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Figure 1: Left: We introduce SLayR, a method for scene layout generation via rectified
flow. Middle: SLayR generates scene layouts for unconstrained prompts, which can be
rendered using a layout-to-image generator. Right: Our method sets a new state of the art
in generating more varied and yet plausible scenes than baselines, including LLMs.

Abstract

We introduce SLayR, Scene Layout Generation with Rectified flow, a novel
transformer-based model for text-to-layout generation, which can integrate
into a complete text-to-image pipeline. SLayR addresses a domain in which
current text-to-image pipelines struggle: generating scene layouts that are
of significant variety and plausibility, when the given prompt is ambiguous
and does not provide constraints on the scene. In this setting, SLayR
surpasses existing baselines, including LLMs. To accurately evaluate the
layout generation, we introduce a new benchmark suite, including numerical
metrics and a carefully designed repeatable human-evaluation procedure that
assesses the plausibility and variety of images that are generated. We show
that our method sets a new state of the art for achieving high plausibility
and variety simultaneously, while being at least 3x times smaller in the
number of parameters.

1 Introduction

Recent advances in text-to-image modeling have focused on training denoising diffusion models
[49, (141 50] to generate images from a prompt encoding and image noise [42} [43] [44], [6, [6T, [45],
as well as incorporating finer-grained control modalities [15, 2], 37, 63, [33], 48, 34], 55].
Building upon these advancements, prior works have demonstrated the editability and
interpretability advantages of a multistage text-to-layout-to-image model, where the user can
view and manipulate an intermediate layout consisting of bounding boxes for object-level
scene elements [26] [7, 66], [10] 60} 67, [I]. These works use LLMs as text-to-layout generators,
and focus on parsing multi-object prompts (e.g. “two dogs next to a cat”). However, a
closer inspection reveals that these models do not generate high variety (see fig. [1} right) or
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Figure 2: Degenerate layouts (where zero or one trivial bounding box is present) for the
prompt “street” from LLM-grounded Diffusion [26], LLM Blueprint [9], LayoutGPT [7],
and Ranni [8] vs. our layouts. The bottom shows percentages of degenerate layouts from
our unconstrained prompt benchmark (See section . As visible, LLM approaches for
constrained prompts do not generalize to the unconstrained setting.

collapse entirely (see Figure , when presented with prompts that have few constraints and
leave a high degree of ambiguity. We see this as a critical problem: the models in these cases
fail to present knowledge about the structure of scenes as they cannot rely on the prompt
for specific information.

This motivates us to propose SLayR, a novel lightweight text-to-layout generation model for
expanding unconstrained prompts (e.g. “a park”, “a beach”) into a variety of plausible scene
layouts (see Figure[l] left and middle). Given a CLIP [41] embedding of a global scene prompt,
we generate the layout using rectified flow [30], with a Diffusion Transformer (DiT) [38]. As
unconstrained text-to-layout generation for general images has not been explored before, we
assess our layout’s plausibility and variety against both LLM-centric baselines and adapted
UI/document generation. The experiments show that our method produces a very high
variety, while achieving state-of-the-art plausibility in spatial arrangement.

Next, we combine our generated layouts with available layout-to-image generation models
[52, 25, 56l 26] to create a complete text-to-image pipeline. We show that the generated
images achieve the highest scores in CMMD [I7], FID [13], KID [3], and HPSv2 [54] compared
to the baselines. As true assessment of the image content is only possible by humans, we
introduce a comprehensive and repeatable human-evaluation study. The ratings show that
our model yields the state-of-the-art trade-off in generating images that are both diverse
and plausible. In addition, our pipeline is significantly more lightweight than baselines and
can be conditioned on partial layouts and directional constraints, while also providing the
ability to edit layouts.

In summary, our contributions are: 1) we introduce the first model for rectified flow-based
text-to-layout generation and show that it produces a large variety of highly plausible layouts
for challenging unconstrained prompts, 2) we establish a well-designed human-evaluation
study that can be repeated by others, and 3) demonstrate that integrating our method into
a complete text-to-layout-to-image pipeline yields state-of-the-art in achieving variety and
plausibility together. See our supplement to access source code.

2 Related Work

LLMs in Scene Layout Generation. Prior works in 2D layout generation leverage
LLMs to parse multi-object prompts into layouts, typically leveraging in-context learning
[26, 9] [7, [8]. Querying these models with unconstrained prompts frequently yields degenerate
solutions without meaningful layout information (See fig. . Given that LLM-grounded
Diffusion [26] and LLM Blueprint [9] degenerate in 90% or more cases, we do not evaluate
them further. Results on LayoutGPT [7] and Ranni [8] are provided. To control for the shift
to the unconstrained prompt domain, we also adapt the prompt template from [26] with
in-context examples from our domain, and encouragement of chain-of-thought reasoning [53],
to meaningfully assess an LLM’s capabilities for this task. For the underlying LLM, we use
GPT4o [35]

Adapting UI Generation. Our task of scene layout generation is distinct from User
Interface (UT) generation: scene and object captions are from open sets, whereas UT layouts
lack global captions and have labels from a small fixed set. Nevertheless, they can serve as
interesting baselines, and we adapt several of these models using their conditional generation



67
68
69
70
71
72
73
74
75

76
7
78
79

80
81
82
83
84
85
86
87

88

89
90
91

92
93
04
95

96
97
98

99
100

1/ > AdaLN Transformer

: é t=0 |
: :
. :

Noisy Tokens

T iterations { :
! Layout-to-Image Generator

[Frompt: Dining Room) ! a
ar i [ < O
l— : Denoised Tokens

Input 3 Layout Generation 3 Explicit Intermediate Representation 3 Image Generation

Figure 3: Method Overview. Our layout generation model takes a set of noisy tokens and
a prompt encoded as a global CLIP embedding as input. The tokens are partitioned into
bounding box information b?, reduced CLIP embeddings ¢/, and opacities o/, with j being
the object index. The tokens are then subsequently denoised from t = 0 to t = 1 using a
transformer. For visualization purposes, the user can query the generated layout with labels
and edit boxes by adding, moving or removing them. Finally, the generated layout is passed
through an off-the-shelf layout-to-image generator.

capabilities. We use LayoutTransformer [12] as a representative for autoregressive transformer
approaches, which completes a partial sequence of object bounding boxes to form an image
layout. LayoutFormer++ [I8] extends LayoutTransformer with added conditioning, but
this is not the focus of our assessment of adapted UI generation, and thus it is a redundant
baseline. We also adapt LayoutDM [16] and LayoutFlow [II] as representative baselines
for diffusion-based methods for UI generation [62, [4] [23]. For GAN-based approaches [24],
while Layout GAN++ [20] supports inter-bounding-box relationships, the Lagrange multiplier
constraint formulation cannot be adapted to support global conditioning. In contrast to our
method, Ul generation models by design do not extend into the open world scenario.

Rectified Flow. Diffusion modeling has inspired numerous variants and improvements,
one of which is rectified flow [30]. Prior works on the related text-to-image generation task
[31,[6]. An initial ablation on DDIM [50], indicates that rectified flow outperforms traditional
diffusion approaches [I4] in this setting. See the supplement for details.

Layout-to-Image Generation. We demonstrate that SLayR integrates well into down-
stream conditional diffusion models to form a complete text-to-image pipeline, with the
added benefits of an interpretable and controllable intermediate layout phase. To control
for the effect which the image generator has on the final generated image, we evaluate
our layouts across multiple layout-to-image models. Although there are a wide variety of
such models, [B] (9, [64) 511 2] [57] we select four which are publically available and have
been used successfully with LLM-driven layouts [26] [7] or have shown SOTA performance:
InstanceDiffusion [52], GLIGEN [25], BoxDiff [56], and LMD+ [26].

3 Method

The central part of our work is the text-to-layout generation module, which we combine
with the existing layout-to-image generators to form a complete text-to-image pipeline. An
overview is provided in fig. [3] and we explain the details below.

Layout Representation. We start with defining a scene representation as the basis for
our generative architecture. A training sample (x, P) is composed of a global image caption
prompt P and a set of J object tokens x = {x? € R4*5};.; . The token representation of
any single object is composed of

x) = (b || ¢ || o), (1)
where b/ = (27, y/, w’, h?) € R* encodes the bounding box coordinates, ¢/ € R%is a PCA-
reduced CLIP [41I] embedding, and o’ € R is an opacity value that defines the existence of a
specific bounding box.

