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ABSTRACT

Supervised and unsupervised learning methods experience a decline in perfor-
mance when applied to incomplete, corrupted, or noisy datasets. Matrix comple-
tion is a common task to impute the missing values in sparsely observed ma-
trices. Given a matrix X € R"*", low-rank matrix completion computes a
rank-r approximation of X, where r < min{m,n}, by only observing a few
random entries of X. It is commonly applied for recommender systems, image
processing, and multi-output collaborative modeling. Existing matrix completion
methods suffer either from slow convergence or failure under significant miss-
ing data levels. This paper proposes a novel approach, the Sparse Reverse of
Principal Component Analysis (SRPCA), that reformulates matrix factorization
based low-rank completion (miny v ||Pa(X — UVT)||%) to iteratively learn a
single low-rank subspace representation by solving the convex optimization prob-
lem miny ||Po(X—PV7)||% under the principal component analysis framework,
resulting in a significant convergence acceleration. SRPCA converges iteratively
and is computationally tractable with a proven controllable upper bound on the
number of iterations until convergence. Unlike existing matrix completion algo-
rithms, the proposed SRPCA applies iterative pre-processing resets that maintain
smoothness across the reconstructed matrix, which results in a performance boost
for smooth matrices. The performance of the proposed technique is validated on
case studies for image processing, multivariate time-series imputation, and col-
laborative filtering. SRPCA is also compared with state-of-the-art benchmarks for
matrix completion.

1 INTRODUCTION

Matrix completion is a common task for recovering missing or corrupted data in matrices (Wang
& Fan, [2024). It has constantly received tremendous attention from many research fields such as
collaborative filtering (e.g., recommender systems) (Yu et al., 2009; |Chen & Wang, 2022), link
analysis (Gleich & Lim, 201 1)), distance embedding (Candes & Recht,|2009), computer vision (Chen
& Suter, |2004; [Li et al.l [2012), image processing (Ji et al., 2010j [Jia et al.| [2022), and so forth. In
any field, missing data in high volumes has a negative impact on various data analysis processes, as
many supervised and unsupervised learning methods cannot be applied directly to incomplete data
(Audigier et al.,|2016). Consequently, scalable and novel algorithms for matrix completion are still
in constant demand, especially for applications with high levels of missing data.

The low-rank matrix has a key characteristic where the important information it contains, expressed
in terms of degree of freedom, is significantly smaller than the total number of entries. This means
that even if only a few entries are observed, there is still a good possibility of being able to reconstruct
the entire matrix (Nguyen et al., 2019). Many data matrices analyzed are low-rank or approximately
low-rank structured (Candes & Recht, 2009). Taking a movie recommender system as an example,
there are only few factors that may contribute to users’ preferences, suggesting that the data matrix
recording users’ rating scores is actually low-rank structured.

Most approaches that solve low-rank matrix completion problems can be mainly divided into two
categories, nuclear norm based and matrix factorization based (Sun & Luo} [2016)). In the first cate-
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gory, the objective of matrix rank minimization is approximated by nuclear norm minimization. This
category’s methods include interior-point-based Semi-Definite Programming (SDP) solver (Candes
& Recht, 2009), conjugate gradient method (Blanchard et al. 2015), Singular Value Threshold
(SVT) algorithm (Cai et al.l |2010), Augmented Lagrange Multiplier (ALM) algorithm (Lin et al.,
2010), and robust principal component analysis (Zhang et al., |2012), etc. In the second category,
the original matrix is compactly represented as the product of two low-rank matrices. The two
low-rank matrices are usually iteratively updated through various algorithms such as Alternating
Least Squares (ALS) (Jain et al.l 2013 |Gu et al., 2024) and Stochastic Gradient Descent (SGD)
(Gemulla et al., 2011} Qin et al.l |2024). Nuclear norm based algorithms are known to be more
time-consuming as matrix dimension increases, while matrix factorization algorithms, which are
non-convex heuristics, scale badly with high levels of missing data|Gu et al.|(2024)). There is a very
important requirement for a realistically and practically good matrix completion, which is the local
and global smoothness in the reconstructed matrix. For example, in image processing, it is critical
to obtain smoothness over the image. Often, this requirement comes at the cost of moderately up-
dating the observed values, e.g., Gaussian filters and Variational Bayesian techniques (Kawasumi &
Takedal, 2018 |Paliwal et al . [2022).

To address this limitation, we propose the Sparse Reverse of the Principle Component Analysis
(SRPCA) to complete matrices in their original space. The proposed approach maintains a high level
of smoothness by iteratively finding the principal components of the matrix based on the predicted
values of both the missing and the observed parts of the matrix, while guaranteeing that the principal
components are capable of reconstructing the observed part of the matrix with minimal differences.
The main contributions of the paper can be summarized in the following:

* A novel low-rank matrix completion method called SRPCA is proposed. It leverages both
the missing and the observed part of the matrix-to-recover to iteratively learn the principle
components that adequately represent the underlying low-rank matrix. SRPCA maintains
smoothness across the reconstructed matric by applying an iterative pre-processing step.

* SRPCA is a matrix factorization based algorithm that modifies the non-convex problem to a
convex one where it iteratively learns a single low-rank subspace representation, instead of
two, by leveraging the principle component analysis framework. This aids in accelerating
convergence.

* SRPCA is proved to improve in performance iteratively until convergence with a control-
lable upper bound on the number of iterations.

