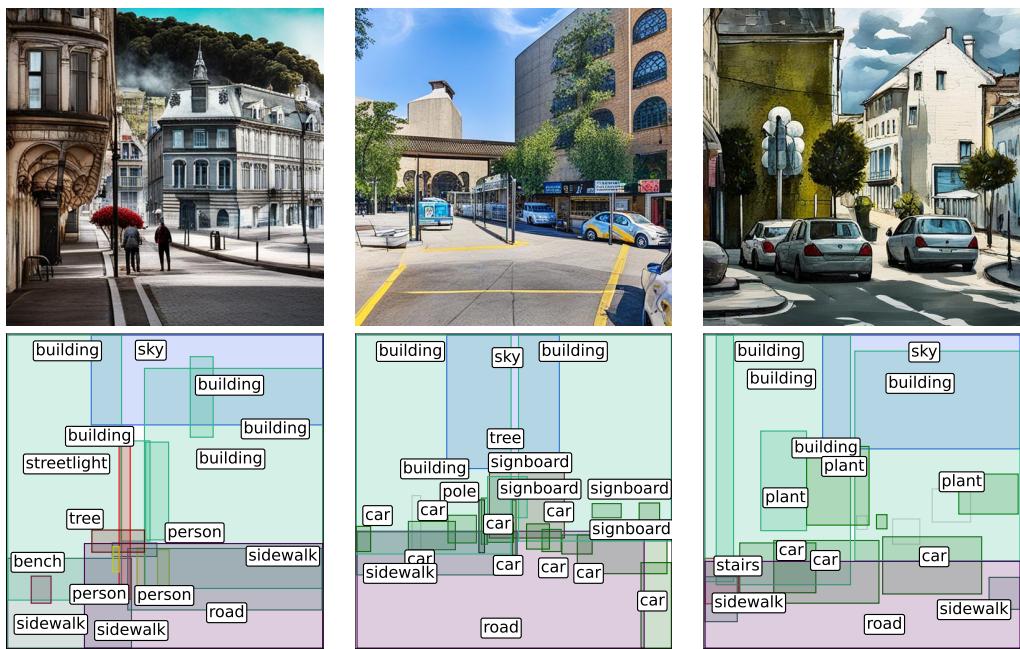


Figure 30: Ours - Street.

707 **NeurIPS Paper Checklist**

708 **1. Claims**

709 Question: Do the main claims made in the abstract and introduction accurately
710 reflect the paper's contributions and scope?

711 Answer: [Yes]

712 Justification: At the end of our introduction we supply our claims **(1)** we introduce
713 the first model for rectified flow-based text-to-layout generation and show that it
714 produces a large variety of highly plausible layouts for challenging unconstrained
715 prompts, **2)** we establish a well-designed human-evaluation study that can be
716 repeated by others, and **3)** demonstrate that integrating our method into a complete
717 text-to-layout-to-image pipeline yields state-of-the-art in achieving variety and
718 plausibility together. See our supplement to access source code.), which we support
719 through our findings in the paper

720 Guidelines:

- 721 • The answer NA means that the abstract and introduction do not include the
722 claims made in the paper.
- 723 • The abstract and/or introduction should clearly state the claims made, including
724 the contributions made in the paper and important assumptions and limitations.
725 A No or NA answer to this question will not be perceived well by the reviewers.
- 726 • The claims made should match theoretical and experimental results, and reflect
727 how much the results can be expected to generalize to other settings.
- 728 • It is fine to include aspirational goals as motivation as long as it is clear that
729 these goals are not attained by the paper.