Rectified Flow Preliminaries. We briefly recap the basics of rectified flow introduced
in [30]. Let I be a set of training sample indices and {x;};c; the ground-truth samples
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whose distribution we would like to learn using our model v. We linearly interpolate between
Gaussian noise x;(0) and samples x;(1) = x; across timesteps ¢ € [0, 1] as follows:

The model v is trained to take (x;(¢),t) as input and to predict the derivative of the path
between x;(0) and x;(1), which according to Equation [2] is x;(1) — x;(0). The training
objective is:

minv/o Eifll(x:(1) = x:(0)) — v(xq(t), t)|[*)at (3)

and is optimized with stochastic gradient descent. This optimization is carried out across
all available samples of the ground-truth distribution. Following [30], noisy values x;(0) are
resampled at each epoch. The end result is a network v, which is effective at predicting the
direction from a noisy sample at an intermediate timestep towards the target distribution.
Since a single evaluation may be noisy, the inference is performed by integrating over T
timesteps:

xi(1) = x(0) + S vl ), 1) 7 (4)

t=1

Our Model Architecture. Our rectified flow model is built from multihead AdaLN
transformer blocks, which can process tokens {x]},cs to iteratively denoise them [38].

The timestep ¢, bounding box coordinates bz (t), and opacity values o (t) are sinusoidally

encoded. The timestep ¢ and a linear projection of the global P;’s CLIP encoding are passed
as conditioning of the adaptive layer normalization of the transformer blocks. The tokens
represent the objects in the layout and are processed all at once.

Inference begins at ¢ = 0 with the set of tokens {x](¢)};e; = {x](0)},e, initialized from
Gaussian noise. Our model then iteratively processes and updates the tokens from ¢ = 0
tot = 1 over T iterations using eq. based on the global prompt conditioning P;. We
project this output back to the dimension of x](¢) before sinusoidal encoding, in order for the

module to serve as the rate of change of Xg (t). A single inference step can be summarized as:

[ Ohes D= T)bies + oKl = Phest— 7P 7 o)

Following eq. until ¢ = 1 yields the final layout {x(1)},c. that contains PCA-reduced
CLIP embeddings, bounding boxes, and opacities. Tokens with /(1) < 0.5 are considered
unused and discarded, please see the supplement for further explanation. For image generation,
we unproject each ¢ (1) from the PCA space back into the CLIP feature space and pass the
embeddings directly into the downstream image generation module.

For visualization of the layouts, we follow the common practice when interpreting visual
representations in natural language [19, [39] and decode CLIP embeddings to text by com-
paring them to label queries from the user, and selecting the closest query in the embedding
space. In the supplement, we explain the RePaint [32] [46] technique for rectified flow to
enable partial layout conditioning. This enables our model to be guided by partial layouts
where only some boxes or labels are given (see fig. |§[) We additionally show how we can
impose inter-bounding box positional constraints (i.e, place A to the left of B) by adding a
directional drift on the bounding boxes during inference. The ability to control our model
through these conditions allows it to also work in concert with an LLM to handle complex
prompts, where the role of the LLM is to extract the constraints from the prompt, and our
method takes care of generating the remaining unspecified scene details.

Training. To construct a training sample from the ground-truth image layout i, we create
¢} and b! for each bounding box j, and initialize o to 1. To ensure a consistent amount of
tokens, we pad the samples by adding tokens with o/ = 0 and b] = 0, and ¢ to the null
string embedding. We now treat {x}};c; = {x/(1)} e, sample {x](0)};es from Gaussian
noise, draw ¢ uniformly from [0, 1], and compute the set of tokens {x](t)};e; by adapting the
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Figure 4: Human Survey Results. Our method offers an equal or superior trade-off
between plausibility and variety across all measured layout-to-image generators, while being
a much smaller model. The error bars indicate standard error.

formula from eq. 7 which are then passed to the model as input. We refer to the output
of the model as v({x](t)};es,t, P;) and compute the training loss derived from eq. :

L= Ix1) =x}(0) = v({x](t)}jes t, P);I°. (6)

iel,jeJ

Human Evaluation. Given the novelty of our problem domain, we argue that human
evaluation is most reliable for assessing the plausibility and variety of layouts and therefore
introduce a human-evaluation study which can be repeated by others. Assessing human
opinions for these criteria directly on layouts is challenging: the evaluators require time to
understand the layout diagrams and explain them, and furthermore, assessments are hard
to make without actually seeing the image. Following the design principles presented by
Otani et al. [30] in their work on human evaluation of text-to-image generation: 1) the
(evaluation) task should be simple, and 2) results should be interpretable. Therefore, we show
participants only images, and omit the underlying image layouts entirely, which may take
effort to understand. To make the results interpretable, participants rate these images for
their plausibility and variety on a Likert scale (as recommended in Otani et al. [36]) from 1
to 5. Image qualities that are assessed in other studies (for example, the overall quality and
aesthetic appeal of the image in Liang et al. [27]) are highly dependent on the conditioned
image generator. Therefore, we consider these misleading for our case.

The study is approved by the Ethics Review Board of our institution and complies with local
wage regulations. To keep the cost of a survey below 250 USD, we survey 60 participants, who
each assess four text-to-layout generation methods at once, each providing ten plausibility
questions and ten variety ratings. To increase the stability of the results and test on a larger
sample set, each rating is for a collection of three images from the same prompt. The subset
of collections, as well as the order they are displayed to the participant, are randomized to
control for any potential effects of a fixed ordering. An expanded explanation of our survey
design, including the text instructions and screenshots of the survey, can be found in the
supplemental material.
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Figure 5: Qualitative comparison (Best viewed up close). Layout objects that are depicted
in the generated image are highlighted and labeled. From a visual inspection, having no
layout produces scenes of little variation in content. LayoutFlow’s layouts do not appear to
capture scene structure. GPT40’s layouts lack variety. Layout Transformer produces layouts
with implausible arrangements of objects, leading to images which do not depict the global
prompt accurately. Our method creates plausible and varied layouts, leading to images that
are diverse and look realistic. These observations are supported by our human evaluation in
fig. @ Zoomed-in versions of these layouts for printing are available in the supplemental.

4 Experiments

Dataset. We test our method’s ability to learn a variety of plausible scene layouts by both
training and evaluating on the full ADE20K dataset [65], which contains approximately 27K
images and ground-truth layouts for indoor and outdoor scenes, and a rich collection of object
arrangements. The sample captions reflect the scene category with no additional constraints
(e.g., “beach”; “lecture room”). We use the top 30 largest bounding boxes per sample, as
this is the default maximum number of bounding boxes supported by InstanceDiffusion
[52] and we pad samples with fewer bounding boxes. For evaluation, we use the 15 highest
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represented categories and add in five randomly selected categories to include the dataset’s
long tail distribution. For each evaluated model, we generate 30 layouts for all 20 selected
prompts, and an image conditioned on each layout and corresponding global prompt. The
size of this collection of images makes it feasible to assess the results with human evaluation.

Model | cMMD ({) | FID ({) | KID (10~?) ({) | HSPv2 (1) | Image Reward (1) | VQA (1)
LayoutFlow 0.25 0.80 0.88 0.23 —1.01 0.80
LayoutDiffusion 0.40 1.08 1.99 0.19 —2.11 0.34
LayoutTransformer 0.06 0.44 0.30 0.23 —1.00 0.75
GPT4o 0.09 0.94 0.45 0.25 —0.51 0.88
Ranni 0.07 0.71 0.30 0.25 —0.34 0.90
LayoutGPT 0.29 2.83 1.76 0.25 —0.26 0.93
Ours 0.03 0.17 0.16 0.25 —0.32 0.88

Table 1: Image Metrics Comparison. We evaluate traditional metrics and compare the
images generated from layouts of different layout generators. To avoid biases of the image
generator, we show the best score among the layout-to-image generators InstanceDiffusion
[52], GLIGEN [25], BoxDiff [56], and LMD+ [26] for each layout generator. Our method
achieves strong or state-of-the-art numbers for measured metrics. Although their metrics are
strong, Ranni and LayoutGPT are susceptible to degenerate solutions (see fig.

Baselines. We compare our method against prior works which are capable of unconstrained
layout generation. For LLM-baselines, we evaluate against LayoutGPT [7] and Ranni [g],
but discard LLM-grounded Diffusion [26] and LLM Blueprint [9], as these give degenerate
cases in 90%+ of measured cases in our domain (see fig. |2)). To see if LLM performance
can be improved with proper in-context examples, we adapt the template from [26] with
relevant in-context-learning examples from ADE20K. For the underlying LLM, we select the
large-scale LLM GPT4o [35], and refer to this baseline simply as GPT4o. The full template
is in the supplement. We test aginst the UI generators LayoutTransformer [12], LayoutDM
[16] and LayoutFlow [II] by treating the global caption as a scene-wide bounding box and
conditioning the model on this bounding box during inference. When training models, we
stuck to their respective provided training settings.

Human Evaluation. As shown in fig. [4] our model achieves a state-of-the-art balance in
image plausibility and variety across all measured layout-to-image generators: InstanceDiffu-
sion [52], GLIGEN [25], BoxDiff [56], and LMD+ [26]. The error bars indicate standard

error (s = %) of the mean human rating, calculated using numpy We assume normally

distributed errors. display the approximate number of model parameters added to the full
text-to-layout-to-image pipeline by the layout generators that can be locally run. Our model
is the smallest by over a factor 3.