* An extension of SRPCA, called FastSRPCA, is proposed to offer a faster convergence in
matrix completion applications where convergence rate is valued more than further improv-
ing a sub-optimal matrix recovery.

* SRPCA is evaluated on three diverse low-rank matrix completion based case studies and is
shown to improve on other state-of-the-art benchmarks in terms of computational time and
matrix recovery.

2 PRELIMINARIES

2.1 MATRIX COMPLETION

If we assume that the data matrix to be recovered has a low-rank structure, the matrix completion
problem should be defined as follows (Candes & Recht, |[2009):

H]l\j[nrank(M)7 s.t. X5 = M; ;,Y(i,j) € Q (D

where X € R™*" is the sparse observed matrix, M € R™*" the reconstructed matrix of X, and
2 represents the observed entries of X.

This problem is a simple explanation of the low-rank matrix completion problem. Unfortunately, the
rank minimization is NP-hard and has led researchers to propose different relaxations to solve the
problem. Specifically, a commonly used convex relaxation for the rank is the nuclear norm, || M|,
which approximates problem as (Candes & Recht, [2009; |Sun & Luol 2016 [Hardt & Wootters,
2014):

II}\}IHHM”*, S.t. Xi,j = szj,V(Z,J) e (2)
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Or: )
. 2
min |7 | M|, + 5 | X = M} ©)

where ||- ||? is the Frobenius norm and 7 is apositive penalty parameter. Equations (2) & l) can be
conveniently optimized through some interior-point-method-based SDP solvers (Candeés & Recht,
2009), like SDPT3 and SeDuMi. |Cai et al.|(2010) further proposed an SVT algorithm to solve
& (). In the SVT, the estimate M converges to a unique solution of (3)) through an iterative
algorithm.Unfortunately, both SDP solvers and the SVT algorithm are problematic when applied to
a large-size data set (Sun & Luo| |2016). Especially for the SVT, SVD computation is required at
each iteration, which is time-consuming.

Another common approach to relax the rank is via matrix factorization, in which the unknown data
matrix is expressed as the product of two low-rank matrices, U and V [Sun & Luo|(2016)). In this
case, the low-rank condition is satisfied automatically, and problem (/1)) can be transformed to:

min |[Pa(X - uvh)|L, st M=UVT 4)

Problem [] is clearly a non-convex optimization problem. Compared with the nuclear norm based
approach, the matrix factorization based approach performs much better on computation time. ALS
is one of the popular matrix factorization-based methods, which originates from the power factoriza-
tion method (Haldar & Hernando, [2009). In the ALS algorithm, the observed entries are randomly
partitioned into a number of subsets at first. Then, U and V are initialized through the SVD of
the first subset of the observed matrix. Next, at each iteration when moving to the next subset, U
and V are alternatively updated to minimize the difference between UV T and the observed entries
of that subset. ALS decreases the computational time because it does not apply SVD at each iter-
ation. However, it may lead to high inaccuracies at high levels of missing data, and it ignores the
smoothness of the data set due to the random partitioning of the original matrix. A recent matrix fac-
torization based method is the Gauss-Newton Matrix Recovery (GNMR) (Zilber & Nadler} [2022),
which utilizes a Gauss-Newton method to solve for the two factor matrices every iteration. Another
method we use for benchmarking is Low-Rank Gaussian Copula (LRGC) (Zhao & Udell, [2020)
which is a semiparametric algorithm for data imputation that also offers uncertainty quantification.
For more comprehensive surveys, we refer readers Nguyen et al.|(2019).

2.2  PRINCIPLE COMPONENT ANALYSIS (PCA)

PCA is one of the most widely used statistical tools for data analysis and dimensionality reduction
(Candes et al| (2011)). It has been applied in many different areas, such as quantitative finance
(Han et al., [2023} |Chin et al., 2023), neuroscience (Lawrence et al., [2023), and image processing
(Mishra et al.,[2024). PCA provides a roadmap for transforming the original data set to a new basis
with a lower dimension, thus filtering out the noise and revealing the hidden simplified dynamics.
Therefore, with PCA, it is possible to extract critically important information from original data,
thus simplifying the data structure.

Suppose we have a data matrix M. The goal of PCA is to find an orthonormal matrix where
P = MYV, such that the covariance matrix of P is diagonalized and expressed as:
1

Sp = PTpP (5)
n—1

Since P = MV, then:

1
n—1
Let V be the eigenvectors matrix of M T M ; hence, matrix Sp is diagonalized. This is because
MTM =VDVT and:

1
Sp =

n —

Sp = (MV)T(MV) = ﬁVT(MTM)V (6)

T T _ 1 T T — 1
VIVDVTV = —(VIV)D(VTV) = —D (7

PCA is statistically intuitive and helps reduce the data’s dimensions; however, applying PCA itera-
tively for matrix completion is time-consuming. Therefore, in this paper, we initialize the matrices
P and V via PCA and efficiently update them via the proposed algorithm in the next section.
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3 THE SPARSE REVERSE OF PCA (SRPCA)

3.1 PROBLEM FORMULATION

Based on the general matrix completion problem, the goal is to construct a matrix M € R™*™ that
estimates the missing part of matrix X € R™*™. Let Q = {(4,7) : X; ; is observed}, P (X) €
R™*"™ to be the matrix that preserves the entities in € and replaces the remaining entities by 0,
and Q- to be the complement of Q2. Contrary to the matrix factorization approach in |4} where the
purpose is to consectively minimize for each of the two factor matrices, we minimize the problem
to a convex problem, where we only solve for one of them as per the following with M = PV T

. 2
min ||[Po(X - PV, (8)
where P is the principal component matrix, and V is the eigenvector matrix of MT M.

