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Abstract

We propose an auditing method to identify whether a large language model (LLM)
encodes patterns such as hallucinations in its internal states, which may propagate
to downstream tasks. We introduce a weakly supervised auditing technique using a
subset scanning approach to detect anomalous patterns in LLM activations from
pre-trained models. Importantly, our method does not need knowledge of the type
of patterns a-priori. Instead, it relies on a reference dataset devoid of anomalies
during testing. Further, our approach enables the identification of pivotal nodes
responsible for encoding these patterns, which may offer crucial insights for fine-
tuning specific sub-networks for bias mitigation. We introduce two new scanning
methods to handle LLM activations for anomalous sentences that may deviate from
the expected distribution in either direction. Our results confirm prior findings of
BERT’s limited internal capacity for encoding hallucinations, while OPT appears
capable of encoding hallucination information internally. Importantly, our scanning
approach, without prior exposure to false statements, performs comparably to a
fully supervised out-of-distribution classifier.

1 Introduction

The rapid proliferation of Large Language Models (LLMs) has transformed the landscape of natural
language processing, empowering applications ranging from chatbots and dialogue systems [57] to
content generation [45, 46]. However, as these models become an integral part of our communication,
there are concerns about the potential biases (e.g., hallucinations 1, toxicity, stereotypes) embedded
within their outputs [14, 33, 42, 55, 59]. These subtle and implicit biases can reinforce stereotypes,
marginalize certain groups, and perpetuate inequalities [7, 21]. Auditing LLMs for bias is thus
essential for upholding ethical standards, reducing harm, and an inclusive deployment.

Despite advances in bias detection and mitigation strategies for LLMs in recent years, a large corpus
of prior work has focused on word-level representations [5, 9, 49]. However, in recent years, sentence-
level representations from models such as GPT [45, 46] have become prevalent for text sequence
encoding. Moreover, prior research has primarily operated under the assumption that the particular
type of bias, such as hallucinations, is known a priori, i.e., during the training phase [3, 32]. However,
this assumption can potentially restrict these methods’ practical applicability and generalizability

1The term “hallucinations” refers to factual errors [3].

Socially Responsible Language Modelling Research (SoLaR) Workshop at 37th Conference on Neural Informa-
tion Processing Systems (NeurIPS 2023).



since they rely on access to labeled data, which may necessitate a resource-intensive data collection
process. Gaining access to labeled data can be particularly challenging when the occurrence of a bias
is infrequent and given that language constantly evolves, which inherently leads to the continuous
change of biases and their linguistic expressions. Moreover, exposure to harmful content can lead to
emotional and psychological stress for content moderators/labelers [38].

In this work, we propose an auditing approach to bias detection in LLMs sentence embeddings when
the bias is not known a-priori. Our goal is to determine if a pre-trained LLM has internalized harmful
anomalous patterns (e.g., hallucinations) by examining its internal states (node activations). Following
prior work [3, 24], our underlying assumption is that an LLM capable of predicting or generating
anomalous content will exhibit detectable indicators of this tendency within its internal states.

Our method extends prior work on anomalous subset scanning for neural networks [13, 26, 27]
by scanning pre-trained LLM activations. Our method operates without the need for training data
containing labeled anomalous content (e.g., false/hallucinated statements). Unlike classifiers, we do
not require a training phase for a particular bias type. Instead, during testing, we rely on a reference
dataset assumed to contain “normal” (or safe) content devoid of anomalies. When testing, we input a
test dataset, possibly containing bias, to a pre-trained LLM model under audit. Our method examines
the LLM’s hidden states (activations) and identifies a subset of input data (e.g., sentences and nodes)
as anomalous. We extend the prior work [13, 26, 27] to address that LLM embeddings for anomalous
sentences may deviate in either direction from the expected distribution. If anomalous sentences, e.g.,
those containing stereotypes, are detected from the activations, it suggests the model encodes those
anomalous patterns. Conversely, the absence of anomalies detected in the activations of anomalous
sentences may indicate the model’s potential robustness to those patterns.2