730 **2. Limitations**

731 Question: Does the paper discuss the limitations of the work performed by the
732 authors?

733 Answer: [Yes]

734 Justification: We discuss the limitations in appendix F

735 Guidelines:

- 736 • The answer NA means that the paper has no limitation while the answer No
737 means that the paper has limitations, but those are not discussed in the paper.
- 738 • The authors are encouraged to create a separate "Limitations" section in their
739 paper.
- 740 • The paper should point out any strong assumptions and how robust the results
741 are to violations of these assumptions (e.g., independence assumptions, noiseless
742 settings, model well-specification, asymptotic approximations only holding
743 locally). The authors should reflect on how these assumptions might be violated
744 in practice and what the implications would be.
- 745 • The authors should reflect on the scope of the claims made, e.g., if the approach
746 was only tested on a few datasets or with a few runs. In general, empirical
747 results often depend on implicit assumptions, which should be articulated.
- 748 • The authors should reflect on the factors that influence the performance of the
749 approach. For example, a facial recognition algorithm may perform poorly when
750 image resolution is low or images are taken in low lighting. Or a speech-to-text
751 system might not be used reliably to provide closed captions for online lectures
752 because it fails to handle technical jargon.
- 753 • The authors should discuss the computational efficiency of the proposed algo-
754 rithms and how they scale with dataset size.
- 755 • If applicable, the authors should discuss possible limitations of their approach
756 to address problems of privacy and fairness.
- 757 • While the authors might fear that complete honesty about limitations might
758 be used by reviewers as grounds for rejection, a worse outcome might be that
759 reviewers discover limitations that aren't acknowledged in the paper. The

760 authors should use their best judgment and recognize that individual actions in
761 favor of transparency play an important role in developing norms that preserve
762 the integrity of the community. Reviewers will be specifically instructed to not
763 penalize honesty concerning limitations.

764 3. Theory assumptions and proofs

765 Question: For each theoretical result, does the paper provide the full set of assumptions
766 and a complete (and correct) proof?

767 Answer: [NA]

768 Justification: Our method does not provide theoretical results.

769 Guidelines:

- 770 • The answer NA means that the paper does not include theoretical results.
- 771 • All the theorems, formulas, and proofs in the paper should be numbered and
772 cross-referenced.
- 773 • All assumptions should be clearly stated or referenced in the statement of any
774 theorems.
- 775 • The proofs can either appear in the main paper or the supplemental material,
776 but if they appear in the supplemental material, the authors are encouraged to
777 provide a short proof sketch to provide intuition.
- 778 • Inversely, any informal proof provided in the core of the paper should be
779 complemented by formal proofs provided in appendix or supplemental material.
- 780 • Theorems and Lemmas that the proof relies upon should be properly referenced.

781 4. Experimental result reproducibility

782 Question: Does the paper fully disclose all the information needed to reproduce
783 the main experimental results of the paper to the extent that it affects the main
784 claims and/or conclusions of the paper (regardless of whether the code and data are
785 provided or not)?

786 Answer: [Yes]

787 Justification: Our method section section 3 describes our architecture, and we
788 provide hyperparameters in appendix D. Although we cover the major details there,
789 any details we might have missed can be ascertained from our code, provided in
790 appendix E. We provide details on our human survey method in appendix A.

791 Guidelines:

- 792 • The answer NA means that the paper does not include experiments.
- 793 • If the paper includes experiments, a No answer to this question will not be
794 perceived well by the reviewers: Making the paper reproducible is important,
795 regardless of whether the code and data are provided or not.
- 796 • If the contribution is a dataset and/or model, the authors should describe the
797 steps taken to make their results reproducible or verifiable.
- 798 • Depending on the contribution, reproducibility can be accomplished in various
799 ways. For example, if the contribution is a novel architecture, describing the
800 architecture fully might suffice, or if the contribution is a specific model and
801 empirical evaluation, it may be necessary to either make it possible for others
802 to replicate the model with the same dataset, or provide access to the model. In
803 general, releasing code and data is often one good way to accomplish this, but
804 reproducibility can also be provided via detailed instructions for how to replicate
805 the results, access to a hosted model (e.g., in the case of a large language model),
806 releasing of a model checkpoint, or other means that are appropriate to the
807 research performed.
- 808 • While NeurIPS does not require releasing code, the conference does require all
809 submissions to provide some reasonable avenue for reproducibility, which may
810 depend on the nature of the contribution. For example
- 811 (a) If the contribution is primarily a new algorithm, the paper should make it
812 clear how to reproduce that algorithm.