3.2 PRINCIPAL COMPONENTS ESTIMATION

To obtain the principal components, we first decompose the matrix M7 M = VAVT, where A is a
diagonal matrix with \; as its j™ diagonal element, \; is the j eigenvalue of M” M corresponding
to its j™ eigenvector V. ;. Then, the principle components are estimated as:

P=MR" where R" =[V,,] € R™" 9)

with 7 € R" being a vector of indices corresponding to the top r eigenvectors. The selection of the
top r is for computational efficiency, compression and smoothing purposes. For matrix completion,
P and R are updated iteratively.

3.3 THE SRPCA ALGORITHM

The first step in the proposed approach is data standardization, which is common in data analytics:
X i T HX 9

X.j=
0X. 0, + €

(10)
where X ; is the ™ column of the matrix X, u X. q, and o X, q, are the mean and standard devi-

ation of the available elements in the j‘h column X, and ¢ is a small constant to avoid numerical
instabilities when ox, , — 0.
R}

A fair and an intuitive first approximation M () is:

Xy if (i,7) € Q
M= {N(O,D if (i,7) € Q* (11)

Unlike many existing approaches, each iteration in SRPCA starts with Mg") = X because the
observed values of X are unbiased estimates of the values in €2. This serves a pre-processing reset
from which all iterations start. Then, we proceed from (1 I)) to obtain the new updates for P and M :

Pk — M(k)R(k)T (12)

MED — ppk) g p+1) _ pk) gk+1) (13)
where R(**1) is iteratively returned by the algorithm.

Those updates conclude some major advantages of the proposed SRPCA so far:

(i) Unbiased Estimate. It starts with an unbiased estimate of the observed part of the matrix at
every iteration. This is critical for scenarios with high percentages of missing data, because
the first few iterative updates of the matrix are highly dependent on unreliable random
prior estimates of the missing part of the matrix, which may slow the convergence or lead
to divergent estimates of the matrix M. Therefore, by keeping an unbiased estimate of the
observed part of the matrix, it boosts the accuracy of the SRPCA to a certain extent.
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(ii) Smoothness. The new update M (1) is smoother than the prior update M (*). Therefore,
the SRPCA also helps to smoothen the original observed part of the matrix.

(iii) Nonlinear Update.The principal components are updated iteratively as shown in (I3). This
adds a layer of nonlinearity to the SRPCA.

As shown in |i the update M (1) depends on the updated eigenvectors R(*+1). The SRPCA
updates R*+1) to maintain a certain level of accuracy for the observed data by solving for:
2
R*+D — arg min HPQ(X - P(k)R(kH))H (14)
R(k+1) F
The objective function serves two purposes by aiming to drive P (X — P®) RFE+D) - ;
(1) it ensures a smooth transition from Mf(lkﬂ) = (P®R(*+1))q at the end of the k™ iteration to
Mékﬂ) = Xg at the beginning of the next k£ 4 1 iteration; and (ii) it quantifies and minimizes

the differences between M **1) and the true matrix X . Thus, the updated M (1) is expected to
provide a more realistic estimate of the missing data because now it provides a better estimate of the
observed data.

Furthermore, because each column of X can be expressed independently as a combination of the
principal components, minimizing (14) is equivalent to the following convex optimization problem:

argmin (X, ; - PORMTNTWO (X, ; - PORMTY) v (15)
RFHD 7 7
where W) € R™*™ is the weight matrix for the 7™ column of X and it is a diagonal matrix

such that Wl(]l) = 1if (i,j) € Q and 0 otherwise. The sparse weight matrix W () provides all the
weights corresponding to the observed values. Therefore, the solution of is solely based on the
observed part of X, and it can be written as per the following weighted least squares solution:

T , T . .
Rg_kﬂ):(p(k) W(J)p(k))—lp(k) W(J)X:J’ Vj (16)

Applying (I6) is scalable for big data in the presence of parallel computation capabilities, allowing
the simultaneous computation of different vectors of R(**+1) independently. Furthermore, the weight
matrices are sparse and they do not require full matrix operations.

Finally, the algorithm converges when the improvement between two successive iterations is
smaller than a predefined tolerance threshold. In other words, the algorithm terminates when

||739(X — P(k_l)R(k))er — HPQ(X — P(k)R(k+1))Hi < €41, where M+ = p) R(k+1)
and € is the tolerance threshold. Clearly, increasing €, speeds up the algorithm convergence, but

it also leads to a higher mean squared deviation ||Pg (X — M*+1) H? Therefore the choice of
€t01 depends on the application and the trade-off between speed and accuracy.

The pseudo-algorithm is demonstrated in Algorithm [I]
3.4 CONVERGENCE STUDY OF SRPCA

Lemma 3.1 The SRPCA  converges iteratively  with HPQ(X — M(k‘*‘l))Hi
H’PQ(X - P(k_l)R(k))Hf,. CheckAppendixforproof.

IN

Unlike some approaches in the literature, Lemma [3.1| shows that the performance of the SRPCA
improves iteratively until it converges. This is a key finding, because if the algorithm terminates
for external reasons (e.g., computational time constraints), the algorithm output will be the best-
calculated estimate until the unexpected termination.

[Pex-PO RO

€rol

Lemma 3.2 The SRPCA converges at an iteration K < [
pendix[A] for proof.