1.1 Related Work

Auditing LLM Outputs. Prior work on detecting anomalies such as stereotypes, toxicity, or
hallucinations in LLM models has concentrated on analyzing the model’s generated content such
as the percentage of anomalous options preferred or chosen [41, 29]. Other work has explored the
propagation of bias to downstream tasks, including coreference resolution [58], sentiment analysis
[42], topic modeling [20], and prediction models [18]. However, the effectiveness of these approaches
is heavily reliant on the quality of pre-trained downstream models. A different line of work has
examined bias in the activations of LLMs, using principal component analysis [4, 32, 58], clustering
[4], or training detection classifiers on the latent space [3, 4, 8, 22]. Other work has studied distance
metrics between word pair representations [8, 4]. However, this approach has shown inconsistency
detection results within contextual scenarios [22, 29, 35]. Furthermore, these approaches assume the
availability of fully labeled training data and require predefined anomalous patterns. Few prior work
has addressed the identification of unknown biases in LLMs, particularly in the context of unbiased
sentence classification [52]. In this work, our goal is to detect whether an LLM encodes anomalies
(e.g., hallucinations) within its hidden states. We work under the assumption that only “normal” (e.g.,
true) data is available, while the presence of anomalous (e.g., false) data remains undisclosed.

DeepScan In the context of analyzing data using a pre-trained network, deep subset scanning
(DeepScan) [13] has been used to detect anomalous samples in various computer vision and audio
tasks, including creativity sample characterization [12], audio adversarial attacks in inner layers of
autoencoders [2], patch-based attacks in flow networks [26] and skin condition classification [27].
In this work, we extend prior work by scanning pre-trained LLM activations and introducing two
novel methods to effectively identify anomalous sentences deviating from the expected activation
distribution in either direction.

2 DeepScan for LLMs

This section introduces adaptations and extensions to deep subset scanning (DeepScan) [13, 26] for
auditing LLM activations. Specifically, we detail the adaptation of previous deep scanning approaches
to search for the “most anomalous” subset of node activations and input sentences within the inner
layers of a pre-trained LLM network. We assume two datasets: a reference dataset B containing B

“normal” (e.g., factually true) sentences, and an independent test dataset T containing M sentences,
2Note that we cannot confirm a null hypothesis (absence of anomalies).
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which may be either “normal” or “anomalous” (e.g., factually false). A sentence can represent any
continuous text span and is not limited to a traditional linguistic sentence [25].

Problem Formulation. Consider an LLM, such as BERT [25], which can generate activations
through its encoder3. Assume we have M test sentences represented by a vector of activations Zl =
[Zl

1, . . . , Z
l
M ] generated by the LLM at layer l, with each sentence activation having dimension J

corresponding to the set of nodes Ol = {Ol
1, . . . , O

l
J}. Now, let ZS ✓ Z and OS ✓ O, then we

define a subset over sentences and nodes as S = ZS ⇥ OS . Our goal is to identify the subset of
activations containing the most anomalous (e.g., hallucinated) content based on a scoring function
F (S) that yields the anomaly score of a subset S: S? = argmaxS F (S).

Detecting anomalies in activations typically requires parametric assumptions for the scoring function
(e.g., Gaussian, Poisson). However, given that the distribution of activations in specific layers can be
highly skewed, we adopt a non-parametric approach, following prior work [11, 13, 27, 36, 37]. This
approach, known as non-parametric scan statistics (NPSS), makes minimal assumptions about the
underlying distribution of node activations. For this, we first derive p-values from the activations and
then perform a scan over these p-values to quantify the difference or shift in the activation distribution
for each dimension (node) compared to the reference distribution. We detail this now.