Visual Results. We provide a qualitative overview of the generated layouts and the final
images in fig. |5} with InstanceDiffusion [52] as the layout-to-image model. We label bounding
boxes by querying with all text labels present within ADE20K. From a visual inspection,
LayoutTransformer struggles with arranging objects in spatially plausible manner. GPT4o
layouts appear somewhat flat, while struggling to make a variety of layouts. Our method
appears to produce both plausible and diverse images across a range of global prompts of
indoor and outdoor settings.

Generated Image Metrics. We compute established image generation metrics CMMD
[1I7], FID [13], KID [3], VQA [29], HPSv2 [54], and ImageReward [58]. CMMD, FID
and KID compare the distribution of generated images with a ground-truth distribution,
while VQA, HSPv2 and ImageReward assess general image quality and alignment with a
global caption. Since the conditioned image generator may itself lead to biases in image
generation quality, for CMMD, FID, and KID, we establish the ground-truth images
by running the layout-to-image generator on the ground-truth layouts. For each layout
generator, we display the optimal score over the possible combinations of layout and image
generator ([52, 25 (6] 26]). Images from degenerate layouts from Ranni and LayoutGPT
are discarded to more clearly assess the layout’s influence. The results are shown in table [T}
with state-of-the-art performance in CMMD, FID, KID and HSPv2, and strong results in
ImageReward and VQA.

Scene Layout Metrics, and Speed. We consider how to best assess scene layouts
for unconstrained prompts. The traditional UI generation metrics of Alignment [22] and



221
222
223
224
225
226
227
228
229
230
231
232

241

242
243
244
245
246
247
248

Conditioning Generated Layout Generated Image Conditioning Generated Layout Generated Image

= |The scene should contain
«| these objects:

ceiling « wall (2x)
curtaine sink
floor « bathtub
windowpane

Figure 6: Disentangled Generation. Disentangled generation for scenes with the prompt
Snowy Mountain with a partial layout (Left), and Bathroom with a bag of words (Right).

Overlap [24] scores are not salient, as real world images often have misaligned or overlapping
bounding boxes. Likewise, the layout-FID [I3] metric requires a layout-GAN discriminator
to compute, which we do not have in this new domain. We compute a standard mIoU
[20] averaged across sampled scene categories. To provide a more complete evaluation,
we introduce metrics aimed to quantify a generated layout’s plausibilty and variety that
we describe in full in the supplementary material. We measure the model’s generation
time on batches of 30 layout samples on an Nvidia A6000 GPU with 32 AMD Ryzen 9
5950X CPUs, 125 GB RAM, except for GPT4o that is accessed through an API. Numerical
results are provided in the supplement. Notably, we achieve the highest performance
in positional likelihood (how plausibly objects are arranged) and mlIoU. Our method
ranks second in speed only to LayoutFlow, but we observe no definitive improvement in
its layout statistics when the number of inference steps are raised to match our model’s speed.

User Action User Action

A layout for a
“Conference Room”
with a “plant”
bounding box guides
the image generation.

The “plant” is moved.
The plant is moved in
generated image.

We replace “plant”
with “painting”. The
generated image now

contains a painting

instead of a plant.

We remove the “plant”.
The plant disappears in
the generated image.

Figure 7: Editing. We show how our pipeline enables user editing of images by altering the
intermediate scene layout representation. Individual objects can be easily moved, removed,
and replaced.

Additional Model Features. We breifly highlight qualities of SLayR which make it
appealing to use: In fig. [6] we show examples of our model’s performance in different partial
layout generation settings. This feature gives users even more fine-grained control over
the image generation process. Additionally, we demonstrate how a text-to-layout-to-image
pipeline allows for editing of generated images in fig. [} This is accomplished through
modifying the intermediate scene layout, and rerunning layout-to-image generator with the
original seed and global prompt.

5 Conclusion

We have introduced a text-to-layout model, incorporating it into a text-to-image pipeline
with an intermediate and controllable layout representation. With a substantially smaller
model, we can generate images with a start-of-the-art balance in plausibility and variety,
while achieving high or state-of-the-art performance in generated image quality metrics
among competing baselines. In addition, we have introduced a suite of metrics for the new
task of scene layout generation, with which we established the foundation to explore image
generation pipelines with explicit intermediate layouts in the future.
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Supplementary Material

The supplementary material is structured as follows. First, we present the full details
of the human evaluation study performed to judge the generation quality in appendix [A]
Next, we introduce details about our partial conditioning procedure in appendix We
provide the formulae and reasoning for our novel layout metrics in appendix [C} We further
provide detailed information about training data and hyperparameters in appendix
provide access to our source code in appendix [E] discuss limitations in appendix [F] broader
impacts in appendix [G] safe guards in appendix [H] licenses in appendix [[} discussions about
LayoutTransformer and GPT4o temperatures in appendix [J] and appendix [K] respectively,
and the GPT4o query template in appendix [[J In appendix& we compare editing generated
images in a text-to-layout-to-image pipeline against a drag-editing method. In appendix [P}
we analyze the distribution of token opacities that our model produces to justify o (1) < 0.5
as our token discarding threshold Last, we provide a comparison between rectified flow and
DDIM in appendix [M] and high-resolution results in appendix [N] and appendix

At the end, we supply the checklist (Jump to appendix

A  Human Evaluation Details

Study Goal. Although our method achieves optimal performance in table[I] we aim to
confirm that these metrics, which were designed for measuring the quality of text-to-image
models, are applicable to text-to-layout-to-image models. We also want to control for the
effect which the layout-to-image model could have on the final quality, and assess how
effective the underlying layouts are in the image generation process. To this end, we provide
a human-evaluation study that can be repeated by others.

In general, we want a text-to-layout model to generate layouts that appear plausible and
are also of a large variety. However, assessing human opinions for these criteria directly on
layouts is challenging: the evaluators require time to understand the layout diagrams and
explain them, and furthermore, assessments are hard to make without actually seeing the
image. To make the study effective, we measure the effect of our model on the downstream
generated images. Image qualities that are assessed in other studies (for example, the overall
quality and aesthetic appeal of the image in Liang et al. [27]) are highly dependent on
the conditioned image generator. Therefore, we consider these misleading for our case and
introduce a suitable study in the following.

Design Principles. We follow the design principles presented by Otani et al.  [30]
in their work on human evaluation of text-to-image generation: 1) the (evaluation) task
should be simple, and 2) results should be interpretable. Following these principles, we show
participants only images, and omit the underlying image layouts entirely, which may take
some effort to understand. To make the results interpretable, participants rate these images
for their plausibility and variety on a Likert scale (as specifically recommended in Otani et
al. [36]) from 1 to 5. This way, average ratings for different layout generation models can
be meaningfully compared to each other, which would be more difficult in other systems (e.g.
using non-numbered ranking). To ensure cost efficiency, our survey must be small enough
that the data can be collected quickly and repeatedly throughout the model development,
and thus we show participants collections of images rather than singletons. We kept all of
these constraints in mind when designing our study, which is explained in further detail
below.

Study Description. Our study was developed using Qualtrics [40], a standard survey
platform. Each participant answers ten plausibility questions and ten variety questions,
meaning they rate 80 image collections in total. Each collection contains three images. We
survey 60 participants. The prompts, image collection index, and the order in which the
collections are displayed to participants is randomized to control for any potential effects of
a fixed ordering.

Survey data is selected as described in section[d] As shown in fig. [9] each survey question
shows collections of three images from each of the four methods listed above, where every
image on the screen has the same global prompt. Given the instructions from fig. [§ the
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participant must rate each collection for either their plausibility or variety. Ratings are on
a Likert scale (1 to 5, where 1 corresponds to very implausible/very low variance, and 5
corresponds to very plausible/very high variance). For plausibility, we instructed participants
to consider the overall realism of the collection, as well as how effectively it depicts the global
text prompt. For variety, we instructed users to consider the spatial arrangement of objects
in an image and implied camera angle in addition to overall image appearance.

Participant Selection and Ethics. Participants were recruited through Connect
CloudResearch, a crowdsourcing service built on Amazon Mechanical Turk that imple-
ments rigorous quality control procedures to enhance the reliability of the participant pool
in line with the study recommendations given by Otani et al. [36]. The study was approved
by the Ethics Review Board of our institution, ensuring compliance with ethical standards.
Prior to engaging in the tasks, all participants were informed about the content of the survey,
and then provided their informed consent. We did not see any risks that could be incurred
by participation in the survey, and therefore had no risks to disclose. The study was designed
to be completed within 15 minutes by each participant, who were compensated at an hourly
rate of 13.02 USD, complying with local wage regulations. This results in a total cost of 245
USD per run to assess four text-to-layout generation methods at once. Participants were
anonymized, and we did not collect any personally-identifiable information.