Lemma [3.2] provides an upper bound on the number of iterations until convergence, which also sets
an upper bound on the computational time until convergence.

l + 1. Check Ap-
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Algorithm 1 The SRPCA for Matrix Completion.
M. — Xi,j if (Z,]) c
“AN(0,1) if (4,5) € QF

—_

> Data standardization and preprocessing

2: forge[1,...,n| do

3: W@ =0 > Construct the sparse weight matrices once
4 W9 =1,Y(,q) e

5: end for ’ .

6: VOAOYOT = pp©7 pro) > Initial eigenvector decomposition.
7. RO = [V, ], P©) = M(O)R(O)T, M@ = pp©) > Construct initial matrices
8: for k € [1,...,mazIter]| do

9: Matrix smoothing > Optional
10: Mf(zk) = Xq > Update for the the observed values
11: P¥) =M (k)R(k)T > Construct principal components
12: for j € [1,...,n] do

13: ngﬂ) = (P(k)TW(j)P(k))*lP(k)TW(j)X;yj > Eigenvectors update
14: end for -

15: ME+D) = pr) g™ R+ — pk) Rk+1) > Update Matrix Estimate
16 if [Pa(X — PEDRM)|? — |[Pa(X — PWRED)|? < e then

17: Stop and Break > Stop when algorithm converges.
18: end if

19: end for

3.5 EXTENSION: THE FAST SRPCA ALGORITHM

For many applications, the convergence rate is critical, and it is often acceptable to converge to
solutions that are close enough to optimality. Recall that each iteration of the SRPCA starts with

Mgc) = Xgq as a reliable unbiased estimate for the observed entities; however, this tends to slow
down the convergence when (P~ R(*))q is close but not equal to X¢. Therefore, we propose
the fast SRPCA (see Algorithm [2]in Appendix [B]), which starts each iteration with teh following
pre-processing reset that is different than the original one in Algorithm|[T}

MY = (1—a*)(P*DRM)q + a* Xq (17)
where o* € [0, 1] is a balancing scaler that is initialized to 1.

There are two main advantages for the choice of (I7). First, a* serves as a step-size because
Ms(f) = (P*URM)g + o (X — (P*"YR®)gq); therefore, it is expected that a* — 0
when (P®~1 R(*))q is close enough to Xq. Second, o* serves as a smoothing parameter for
noisy datasets where X, is a noisy estimate for the observed entries €2. For such noisy datasets, it

is important to set o* — 0 after enough iterations to avoid converging to a noisy estimate M((lk) that
is close to X .

Lemma 3.3 If o = 0 at the beginning of iteration K, the fast SRPCA converges at iteration K
with ME+1) = pp(E) = p(K) RIEK+D) — p(K-1) R(K), CheckAppendixforproof.

From Lemma [3.3] it is intuitive to define o™ as a decreasing function with respect to the iteration
number k. This speeds up the SRPCA convergence when ||Pq (X — M *++1) Hi converges slowly
to HPQ(X — P(K_l)R(K))H? However, a random choice of a* may result in an unreliable es-
timate even for the observed part of the matrix with a large error HPQ(X — M®) H Thus, the
choice of a* depends on HPQ(X — M®) H Here, we propose a* to be the solution for:

arg min (HPQ(X —M(k))HF+5|oz|) (18)

where ¢ is a tuning parameter and for this specific choice of the objective function, it is the conver-
gence threshold for | Po(X — M®))]|| . as shown in Lemma
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Table 1: The computational time and the full matrix recovery error || X — M (X+1) H2F for 50 repli-
cations at various missing data levels (50%, 70%, 80%) of a natural image (as seen in Figure I).

Method | Time (secs) | Full Reconstruction Error (x1073)

\ 50% 70% 80% \ 50% 70% 80%

SRPCA | 0.774+0.034 0.91+0.057 0.90+0.040 | 7.0+0.27 21.7+0.58 40.2+1.29
ALM 1.99+0.014 1.95+0.014 1.744+0.032 | 19.5£0.49 57.0+1.64 79.3+2.19

SVT 1.55+0.014 3.43+0.363 16.02+£0.580 | 19.54+0.49 52.4+£3.68 134.94+28.16
ALS 1.59 £ 0.020 1.57+£0.069 1.92+£0.580 | 43.1£2.00 108.1£6.09 395.04+25.5
LRCG | 31.84+0.251 14.204+0.608 9.554+0.357 | 27.2£0.65 73.1+£1.82  150.9+£5.41
GNMR | 22.854+1.933 7.174+0.048 4.02+0.153 | 38.8+1.40 123.84+4.37 309.7 £ 10.90

Lemma 3.4 The closed-form solution for (I8) can be written as (proof in Appendix[A.3):

i —M®
a*:{o if [|Pa(X —M®)|| <o (19)

1 otherwise

Lemma shows that the fast SRPCA sets M} = Xg only when PU) RIS+ does not accu-

rately reconstruct the observed part of the matrix (i.e., when ||Pg (X — M®)) || » > 0). This also
supports the validity of Lemmas [3.1] and [3.2] for the fastSRPCA, because for o = 1 it becomes
equivalent to the SRPCA and for a* = 0 it terminates at the same iteration.

