
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SRPCA: SPARSE REVERSE OF PRINCIPAL COMPO-
NENT ANALYSIS FOR FAST LOW-RANK MATRIX COM-
PLETION

Anonymous authors
Paper under double-blind review

ABSTRACT

Supervised and unsupervised learning methods experience a decline in perfor-
mance when applied to incomplete, corrupted, or noisy datasets. Matrix comple-
tion is a common task to impute the missing values in sparsely observed ma-
trices. Given a matrix X ∈ Rm×n, low-rank matrix completion computes a
rank-r approximation of X, where r ≪ min{m,n}, by only observing a few
random entries of X. It is commonly applied for recommender systems, image
processing, and multi-output collaborative modeling. Existing matrix completion
methods suffer either from slow convergence or failure under significant miss-
ing data levels. This paper proposes a novel approach, the Sparse Reverse of
Principal Component Analysis (SRPCA), that reformulates matrix factorization
based low-rank completion (minU,V ∥PΩ(X − UVT)∥2F) to iteratively learn a
single low-rank subspace representation by solving the convex optimization prob-
lem minV ∥PΩ(X−PVT)∥2F under the principal component analysis framework,
resulting in a significant convergence acceleration. SRPCA converges iteratively
and is computationally tractable with a proven controllable upper bound on the
number of iterations until convergence. Unlike existing matrix completion algo-
rithms, the proposed SRPCA applies iterative pre-processing resets that maintain
smoothness across the reconstructed matrix, which results in a performance boost
for smooth matrices. The performance of the proposed technique is validated on
case studies for image processing, multivariate time-series imputation, and col-
laborative filtering. SRPCA is also compared with state-of-the-art benchmarks for
matrix completion.

1 INTRODUCTION

Matrix completion is a common task for recovering missing or corrupted data in matrices (Wang
& Fan, 2024). It has constantly received tremendous attention from many research fields such as
collaborative filtering (e.g., recommender systems) (Yu et al., 2009; Chen & Wang, 2022), link
analysis (Gleich & Lim, 2011), distance embedding (Candès & Recht, 2009), computer vision (Chen
& Suter, 2004; Li et al., 2012), image processing (Ji et al., 2010; Jia et al., 2022), and so forth. In
any field, missing data in high volumes has a negative impact on various data analysis processes, as
many supervised and unsupervised learning methods cannot be applied directly to incomplete data
(Audigier et al., 2016). Consequently, scalable and novel algorithms for matrix completion are still
in constant demand, especially for applications with high levels of missing data.

The low-rank matrix has a key characteristic where the important information it contains, expressed
in terms of degree of freedom, is significantly smaller than the total number of entries. This means
that even if only a few entries are observed, there is still a good possibility of being able to reconstruct
the entire matrix (Nguyen et al., 2019). Many data matrices analyzed are low-rank or approximately
low-rank structured (Candès & Recht, 2009). Taking a movie recommender system as an example,
there are only few factors that may contribute to users’ preferences, suggesting that the data matrix
recording users’ rating scores is actually low-rank structured.

Most approaches that solve low-rank matrix completion problems can be mainly divided into two
categories, nuclear norm based and matrix factorization based (Sun & Luo, 2016). In the first cate-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

gory, the objective of matrix rank minimization is approximated by nuclear norm minimization. This
category’s methods include interior-point-based Semi-Definite Programming (SDP) solver (Candès
& Recht, 2009), conjugate gradient method (Blanchard et al., 2015), Singular Value Threshold
(SVT) algorithm (Cai et al., 2010), Augmented Lagrange Multiplier (ALM) algorithm (Lin et al.,
2010), and robust principal component analysis (Zhang et al., 2012), etc. In the second category,
the original matrix is compactly represented as the product of two low-rank matrices. The two
low-rank matrices are usually iteratively updated through various algorithms such as Alternating
Least Squares (ALS) (Jain et al., 2013; Gu et al., 2024) and Stochastic Gradient Descent (SGD)
(Gemulla et al., 2011; Qin et al., 2024). Nuclear norm based algorithms are known to be more
time-consuming as matrix dimension increases, while matrix factorization algorithms, which are
non-convex heuristics, scale badly with high levels of missing data Gu et al. (2024). There is a very
important requirement for a realistically and practically good matrix completion, which is the local
and global smoothness in the reconstructed matrix. For example, in image processing, it is critical
to obtain smoothness over the image. Often, this requirement comes at the cost of moderately up-
dating the observed values, e.g., Gaussian filters and Variational Bayesian techniques (Kawasumi &
Takeda, 2018; Paliwal et al., 2022).

To address this limitation, we propose the Sparse Reverse of the Principle Component Analysis
(SRPCA) to complete matrices in their original space. The proposed approach maintains a high level
of smoothness by iteratively finding the principal components of the matrix based on the predicted
values of both the missing and the observed parts of the matrix, while guaranteeing that the principal
components are capable of reconstructing the observed part of the matrix with minimal differences.
The main contributions of the paper can be summarized in the following:

• A novel low-rank matrix completion method called SRPCA is proposed. It leverages both
the missing and the observed part of the matrix-to-recover to iteratively learn the principle
components that adequately represent the underlying low-rank matrix. SRPCA maintains
smoothness across the reconstructed matric by applying an iterative pre-processing step.

• SRPCA is a matrix factorization based algorithm that modifies the non-convex problem to a
convex one where it iteratively learns a single low-rank subspace representation, instead of
two, by leveraging the principle component analysis framework. This aids in accelerating
convergence.

• SRPCA is proved to improve in performance iteratively until convergence with a control-
lable upper bound on the number of iterations.

• An extension of SRPCA, called FastSRPCA, is proposed to offer a faster convergence in
matrix completion applications where convergence rate is valued more than further improv-
ing a sub-optimal matrix recovery.

• SRPCA is evaluated on three diverse low-rank matrix completion based case studies and is
shown to improve on other state-of-the-art benchmarks in terms of computational time and
matrix recovery.

2 PRELIMINARIES

2.1 MATRIX COMPLETION

If we assume that the data matrix to be recovered has a low-rank structure, the matrix completion
problem should be defined as follows (Candès & Recht, 2009):

min
M

rank(M), s.t. Xi,j = Mi,j ,∀(i, j) ∈ Ω (1)

where X ∈ Rm×n is the sparse observed matrix, M ∈ Rm×n the reconstructed matrix of X , and
Ω represents the observed entries of X .

This problem is a simple explanation of the low-rank matrix completion problem. Unfortunately, the
rank minimization is NP-hard and has led researchers to propose different relaxations to solve the
problem. Specifically, a commonly used convex relaxation for the rank is the nuclear norm, ∥M∥∗,
which approximates problem (1) as (Candès & Recht, 2009; Sun & Luo, 2016; Hardt & Wootters,
2014):

min
M

∥M∥∗ , s.t. Xi,j = Mi,j ,∀(i, j) ∈ Ω (2)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Or:

min
M

[
τ ∥M∥∗ +

1

2
∥X −M∥2F

]
(3)

where ∥·∥2F is the Frobenius norm and τ is apositive penalty parameter. Equations (2) & (3) can be
conveniently optimized through some interior-point-method-based SDP solvers (Candès & Recht,
2009), like SDPT3 and SeDuMi. Cai et al. (2010) further proposed an SVT algorithm to solve
(2) & (3). In the SVT, the estimate M converges to a unique solution of (3) through an iterative
algorithm.Unfortunately, both SDP solvers and the SVT algorithm are problematic when applied to
a large-size data set (Sun & Luo, 2016). Especially for the SVT, SVD computation is required at
each iteration, which is time-consuming.