Section 1: Plausibility

“For the following section of the survey, you will be asked to rate collections of
images based on how plausible they appear to be, from very implausible
to very plausible. An image is considered plausible if objects within the
image are realistically and organically placed, and it is a reasonable
match to the presented caption. The images do not have to be
photorealistic to be considered plausible. You will perform ratings on 10
categories of images, and each page will contain 4 collections that you must
rate separately.”

Section 2: Variety

“For the following section of the survey, you will be asked to rate collections
of images based on their perceived variance, from very low variance to
very high variance. When judging the variance, consider criteria such
as the differences in the spatial arrangement of objects, the differences
in camera perspective, and the differences in the overall image ap-
pearance across the collection. You will perform ratings on 10 categories
of images, and each page will contain 4 collections that you must rate
separately.”

Figure 8: Full instructions to participants for both sections of the survey. Our instructions
clearly define the task and give users detailed information on what to assess

B Implementation of Partial Conditioning

We explain our adaptation of the RePaint [32] technique mentioned in section [3] which
was used for the partial layout conditioning examples in fig. [, An overview is presented in
algorithm |1l At every timestep, the intermediate sample x;(¢) is first updated with the rate
of change provided by our model (v). Then the sample is slightly adjusted to conform to a
path which will yield the values of the partial conditioning layout y; at non-null entries after
inference.

Some additional algorithm notation: The partial layout representation y; = {y}};cs is
defined like the layout representation in section [3| extended by null values &, a placeholder
value for entries of y; tokens where no conditioning is provided. To give an example, consider
a partial conditioning layout where the token y? enforces that a bounding box with the
label chair must be present in the final layout, but can have any coordinates. We set
b! = (2,9,9,9), ¢! to be the PCA-reduced CLIP embedding of the word chair and o7 =1,
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Figure 9: An example question page from our survey. Users must rate collections of 3 images
from very implausible to very plausible. The underlying layout generators for the collections
shown are (from top to bottom): No Layout, GPT4o, LayoutTransformer, and our method.
Collection order was randomized for each question presented to the participant. Users click
the button to select their rating.

and write: , o '
yi = (b [l cj [l o). (7)
The mask variable M on line 5 of our algorithm tracks which values of y; are null-values,

and masks these values out during the update on line 12. To perform this masking, we define
the arithmetic on @ as follows:

F+a=0 for a e R,
P xa=@ fora € R— {0}, (8)
g+x0=0.

We construct the drift vector d; which encodes the directional constraints. We begin by

initializing d; to 0 in all entries. Then, we add constraints. For example, if there is a
constraint that bounding box j must be left of bounding box j’, then

d] « d] +(X,0,0,0([0] 0), (9)

dl —d/ +(=1,0,0,0]0]0). (10)

where ) is a small constant.
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In the special case when no conditioning is provided or directional constraints are provided
(y; = 9,d; = 0), this algorithm is identical to the rectified flow inference presented in
section [3] of our main paper.

Algorithm 1 Partially Conditioned Layout Generation

1: conditionedInference( P, , y; , d; ):

2: T «+ 1200

3 At <« 1/T

4: 1+ 0

5: M < 0 where y; = @ otherwise 1 //Create a binary mask for the conditioning layout
6: x;(0) ~ N(0,1) //Sample the starting noise
7: while t <1 do

8: dxdit(t) — v(x;(t),t, P;) //Calculate the rate of change of x;(t) at timestep t
9: tt+ At //Update timestep t
10: x4(t) « x;(t — At) + w At //Calculate x;(t) for the next timestep
11 y;(t) < yi-t+x,00)- (1 —1¢) //Calculate conditioning update y;(t)
120 x3(t) < yi(t) O M +x,(t) © (1 — M) //Update x;(t) with conditioning in masked area
130 xi(t) + x;(t) +d; //Apply drift for all given directional constraints

14: end while
15: Return x;(1)

C Generated Layout Metrics

In the following, we introduce four metrics to assess the generated scenes layouts’ plausibility
and variety, and display their results alongside the models’ generation times.

Object Numeracy. Our metric Onym assesses whether generated layouts contain the
objects at the expected frequencies. We sample across a collection of global prompts ({F;}).
The probability distribution for expected occurrences of the object-label £ in layouts generated
from the global prompt P; is written qf, and the probability distribution derived from ground-
truth layouts is pf . Our metric is the normalized sum of KL-divergence between these two
distributions:

O it KL(pllgf) a1

Num ‘= ——— 5y
h P}

where lower scores indicate that the model produces layouts with more plausible object
numeracy. For display purposes, Onum is scaled by 102 in table

Positional Likelihoods. We introduce Zl(jlo)s, and 11(320)5 to measure how plausible the objects
in a generated layout are arranged. Let m index all bounding boxes of object-label ¢ for
prompt i. For each object-label £, we obtain a distribution k! with KDE of the object’s
bounding box (bf)m in all layouts with global prompt ¢. We compute the average likelihood
over all objects and all global prompts, to measure the first-order positional likelihood:

1) _ Tt MDY m)
P = (b))

(1)

P

s means that object bounding boxes are placed in reasonable locations

(12)

A higher value for [
in the layout.

We also want to measure the likelihood of spatial relationships between objects. Let m*
index all bounding boxes of object-label ¢'. For each object-label pair (¢,¢'), we obtain a

distribution estimated with KDE kf’[ for the difference in the bounding box dimensions. We
compute the average likelihood over all objects and all global prompts from our distributions
to measure the second order positional likelihood:

1@ _ D0l kf’[((bf)m — (b))
Fos {(B)m H({(B)m} +1)/2

(13)
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Object Positional 1st Order Positional 2nd Order Positional

Model Numeracy (4) Variance (1) Likelihood (1) Likelihood (1) mloU (1) Time (s) (1)
Ranni 383 218 2.10 0.56 .04 714
LayoutGPT 3.76 134 3.18 0.81 0.06 81
QPT4o 3.71 03 117 1.42 0.10 111.0
LayoutDM 212 65 1.47 071 0.00 138.0
LayoutFlow 3.01 142 1.48 072 0.01 0.5
LayoutFlow (More steps) 2.96 143 1.44 0.65 0.01 15.5
LayoutTransformer 0.90 231 3.00 1.21 0.15 25.0
Ours 114 187 4.76 1.93 0.17 155

Table 2: Layout Metrics, and Inference Speed. A comparison of our metrics introduced
in sectiondl Our method achieves the best on mIoU, 1st and 2nd Order Positional Likelihood,
while LayoutTransformer is highest Object Numeracy and Positional Variance. Closer
inspections in table[l] fig. [d] reveal that LayoutTransformer falls short in terms of plausibility
and image quality, indicating that it generates a large variety with plausible objects but
physically implausible layouts.

A higher value for lgo)s means that pairs of objects are plausibly positioned relative to one
another. We conduct a grid search across bandwidths with 5-fold cross validation to optimize

the KDE bandwidths for both 15 and I$)..

Positional Variance. Our metric 03 , measures the variety of bounding boxes. For
every bounding box (bf),,, we find the bounding box in layouts with global prompt i and
object label £ that is closest in Euclidean distance to the bounding box. We now redefine
{m*} as the set of indices of bounding boxes in other samples which minimize the term

|(bY) — (b )+ ||. We compute all of these Euclidean distances and take the average:

s Divm ooy 16w — (B )
OPos = *
> iem {m*}

If this metric is small, it means that the variance is low.

(14)

We provide results in table 2l We achieve the highest performance in positional likelihood
scores and mloU. While LayoutTransformer outperforms our model on object numeracy and
positional variance, we observe that the layouts lack spatial plausibility (first and second
order positional likelihood in table . This is also reflected in fig. [5f for example, the floor
in the leftmost example appears at the top and the ashcan on the rightmost example is
significantly too large. Our method ranks second in speed only to LayoutFlow, but we
observe no definitive improvement in its layout statistics when the number of inference steps
are raised to match our model’s speed.

D Training Data and Hyperparameters

Our model consists of 20 AdaLN transformer blocks with 12-headed attention. For a
token x7, we sinusoidally encode b’ into R"?, and o/ into R'®. ¢’ consists of the 30 top
principal components of the object-label’s CLIP embedding, which accounts for 77.35% of
the explainable variance of our embeddings found in our training data. The timestep ¢
is sinusoidally encoded into R, while the CLIP embedding of a global prompt ¢ is down-
projected by a trainable linear layer into R'7 before interfacing with the AdaLN block.

When reporting model parameters, we include all transformer block weights and attached
linear layers, including the PCA projection matrices. Given that CLIP dominates the number
of parameters, it is a necessary subcomponent for InstanceDiffusion, and needed to form any
complete text-to-image pipeline, we factor it out.