4 EXPERIMENTATION AND RESULTS

We validate the efficacy of the SRPCA approach on case studies related to (i) image inpainting, (ii)
multivariate time-series imputation, and (iii) collaborative filtering. All experiments were executed
using the Intel Core 199-9980XE CPU with 62 GB RAM and done with Python 3.12.2, Numpy 1.26.4,
SciPy 1.13.1

Benchmark Models. SRPCA is compared to state-of-the-art matrix completion methods: (i) inexact
Augmented Lagrange Multiplier (ALM) (Lin et al.| 2010), (ii) Single Value Thresholding (SVT)
(Cai et al., 2010), (iii) Alternating Least Squares (ALS) (Duan, 2020), (iv) Low-Rank Gaussian
Copula (LRGC) (Zhao & Udell,2020), and (v) Gauss-Newton for Matrix Recovery (GNMR) (Zilber,
& Nadler}, [2022)). We note that not all benchmark models are designed to have the matrix’s rank be
a-priori appointed; the ones that do are ALS, LRGC and GNMR, along with SRPCA.

4.1 CASE STUDY 1: IMAGE INPAINTING

Images are often stored in the form of matrices, in which the intensity for pixel (¢, j) is stored in the
matrix entry (4, j). Furthermore, some pixels are often noisy or hard to obtain, and it is common to
use matrix completion to reconstruct images. In this case study, a natural image of size 475 x 344
is used to validate the algorithm. Specifically, a uniform randomly selected subset — 50%, 70%, and
80% — of the pixels are removed and the matrix completion methods are then applied to reconstruct
the image with €,,; = 1074,

Results. Figures [1] 2] and 3] show the outcomes of the matrix completion methods applied on a
natural image with varying levels of missing data. While all the methods appear to decently recover
the image at 50% missing level, the gap of the quality of reconstruction of that of SRPCA and the
remaining methods increases as the level of missing data increases to 70% and 80%. This if further
validated in Table[I} which shows the computational time required to reconstruct the image and the
mean squared difference, | X — M||%, of the standardized values of all entries of the matrix. The
reconstruction error, for each method, increases with increase in missing data; this is natural because
the matrix rank is probably underestimated with less observed data, leading to higher erros. SRPCA
outperforms other methods in time and reconstruction error across all missing data levels, especially
at large levels of 80% where other methods largely deteriorate. SRPCA considers the smoothness
of the matrix and efficiently updates the principal components and eigenvectors in each iteration
without explicitly running the eigenvector decomposition.
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(a) Given (b) SRPCA (c) ALM (d) SVT (e) ALS (f) LRGC (g) GNMR

Figure 1: Reconstructed images with 50% missing pixels (the rank is set to 80).

(a) Given (b) SRPCA (c) ALM (d) SVT (e) ALS (f) LRGC (g) GNMR

Figure 2: Reconstructed images with 70% missing pixels (the rank is set to 40).

o 4 -
(a) Given (b) SRPCA (c) ALM (d) SVT (e) ALS (f) LRGC (g) GNMR

Figure 3: Reconstructed images with 80% missing pixels (the rank is set to 30).

Table 2: The computational time and the full matrix recovery error HX — MK+ ||j, for 50 repli-
cations at different levels of missing data (10%, 30%, 50%, 70%) of turbine enignes dataset.

Method | Time (secs) | Full Reconstruction Error (x1073)
‘ 10% 30% 50% 70% ‘ 10% 30% 50% 70%

SRPCA | 2.11+£0.047 2.234+0.054 244+0.042 283+0.038 | 31+£03 96+05 170+0.8 286+24
ALM 0.12+0.003 0.12+0.001 0.14+0.007 0.16+0.005 | 31+0.3 98+0.6 1814+47 279+£3.0
SVT 0.704+0.022 0.71£0.020 0.714+0.015 0.70£0.025 | 264+0.3 275+£0.7 296+£1.2 349+26
ALS 4.16 £0.265  4.38 +0.430 - - 263+0.3 271+£0.6 - -

LRCG 4.61£0.039  4.59 £0.041 2.55+£0.032 84440058 | 32403 974+05 171+£09 276+24
GNMR | 6.29+0.049 5.524+0.139 4434+0.025 3.22+0.013 | 263+0.3 271+0.6 289+1.0 345+24

4.2 CASE STUDY 2: MULTIVARIATE TIME-SERIES IMPUTATION

Multivariate time series data frequently contains missing features with varying ratios and patterns
depending on distinct sampling periods or measurement methods (Choi & Leel2024). These missing
features can significantly impact downstream tasks. Time-series imputation is crucial in practical
domains such as healthcare and prognostics. We evalaute the matrix completion algorithms on a
multisensor monitoring data, in specific on a public aircraft gas turbine engines dataset
2008). The dataset contains measurements from 21 sensors recorded on 100 distinct engines
that ran until failure. We focus on 12 sensors that show consistent trends across the 100 engines.
Accordingly, the multisensor data from all 100 engines are stacked in one matrix with shape 20631 x
12. A uniform randomly selected subset — 10%, 30%, 50%, and 70% — of the matrix entries are
removed and the matrix completion methods are then applied to recover the original matrix with
€:o1 = 10~*. The rank for the underlying matrix is set to r = 1.
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Figure 4: Reconstructed multisensor signals via the SRPCA approach with 70% missing data.

Results. The challenges in recovering this matrix lie in the fact that it (i) is already low-dimensional
and (ii) has a high noise-to-signal ratio. This is evident in Figure ] with the red scattered points of
the original signal. The SRPCA reconstructs a filtered version of the signals eliminating a big part
of the noise from the original. Table [2] shows the computational time required to reconstruct the
signals and the mean squared difference, | X — M]||%, of the standardized values of all entries of
the matrix. In terms of reconstruction, SRPCA, along with ALM and LRCG, produce the top matrix
recoveries performances. Even though the low-dimensionality suits nuclear norm based methods
like ALM, the SRPCA still produce top performances in acceptable timing. The ALS, on the other
hand, diverges for high missing data levels of 50% and 70%.