Empirical p-values. In line with prior work [13], we utilize the activations from the (“normal”)
reference data B to compute empirical p-values for the activations from the (“normal” or “anomalous”)
test data T . For a given test activation z

T l
mj (corresponding to sentence m, layer l and node j), we

calculate its empirical p-value by first sorting the set of activations from the reference data {zBl
bj }Bb=1

corresponding to layer l and node j across all reference sentences b = 1 . . . B and then determining
the rank of the test activation within that sorted list of reference activations. Subsequently, we
normalize these positions to generate p-values within [0, 1]:

p
l
mj =

1 +
PB

b=1 1(z
Bl
bj � z

T l
mj)

1 +B
. (1)

Here, 1(·) is the indicator function. For ties, we consider both the rank on the left (pmin) and right
sides (pmax). This gives us a range [pmin, pmax]. To obtain a single p-value within the range, we
perform uniform sampling. We compute p-values for a given layer l for each node j and sentence m

of the test activations.

There are different methods for computing these empirical p-values. In left-tail (right-tail) p-values,
the focus is on extreme values on the left (right) side of the reference activation distribution, indicating
smaller (larger) values compared to the reference dataset. For two-tailed p-values, the focus is
on extreme values on both (left and right) sides. Prior research concentrated on one-tailed p-
values [13, 27] on the left side of the activation distribution. However, in our case, we observe
deviations on both sides of the distribution and introduce two novel methods to incorporate the
extreme values from both ends, as we detail below.

Uniform Distribution of p-values Under Null Hypothesis When the null hypothesis is true, it
implies that any observed data point has an equal chance of falling anywhere within the distribution of
possible values under the null hypothesis [39, 48]. Therefore, when we calculate empirical p-values
by determining how extreme our observed data is relative to this null distribution, each potential
outcome is equally likely. This uniformity in probabilities across the distribution ensures that p-
values for samples confirming the null hypothesis follow a uniform distribution, as they are essentially
measuring the randomness of the data in a manner consistent with the null hypothesis’s assumptions.
Thus if the test dataset were to contain only “normal” sentences (null hypothesis), the p-values for
test activations at layer l would exhibit for each node j a uniform distribution across sentences.
When anomalous sentences are introduced, and the LLM activations encode these anomalies, we
hypothesize a departure from this uniform p-value distribution, particularly for certain nodes j.

Scoring Function. To test whether the p-value distributions diverge from a uniform distribution,
we employ a scoring function based on a test statistic, denoted as F (S) = max↵ F↵(S), where ↵

represents a significance level, and F↵(S) is defined by a suitable goodness-of-fit statistic.
3Or decoder for decoder-only models like GPT [45, 46] or OPT [56].
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In the following explanation, we closely follow [13]. The general form of the scoring function is:

F (S) = max
↵

F↵(S) = max
↵

�(↵, N↵(S), N(S)) (2)

where N(S) represents the number of empirical p-values contained in subset S, N↵(S) is the number
of p-values less than (significance level) ↵ contained in subset S, ↵ 2 (0, 1) is a significance level
and � is a goodness-of-fit statistics. To identify a subset S that presents the strongest indication
of significantly exceeding the expected activation distribution under the null hypothesis (“normal”
or clean data). This is expressed by the condition N↵(S) > ↵N(S), where ↵ denotes the chosen
significance level. In our experiments, we run a grid search over ↵ 2 [0.05, 0.5] in steps of 0.05.

Higher Criticism Test Statistic While there are several established goodness-of-fit statistics
available for use in NPSS [37], in this work, we utilize the Higher Criticism (HC) test statistic [17]:

�(↵, N↵(S), N(S)) =
|N↵(S)�N(S)↵|p

N(S)↵(1� ↵)
(3)

This could be understood as the test statistic for a Wald test assessing the number of significant p-
values, where N↵ follows a binomial distribution with parameters N↵ and ↵. Due to its normalization
by the standard deviation of N↵, HC tends to yield smaller subsets characterized by wider ranges
of p-values. This occurs because such subsets yield larger values in the numerator while generating
smaller values in the denominator. In our case, small subsets are particularly preferable in scenarios
where the quantity of anomalous data within the test dataset is small, as shown in our experiments
(Section 3), where the test dataset comprises only 10-20% anomalous data.