We train our model for 2000 epochs using stochastic gradient descent with learning rate
A = 0.0005 and a batch size of 32, using the Adam optimizer. We train on a Nvidia A100 GPU
with 16 Intel Xeon Platinum Prozessor 8360Y CPUs with 244 GB RAM for approximately
20 hours. Baselines were trained according to their original training regimes on these same
resources.

Due to limited compute, we did not have the resources to ablate these hyperparameters,
and chose them as they yielded stable training and computational efficiency. In future work,
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we hope to do so. Additionally, we evaluate on the full split of ADE20K, as spitting into
evaluation, and then further splitting up into scene categories needed for evaluation, would
leave very few samples left, causing concerns about stability. In future work, we hope to
address this issue by scaling to larger datasets.

E Data and Code Access

We provide the code to our method, baselines, evaluations, and model weights at https:
//huggingface.co/AnonymousSubmission42/SLayR. Please download and unzip all files,
and begin with the README.md in SLayr.zip.

F Limitations

One limitation of our work is that we do not currently scale up to large scale datasets such
as MSCOCO [28] or LAION 5B [47] after it is passed through a layout annotation pipeline
as in [52]. We did not scale up due both to lack of sufficient compute resources, and because
our UI generation baselines CANNOT scale to an open set of captions. Therefore, to study
the largest possible range of models, we focus primarily on this smaller dataset. For future
work, we would like to investigate how the model scales up.

Another limitation is that SLayR does not directly produce text, rather a CLIP embedding
which must then be mapped to text. However, this is standard practice in other vision
fields such as 3D language fields ([19, [39]). In future work, we hope to experiment with text
decoders to directly produce text.

As mentioned in appendix [D] we did not have enough compute to conduct desired ablations
on our hyperparameters. In future work, we hope to optimize the hyperparameter search
space.

G Broader Impacts

We acknowledge that research towards text-to-image generative Al can be misused for the
purposes of deep fakes or plagiarism of artistic content.

H Safeguards

We have trained our model exclusively on publicly available and curated datasets to mitigate
the risk of generating inappropriate content.

In our code README, we also implore users to refrain from using our model for deep fake
generation.

I Licenses

Models:

o LayoutTransformer [12]: https://github.com/kampta/DeepLayout, Apache 2.0
https://www.apache.org/licenses/LICENSE-2.0

o LayoutFlow [II]: |https://github.com/JulianGuerreiro/LayoutFlow, MIT
https://opensource.org/license/mit

o LayoutDM [I6]: https://github.com/CyberAgentAILab/layout-dm Apache 2.0
https://www.apache.org/licenses/LICENSE-2.0

o Ranni [8]: https://github.com/ali-vilab/Ranni, Apache 2.0 https://www,
apache.org/licenses/LICENSE-2.0
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o LLM-Blueprint [9], https://github.com/hananshafi/llmblueprint, no license

could be found, however use of the repo, with proper citation, is encouraged in
README.md.

o LayoutGPT [7]: https://github.com/weixi-feng/LayoutGPT, MIT https://
opensource.org/license/mit

o LLM-GroundedDiffusion [26]: https://github.com/TonyLianLong/
LLM-groundedDiffusion, no license could be found, however use of the
repo, with proper citation, is encouraged in README.md.

Metrics:

o CMMD [I7]: https://github.com/sayakpaul/cmmd-pytorch, Apache 2.0 https:
//www .apache.org/licenses/LICENSE-2.0

o« FID [13]: https://github.com/Lightning-AI/torchmetrics/blob/master/
src/torchmetrics/image/inception.py, Apache 2.0 https://www.apache.org/
licenses/LICENSE-2.0

o KID [3]: https://github.com/Lightning-AI/torchmetrics/blob/master/src/
torchmetrics/image/kid.py, Apache 2.0 https://www.apache.org/licenses/
LICENSE-2.0

o VQA [29]: https://github.com/linzhiqiu/t2v_metrics, Apache 2.0 https://
www.apache.org/licenses/LICENSE-2.0

o« HPSv2 [54] : https://github.com/tgxs002/HPSv2, Apache 2.0 https://www!
apache.org/licenses/LICENSE-2.0

o ImageReward [58]: https://github.com/zai-org/ImageReward, Apache 2.0
https://www.apache.org/licenses/LICENSE-2.0

Packages:

o matplotlib: BSD https://github.com/nilearn/nilearn/blob/main/LICENSE
e pytorch: https://github.com/pytorch/pytorch/blob/main/LICENSE

Datasets:

o ADE20K][65]: https://ade20k.csail.mit.edu/ BSD-3 https://opensource)
org/license/BSD-3-Clause

J LayoutTransformer Temperature

Throughout our main paper, we maintained LayoutTransformer defaulttemperature param-
eter equal to one. However, the question arises whether the generated layouts would be
higher quality at lower temperatures, where the model’s output is more stable. As shown
in table 3| even when we select the lowest temperature of zero for optimal stability, we are
still not measuring a decisive improvement across numerical metrics, therefore we kept the
temperature at its original setting of one to remain as faithful as possible to the prior work.

Model FID (}) KID (10 2)(}) CMMD (}) Oxum(d) I5(107H)(1) 12,1071 (1)  0Be(1)
LayoutTransformer temp= 1 0.44 0.94 1.34 0.90 3.09 1.21 231
LayoutTransformer temp= 0 0.48 0.92 1.77 4.11 3.73 1.53 0
Ours 0.17 0.27 0.03 1.14 4.76 2.03 187

Table 3: Comparison of metrics LayoutTransformer with a temperature of one (model default)
and a temperature of zero. Even when the temperature is zero, we see that our method still
performs better across our metrics.
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Figure 10: Example layouts and images for LayoutTransformer when temp=0. Even at the
most stable setting, the images appear implausible. Objects that are typically small details,
such as bag, glass, or bottle repeated many times across the layout.

K GPT40 Temperature

Because we observed low image variance for GPT4o layouts, we also considered what would
happen if we raised the temperature of GPT4o0 from the default 0.25 as set in LLM-grounded
Diffusion to achieve more variety.

We experimented with increasing the temperature from 0.2 in increments of 0.1. We found
that at a temperature of 1, GPT4o failed to produce a parsable layout 14% of the time.
However, these mistakes were easy to catch and query the model again. Temperatures higher
than 1 caused more frequent parsing failures, and began to produce long, tangential sentences
rather than proper object labels. Without a method to heuristically filter these responses,
we settled on a temperature of one as a reasonable upper limit for operation temperature of
GPT4o0 on this task.

We compare the performance of GPT40 with a temperature of one with our method, and
GPT4o with the default temperature in table dl Our model still outperforms GPT4o
when the temperature is one in FID and KID. While raising the temperature improves the
object numeracy score Onyum and the positional variance score o3 improve in GPT40 when

the temperature is raised, they are still worse than our method, and come at the cost of

decreased performance in the positional likelihood scores lgo)s and lgo)s. Therefore, raising
the temperature does not offer a clear advantage on our numerical metrics.

We also visualized outputs of GPT4o with the raised temperature in fig. Although
there is some increase in the variation of scenes, the effect does not appear to be noticeably
pronounced. Therefore, we choose to stick with a temperature of 0.25 for our human
evaluation, as this is the most faithful adaptation of our LLM-grounded Diffusion baseline,
without neglecting a clear optimization.
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Model FID (1) KID (107%)(}) CMMD (1) Oxum(}) [0L(107')(1) 12.(107)(1)  oB,.(1)

GPT40 temp=0.25 0.94 0.99 1.34 3.71 4.37 1.49 93
GPT4o temp=1 1.47 1.62 1.35 2.86 4.02 1.35 142
Ours 0.17 0.27 0.03 1.14 4.76 2.03 187

Table 4: Comparison of metrics GPT4o with a temperature of 0.25 (adapted model default)
and one (highest stable temperature). At increased temperatures, GPT4o0 performs worse on
the FID and KID metrics. Although increasing the temperature of GPT40 improves Oxum
(the object frequencies are closer to the ground truth) and 012:05 (the layouts are more varied
overall), performance on lgo)s and lgo)s drops (the positions of the objects are less plausible).
Our method still performs better in all displayed metrics.

(building] (building) (building] (building] (building) (building]
(tree) (tree]
= lamp post lamp post =
o
| | (sidewalk] I
I ]
(sidewalk]
car car| -
d Ik
|_|@ (sidewalk] |_|E

Figure 11: Example images and underlying layouts of the prompt street for GPT40 when the
temperature is one, the highest stable temperature. Visually, there is slightly more variation
than at a temperature of 0.25, (see fig. , but this is not a pronounced effect: positions
and quantities of objects, and implied camera angle, are still very repetitive.