813 (b) If the contribution is primarily a new model architecture, the paper should
814 describe the architecture clearly and fully.
815 (c) If the contribution is a new model (e.g., a large language model), then there
816 should either be a way to access this model for reproducing the results or a
817 way to reproduce the model (e.g., with an open-source dataset or instructions
818 for how to construct the dataset).
819 (d) We recognize that reproducibility may be tricky in some cases, in which
820 case authors are welcome to describe the particular way they provide for
821 reproducibility. In the case of closed-source models, it may be that access to
822 the model is limited in some way (e.g., to registered users), but it should be
823 possible for other researchers to have some path to reproducing or verifying
824 the results.

825 **5. Open access to data and code**

826 Question: Does the paper provide open access to the data and code, with sufficient
827 instructions to faithfully reproduce the main experimental results, as described in
828 supplemental material?

829 Answer: [\[Yes\]](#)

830 Justification: In appendix E, we provide a link to our data and code.

831 **6. Experimental setting/details**

832 Question: Does the paper specify all the training and test details (e.g., data splits,
833 hyperparameters, how they were chosen, type of optimizer, etc.) necessary to
834 understand the results?

835 Answer: [\[Yes\]](#)

836 Justification: We provide information on our data in section 4 and information
837 and explanations of our optimizer and hyperparameters in appendix D. We provide
838 details on our human survey method in appendix A.

839 Guidelines:

- 840 • The answer NA means that the paper does not include experiments.
- 841 • The experimental setting should be presented in the core of the paper to a level
842 of detail that is necessary to appreciate the results and make sense of them.
- 843 • The full details can be provided either with the code, in appendix, or as
844 supplemental material.

845 **7. Experiment statistical significance**

846 Question: Does the paper report error bars suitably and correctly defined or other
847 appropriate information about the statistical significance of the experiments?

848 Answer: [\[Yes\]](#)

849 Justification: In section 4, we explain our standard error bars shown in fig. 4.

850 Guidelines:

- 851 • The answer NA means that the paper does not include experiments.
- 852 • The authors should answer "Yes" if the results are accompanied by error bars,
853 confidence intervals, or statistical significance tests, at least for the experiments
854 that support the main claims of the paper.
- 855 • The factors of variability that the error bars are capturing should be clearly
856 stated (for example, train/test split, initialization, random drawing of some
857 parameter, or overall run with given experimental conditions).
- 858 • The method for calculating the error bars should be explained (closed form
859 formula, call to a library function, bootstrap, etc.)
- 860 • The assumptions made should be given (e.g., Normally distributed errors).
- 861 • It should be clear whether the error bar is the standard deviation or the standard
862 error of the mean.
- 863 • It is OK to report 1-sigma error bars, but one should state it. The authors
864 should preferably report a 2-sigma error bar than state that they have a 96%
865 CI, if the hypothesis of Normality of errors is not verified.

866 • For asymmetric distributions, the authors should be careful not to show in
867 tables or figures symmetric error bars that would yield results that are out of
868 range (e.g. negative error rates).
869 • If error bars are reported in tables or plots, The authors should explain in the
870 text how they were calculated and reference the corresponding figures or tables
871 in the text.

872 **8. Experiments compute resources**

873 Question: For each experiment, does the paper provide sufficient information on the
874 computer resources (type of compute workers, memory, time of execution) needed
875 to reproduce the experiments?

876 Answer: [\[Yes\]](#)

877 Justification: We describe inference compute resources in section 4 (see speed
878 measurement explanations), display the model parameter counts in fig. 4, and
879 explain training resources in appendix D.

880 Guidelines:

881 • The answer NA means that the paper does not include experiments.
882 • The paper should indicate the type of compute workers CPU or GPU, internal
883 cluster, or cloud provider, including relevant memory and storage.
884 • The paper should provide the amount of compute required for each of the
885 individual experimental runs as well as estimate the total compute.
886 • The paper should disclose whether the full research project required more
887 compute than the experiments reported in the paper (e.g., preliminary or failed
888 experiments that didn't make it into the paper).