Another common approach to relax the rank is via matrix factorization, in which the unknown data
matrix is expressed as the product of two low-rank matrices, U and V Sun & Luo (2016). In this
case, the low-rank condition is satisfied automatically, and problem (1) can be transformed to:

min
U ,V

∥∥PΩ(X −UV T)
∥∥2
F
, s.t. M = UV T (4)

Problem 4 is clearly a non-convex optimization problem. Compared with the nuclear norm based
approach, the matrix factorization based approach performs much better on computation time. ALS
is one of the popular matrix factorization-based methods, which originates from the power factoriza-
tion method (Haldar & Hernando, 2009). In the ALS algorithm, the observed entries are randomly
partitioned into a number of subsets at first. Then, U and V are initialized through the SVD of
the first subset of the observed matrix. Next, at each iteration when moving to the next subset, U
and V are alternatively updated to minimize the difference between UV T and the observed entries
of that subset. ALS decreases the computational time because it does not apply SVD at each iter-
ation. However, it may lead to high inaccuracies at high levels of missing data, and it ignores the
smoothness of the data set due to the random partitioning of the original matrix. A recent matrix fac-
torization based method is the Gauss-Newton Matrix Recovery (GNMR) (Zilber & Nadler, 2022),
which utilizes a Gauss-Newton method to solve for the two factor matrices every iteration. Another
method we use for benchmarking is Low-Rank Gaussian Copula (LRGC) (Zhao & Udell, 2020)
which is a semiparametric algorithm for data imputation that also offers uncertainty quantification.
For more comprehensive surveys, we refer readers Nguyen et al. (2019).

2.2 PRINCIPLE COMPONENT ANALYSIS (PCA)

PCA is one of the most widely used statistical tools for data analysis and dimensionality reduction
(Candès et al. (2011)). It has been applied in many different areas, such as quantitative finance
(Han et al., 2023; Chin et al., 2023), neuroscience (Lawrence et al., 2023), and image processing
(Mishra et al., 2024). PCA provides a roadmap for transforming the original data set to a new basis
with a lower dimension, thus filtering out the noise and revealing the hidden simplified dynamics.
Therefore, with PCA, it is possible to extract critically important information from original data,
thus simplifying the data structure.

Suppose we have a data matrix M . The goal of PCA is to find an orthonormal matrix where
P = MV , such that the covariance matrix of P is diagonalized and expressed as:

SP =
1

n− 1
P TP (5)

Since P = MV , then:

SP =
1

n− 1
(MV)T (MV) =

1

n− 1
V T (MTM)V (6)

Let V be the eigenvectors matrix of MTM ; hence, matrix SP is diagonalized. This is because
MTM = V DV T and:

SP =
1

n− 1
V T (V DV T)V =

1

n− 1
(V TV)D(V TV) =

1

n− 1
D (7)

PCA is statistically intuitive and helps reduce the data’s dimensions; however, applying PCA itera-
tively for matrix completion is time-consuming. Therefore, in this paper, we initialize the matrices
P and V via PCA and efficiently update them via the proposed algorithm in the next section.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3 THE SPARSE REVERSE OF PCA (SRPCA)

3.1 PROBLEM FORMULATION

Based on the general matrix completion problem, the goal is to construct a matrix M ∈ Rm×n that
estimates the missing part of matrix X ∈ Rm×n. Let Ω = {(i, j) : Xi,j is observed}, PΩ(X) ∈
Rm×n to be the matrix that preserves the entities in Ω and replaces the remaining entities by 0,
and Ω⊥ to be the complement of Ω. Contrary to the matrix factorization approach in 4, where the
purpose is to consectively minimize for each of the two factor matrices, we minimize the problem
to a convex problem, where we only solve for one of them as per the following with M = PV T :

min
P

∥∥PΩ(X − PV T)
∥∥2
F

(8)

where P is the principal component matrix, and V is the eigenvector matrix of MTM .

3.2 PRINCIPAL COMPONENTS ESTIMATION

To obtain the principal components, we first decompose the matrix MTM = V ΛV T , where Λ is a
diagonal matrix with λj as its jth diagonal element, λj is the jth eigenvalue of MTM corresponding
to its jth eigenvector V:,j . Then, the principle components are estimated as:

P = MRT , where RT = [V:,r] ∈ Rn×r (9)

with r ∈ Rr being a vector of indices corresponding to the top r eigenvectors. The selection of the
top r is for computational efficiency, compression and smoothing purposes. For matrix completion,
P and R are updated iteratively.

3.3 THE SRPCA ALGORITHM

The first step in the proposed approach is data standardization, which is common in data analytics:

X:,j =
X:,j − µX:,Ωj

σX:,Ωj
+ ϵ

(10)

where X:,j is the jth column of the matrix X , µX:,Ωj
and σX:,Ωj

are the mean and standard devi-
ation of the available elements in the jth column X , and ϵ is a small constant to avoid numerical
instabilities when σX:,Ωj

→ 0.

A fair and an intuitive first approximation M (0) is:

Mi,j =

{
Xi,j if (i, j) ∈ Ω

N (0, 1) if (i, j) ∈ Ω⊥ (11)

Unlike many existing approaches, each iteration in SRPCA starts with M
(k)
Ω = XΩ because the

observed values of X are unbiased estimates of the values in Ω. This serves a pre-processing reset
from which all iterations start. Then, we proceed from (11) to obtain the new updates for P and M :

P (k) = M (k)R(k)T (12)

M (k+1) = M (k)R(k)TR(k+1) = P (k)R(k+1) (13)
where R(k+1) is iteratively returned by the algorithm.

Those updates conclude some major advantages of the proposed SRPCA so far:

(i) Unbiased Estimate. It starts with an unbiased estimate of the observed part of the matrix at
every iteration. This is critical for scenarios with high percentages of missing data, because
the first few iterative updates of the matrix are highly dependent on unreliable random
prior estimates of the missing part of the matrix, which may slow the convergence or lead
to divergent estimates of the matrix M . Therefore, by keeping an unbiased estimate of the
observed part of the matrix, it boosts the accuracy of the SRPCA to a certain extent.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

(ii) Smoothness. The new update M (k+1) is smoother than the prior update M (k). Therefore,
the SRPCA also helps to smoothen the original observed part of the matrix.

(iii) Nonlinear Update.The principal components are updated iteratively as shown in (13). This
adds a layer of nonlinearity to the SRPCA.

As shown in (13), the update M (k+1) depends on the updated eigenvectors R(k+1). The SRPCA
updates R(k+1) to maintain a certain level of accuracy for the observed data by solving for:

R(k+1) = argmin
R(k+1)

∥∥∥PΩ(X − P (k)R(k+1))
∥∥∥2
F

(14)

The objective function (14) serves two purposes by aiming to drive PΩ(X − P (k)R(k+1)) → 0:
(i) it ensures a smooth transition from M

(k+1)
Ω = (P (k)R(k+1))Ω at the end of the kth iteration to

M
(k+1)
Ω = XΩ at the beginning of the next k + 1 iteration; and (ii) it quantifies and minimizes

the differences between M (k+1) and the true matrix X . Thus, the updated M (k+1) is expected to
provide a more realistic estimate of the missing data because now it provides a better estimate of the
observed data.