Efficient Search Algorithm. To overcome the computational challenge posed by maximizing a
scoring function across all possible data sample and node subsets, we employ Fast Generalized Subset
Scanning (FGSS) as previously utilized in similar research [13, 27]. This approach significantly
reduces the number of subsets under consideration from O(2E) to O(E) within each optimization
step, where E represents the number of elements currently being optimized, such as images or
nodes (see Appendix C, Algorithm 2). This efficiency is based on the application of the LTSS
property [43], which involves sorting each element based on its priority, defined as the proportion of
p-values below a threshold ↵. FGSS assures convergence to a local optimum. The algorithm returns
anomalous subset S? defined by a set of nodes OS? and a subset of sentences ZS? from the test
dataset, collectively defining the most anomalous pattern as a group.

Using results from both tails. We observe that LLM embeddings for anomalous data may shift
from the expected reference distribution in both directions. To identify subsets marked as anomalous
due to shifts to the left or right for different nodes, we introduce two novel methods to aggregate
scanning results. The first approach involves aggregating results obtained from scanning left-tail
and right-tail p-values. We identify subset of sentences ZS?

R
by scanning over right-tailed p-values

and ZS?
L

by scanning over left-tailed p-values. We then combine these results through union:
Z

Union
S? := ZS?

R
[ ZS?

L
. The second approach is an iterative method that combines results from

scanning two-sided p-values. It aggregates the top-k subsets returned by the scanning, where after
each iteration i = 1 . . . k, the found subset of sentences ZS?

i
is removed from the test dataset, and

the subsequent scanning is performed on the reduced test set. The final subset is the union over all
identified subsets: Ztop�k

S? := ZS?
1
[ ZS?

2
[ . . . ZS?

k
.

3 Experimental Setup and Results

This section presents experimental results for bias detection in LLMs using our two proposed scanning
methods. We focus on hallucination detection and analyze the subset of input sentences returned. For
additional results on toxicity and stereotype detection, refer to Appendix E.

Data and LLM Models. We use an English-language dataset Hallucinations [3] (’Cities’ topic)
containing factually true (e.g., “Nakuru is a city in Kenya.”) and false statements (e.g., “Surrey is a
city in Kenya.”). We use a test dataset of 800 samples comprising 10% anomalous data, reflecting the
real-world scarcity of such data. We sample test data 10 times with replacement from a larger pool
of data and report mean and standard deviation. For further details regarding the dataset selection
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LLM Layer Clf Precision Recall Size

BERT

10
clf+ 0.099 (0.006) 0.73 (0.046) 0.737 (0.01)

scan2 0.114 (0.022) 0.631 (0.105) 0.563 (0.075)
scanLR 0.091 (0.017) 0.61 (0.062) 0.685 (0.075)

12
clf+ 0.128 (0.017) 0.428 (0.059) 0.335 (0.012)

scan2 0.085 (0.011) 0.392 (0.062) 0.459 (0.018)
scanLR 0.065 (0.029) 0.465 (0.246) 0.695 (0.074)

OPT

20
clf+ 0.33 (0.018) 0.742 (0.041) 0.225 (0.01)

scan2 0.16 (0.057) 0.734 (0.2) 0.479 (0.065)
scanLR 0.45 (0.034) 0.605 (0.055) 0.134 (0.01)

24
clf+ 0.274 (0.015) 0.752 (0.034) 0.275 (0.013)

scan2 0.149 (0.031) 0.685 (0.096) 0.471 (0.094)
scanLR 0.693 (0.272) 0.418 (0.146) 0.076 (0.042)