L GPT40 Query Template

We adapted the prompt template from LLM-grounded Diffusion by replacing the old scene
caption and layout examples with ground truth data from ADE20k and encourage chain of
thought reasoning [53]. Our LLM prompt is listed in fig. Our in-context examples are
listed in table Bl
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1 Task Description and Rules

2 You are a smart program for automatic image layout generation. I provide you
with a global prompt which describes the entire image. The image
layout has a height of 512 and a width of 512. The coordinate system
assumes the origin (0,0) is in the top left corner. Bounding box
coordinates are specified in the format (X,y,w,h), where x and y are
the top left corner coordinate, and w and h are the full width and
height of the box. Your task is to imagine which objects reasonably
belong in an image with a global prompt, and arrange these objects in
into a layout which could plausibly be for a real image.

4 Meta Command

5 Reason about the objects added to the layout For each object reason about its
position in the layout relative to the other objects, and why it is
likely. In general maintain a plausible configuration of the objects
within the image layout such that the coordinates obey our coordinate
convention. Do not number the objects, instead put them in a list
in the exact format shown below. Remember to include the caption,
background prompt and negative prompt in the layout.

7 [ In - context Examples ]

9 Question
10 Provide the layout for a "{promptl}"

Figure 12: Our full prompt to the LLM for layout generation. LLM starts completions from
“Objects.”
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Provide a layout for an "airport terminal"

Answer:

Caption: An airport terminal

Objects: [(’ceiling’,[1, O, 510, 292]), (’floor’, [0,
360, 468, 151]), (’wall’, [0, 337, 152, 152]),
(*wall’, [3, 193, 182, 100]),(’first floor’, [353,
262, 158, 961),(°wall’, [353, 207, 158, 86]),(’first
floor’, [0, 264, 136, 93]1), (’plant’, [177, 398, 158,
78]1), (’fountain’, [197, 376, 122, 79]),(’first
floor’,[134, 310, 265, 30]),(’wall’,[398, 343, 68,
1171), (°wall’, [467, 330, 44, 172]),(’wall’,[190,
270, 157, 42]1),(’column’,[65, 159, 30,
1571), (’column’, [0, 76, 19, 242]),(’column’, [442, 153,
30, 141]1),(’wall’, [275, 336, 123, 33]),(’wall’,[134,
340, 129, 31]1),(’fence’,[331, 394, 44, 83]),(’first
floor’,[110, 282, 86, 39]),(’column’, [404, 171, 23,
139]), (°wall’, [239, 499, 272, 12]),(’column’, [113,
175, 22, 144]),(’seat’, [187, 478, 134,
171), (’column’, [380, 193, 19, 117]),(’fence’, [134,
403, 40, 53]),(’column’,[145, 196, 18,
116]), (°tree’, [345, 324, 34, 45]),(’tree’,[43, 404,
30, 49]1),(’tree’,[150, 329, 32, 45])]

Background prompt: an airport terminal

Negative prompt: empty

Reasoning: Airport terminals contain many walls and columns,
and have a floor and ceiling. They also contain
seats for passengers to wait in as well as decorative
trees

Provide a layout for an "schoolhouse"

Answer:

Caption: schoolhouse

Objects: [(’sky’,[0, O, 510, 431]),(’building’, [22, 23, 460,
465]),(’tree’,[1, 0, 173, 200]),(’grass’, [0, 449, 510,
611), (*tree’, [422, 129, 83, 281]),(’tree’,[1, 202,
44, 254]1),(’path’, [0, 478, 308, 27]),(’grass’, [0, 469,
201, 27]1),(°plant’,[42, 412, 71, 76]),(’plant’, [399,
417, 56, 69]), (’person’,[229, 412, 33, 64]),(’car’, [3,
444, 40, 29]),(’tree’, [0, 431, 41, 23]),(’tree’, [472,
426, 37, 231)1]

Background prompt: schoolhouse

Negative prompt: empty

Reasoning: A schoolhouse is typically a building. The layout
could include a path, students, trees, plants, and a
car in the schoolyard.

Provide a layout for an "ball pit"

Answer:

Caption: ball pit

Objects: [(’inflatable park’,[1, O, 510, 510]), (’person’,[85,
42, 313, 398]),(°ball’, [451, 292, 48,
691),(°ball’, [77, 253, 46, 61]),(’ball’, [416, 278,
40, 58]),(’ball’, [475, 265, 34, 68]),(’ball’, [371,
240, 39, 55]1),(’ball’, [430, 246, 40, 47])]

Background prompt: ball pit

Negative prompt: empty
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Reasoning: A ball pit is an inflatable park with balls and
people. The layout could include a person playing in
the ball pit and colorful balls scattered around the
inflatable park.

Provide a layout for an "jail cell"

Answer:

Caption: jail cell

Objects: [(’bar’,[0, 0, 510, 512]),(’floor’, [24, 304, 390,
206]), (’wall’, [296, 16, 156, 482]),(’wall’,[72, 4,
232, 302]),(’bed’, [174, 256, 234, 196]),(’cell’, [462,
26, 48, 484]),(’wall’,[20, 4, 50, 458]),(’shelf’,[66,
48, 242, 20]),(’sink’,[152, 194, 40, 54])]

Background prompt: jail cell

Negative prompt: empty

Reasoning: A jail cell typically has bars, walls, a floor, and
a bed. The layout could include a cell door, a shelf,
and a sink.

Provide a layout for an "badlands"

Answer:

Caption: badlands

Objects: [(’earth’,[0, 199, 334, 267]),(’earth’,[68, 201,
453, 144]1),(’hill’, [0, 106, 512, 118]),(’sky’, [0,
0, 512, 116]),(’earth’, [194, 334, 316,
1771), (Cwater’, [34, 218, 301, 128]),(’tree’, [0, 369,
236, 142]),(’rock’,[0, 381, 97, 83]),(’person’, [463,
273, 18, 711),(’tripod’, [450, 289, 5, 38]), (’photo
machine’, [449, 283, 8, 8])]

Background prompt: badlands

Negative prompt: empty

Reasoning: Badlands are characterized by eroded rock
formations, so the layout could include earth, hills,
rocks, and trees. The badlands may also have water,
a person, a tripod, and a photo machine.

Provide a layout for an "art gallery"

Answer:

Caption: art gallery

Objects: [(’wall’,[224, 36, 287, 360]),(’floor’, [0, 323, 512,
188]), (*wall’, [0, 84, 226, 261]),(’ceiling’, [0, O,
511, 112]),(°board’, [306, 153, 205, 140]), (’board’, [0,
170, 250, 102]),(’double door’,[251, 176, 55,
168]1), (°grill’, [378, 260, 21, 91]),(’grill’, [338,
257, 20, 85]),(’vent’, [248, 22, 47,
191), (’drawing’, [490, 196, 21, 40]), (’spotlight’, [453,
32, 17, 491),(’drawing’,[8, 194, 18,
35]), (’spotlight’, [381, 54, 14, 43]),(’drawing’, [456,
241, 22, 25]),(’spotlight’, [279, 83, 15,
35]), (’spotlight’, [320, 71, 14, 38]),(’drawing’, [391,
187, 17, 30]), (’drawing’, [314, 201, 20,
26]),(’vent’, [6, 45, 36, 13]),(’spotlight’, [259,
88, 12, 341),(’drawing’, [420, 196, 14,
28]), (°drawing’, [445, 204, 18, 22]),(’drawing’, [409,
239, 13, 28]),(’spotlight’,[234, 97, 11,
32]),(°drawing’, [43, 195, 18, 18]),(’drawing’, [351,
181, 12, 27]),(’drawing’, [135, 237, 17,
19]1), (’drawing’, [40, 227, 14, 23]),(’drawing’, [205,
200, 11, 271)]
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46 Background prompt: art gallery

47 Negative prompt: empty

48 Reasoning: An art gallery is indoors, so it has walls, a
floor, and a ceiling. It can also have boards for
displaying art, doors, grills, vents, and spotlights.
The art gallery may have drawings on the walls and
spotlights to illuminate the art.

49 Provide a layout for an "art gallery"

50 Answer:

51 Caption: window seat

52 Objects: [(’seat’,[2, 172, 507, 337]),(’floor’,[28, 322,

482, 187]1),(’wall’,[102, O, 266, 228]),(’wall’, [0,

0, 109, 510]1),(’person’, [222, 20, 133,

390]1),(’wall’, [363, 0, 146, 324]), (’windowpane’, [140,
0, 204, 69]), (’windowpane’, [0, 0, 102,

122]), (’windowpane’, [388, 0, 122, 75]),(’hat’, [375,
157, 80, 69]1)]

53 Background prompt: window seat
54 Negative prompt: empty
59 Reasoning: A window seat typically has a seat, walls, and a

floor. The layout could include a person sitting on
the seat, looking out the window, and wearing a hat.

Table 5: Our in-context examples. We use fixed in-context examples for layout generation.

M Comparison to DDIM

We initially considered a DDIM [50] based approach rather than rectified flow. However,
early experiments showed less promise in this direction. DDIM models struggled with
generating the correct CLIP embeddings, leading to meaningless images that did not match
the prompt, whereas rectified flow-based approaches were more successful without needing
to search the hyperparameter space.