Furthermore, because each column of X can be expressed independently as a combination of the
principal components, minimizing (14) is equivalent to the following convex optimization problem:

argmin
R

(k+1)
:,j

(X:,j − P (k)R
(k+1)
:,j)TW (j)(X:,j − P (k)R

(k+1)
:,j), ∀j (15)

where W (j) ∈ Rm×m is the weight matrix for the jth column of X and it is a diagonal matrix
such that W (j)

i,i = 1 if (i, j) ∈ Ω and 0 otherwise. The sparse weight matrix W (j) provides all the
weights corresponding to the observed values. Therefore, the solution of (15) is solely based on the
observed part of X , and it can be written as per the following weighted least squares solution:

R
(k+1)
j = (P (k)TW (j)P (k))−1P (k)TW (j)X:,j , ∀j (16)

Applying (16) is scalable for big data in the presence of parallel computation capabilities, allowing
the simultaneous computation of different vectors of R(k+1) independently. Furthermore, the weight
matrices are sparse and they do not require full matrix operations.

Finally, the algorithm converges when the improvement between two successive iterations is
smaller than a predefined tolerance threshold. In other words, the algorithm terminates when∥∥PΩ(X − P (k−1)R(k))

∥∥2
F
−

∥∥PΩ(X − P (k)R(k+1))
∥∥2
F

≤ ϵtol, where M (k+1) = P (k)R(k+1)

and ϵtol is the tolerance threshold. Clearly, increasing ϵtol speeds up the algorithm convergence, but
it also leads to a higher mean squared deviation

∥∥PΩ(X −M (k+1))
∥∥2
F

. Therefore the choice of
ϵtol depends on the application and the trade-off between speed and accuracy.

The pseudo-algorithm is demonstrated in Algorithm 1.

3.4 CONVERGENCE STUDY OF SRPCA

Lemma 3.1 The SRPCA converges iteratively with
∥∥PΩ(X −M (k+1))

∥∥2
F

≤∥∥PΩ(X − P (k−1)R(k))
∥∥2
F

. Check Appendix A.1 for proof.

Unlike some approaches in the literature, Lemma 3.1 shows that the performance of the SRPCA
improves iteratively until it converges. This is a key finding, because if the algorithm terminates
for external reasons (e.g., computational time constraints), the algorithm output will be the best-
calculated estimate until the unexpected termination.

Lemma 3.2 The SRPCA converges at an iteration K <

⌈
∥PΩ(X−P (0)R(1))∥2

F

ϵtol

⌉
+ 1. Check Ap-

pendix A.1 for proof.

Lemma 3.2 provides an upper bound on the number of iterations until convergence, which also sets
an upper bound on the computational time until convergence.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 1 The SRPCA for Matrix Completion.

1: Mi,j =

{
Xi,j if (i, j) ∈ Ω

N (0, 1) if (i, j) ∈ Ω⊥ ▷ Data standardization and preprocessing

2: for q ∈ [1, ..., n] do
3: W (q) = 0 ▷ Construct the sparse weight matrices once
4: W

(q)
i,i = 1, ∀(i, q) ∈ Ω

5: end for
6: V (0)Λ(0)V (0)T = M (0)TM (0) ▷ Initial eigenvector decomposition.
7: R(0) = [V:,r]

T , P (0) = M (0)R(0)T , M (1) = M (0) ▷ Construct initial matrices
8: for k ∈ [1, ...,maxIter] do
9: Matrix smoothing ▷ Optional

10: M
(k)
Ω = XΩ ▷ Update for the the observed values

11: P (k) = M (k)R(k)T ▷ Construct principal components
12: for j ∈ [1, ..., n] do
13: R

(k+1)
j = (P (k)TW (j)P (k))−1P (k)TW (j)X:,j ▷ Eigenvectors update

14: end for
15: M (k+1) = M (k)R(k)TR(k+1) = P (k)R(k+1) ▷ Update Matrix Estimate
16: if

∥∥PΩ(X − P (k−1)R(k))
∥∥2
F
−

∥∥PΩ(X − P (k)R(k+1))
∥∥2
F
≤ ϵtol then

17: Stop and Break ▷ Stop when algorithm converges.
18: end if
19: end for

3.5 EXTENSION: THE FAST SRPCA ALGORITHM

For many applications, the convergence rate is critical, and it is often acceptable to converge to
solutions that are close enough to optimality. Recall that each iteration of the SRPCA starts with
M

(k)
Ω = XΩ as a reliable unbiased estimate for the observed entities; however, this tends to slow

down the convergence when (P (k−1)R(k))Ω is close but not equal to XΩ. Therefore, we propose
the fast SRPCA (see Algorithm 2 in Appendix B), which starts each iteration with teh following
pre-processing reset that is different than the original one in Algorithm 1:

M
(k)
Ω = (1− α∗)(P (k−1)R(k))Ω + α∗XΩ (17)

where α∗ ∈ [0, 1] is a balancing scaler that is initialized to 1.

There are two main advantages for the choice of (17). First, α∗ serves as a step-size because
M

(k)
Ω = (P (k−1)R(k))Ω + α∗ (XΩ − (P (k−1)R(k))Ω

)
; therefore, it is expected that α∗ → 0

when (P (k−1)R(k))Ω is close enough to XΩ. Second, α∗ serves as a smoothing parameter for
noisy datasets where XΩ is a noisy estimate for the observed entries Ω. For such noisy datasets, it
is important to set α∗ → 0 after enough iterations to avoid converging to a noisy estimate M (k)

Ω that
is close to XΩ.

Lemma 3.3 If α∗ = 0 at the beginning of iteration K, the fast SRPCA converges at iteration K
with M (K+1) = M (K) = P (K)R(K+1) = P (K−1)R(K). Check Appendix A.2 for proof.

From Lemma 3.3, it is intuitive to define α∗ as a decreasing function with respect to the iteration
number k. This speeds up the SRPCA convergence when

∥∥PΩ(X −M (k+1))
∥∥2
F

converges slowly

to
∥∥PΩ(X − P (K−1)R(K))

∥∥2
F

. However, a random choice of α∗ may result in an unreliable es-
timate even for the observed part of the matrix with a large error

∥∥PΩ(X −M (k))
∥∥. Thus, the

choice of α∗ depends on
∥∥PΩ(X −M (k))

∥∥. Here, we propose α∗ to be the solution for:

argmin
α

(∥∥∥PΩ(X −M (k))
∥∥∥
F
+ δ|α|

)
(18)

where δ is a tuning parameter and for this specific choice of the objective function, it is the conver-
gence threshold for

∥∥PΩ(X −M (k))
∥∥
F

as shown in Lemma 3.4.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: The computational time and the full matrix recovery error
∥∥X −M (K+1)

∥∥2
F

for 50 repli-
cations at various missing data levels (50%, 70%, 80%) of a natural image (as seen in Figure 1).