4.3 CASE STUDY 3: COLLABORATIVE FILTERING

Collaborative filtering is a notable low-rank matrix completion application (Rennie & Srebro} [2005)).
It is one of the state-of-the-art techniques in recommender systems where the user-item interaction
is embedded in matrix [Li et al.| (2021). Movie recommendations are a common recommender Sys-
tems case study. The dataset we utilize for movie recommendations is the MovieLens 100k dataset
that is available at https://grouplens.org/datasets/movielens/ (Harper & Konstan| 2015)). The dataset
contains 100k recommendations from 943 users for 1682 movies, which can be represented in a ma-
trix of size 1682x943. The performance is evaluated by the normalized mean absolute error metric
(NMAE) (Yang et al.,|2018):

Y pear 1M — Xijl
(-rmax - xmin)|QL|

where y.x and xp;, are the maximum and minimum values, respectively, of the recommendation
ratings. The rank of the underlying matrix is set to 7 = 4 and the threshold to €;,; = 1073. The
matrix in this dataset poses different challenges than the previous too; it is heavily sparse in nature
where only 100k entries are available, and that is because users tend to rate a select few movies. We
analyze scenarios where 20%, 30%, 50% and 80% of the recommendations are randomly removed.

NMAE =

(20)

Results. Table 3] demonstrates the computational times and the reconstruction error of the missing
entries (NMAE) for all methods across diverse missing data levels. It can be seen that SRPCA
outperforms all other methods both in time to convergence and in the imputation of the missing
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Table 3: The computational time and the normalized missing entries error NMAE for 50 replications
at different levels of missing data (20%, 30%, 50%, 60%) of Moviel00k dataset.

Time (secs) | NMAE (x107%)
20% 30% 50% 60% ‘ 20% 30% 50% 60%

SRPCA | 9.64+0.086 9.86+0.156 9.89+0.856 8.09+1.287 | 180+1.1 182+08 189+7.0 204+14.1
ALM 17.78 +£1.281 17.46 £1.063 17.02+£2.718 11.094+4.973 | 221+3.3 212+1.4 207+6.6  220+16.9
SVT 14.82+6.165 18.44£9.761 30.16 £7.861 15.97 £10.403 | 278 £90.6 408 £106.0 513 +7.2 467+ 14.6
ALS 144442339 141242712 15.69 £3.040 17.56 +3.474 190+ 1.6 195+1.9 208 £2.3 219£2.1
LRCG | 20.64+0.114 21.284+0.885 16.16+2.391 13.97+9.171 | 262+1.8 273+£1.6 307+2.2 322 +£5.8
GNMR | 11.97+0.254 11.58+£0.345 10.114+0.832 9.8904+0.566 | 218+ 11.3 243+£1.7 355+£15.6 406+9.4

Method }

data. This is a particularly huger dataset than the previous two case studies with much more intrinsic
sparsity and extremely low rank. SRPCA leverages the smoothness in estimate update to converge
faster than other methods. Taking advantage of iteratively resetting observed matrix entries, SRPCA
achieves a lower error in recovering the unobserved ones.

5 CONCLUSION

Missing or corrupted data is pervasive across various fields, thus, affecting downstream learning
tasks. Low-rank matrix completion is a common task to recover the missing entries of a partially
observed matrix. Existing methods either fail under significant missing data levels or suffer from
slow convergence. Th paper proposes a novel low-rank matrix completion method for incomplete
datasets, called the Sparse Reverse of the Principle Component Analysis (SRPCA). The contribu-
tions are multi-fold: (i) this approach maintains a certain level of smoothness across the matrix; (ii)
it modifies the non-convex matrix factorization problem into a convex optimization problem with a
closed for solution, leveraging subspace representation in terms of principal components; (iii) it con-
verges iteratively, which is critical for scenarios that stop the algorithm after reaching the maximum
number of iterations or due to external reasons; and (iv) it is also computationally tractable, with a
controlled upper bound on the number of iterations until convergence. In addition, a faster extension
— fastSRPCA - is provided to improve on convergence rate at the expense of marginal missing data
recovery. The efficacy of the SRPCA algorithm is validated on a natural image, multisensor dataset,
and movie ratings dataset.

Limitations. (i) The first obvious limitation of SRPCA is that it requires the knowledge of the rank
as an input. In most cases, this information is not readily available. However, there are low-rank
matrix completion methods in literature (Nguyen et al., 2019) that we can influence from to make
the rank selection adaptive. (ii) SRPCA suffers from singularity results in random predicitons for a
column that has all its entries missing, which happens scarcely or for extremely high missing levels
of data ( 90%). (iii) SRPCA is based on an assumption that the matrix completion environment is
based on Missing-Completely-At-Random (MCAR). It is interesting for future studies to see how to
develop it for Missing-At-Random (MAR) and Missing-Not-At-Random (MNAR) environments.

10
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A PROOFS OF LEMMAS

A.1 LEMMAS[B.I1AND

This appendix provides proofs for Lemmas and First, the rationale of adding MS(]k) =X 52-2
is expected to iteratively improve the performance for scenarios where HPQ (X-P (kfl)R(k)) H F
is large. Intuitively, the algorithm should terminate when |[Pgq(X — P*-DR®) ||i -
|[Pa(X — Pk R+1) H < €, meaning when the error term HPQ(X - P(k‘l)R(k))H; is

not significantly decreasmg anymore.