889 **9. Code of ethics**

890 Question: Does the research conducted in the paper conform, in every respect, with
891 the NeurIPS Code of Ethics <https://neurips.cc/public/EthicsGuidelines>?

892 Answer: [\[Yes\]](#)

893 Justification: We have reviewed the code and found no violations. Furthermore, we
894 explain the ethics of our crowd sourced experiments in checklist items below.

895 Guidelines:

896 • The answer NA means that the authors have not reviewed the NeurIPS Code
897 of Ethics.
898 • If the authors answer No, they should explain the special circumstances that
899 require a deviation from the Code of Ethics.
900 • The authors should make sure to preserve anonymity (e.g., if there is a special
901 consideration due to laws or regulations in their jurisdiction).

902 **10. Broader impacts**

903 Question: Does the paper discuss both potential positive societal impacts and
904 negative societal impacts of the work performed?

905 Answer: [\[Yes\]](#)

906 Justification: We discuss broader impacts in appendix G

907 Guidelines:

908 • The answer NA means that there is no societal impact of the work performed.
909 • If the authors answer NA or No, they should explain why their work has no
910 societal impact or why the paper does not address societal impact.
911 • Examples of negative societal impacts include potential malicious or unintended
912 uses (e.g., disinformation, generating fake profiles, surveillance), fairness consid-
913 erations (e.g., deployment of technologies that could make decisions that unfairly
914 impact specific groups), privacy considerations, and security considerations.

915 • The conference expects that many papers will be foundational research and
 916 not tied to particular applications, let alone deployments. However, if there
 917 is a direct path to any negative applications, the authors should point it out.
 918 For example, it is legitimate to point out that an improvement in the quality
 919 of generative models could be used to generate deepfakes for disinformation.
 920 On the other hand, it is not needed to point out that a generic algorithm for
 921 optimizing neural networks could enable people to train models that generate
 922 Deepfakes faster.
 923 • The authors should consider possible harms that could arise when the technology
 924 is being used as intended and functioning correctly, harms that could arise when
 925 the technology is being used as intended but gives incorrect results, and harms
 926 following from (intentional or unintentional) misuse of the technology.
 927 • If there are negative societal impacts, the authors could also discuss possible
 928 mitigation strategies (e.g., gated release of models, providing defenses in addition
 929 to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a
 930 system learns from feedback over time, improving the efficiency and accessibility
 931 of ML).

932 **11. Safeguards**

933 Question: Does the paper describe safeguards that have been put in place for
 934 responsible release of data or models that have a high risk for misuse (e.g., pretrained
 935 language models, image generators, or scraped datasets)?

936 Answer: **[Yes]**

937 Justification: We discuss safe guards in appendix H

938 Guidelines:

- 939 • The answer NA means that the paper poses no such risks.
- 940 • Released models that have a high risk for misuse or dual-use should be released
 941 with necessary safeguards to allow for controlled use of the model, for example
 942 by requiring that users adhere to usage guidelines or restrictions to access the
 943 model or implementing safety filters.
- 944 • Datasets that have been scraped from the Internet could pose safety risks. The
 945 authors should describe how they avoided releasing unsafe images.
- 946 • We recognize that providing effective safeguards is challenging, and many papers
 947 do not require this, but we encourage authors to take this into account and
 948 make a best faith effort.

949 **12. Licenses for existing assets**

950 Question: Are the creators or original owners of assets (e.g., code, data, models),
 951 used in the paper, properly credited and are the license and terms of use explicitly
 952 mentioned and properly respected?

953 Answer: **[Yes]**

954 Justification: We discuss licenses in appendix I

955 Guidelines:

- 956 • The answer NA means that the paper does not use existing assets.
- 957 • The authors should cite the original paper that produced the code package or
 958 dataset.
- 959 • The authors should state which version of the asset is used and, if possible,
 960 include a URL.
- 961 • The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- 962 • For scraped data from a particular source (e.g., website), the copyright and
 963 terms of service of that source should be provided.
- 964 • If assets are released, the license, copyright information, and terms of use in
 965 the package should be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for some datasets. Their licensing guide can help
 966 determine the license of a dataset.