Method Time (secs) Full Reconstruction Error
(
×10−3

)
50% 70% 80% 50% 70% 80%

SRPCA 0.77± 0.034 0.91± 0.057 0.90± 0.040 7.0± 0.27 21.7± 0.58 40.2± 1.29
ALM 1.99± 0.014 1.95± 0.014 1.74± 0.032 19.5± 0.49 57.0± 1.64 79.3± 2.19
SVT 1.55± 0.014 3.43± 0.363 16.02± 0.580 19.5± 0.49 52.4± 3.68 134.9± 28.16
ALS 1.59± 0.020 1.57± 0.069 1.92± 0.580 43.1± 2.00 108.1± 6.09 395.0± 25.5
LRCG 31.84± 0.251 14.20± 0.608 9.55± 0.357 27.2± 0.65 73.1± 1.82 150.9± 5.41
GNMR 22.85± 1.933 7.17± 0.048 4.02± 0.153 38.8± 1.40 123.8± 4.37 309.7± 10.90

Lemma 3.4 The closed-form solution for (18) can be written as (proof in Appendix A.3):

α∗ =

{
0 if

∥∥PΩ(X −M (k))
∥∥
F
≤ δ

1 otherwise
(19)

Lemma 3.4 shows that the fast SRPCA sets M (k)
Ω = XΩ only when P (K)R(K+1) does not accu-

rately reconstruct the observed part of the matrix (i.e., when
∥∥PΩ(X −M (k))

∥∥
F

> δ). This also
supports the validity of Lemmas 3.1 and 3.2 for the fastSRPCA, because for α∗ = 1 it becomes
equivalent to the SRPCA and for α∗ = 0 it terminates at the same iteration.

4 EXPERIMENTATION AND RESULTS

We validate the efficacy of the SRPCA approach on case studies related to (i) image inpainting, (ii)
multivariate time-series imputation, and (iii) collaborative filtering. All experiments were executed
using the Intel Core i9-9980XE CPU with 62 GB RAM and done with Python 3.12.2, Numpy 1.26.4,
SciPy 1.13.1

Benchmark Models. SRPCA is compared to state-of-the-art matrix completion methods: (i) inexact
Augmented Lagrange Multiplier (ALM) (Lin et al., 2010), (ii) Single Value Thresholding (SVT)
(Cai et al., 2010), (iii) Alternating Least Squares (ALS) (Duan, 2020), (iv) Low-Rank Gaussian
Copula (LRGC) (Zhao & Udell, 2020), and (v) Gauss-Newton for Matrix Recovery (GNMR) (Zilber
& Nadler, 2022). We note that not all benchmark models are designed to have the matrix’s rank be
a-priori appointed; the ones that do are ALS, LRGC and GNMR, along with SRPCA.

4.1 CASE STUDY 1: IMAGE INPAINTING

Images are often stored in the form of matrices, in which the intensity for pixel (i, j) is stored in the
matrix entry (i, j). Furthermore, some pixels are often noisy or hard to obtain, and it is common to
use matrix completion to reconstruct images. In this case study, a natural image of size 475 × 344
is used to validate the algorithm. Specifically, a uniform randomly selected subset – 50%, 70%, and
80% – of the pixels are removed and the matrix completion methods are then applied to reconstruct
the image with ϵtol = 10−4.

Results. Figures 1, 2 and 3 show the outcomes of the matrix completion methods applied on a
natural image with varying levels of missing data. While all the methods appear to decently recover
the image at 50% missing level, the gap of the quality of reconstruction of that of SRPCA and the
remaining methods increases as the level of missing data increases to 70% and 80%. This if further
validated in Table 1, which shows the computational time required to reconstruct the image and the
mean squared difference, ∥X −M∥2F , of the standardized values of all entries of the matrix. The
reconstruction error, for each method, increases with increase in missing data; this is natural because
the matrix rank is probably underestimated with less observed data, leading to higher erros. SRPCA
outperforms other methods in time and reconstruction error across all missing data levels, especially
at large levels of 80% where other methods largely deteriorate. SRPCA considers the smoothness
of the matrix and efficiently updates the principal components and eigenvectors in each iteration
without explicitly running the eigenvector decomposition.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

(a) Given (b) SRPCA (c) ALM (d) SVT (e) ALS (f) LRGC (g) GNMR

Figure 1: Reconstructed images with 50% missing pixels (the rank is set to 80).

(a) Given (b) SRPCA (c) ALM (d) SVT (e) ALS (f) LRGC (g) GNMR

Figure 2: Reconstructed images with 70% missing pixels (the rank is set to 40).

(a) Given (b) SRPCA (c) ALM (d) SVT (e) ALS (f) LRGC (g) GNMR

Figure 3: Reconstructed images with 80% missing pixels (the rank is set to 30).

Table 2: The computational time and the full matrix recovery error
∥∥X −M (K+1)

∥∥2
F

for 50 repli-
cations at different levels of missing data (10%, 30%, 50%, 70%) of turbine enignes dataset.

Method Time (secs) Full Reconstruction Error
(
×10−3

)
10% 30% 50% 70% 10% 30% 50% 70%

SRPCA 2.11± 0.047 2.23± 0.054 2.44± 0.042 2.88± 0.038 31± 0.3 96± 0.5 170± 0.8 286± 2.4
ALM 0.12± 0.003 0.12± 0.001 0.14± 0.007 0.16± 0.005 31± 0.3 98± 0.6 181± 4.7 279± 3.0
SVT 0.70± 0.022 0.71± 0.020 0.71± 0.015 0.70± 0.025 264± 0.3 275± 0.7 296± 1.2 349± 2.6
ALS 4.16± 0.265 4.38± 0.430 – – 263± 0.3 271± 0.6 – –
LRCG 4.61± 0.039 4.59± 0.041 2.55± 0.032 8.44± 0.058 32± 0.3 97± 0.5 171± 0.9 276± 2.4
GNMR 6.29± 0.049 5.52± 0.139 4.43± 0.025 3.22± 0.013 263± 0.3 271± 0.6 289± 1.0 345± 2.4

4.2 CASE STUDY 2: MULTIVARIATE TIME-SERIES IMPUTATION

Multivariate time series data frequently contains missing features with varying ratios and patterns
depending on distinct sampling periods or measurement methods (Choi & Lee, 2024). These missing
features can significantly impact downstream tasks. Time-series imputation is crucial in practical
domains such as healthcare and prognostics. We evalaute the matrix completion algorithms on a
multisensor monitoring data, in specific on a public aircraft gas turbine engines dataset (Saxena
et al., 2008). The dataset contains measurements from 21 sensors recorded on 100 distinct engines
that ran until failure. We focus on 12 sensors that show consistent trends across the 100 engines.
Accordingly, the multisensor data from all 100 engines are stacked in one matrix with shape 20631×
12. A uniform randomly selected subset – 10%, 30%, 50%, and 70% – of the matrix entries are
removed and the matrix completion methods are then applied to recover the original matrix with
ϵtol = 10−4. The rank for the underlying matrix is set to r = 1.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 4: Reconstructed multisensor signals via the SRPCA approach with 70% missing data.

Results. The challenges in recovering this matrix lie in the fact that it (i) is already low-dimensional
and (ii) has a high noise-to-signal ratio. This is evident in Figure 4 with the red scattered points of
the original signal. The SRPCA reconstructs a filtered version of the signals eliminating a big part
of the noise from the original. Table 2 shows the computational time required to reconstruct the
signals and the mean squared difference, ∥X − M∥2F , of the standardized values of all entries of
the matrix. In terms of reconstruction, SRPCA, along with ALM and LRCG, produce the top matrix
recoveries performances. Even though the low-dimensionality suits nuclear norm based methods
like ALM, the SRPCA still produce top performances in acceptable timing. The ALS, on the other
hand, diverges for high missing data levels of 50% and 70%.