Next, we show that ||Pa(X — P(k‘l)R(k))Hi — [|Pa(X - P(k)R(kH))HzF < €0 Will keep
decreasing until it becomes smaller than €,,. Specifically, at each iteration k, it is either:

|Pa(x - PV R®) H < [Pa(x - P(k)R(k“))H + ol 1)
Or:

HPQ( _ pR Ry H HPQ (X — plk- 1)R’“))HF—em] (22)
For the first case in (21), the algorithm terminates at iteration % by satisfying
[Pa(X — PE-DR®)|2 — [Pa(X — PORFD)|? < 6.
For the second case, leads to || P (X —P(k)R(k+1))||F < [[Pa(X — P*k=1) pk) || be-

cause €, > 0, and we move to the next iteration k + 1. Afterwards, similarly, either the SR-
PCA terminates at k + 1 or ||Pa(X — P(k+1)R(k+2>)H2F < ||Pa(X - P(k)R(k“))HQF — €l <
[Pa(X — PR REHD)|[L < ||[Pa(X — PE-DR®)|;

This concludes the fact that ||Pa(X — P(’”R(k“))H?J decreases iteratively until
[Pa(X — PEDRE)|2 — ||Po(X — PHRIHD)|2 < ¢ is satisfied. This concludes
the proof for Lemma

Next, we show that there exists an iteration K such that |Po(X —P(k_l)R(k))Hi -

HPQ(X — P(’”R(’““))HfD < €01. Assume that the algorithm did not converge at iteration X — 1;
therefore,

2
0< |Pa(x - P(’f—”R(k))H
F
2
< [Pa(x - P2 RED)| —
F

2
PQ(X _ P(k73)R(k72))HF — 201 (23)

2
< |Paix - P<°>R(1>)HF (K — 1)ew

However, for those inequalities to hold, we must have HPQ(X — P(O)R(l)) Hi, — (K — 1)gq > 0.
Thus, the algorithm will terminate at an iteration K such that:

K < HPQ (X — P(O)R(l))H . o
€tol
which satisfies HPQ X — PE-DR(K)) H —|[Pa(X - P(K)R(K“))Hi < €. This concludes

the proof for Lemma

14
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A.2 LEMMA[RJ
This appendix proves Lemma[3.3] If o* = 0 at the beginning of iteration /&, then the solution for:
: K ; K .
argmin (X, ; - PORSTNTWO (X ; - PORKT) vj=1..n (25

R,(K+l)
is: - .
R = (P W pEO)1pE T WUIX, ; Wi=1,.,n (26)
This is also the solution for:

argmin (X, ; — MUORITRETNTwO) (X, - MEORITRIED) wj— 1, n

(K+1) a
R

27
which, because o* = 0, can be written as:

arg min (X, ; — PU-DRIIRIOTRIEFTOT W () (x, ; - pU—H RUO RUOT RUCHD)

(K+1) '
R

Vi=1,..n (28)
Therefore,

R R RICHD _(p—1 Ty () p—0) 1 pDTyw O X [ vj=1,.,n

=R", vi=1,..n @)
Finally, multiplying both sides of the equation by P(K—1):
PE-DRE) RITRIHD — pK-DR() i1 (30)
which, because a* = 0, can be consecutively developed into:
MUORUTRIHD _ I i G1)
PEIRIH) = MO vi=1,.n (32)
MUEY = MU vji=1,.n (33)

Thus, the fast SRPCA, in Algorithm [2] converges at the end of iteration K by satisfying the

|Pa(X —P(K‘l)R(K))Hi — [|Pa(X —M(K“))Hi = 0 < €. This concludes the proof
of Lemma

A.3 LEMMA[3 4]

This appendix proves Lemma[3.4] First we rewrite [I8]as:

min (HPQ (X - (1-a)P*VRM —ax) HF +dlal) (34)
= min (H(l — a)Pa(X — P<k—1>R<’“>)HF +dlal) (35)
=min (|1 - al HPQ(X—P(k_l)R(k))HF—i-(ﬂa\) (36)

Knowing that ||779 (X — P=DR®F)) ||F > 0 and § > 0, then, the solution will satisfy 0 < a* <
1.

Specifically, if HPQ(X — P(k‘l)R(k))HF < ¢, then:
HPQ(X - P(’“*UR(’“))HF = min (|1 - af HPQ(X - P(’“*DR(’@))HF +dlal) G

with a* = 0.

15
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Otherwise, if | Po(X — P*~DRM®)| > 6, then:
§ = min <|1—a| HPQ(X—P<k—1>R<k>)HF+6|a|> (38)

with a* = 1.

For the case ||Pa(X — P(’“_l)R(’“))HF = 4, any value 0 < o* < 1 is a valid solution, but we
chose a* = 0 to speed up the convergence of the algorithm. This concludes the proof for Lemma

B4
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B FASTSRPCA ALGORITHM

We provide the pseudo-algorithm of FastSRPCA as below:

Algorithm 2 The Fast SRPCA for Matrix Completion.