968 • For existing datasets that are re-packaged, both the original license and the
969 license of the derived asset (if it has changed) should be provided.
970 • If this information is not available online, the authors are encouraged to reach
971 out to the asset's creators.

972 **13. New assets**

973 Question: Are new assets introduced in the paper well documented and is the
974 documentation provided alongside the assets?

975 Answer: [\[Yes\]](#)

976 Justification: We provide a link to our source code repository in appendix E. There
977 there is further documentation.

978 Guidelines:

979 • The answer NA means that the paper does not release new assets.
980 • Researchers should communicate the details of the dataset/code/model as part
981 of their submissions via structured templates. This includes details about
982 training, license, limitations, etc.
983 • The paper should discuss whether and how consent was obtained from people
984 whose asset is used.
985 • At submission time, remember to anonymize your assets (if applicable). You
986 can either create an anonymized URL or include an anonymized zip file.

987 **14. Crowdsourcing and research with human subjects**

988 Question: For crowdsourcing experiments and research with human subjects, does
989 the paper include the full text of instructions given to participants and screenshots,
990 if applicable, as well as details about compensation (if any)?

991 Answer: [\[Yes\]](#) .

992 Justification: In appendix A, we include the instruction text given to the participants,
993 as well as a screenshot from a sample survey page. We also provide details on the
994 participants' compensation, which obeys local wage regulations.

995 Guidelines:

996 • The answer NA means that the paper does not involve crowdsourcing nor
997 research with human subjects.
998 • Including this information in the supplemental material is fine, but if the main
999 contribution of the paper involves human subjects, then as much detail as
1000 possible should be included in the main paper.
1001 • According to the NeurIPS Code of Ethics, workers involved in data collection,
1002 curation, or other labor should be paid at least the minimum wage in the
1003 country of the data collector.

1004 **15. Institutional review board (IRB) approvals or equivalent for research
1005 with human subjects**

1006 Question: Does the paper describe potential risks incurred by study participants,
1007 whether such risks were disclosed to the subjects, and whether Institutional Review
1008 Board (IRB) approvals (or an equivalent approval/review based on the requirements
1009 of your country or institution) were obtained?

1010 Answer: [\[Yes\]](#) .

1011 Justification: As written in appendix A, the study was approved by our Institutional
1012 Review Board (referred to as the Ethics Review Board of our institution within
1013 the text). We also could not see any risks to the participants from participation in
1014 our survey, and therefore had nothing clear to disclose. However, we still informed
1015 participants with a summary of the survey and asked for their informed consent
1016 before they proceeded, in order to best ensure participant safety.

1017 Guidelines:

1018 • The answer NA means that the paper does not involve crowdsourcing nor
1019 research with human subjects.

1020 • Depending on the country in which research is conducted, IRB approval (or
1021 equivalent) may be required for any human subjects research. If you obtained
1022 IRB approval, you should clearly state this in the paper.
1023 • We recognize that the procedures for this may vary significantly between insti-
1024 tutions and locations, and we expect authors to adhere to the NeurIPS Code of
1025 Ethics and the guidelines for their institution.
1026 • For initial submissions, do not include any information that would break
1027 anonymity (if applicable), such as the institution conducting the review.

1028 **16. Declaration of LLM usage**

1029 Question: Does the paper describe the usage of LLMs if it is an important, original,
1030 or non-standard component of the core methods in this research? Note that if
1031 the LLM is used only for writing, editing, or formatting purposes and does not
1032 impact the core methodology, scientific rigorousness, or originality of the research,
1033 declaration is not required.

1034 Answer: [NA] .

1035 Justification: LLMs were not used for any of the core methods or writing of this
1036 paper.

1037 Guidelines:

1038 • The answer NA means that the core method development in this research does
1039 not involve LLMs as any important, original, or non-standard components.
1040 • Please refer to our LLM policy (<https://neurips.cc/Conferences/2025/LLM>)
1041 for what should or should not be described.