4.3 CASE STUDY 3: COLLABORATIVE FILTERING

Collaborative filtering is a notable low-rank matrix completion application (Rennie & Srebro, 2005).
It is one of the state-of-the-art techniques in recommender systems where the user-item interaction
is embedded in matrix Li et al. (2021). Movie recommendations are a common recommender sys-
tems case study. The dataset we utilize for movie recommendations is the MovieLens 100k dataset
that is available at https://grouplens.org/datasets/movielens/ (Harper & Konstan, 2015). The dataset
contains 100k recommendations from 943 users for 1682 movies, which can be represented in a ma-
trix of size 1682x943. The performance is evaluated by the normalized mean absolute error metric
(NMAE) (Yang et al., 2018):

NMAE =

∑
(i,j)∈Ω⊥ |Mi,j −Xi,j |
(xmax − xmin)|Ω⊥|

(20)

where xmax and xmin are the maximum and minimum values, respectively, of the recommendation
ratings. The rank of the underlying matrix is set to r = 4 and the threshold to ϵtol = 10−3. The
matrix in this dataset poses different challenges than the previous too; it is heavily sparse in nature
where only 100k entries are available, and that is because users tend to rate a select few movies. We
analyze scenarios where 20%, 30%, 50% and 80% of the recommendations are randomly removed.

Results. Table 3 demonstrates the computational times and the reconstruction error of the missing
entries (NMAE) for all methods across diverse missing data levels. It can be seen that SRPCA
outperforms all other methods both in time to convergence and in the imputation of the missing

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 3: The computational time and the normalized missing entries error NMAE for 50 replications
at different levels of missing data (20%, 30%, 50%, 60%) of Movie100k dataset.

Method Time (secs) NMAE
(
×10−3

)
20% 30% 50% 60% 20% 30% 50% 60%

SRPCA 9.64± 0.086 9.86± 0.156 9.89± 0.856 8.09± 1.287 180± 1.1 182± 0.8 189± 7.0 204± 14.1
ALM 17.78± 1.281 17.46± 1.063 17.02± 2.718 11.09± 4.973 221± 3.3 212± 1.4 207± 6.6 220± 16.9
SVT 14.82± 6.165 18.44± 9.761 30.16± 7.861 15.97± 10.403 278± 90.6 408± 106.0 513± 7.2 467± 14.6
ALS 14.44± 2.339 14.12± 2.712 15.69± 3.040 17.56± 3.474 190± 1.6 195± 1.9 208± 2.3 219± 2.1
LRCG 20.64± 0.114 21.28± 0.885 16.16± 2.391 13.97± 9.171 262± 1.8 273± 1.6 307± 2.2 322± 5.8
GNMR 11.97± 0.254 11.58± 0.345 10.11± 0.832 9.89± 0.566 218± 11.3 243± 1.7 355± 15.6 406± 9.4

data. This is a particularly huger dataset than the previous two case studies with much more intrinsic
sparsity and extremely low rank. SRPCA leverages the smoothness in estimate update to converge
faster than other methods. Taking advantage of iteratively resetting observed matrix entries, SRPCA
achieves a lower error in recovering the unobserved ones.

5 CONCLUSION

Missing or corrupted data is pervasive across various fields, thus, affecting downstream learning
tasks. Low-rank matrix completion is a common task to recover the missing entries of a partially
observed matrix. Existing methods either fail under significant missing data levels or suffer from
slow convergence. Th paper proposes a novel low-rank matrix completion method for incomplete
datasets, called the Sparse Reverse of the Principle Component Analysis (SRPCA). The contribu-
tions are multi-fold: (i) this approach maintains a certain level of smoothness across the matrix; (ii)
it modifies the non-convex matrix factorization problem into a convex optimization problem with a
closed for solution, leveraging subspace representation in terms of principal components; (iii) it con-
verges iteratively, which is critical for scenarios that stop the algorithm after reaching the maximum
number of iterations or due to external reasons; and (iv) it is also computationally tractable, with a
controlled upper bound on the number of iterations until convergence. In addition, a faster extension
– fastSRPCA – is provided to improve on convergence rate at the expense of marginal missing data
recovery. The efficacy of the SRPCA algorithm is validated on a natural image, multisensor dataset,
and movie ratings dataset.

Limitations. (i) The first obvious limitation of SRPCA is that it requires the knowledge of the rank
as an input. In most cases, this information is not readily available. However, there are low-rank
matrix completion methods in literature (Nguyen et al., 2019) that we can influence from to make
the rank selection adaptive. (ii) SRPCA suffers from singularity results in random predicitons for a
column that has all its entries missing, which happens scarcely or for extremely high missing levels
of data (90%). (iii) SRPCA is based on an assumption that the matrix completion environment is
based on Missing-Completely-At-Random (MCAR). It is interesting for future studies to see how to
develop it for Missing-At-Random (MAR) and Missing-Not-At-Random (MNAR) environments.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Vincent Audigier, François Husson, and Julie Josse. A principal component method to impute
missing values for mixed data. Advances in Data Analysis and Classification, 10, 2016. doi:
10.1007/s11634-014-0195-1.

Jeffrey D. Blanchard, Jared Tanner, and Ke Wei. Conjugate gradient iterative hard thresholding:
Observed noise stability for compressed sensing. IEEE Transactions on Signal Processing, 63
(2):528–537, 2015. doi: 10.1109/TSP.2014.2379665.

Jian-Feng Cai, Emmanuel J. Candès, and Zuowei Shen. A singular value thresholding algorithm
for matrix completion. SIAM Journal on Optimization, 20(4):1956–1982, 2010. doi: 10.1137/
080738970.

Emmanuel J. Candès, Xiaodong Li, Yi Ma, and John Wright. Robust principal component analysis?
J. ACM, 58(3), jun 2011. ISSN 0004-5411. doi: 10.1145/1970392.1970395.

Emmanuel J. Candès and Benjamin Recht. Exact matrix completion via convex optimization. Foun-
dations of Computational Mathematics, 9:717–772, 2009. doi: 10.1007/s10208-009-9045-5.

P. Chen and D. Suter. Recovering the missing components in a large noisy low-rank matrix: applica-
tion to sfm. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(8):1051–1063,
2004. doi: 10.1109/TPAMI.2004.52.

Zhaoliang Chen and Shiping Wang. A review on matrix completion for recommender systems.
Knowledge and Information Systems, 64:1–34, 2022. doi: 10.1007/s10115-021-01629-6.

Liem Chin, Agus Sukmana, and Erwinna Chendra. Portfolio management using principal compo-
nent analysis approach. AIP Conference Proceedings, 2877(1):030010, 12 2023. ISSN 0094-
243X. doi: 10.1063/5.0177736.

MinGyu Choi and Changhee Lee. Conditional information bottleneck approach for time series
imputation. In The Twelfth International Conference on Learning Representations, 2024.

Tony Duan. Lightweight python library for in-memory matrix completion., 2020. URL https:
//github.com/tonyduan/matrix-completion.

Rainer Gemulla, Erik Nijkamp, Peter J. Haas, and Yannis Sismanis. Large-scale matrix factor-
ization with distributed stochastic gradient descent. In Proceedings of the 17th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD ’11, pp. 69–77, New
York, NY, USA, 2011. Association for Computing Machinery. ISBN 9781450308137. doi:
10.1145/2020408.2020426.

David F. Gleich and Lek-heng Lim. Rank aggregation via nuclear norm minimization. In Pro-
ceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data
mining, KDD ’11, pp. 60–68, New York, NY, USA, 2011. Association for Computing Machinery.
ISBN 9781450308137. doi: 10.1145/2020408.2020425.