We provide an example here, from a model with an identical architecture to our presented
model (including all hyperparameters specified in zauppendix@l7 except it is trained with a
DDIM training objective and performs DDIM inference (with a log-linear noise schedule
from o = 0.02 to 0 = 1). This is not an exhaustive search by any means, but is intended as
a point-of-reference for other researchers.

We show our statistics in table [6] and some visual examples from the model in fig. We
speculate that the straighter transit paths of samples rectified flow [30] increases the model’s
ability to effectively learn high dimensional data like the PCA-reduced CLIP embeddings.

Model FID (J) KID (107%)()) CMMD (}) Onun(l) 1o(t) Ul (1)  ofu(D)
Ours (DDIM) 0.95 8.60 1.77 7.89 4.33 0.01 239
Ours (Rectified Flow) 0.17 0.27 0.03 1.91 4.76 2.03 187

Table 6: Generated image metrics, and our generated layout numerical metrics applied on our
model architecture with DDIM or rectified flow. Our model performs better on everything
except positional variance U%OS, but this is at the cost of the layouts being largely nonsense

(see fig.

N Additional Images and Layouts

Here we present additional examples of our model’s generated layouts, and conditionally
generated images, for the prompts bedroom (fig. [14)), mountain (fig. [15)), and kitchen (fig. [L6)).
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Figure 13: Our Model with DDIM instead of Rectified Flow - Street. The bounding box
labels match poorly to the desired scene, and the resulting images appear to be implausible.

O Editing Capabilities: Comparison with Drag-based
Manipulation Methods

In fig. [7} we show how a pipeline using our model supports image editing functionalities
like relocating or removing objects. Here, we compare these capabilities against Readout
Guidance [33], which enables users to move visual elements via guidance arrows.

As shown in fig. Readout Guidance fails to relocate the plant to the floor when instructed,
wheras our method suceeds. We also try to fully remove objects with Readout Guidance
by dragging them to the far edge of the image. In this case, the former plant location is
replaced with a black patch, not a realistic inpainting.

Results in Readout Guidance are primarily for small transformations, and our case study
suggests it might struggle with longer range manipulations. Thus, text-to-layout-to-image
approach with explicit layout-based explicit control can be a more attractive approach to
editing generated images, as it seems to perform more strongly.

P Selecting the Opacity Threshold 0.5

We visualize the distribution of generated o (1) of our model on the ADE20K benchmark in
fig. The values cluster around 0 and 1, meaning the model makes a strong distinction

between which tokens should be recognized or ignored in a scene layout. We select a{ (1)< 0.5
as a unbiased threshold.

Q Print-ready Main Results Diagram

For readers who prefer the document on paper, we include our visual results diagram from
fig. [p| at a size where the annotations are large enough to be printed clearly. The annotations
can also be zoomed into on our main document.
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Figure 15: Ours - Mountain.

mountain mountain mountain
_ | |
mountain i
mountain| | mountain
[mountain

person

mountain
mountain
tree
mountain
(mountain]
mountain]
building

27




cabinet

work surface

cabinet

kitchen island

Lwork surface

cabinet

]

(fuceq

(windowpane] T

coffee maker

(refrigerator

[work surface

work surface

Figure 16: Ours - Kitchen.

Generated

. Our Generated . Image by
Edited Layout Image Arrow Diagram Readout
Guidance

Image
Relocation

Image
Removal

Figure 17: Comparison of editing abilities. Each row

relocating the plant, Bottom: removing the plant.
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Kernel Density Plot of Opacities
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Figure 18: Opacity KDE Opacities generated by our model cluster towards 0 and 1, the
ground truth opacities shown during training.

Figure 19: No Layout - Living Room.

Figure 20: No Layout - Roof Top
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Figure 21: No Layout - Street
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Figure 22: GPT4o - Living Room.
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Figure 23: GPT4o - Roof Top.
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Figure 24: GPT4o - Street.
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NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately
reflect the paper’s contributions and scope?

Answer: [Yes|

Justification: At the end of our introduction we supply our claims (1) we introduce
the first model for rectified flow-based text-to-layout generation and show that it
produces a large variety of highly plausible layouts for challenging unconstrained
prompts, 2) we establish a well-designed human-evaluation study that can be
repeated by others, and 3) demonstrate that integrating our method into a complete
text-to-layout-to-image pipeline yields state-of-the-art in achieving variety and
plausibility together. See our supplement to access source code.), which we support
through our findings in the paper

Guidelines:

o The answer NA means that the abstract and introduction do not include the
claims made in the paper.

o The abstract and/or introduction should clearly state the claims made, including
the contributions made in the paper and important assumptions and limitations.
A No or NA answer to this question will not be perceived well by the reviewers.

e The claims made should match theoretical and experimental results, and reflect
how much the results can be expected to generalize to other settings.

e It is fine to include aspirational goals as motivation as long as it is clear that
these goals are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the
authors?

Answer: [Yes|
Justification: We discuss the limitations in appendix [F]
Guidelines:

o The answer NA means that the paper has no limitation while the answer No
means that the paper has limitations, but those are not discussed in the paper.

e The authors are encouraged to create a separate "Limitations" section in their
paper.

e The paper should point out any strong assumptions and how robust the results
are to violations of these assumptions (e.g., independence assumptions, noiseless
settings, model well-specification, asymptotic approximations only holding
locally). The authors should reflect on how these assumptions might be violated
in practice and what the implications would be.

e The authors should reflect on the scope of the claims made, e.g., if the approach
was only tested on a few datasets or with a few runs. In general, empirical
results often depend on implicit assumptions, which should be articulated.

e The authors should reflect on the factors that influence the performance of the
approach. For example, a facial recognition algorithm may perform poorly when
image resolution is low or images are taken in low lighting. Or a speech-to-text
system might not be used reliably to provide closed captions for online lectures
because it fails to handle technical jargon.

e The authors should discuss the computational efficiency of the proposed algo-
rithms and how they scale with dataset size.

o If applicable, the authors should discuss possible limitations of their approach
to address problems of privacy and fairness.

o While the authors might fear that complete honesty about limitations might
be used by reviewers as grounds for rejection, a worse outcome might be that
reviewers discover limitations that aren’t acknowledged in the paper. The
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authors should use their best judgment and recognize that individual actions in
favor of transparency play an important role in developing norms that preserve
the integrity of the community. Reviewers will be specifically instructed to not
penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assump-
tions and a complete (and correct) proof?

Answer: [NA]
Justification: Our method does not provide theoretical results.
Guidelines:

e The answer NA means that the paper does not include theoretical results.

e All the theorems, formulas, and proofs in the paper should be numbered and
cross-referenced.

o All assumptions should be clearly stated or referenced in the statement of any
theorems.

e The proofs can either appear in the main paper or the supplemental material,
but if they appear in the supplemental material, the authors are encouraged to
provide a short proof sketch to provide intuition.

o Inversely, any informal proof provided in the core of the paper should be
complemented by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce
the main experimental results of the paper to the extent that it affects the main
claims and/or conclusions of the paper (regardless of whether the code and data are
provided or not)?

Answer: [Yes]

Justification: Our method section section [3] describes our architecture, and we
provide hyperparameters in appendix [D] Although we cover the major details there,
any details we might have missed can be ascertained from our code, provided in
appendix [E] We provide details on our human survey method in appendix [A]

Guidelines:

e The answer NA means that the paper does not include experiments.

o If the paper includes experiments, a No answer to this question will not be
perceived well by the reviewers: Making the paper reproducible is important,
regardless of whether the code and data are provided or not.

o If the contribution is a dataset and/or model, the authors should describe the
steps taken to make their results reproducible or verifiable.

e Depending on the contribution, reproducibility can be accomplished in various
ways. For example, if the contribution is a novel architecture, describing the
architecture fully might suffice, or if the contribution is a specific model and
empirical evaluation, it may be necessary to either make it possible for others
to replicate the model with the same dataset, or provide access to the model. In
general. releasing code and data is often one good way to accomplish this, but
reproducibility can also be provided via detailed instructions for how to replicate
the results, access to a hosted model (e.g., in the case of a large language model),
releasing of a model checkpoint, or other means that are appropriate to the
research performed.

e While NeurIPS does not require releasing code, the conference does require all
submissions to provide some reasonable avenue for reproducibility, which may
depend on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it

clear how to reproduce that algorithm.
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(b) If the contribution is primarily a new model architecture, the paper should
describe the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there
should either be a way to access this model for reproducing the results or a
way to reproduce the model (e.g., with an open-source dataset or instructions
for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which
case authors are welcome to describe the particular way they provide for
reproducibility. In the case of closed-source models, it may be that access to
the model is limited in some way (e.g., to registered users), but it should be
possible for other researchers to have some path to reproducing or verifying
the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient
instructions to faithfully reproduce the main experimental results, as described in
supplemental material?