—_

X if (¢,7) € Q
M;; = { - if (i,7) € > Data standardization and preprocessing

N(0,1) if (4,5) € QL

2: for ¢ € [1,...,n] do
3: W@ =0 > Construct the sparse weight matrices once
4 W =1¥iq) e
5: end for - .
6: VOAO VO = pg©7 pg©) > Initial eigenvector decomposition.
7. RO = [V_,]T, P© = MO ROT A = pr© & Construct initial matrices
8: for k € [1,...,maxIter] do
9: Matrix smoothing if o* # 0 > Optional
100 MY =1 - o) (PEDRM)g + o* Xg > Update for the observed values
11: P® = M R®T > Construct principal components
12: for j € [1,...,n] do
13: R;kH) = (P(k)TW(-j)P(k))_lP(k)TW(j)X:J- > Eigenvectors update
14: end for
15 MGEH) = ptk) gk+1) > Update Matrix Estimate
i — MENY]| <
16: af = 0 if HPQ(X M )H <9 > Update step-size.
1 otherwise
17 i |Pa(X — PEDRM)|[7 — [|Pa(X — PO RETD)|? < ¢ then
18: Stop and Break > Stop when algorithm converges.
19: end if
20: end for

17
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C EXTENDED RESULTS

C.1 DESIGN OF EXPERIMENTS

In Table[d] we show the hyperparameters utilized to obtain the results corresponding to both SRPCA
and fastSRPCA for this paper across the three case study datasets.

Table 4: List of hyperparameters pertaining to the SRPCA and fastSRPCA across all dataset. § only
corresponds to fastSRPCA.

Datasets | % - list | rank | maxIter | e | e€o | Optional Smoothing | Standardization | ¢

Image [50,70,80] | [80,40,30] | 50 | 107° | 10~ True True 0.08
Multisensor | [10, 30,50, 70 1 50 107° | 1074 False True 0.4
MovieLens | [20, 30,50, 60] 4 50 107° | 1073 False True 0.7

C.2 FASTSRPCA RESULTS

We extend the results shown in the paper with the performances produced by the fastSRPCA across
the three datasets introduced. Figure [5] shows the reconstruced matrix by fastSRPCA across three
distinct missing data levels. The recovered images look qualitatively as good as those produced by
SRPCA.

(a) Missing 50%  (b) fastSRPCA  (c) Missing 70%  (d) fastSRPCA  (e) Missing 80%  (f) fastSRPCA

Figure 5: Reconstructed images by fastSRPCA with diverse missing levels of pixels (the ranks are
80, 40 and 30 for 50%, 70% and 80%, respectively).

Table [5] shows the fastSRPCA computational time and matrix recovery performance in comparison
to that of SRPCA for image dataset. While the performance is, as expected, secondary to that of
SRPCA, the fastSRPCA still outperforms the other benchmarks shown in Table m Moreover, it
converges faster than the SRPCA, almost taking hal the time SRPCA took for data missing levels of
50% and 70%.

Table [6] shows the fastSRPCA computational time and matrix recovery performance in comparison
to that of SRPCA for the multisensor dataset. At low missing data levels, the fastSRPCA is capable
of reaching the same or slightly worse matrix completion performance in less time. As the level of
missing data increases, the gap between the two performances starts increasing.

Table [7]shows the fastSRPCA computational time and matrix recovery performance in comparison
to that of SRPCA for the movie ratings dataset. The SRPCA was shown to be much faster than
the other benchmarks in Table 3} however, the fastSRPCA is capable of converging in at least two
seconds less across all missing data levels. Moreover, the matrix recovery descripency, demonstrated
by the missing data error NMAE, between the two methods is small across all missing data levels.

18
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Table 5: FastSRPCA’s computational time and full matrix recovery error HX — M(K+1) H; for 50
replications at various missing data levels (50%, 70%, 80%) of a natural image (as seen in Figure

- - =
Method | Time (secs) | Full Reconstruction Error (x10~3)

‘ 50% 70% 80% ‘ 50% 70% 80%
SRPCA ‘ 0.77+£0.034 0.91 +£0.057 0.90 4= 0.040 ‘ 7.0+027 21.7+058 40.2+1.29

fastSRPCA | 0.35£0.009 0.46+0.027 0.6840.034 | 13.44+0.56 27.4+1.05 41.8+1.54

Table 6: FastSRPCA’s computational time and full matrix recovery error || X — M (X+1) HQF for 50
replications at different levels of missing data (10%, 30%, 50%, 70%) of turbine engines dataset.

- : —3
Method ‘ Time (secs) ‘ Full Reconstruction Error (x10~?)
‘ 10% 30% 50% 70% ‘ 10% 30% 50% 70%
SRPCA ‘ 2.11+£0.047 2.234+0.054 2.44 +0.042 2.88 +0.038 ‘ 31+0.3 96+05 170+0.8 286+2.4

fastSRPCA | 2.08+0.051 2.1240.053 2.1140.049 2.1940.037 | 31+0.3 97+£0.7 181+1.0 314+54

Table 7: The computational time and the normalized missing entries error NMAE for 50 replications
at different levels of missing data (20%, 30%, 50%, 60%) of Moviel00k dataset.

| Time (secs) | NMAE (x107%)

‘ 20% 30% 50% 60% ‘ 20% 30% 50% 60%
SRPCA ‘ 9.64 +0.086 9.86 +0.156 9.89 +0.856 8.09 + 1.287 ‘ 180+£1.1 182408 189+7.0 204+14.1
fastSRPCA ‘ 6.98+0.049 7.04+£0.069 7.09+0.145 7.06+£0.122 ‘ 1874+1.2 188+0.8 194+59 2064+ 12.8

Method
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