Yuzhou Gu, Zhao Song, Junze Yin, and Lichen Zhang. Low rank matrix completion via robust alter-
nating minimization in nearly linear time. In The Twelfth International Conference on Learning
Representations, 2024.

Justin P. Haldar and Diego Hernando. Rank-constrained solutions to linear matrix equations using
powerfactorization. IEEE Signal Processing Letters, 16(7):584–587, 2009. doi: 10.1109/LSP.
2009.2018223.

Ning Han, Yinnan Chen, Xinchao Zhao, and Mingzhang Han. Portfolio optimization based on
principal component analysis and second-order surrogate-assisted memetic differential evolution
algorithm. In 2023 5th International Conference on Data-driven Optimization of Complex Sys-
tems (DOCS), pp. 1–7, 2023. doi: 10.1109/DOCS60977.2023.10294769.

Moritz Hardt and Mary Wootters. Fast matrix completion without the condition number. In
Maria Florina Balcan, Vitaly Feldman, and Csaba Szepesvári (eds.), Proceedings of The 27th
Conference on Learning Theory, volume 35 of Proceedings of Machine Learning Research, pp.
638–678, Barcelona, Spain, 13–15 Jun 2014. PMLR.

11

https://github.com/tonyduan/matrix-completion
https://github.com/tonyduan/matrix-completion

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

F. Maxwell Harper and Joseph A. Konstan. The movielens datasets: History and context. ACM
Trans. Interact. Intell. Syst., 5(4), December 2015. ISSN 2160-6455. doi: 10.1145/2827872.

Prateek Jain, Praneeth Netrapalli, and Sujay Sanghavi. Low-rank matrix completion using alter-
nating minimization. In Proceedings of the Forty-Fifth Annual ACM Symposium on Theory of
Computing, STOC ’13, pp. 665–674, New York, NY, USA, 2013. Association for Computing
Machinery. ISBN 9781450320290. doi: 10.1145/2488608.2488693.

Hui Ji, Chaoqiang Liu, Zuowei Shen, and Yuhong Xu. Robust video denoising using low rank
matrix completion. In 2010 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, pp. 1791–1798, 2010. doi: 10.1109/CVPR.2010.5539849.

Zhigang Jia, Qiyu Jin, Michael K. Ng, and Xi-Le Zhao. Non-local robust quaternion matrix comple-
tion for large-scale color image and video inpainting. IEEE Transactions on Image Processing,
31:3868–3883, 2022. doi: 10.1109/TIP.2022.3176133.

Ryota Kawasumi and Koujin Takeda. Approximate method of variational bayesian matrix factor-
ization/completion with sparse prior. Journal of Statistical Mechanics: Theory and Experiment,
2018(5):053404, may 2018. doi: 10.1088/1742-5468/aabc7d.

Steven Lawrence, Bridget R. Mueller, Patrick Kwon, and Jessica Robinson-Papp. Phenotyping au-
tonomic neuropathy using principal component analysis. Autonomic Neuroscience, 245:103056,
2023. ISSN 1566-0702. doi: https://doi.org/10.1016/j.autneu.2022.103056.

Anchen Li, Bo Yang, Huan Huo, and Farookh Khadeer Hussain. Leveraging implicit relations for
recommender systems. Information Sciences, 579:55–71, 2021. ISSN 0020-0255. doi: https:
//doi.org/10.1016/j.ins.2021.07.084.

Kun Li, Qionghai Dai, Wenli Xu, Jingyu Yang, and Jianmin Jiang. Three-dimensional motion
estimation via matrix completion. IEEE Transactions on Systems, Man, and Cybernetics, Part B
(Cybernetics), 42(2):539–551, 2012. doi: 10.1109/TSMCB.2011.2168953.

Zhouchen Lin, Minming Chen, and Yi Ma. The augmented lagrange multiplier method for exact
recovery of corrupted low-rank matrices, 2010.

Amarendra Kumar Mishra, Manjeet Kumar, and Mahipal Singh Choudhry. Underwater image en-
hancement by using transmission optimization and background light estimation via principal
component analysis fusion. Signal, Image and Video Processing, 18:3855–3865, 2024. doi:
10.1007/s11760-024-03047-x.

Luong Trung Nguyen, Junhan Kim, and Byonghyo Shim. Low-rank matrix completion: A contem-
porary survey. IEEE Access, 7:94215–94237, 2019. doi: 10.1109/ACCESS.2019.2928130.

Charul Paliwal, Pravesh Biyani, and Ketan Rajawat. Variational bayesian filtering with subspace
information for extreme spatio-temporal matrix completion, 2022.

Wen Qin, Xin Luo, and MengChu Zhou. Adaptively-accelerated parallel stochastic gradient descent
for high-dimensional and incomplete data representation learning. IEEE Transactions on Big
Data, 10(1):92–107, 2024. doi: 10.1109/TBDATA.2023.3326304.

Jasson D. M. Rennie and Nathan Srebro. Fast maximum margin matrix factorization for collab-
orative prediction. In Proceedings of the 22nd International Conference on Machine Learning,
ICML ’05, pp. 713–719, New York, NY, USA, 2005. Association for Computing Machinery.
ISBN 1595931805. doi: 10.1145/1102351.1102441.

Abhinav Saxena, Kai Goebel, Don Simon, and Neil Eklund. Damage propagation modeling for
aircraft engine run-to-failure simulation. In 2008 International Conference on Prognostics and
Health Management, pp. 1–9, 2008. doi: 10.1109/PHM.2008.4711414.

Ruoyu Sun and Zhi-Quan Luo. Guaranteed matrix completion via non-convex factorization. IEEE
Transactions on Information Theory, 62(11):6535–6579, 2016. doi: 10.1109/TIT.2016.2598574.

Bingyan Wang and Jianqing Fan. Robust matrix completion with heavy-tailed noise. Journal of the
American Statistical Association, 0(0):1–13, 2024. doi: 10.1080/01621459.2024.2375037.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Linxiao Yang, Jun Fang, Huiping Duan, Hongbin Li, and Bing Zeng. Fast low-rank bayesian matrix
completion with hierarchical gaussian prior models. IEEE Transactions on Signal Processing, 66
(11):2804–2817, 2018. doi: 10.1109/TSP.2018.2816575.

Kai Yu, Shenghuo Zhu, John Lafferty, and Yihong Gong. Fast nonparametric matrix factoriza-
tion for large-scale collaborative filtering. In Proceedings of the 32nd international ACM SI-
GIR conference on Research and development in information retrieval, SIGIR ’09, pp. 211–218,
New York, NY, USA, 2009. Association for Computing Machinery. ISBN 9781605584836. doi:
10.1145/1571941.1571979.

Hui Zhang, Jian-Feng Cai, Lizhi Cheng, and Jubo Zhu. Strongly convex programming for exact
matrix completion and robust principal component analysis, 2012. ISSN 1930-8337.

Yuxuan Zhao and Madeleine Udell. Matrix completion with quantified uncertainty through low
rank gaussian copula. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.),
Advances in Neural Information Processing Systems, volume 33, pp. 20977–20988. Curran As-
sociates, Inc., 2020.