Answer: [Yes]

Justification: In appendix [E] we provide a link to our data and code.

. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits,
hyperparameters, how they were chosen, type of optimizer, etc.) necessary to
understand the results?

Answer: [Yes]

Justification: We provide information on our data in section [4] and information
and explanations of our optimizer and hyperparameters in appendix [D] We provide
details on our human survey method in appendix [A]

Guidelines:

e The answer NA means that the paper does not include experiments.

e The experimental setting should be presented in the core of the paper to a level
of detail that is necessary to appreciate the results and make sense of them.

e The full details can be provided either with the code, in appendix, or as
supplemental material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other
appropriate information about the statistical significance of the experiments?

Answer: [Yes]
Justification: In section [4] we explain our standard error bars shown in fig. [
Guidelines:

e The answer NA means that the paper does not include experiments.

e The authors should answer "Yes" if the results are accompanied by error bars,
confidence intervals, or statistical significance tests, at least for the experiments
that support the main claims of the paper.

e The factors of variability that the error bars are capturing should be clearly
stated (for example, train/test split, initialization, random drawing of some
parameter, or overall run with given experimental conditions).

e The method for calculating the error bars should be explained (closed form
formula, call to a library function, bootstrap, etc.)

o The assumptions made should be given (e.g., Normally distributed errors).

o It should be clear whether the error bar is the standard deviation or the standard
error of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors
should preferably report a 2-sigma error bar than state that they have a 96%
ClI, if the hypothesis of Normality of errors is not verified.

37



866
867
868

869
870
871

872

873
874
875

876

877
878
879

880

881

882
883

884
885

886
887
888

889

890
891

892

893
894

895

896

897

898
899

900

901

902

903
904

905

906

907

908

909
910

911
912
913
914

8.

10.

e For asymmetric distributions, the authors should be careful not to show in
tables or figures symmetric error bars that would yield results that are out of
range (e.g. negative error rates).

o If error bars are reported in tables or plots, The authors should explain in the
text how they were calculated and reference the corresponding figures or tables
in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the
computer resources (type of compute workers, memory, time of execution) needed
to reproduce the experiments?

Answer: [Yes]

Justification: We describe inference compute resources in section [4] (see speed
measurement explanations), display the model parameter counts in fig. and
explain training resources in appendix

Guidelines:

e The answer NA means that the paper does not include experiments.

e The paper should indicate the type of compute workers CPU or GPU, internal
cluster, or cloud provider, including relevant memory and storage.

e The paper should provide the amount of compute required for each of the
individual experimental runs as well as estimate the total compute.

e The paper should disclose whether the full research project required more
compute than the experiments reported in the paper (e.g., preliminary or failed
experiments that didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with
the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelinesf?

Answer: [Yes]

Justification: We have reviewed the code and found no violations. Furthermore, we
explain the ethics of our crowd sourced experiments in checklist items below.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code
of Ethics.

e If the authors answer No, they should explain the special circumstances that
require a deviation from the Code of Ethics.

o The authors should make sure to preserve anonymity (e.g., if there is a special
consideration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and
negative societal impacts of the work performed?

Answer: [Yes]
Justification: We discuss broader impacts in appendix [G]
Guidelines:

e The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no
societal impact or why the paper does not address societal impact.

o Examples of negative societal impacts include potential malicious or unintended
uses (e.g., disinformation, generating fake profiles, surveillance), fairness consid-
erations (e.g., deployment of technologies that could make decisions that unfairly
impact specific groups), privacy considerations, and security considerations.
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11.

12.

e The conference expects that many papers will be foundational research and
not tied to particular applications, let alone deployments. However, if there
is a direct path to any negative applications, the authors should point it out.
For example, it is legitimate to point out that an improvement in the quality
of generative models could be used to generate deepfakes for disinformation.
On the other hand, it is not needed to point out that a generic algorithm for
optimizing neural networks could enable people to train models that generate
Deepfakes faster.

e The authors should consider possible harms that could arise when the technology
is being used as intended and functioning correctly, harms that could arise when
the technology is being used as intended but gives incorrect results, and harms
following from (intentional or unintentional) misuse of the technology.

o If there are negative societal impacts, the authors could also discuss possible
mitigation strategies (e.g., gated release of models, providing defenses in addition
to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a
system learns from feedback over time, improving the efficiency and accessibility
of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for
responsible release of data or models that have a high risk for misuse (e.g., pretrained
language models, image generators, or scraped datasets)?

Answer: [Yes]
Justification: We discuss safe guards in appendix [H]
Guidelines:

e The answer NA means that the paper poses no such risks.

o Released models that have a high risk for misuse or dual-use should be released
with necessary safeguards to allow for controlled use of the model, for example
by requiring that users adhere to usage guidelines or restrictions to access the
model or implementing safety filters.

o Datasets that have been scraped from the Internet could pose safety risks. The
authors should describe how they avoided releasing unsafe images.

o We recognize that providing effective safeguards is challenging, and many papers
do not require this, but we encourage authors to take this into account and
make a best faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models),
used in the paper, properly credited and are the license and terms of use explicitly
mentioned and properly respected?

Answer: [Yes]
Justification: We discuss licenses in appendix []]
Guidelines:

e The answer NA means that the paper does not use existing assets.

e The authors should cite the original paper that produced the code package or
dataset.

e The authors should state which version of the asset is used and, if possible,
include a URL.

o The name of the license (e.g., CC-BY 4.0) should be included for each asset.

o For scraped data from a particular source (e.g., website), the copyright and
terms of service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in
the package should be provided. For popular datasets, paperswithcode.com/
datasets| has curated licenses for some datasets. Their licensing guide can help
determine the license of a dataset.
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13.

14.

15.

o For existing datasets that are re-packaged, both the original license and the
license of the derived asset (if it has changed) should be provided.

e If this information is not available online, the authors are encouraged to reach
out to the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the
documentation provided alongside the assets?

Answer: [Yes]

Justification: We provide a link to our source code repository in appendix [E] There
there is further documentation.

Guidelines:

e The answer NA means that the paper does not release new assets.

o Researchers should communicate the details of the dataset/code/model as part
of their submissions via structured templates. This includes details about
training, license, limitations, etc.

o The paper should discuss whether and how consent was obtained from people
whose asset is used.

o At submission time, remember to anonymize your assets (if applicable). You
can either create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does
the paper include the full text of instructions given to participants and screenshots,
if applicable, as well as details about compensation (if any)?

Answer: [Yes] .
Justification: In appendix[A] we include the instruction text given to the participants,

as well as a screenshot from a sample survey page. We also provide details on the
participants’ compensation, which obeys local wage regulations.

Guidelines:

e The answer NA means that the paper does not involve crowdsourcing nor
research with human subjects.

e Including this information in the supplemental material is fine, but if the main
contribution of the paper involves human subjects, then as much detail as
possible should be included in the main paper.

e According to the NeurIPS Code of Ethics, workers involved in data collection,
curation, or other labor should be paid at least the minimum wage in the
country of the data collector.

Institutional review board (IRB) approvals or equivalent for research
with human subjects

Question: Does the paper describe potential risks incurred by study participants,
whether such risks were disclosed to the subjects, and whether Institutional Review
Board (IRB) approvals (or an equivalent approval/review based on the requirements
of your country or institution) were obtained?

Answer: [Yes]

Justification: As written in appendix [A] the study was approved by our Institutional
Review Board (referred to as the Ethics Review Board of our institution within
the text). We also could not see any risks to the participants from participation in
our survey, and therefore had nothing clear to disclose. However, we still informed
participants with a summary of the survey and asked for their informed consent
before they proceeded, in order to best ensure participant safety.

Guidelines:

e The answer NA means that the paper does not involve crowdsourcing nor
research with human subjects.
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1020 o Depending on the country in which research is conducted, IRB approval (or

1021 equivalent) may be required for any human subjects research. If you obtained
1022 IRB approval, you should clearly state this in the paper.

1023 e We recognize that the procedures for this may vary significantly between insti-
1024 tutions and locations, and we expect authors to adhere to the NeurIPS Code of
1025 Ethics and the guidelines for their institution.

1026 e For initial submissions, do not include any information that would break
1027 anonymity (if applicable), such as the institution conducting the review.

1028 16. Declaration of LLM usage

1029 Question: Does the paper describe the usage of LLMs if it is an important, original,
1030 or non-standard component of the core methods in this research? Note that if
1031 the LLM is used only for writing, editing, or formatting purposes and does not
1032 impact the core methodology, scientific rigorousness, or originality of the research,
1033 declaration is not required.

1034 Answer: [NA] .

1035 Justification: LLMs were not used for any of the core methods or writing of this
1036 paper.

1037 Guidelines:

1038 e The answer NA means that the core method development in this research does
1039 not involve LLMs as any important, original, or non-standard components.
1040 o Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
1041 for what should or should not be described.
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