Pini Zilber and Boaz Nadler. Gnmr: A provable one-line algorithm for low rank matrix recovery.
SIAM Journal on Mathematics of Data Science, 4(2):909–934, 2022. doi: 10.1137/21M1433812.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A PROOFS OF LEMMAS

A.1 LEMMAS 3.1 AND 3.2

This appendix provides proofs for Lemmas 3.1 and 3.2. First, the rationale of adding M
(k)
Ω = XΩ

is expected to iteratively improve the performance for scenarios where
∥∥PΩ(X − P (k−1)R(k))

∥∥2
F

is large. Intuitively, the algorithm should terminate when
∥∥PΩ(X − P (k−1)R(k))

∥∥2
F

−∥∥PΩ(X − P (k)R(k+1))
∥∥2
F

≤ ϵtol, meaning when the error term
∥∥PΩ(X − P (k−1)R(k))

∥∥2
F

is
not significantly decreasing anymore.

Next, we show that
∥∥PΩ(X − P (k−1)R(k))

∥∥2
F
−

∥∥PΩ(X − P (k)R(k+1))
∥∥2
F

≤ ϵtol will keep
decreasing until it becomes smaller than ϵtol. Specifically, at each iteration k, it is either:∥∥∥PΩ(X − P (k−1)R(k))

∥∥∥2
F
≤

∥∥∥PΩ(X − P (k)R(k+1))
∥∥∥2
F
+ ϵtol (21)

Or: ∥∥∥PΩ(X − P (k)R(k+1))
∥∥∥2
F
<

∥∥∥PΩ(X − P (k−1)R(k))
∥∥∥2
F
− ϵtol (22)

For the first case in (21), the algorithm terminates at iteration k by satisfying∥∥PΩ(X − P (k−1)R(k))
∥∥2
F
−
∥∥PΩ(X − P (k)R(k+1))

∥∥2
F
≤ ϵtol.

For the second case, (22) leads to
∥∥PΩ(X − P (k)R(k+1))

∥∥2
F

<
∥∥PΩ(X − P (k−1)R(k))

∥∥2
F

be-
cause ϵtol > 0, and we move to the next iteration k + 1. Afterwards, similarly, either the SR-
PCA terminates at k + 1 or

∥∥PΩ(X − P (k+1)R(k+2))
∥∥2
F
<

∥∥PΩ(X − P (k)R(k+1))
∥∥2
F
− ϵtol <∥∥PΩ(X − P (k)R(k+1))

∥∥2
F
<

∥∥PΩ(X − P (k−1)R(k))
∥∥2
F

.

This concludes the fact that
∥∥PΩ(X − P (k)R(k+1))

∥∥2
F

decreases iteratively until∥∥PΩ(X − P (k−1)R(k))
∥∥2
F

−
∥∥PΩ(X − P (k)R(k+1))

∥∥2
F

≤ ϵtol is satisfied. This concludes
the proof for Lemma 3.1.

Next, we show that there exists an iteration K such that
∥∥PΩ(X − P (k−1)R(k))

∥∥2
F

−∥∥PΩ(X − P (k)R(k+1))
∥∥2
F
≤ ϵtol. Assume that the algorithm did not converge at iteration K − 1;

therefore,

0 ≤
∥∥∥PΩ(X − P (k−1)R(k))

∥∥∥2
F

<
∥∥∥PΩ(X − P (k−2)R(k−1))

∥∥∥2
F
− ϵtol

<
∥∥∥PΩ(X − P (k−3)R(k−2))

∥∥∥2
F
− 2ϵtol

< ...

<
∥∥∥PΩ(X − P (0)R(1))

∥∥∥2
F
− (K − 1)ϵtol

(23)

However, for those inequalities to hold, we must have
∥∥PΩ(X − P (0)R(1))

∥∥2
F
− (K − 1)ϵtol > 0.

Thus, the algorithm will terminate at an iteration K such that:

K <

⌈∥∥PΩ(X − P (0)R(1))
∥∥2
F

ϵtol

⌉
+ 1 (24)

which satisfies
∥∥PΩ(X − P (K−1)R(K))

∥∥2
F
−
∥∥PΩ(X − P (K)R(K+1))

∥∥2
F
≤ ϵtol. This concludes

the proof for Lemma 3.2.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A.2 LEMMA 3.3

This appendix proves Lemma 3.3. If α∗ = 0 at the beginning of iteration K, then the solution for:

argmin
R

(K+1)
:,j

(X:,j − P (K)R
(K+1)
:,j)TW (j)(X:,j − P (K)R

(K+1)
:,j), ∀j = 1, .., n (25)

is:
R

(K+1)
:,j = (P (K)TW (j)P (K))−1P (K)TW (j)X:,j , ∀j = 1, .., n (26)

This is also the solution for:

argmin
R

(K+1)
:,j

(X:,j −M (K)R(K)TR
(K+1)
:,j)TW (j)(X:,j −M (K)R(K)TR

(K+1)
:,j), ∀j = 1, .., n

(27)
which, because α∗ = 0, can be written as:

argmin
R

(K+1)
:,j

(X:,j − P (K−1)R(K)R(K)TR
(K+1)
:,j)TW (j)(X:,j − P (K−1)R(K)R(K)TR

(K+1)
:,j),

∀j = 1, .., n (28)

Therefore,

R(K)R(K)TR
(K+1)
:,j =(P (K−1)TW (j)P (K−1))−1P (K−1)TW (j)X:,j , ∀j = 1, .., n

=R
(K)
:,j , ∀j = 1, .., n

(29)

Finally, multiplying both sides of the equation by P (K−1):

P (K−1)R(K)R(K)TR
(K+1)
:,j = P (K−1)R

(K)
:,j , ∀j = 1, .., n (30)

which, because α∗ = 0, can be consecutively developed into:

M (K)R(K)TR
(K+1)
:,j = M

(K)
:,j , ∀j = 1, .., n (31)

P (K)R
(K+1)
:,j = M

(K)
:,j , ∀j = 1, .., n (32)

M
(K+1)
:,j = M

(K)
:,j , ∀j = 1, .., n (33)

Thus, the fast SRPCA, in Algorithm 2, converges at the end of iteration K by satisfying the∥∥PΩ(X − P (K−1)R(K))
∥∥2
F
−

∥∥PΩ(X −M (K+1))
∥∥2
F

= 0 ≤ ϵtol. This concludes the proof
of Lemma 3.3.

A.3 LEMMA 3.4

This appendix proves Lemma 3.4. First we rewrite 18 as:

min
α

(∥∥∥PΩ

(
X − (1− α)P (k−1)R(k) − αX

)∥∥∥
F
+ δ|α|

)
(34)

=min
α

(∥∥∥(1− α)PΩ(X − P (k−1)R(k))
∥∥∥
F
+ δ|α|

)
(35)

=min
α

(
|1− α|

∥∥∥PΩ(X − P (k−1)R(k))
∥∥∥
F
+ δ|α|

)
(36)

Knowing that
∥∥PΩ(X − P (k−1)R(k))

∥∥
F
> 0 and δ > 0, then, the solution will satisfy 0 ≤ α∗ ≤

1.

Specifically, if
∥∥PΩ(X − P (k−1)R(k))

∥∥
F
< δ, then:∥∥∥PΩ(X − P (k−1)R(k))

∥∥∥
F
= min

α

(
|1− α|

∥∥∥PΩ(X − P (k−1)R(k))
∥∥∥
F
+ δ|α|

)
(37)

with α∗ = 0.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Otherwise, if
∥∥PΩ(X − P (k−1)R(k))

∥∥
F
> δ, then:

δ = min
α

(
|1− α|

∥∥∥PΩ(X − P (k−1)R(k))
∥∥∥
F
+ δ|α|

)
(38)

with α∗ = 1.

For the case
∥∥PΩ(X − P (k−1)R(k))

∥∥
F

= δ, any value 0 ≤ α∗ ≤ 1 is a valid solution, but we
chose α∗ = 0 to speed up the convergence of the algorithm. This concludes the proof for Lemma
3.4.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

B FASTSRPCA ALGORITHM

We provide the pseudo-algorithm of FastSRPCA as below:

Algorithm 2 The Fast SRPCA for Matrix Completion.

1: Mi,j =

{
Xi,j if (i, j) ∈ Ω

N (0, 1) if (i, j) ∈ Ω⊥ ▷ Data standardization and preprocessing

2: for q ∈ [1, ..., n] do
3: W (q) = 0 ▷ Construct the sparse weight matrices once
4: W

(q)
i,i = 1, ∀(i, q) ∈ Ω

5: end for
6: V (0)Λ(0)V (0)T = M (0)TM (0) ▷ Initial eigenvector decomposition.
7: R(0) = [V:,r]

T , P (0) = M (0)R(0)T , M (1) = M (0) ▷ Construct initial matrices
8: for k ∈ [1, ...,maxIter] do
9: Matrix smoothing if α∗ ̸= 0 ▷ Optional

10: M
(k)
Ω = (1− α∗)(P (k−1)R(k))Ω + α∗XΩ ▷ Update for the observed values

11: P (k) = M (k)R(k)T ▷ Construct principal components
12: for j ∈ [1, ..., n] do
13: R

(k+1)
j = (P (k)TW (j)P (k))−1P (k)TW (j)X:,j ▷ Eigenvectors update

14: end for
15: M (k+1) = P (k)R(k+1) ▷ Update Matrix Estimate

16: α∗ =

{
0 if

∥∥PΩ(X −M (k))
∥∥ ≤ δ

1 otherwise
▷ Update step-size.

17: if
∥∥PΩ(X − P (k−1)R(k))

∥∥2
F
−

∥∥PΩ(X − P (k)R(k+1))
∥∥2
F
≤ ϵtol then

18: Stop and Break ▷ Stop when algorithm converges.
19: end if
20: end for

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

C EXTENDED RESULTS

C.1 DESIGN OF EXPERIMENTS

In Table 4, we show the hyperparameters utilized to obtain the results corresponding to both SRPCA
and fastSRPCA for this paper across the three case study datasets.

Table 4: List of hyperparameters pertaining to the SRPCA and fastSRPCA across all dataset. δ only
corresponds to fastSRPCA.

Datasets % - list rank maxIter ϵ ϵtol Optional Smoothing Standardization (10) δ

Image [50, 70, 80] [80, 40, 30] 50 10−5 10−4 True True 0.08
Multisensor [10, 30, 50, 70] 1 50 10−5 10−4 False True 0.4
MovieLens [20, 30, 50, 60] 4 50 10−5 10−3 False True 0.7

C.2 FASTSRPCA RESULTS

We extend the results shown in the paper with the performances produced by the fastSRPCA across
the three datasets introduced. Figure 5 shows the reconstruced matrix by fastSRPCA across three
distinct missing data levels. The recovered images look qualitatively as good as those produced by
SRPCA.

(a) Missing 50% (b) fastSRPCA (c) Missing 70% (d) fastSRPCA (e) Missing 80% (f) fastSRPCA

Figure 5: Reconstructed images by fastSRPCA with diverse missing levels of pixels (the ranks are
80, 40 and 30 for 50%, 70% and 80%, respectively).

Table 5 shows the fastSRPCA computational time and matrix recovery performance in comparison
to that of SRPCA for image dataset. While the performance is, as expected, secondary to that of
SRPCA, the fastSRPCA still outperforms the other benchmarks shown in Table 1. Moreover, it
converges faster than the SRPCA, almost taking hal the time SRPCA took for data missing levels of
50% and 70%.

Table 6 shows the fastSRPCA computational time and matrix recovery performance in comparison
to that of SRPCA for the multisensor dataset. At low missing data levels, the fastSRPCA is capable
of reaching the same or slightly worse matrix completion performance in less time. As the level of
missing data increases, the gap between the two performances starts increasing.

Table 7 shows the fastSRPCA computational time and matrix recovery performance in comparison
to that of SRPCA for the movie ratings dataset. The SRPCA was shown to be much faster than
the other benchmarks in Table 3; however, the fastSRPCA is capable of converging in at least two
seconds less across all missing data levels. Moreover, the matrix recovery descripency, demonstrated
by the missing data error NMAE, between the two methods is small across all missing data levels.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 5: FastSRPCA’s computational time and full matrix recovery error
∥∥X −M (K+1)

∥∥2
F

for 50
replications at various missing data levels (50%, 70%, 80%) of a natural image (as seen in Figure
1).

Method Time (secs) Full Reconstruction Error
(
×10−3

)
50% 70% 80% 50% 70% 80%

SRPCA 0.77± 0.034 0.91± 0.057 0.90± 0.040 7.0± 0.27 21.7± 0.58 40.2± 1.29

fastSRPCA 0.35± 0.009 0.46± 0.027 0.68± 0.034 13.4± 0.56 27.4± 1.05 41.8± 1.54

Table 6: FastSRPCA’s computational time and full matrix recovery error
∥∥X −M (K+1)

∥∥2
F

for 50
replications at different levels of missing data (10%, 30%, 50%, 70%) of turbine engines dataset.

Method Time (secs) Full Reconstruction Error
(
×10−3

)
10% 30% 50% 70% 10% 30% 50% 70%

SRPCA 2.11± 0.047 2.23± 0.054 2.44± 0.042 2.88± 0.038 31± 0.3 96± 0.5 170± 0.8 286± 2.4

fastSRPCA 2.08± 0.051 2.12± 0.053 2.11± 0.049 2.19± 0.037 31± 0.3 97± 0.7 181± 1.0 314± 5.4

Table 7: The computational time and the normalized missing entries error NMAE for 50 replications
at different levels of missing data (20%, 30%, 50%, 60%) of Movie100k dataset.

Method Time (secs) NMAE
(
×10−3

)
20% 30% 50% 60% 20% 30% 50% 60%

SRPCA 9.64± 0.086 9.86± 0.156 9.89± 0.856 8.09± 1.287 180± 1.1 182± 0.8 189± 7.0 204± 14.1

fastSRPCA 6.98± 0.049 7.04± 0.069 7.09± 0.145 7.06± 0.122 187± 1.2 188± 0.8 194± 5.9 206± 12.8

19

	Introduction
	Preliminaries
	Matrix Completion
	Principle Component Analysis (PCA)

	The Sparse Reverse of PCA (SRPCA)
	Problem Formulation
	Principal Components Estimation
	The SRPCA Algorithm
	Convergence Study of SRPCA
	Extension: The Fast SRPCA Algorithm

	Experimentation and Results
	Case Study 1: Image Inpainting
	Case Study 2: Multivariate Time-series Imputation
	Case Study 3: Collaborative Filtering

	Conclusion
	Proofs of Lemmas
	Lemmas 3.1 and 3.2
	Lemma 3.3
	Lemma 3.4

	FastSRPCA Algorithm
	Extended Results
	Design of Experiments
	FastSRPCA Results