Table 1: Comparison of our weakly supervised scan methods unions: left- and right-tailed p-value
scans (scanLR), and top-3 two-tailed p-value scans (scan2), and the supervised out-of-distribution
classifier baseline (clf+) on auditing BERT and OPT. Performance and relative subset (Size) reported
as mean (std) across 10 random test datasets with 10% anomalous data. Best (significant) bold.

and preprocessing, see Appendix A. We audit two pre-trained LLMs: the BERT base (uncased)
model [16] with a 12-layer encoder with 768 nodes per layer, where focus on activations for the
[CLS] token, and the Facebook OPT 6.7 model [56] with a 32-layer decoder with 4096 nodes per
layer. Note that our method can audit any LLM that provides activations. For details, see Appendix B.

DeepScan Extensions and Baseline. We scan over left-, right-, and two-tailed p-values. Building
upon prior work [3], we analyze the activations from layers closer to the output as they are suspected
of encoding higher-level information. For further details, see Appendix C. We report results for the
introduced scanning extensions: the outcomes derived from the combined subset of left and right p-
value scans (scanLR), along with the results from the top-3 scan over the two-sided p-values (scan2).
To evaluate our detection power, we compare to a supervised classifier (clf+) that aims to predict
whether a sentence is true or false based on the LLM activation [3]. It is trained for each LLM layer
on an approximately balanced dataset containing 1739 false sentences and is tested on an out-of-
distribution held-out dataset (e.g., other topics) of the same task. For details, see Appendix D.

Results. We present results in Table 1. After identifying the subset, we assume access to test labels
and report precision, and recall. Precision measures the ability to avoid false positives, calculated as
the ratio of correctly identified anomalous samples to the total samples flagged as anomalous. Recall
quantifies the ability to find all anomalous sentences, measured as the ratio of correctly identified
anomalous samples to the total actual anomalous instances. We also report the size of the subgroup
of sentences returned by the scanner or the number of sentences predicted as false by the classifier.

We first audit BERT. Across activations from both layer 10 and (last) layer 12, we observe low
precision across all methods. These results indicate that BERT has a limited capacity to represent
hallucinations within its internal state effectively, confirming prior work [3]. Subsequently, we audit
OPT, a more potent model designed to match GPT’s capabilities [56]. We consistently observe higher
precision in detecting false statements across methods and test sets. From an auditing perspective,
these findings indicate that OPT does indeed encode hallucination information within its internal
state. This is consistent with prior research [3], which found layer 20 to be the most predictive for
their classifier. Yet, our scanning approach (scanLR) excels at layer 24.

Comparing methods, scan2 achieves similar precision levels to the classifier for BERT. At layer 10,
the classifier shows highest recall while flagging ⇠ 74% of sentences as false, despite an expected rate
of 10%, indicating a high False Positive Rate. In the case of OPT, scanLR exhibits higher precision
than the supervised baseline for layer 20, with a subset size (⇠ 13%) closely matching the expected
10%. Nevertheless, scan2 and clf+ achieve the highest recall rates and return larger subsets for both
layers. In summary, method effectiveness varies with test dataset and layers, without a clear dominant
method. Rather, we observe a trade-off between precision and recall, with one method excelling in
precision at the cost of recall, and vice versa. We also observe a strong connection between subset
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size and recall, where larger subsets tend to yield higher recall but often at the cost of decreased
precision. In conclusion, our method—with no prior exposure to false statements—exhibits similar
performance to an out-of-distribution classifier trained on larger amounts of anomalous samples when
both are assessed using a dataset comprising just 10% anomalous data (80 samples).

4 Summary and Discussion

We have introduced a weakly supervised auditing technique to identify, whether a pre-trained LLM is
encoding patterns such as hallucinations within its internal states. We are interested in this problem
because if an LLM is encoding these patterns internally, it can potentially impact downstream tasks
and one may be able to deploy bias mitigation strategies. Our method employs subset scanning across
various neural network layers in pre-trained LLMs, without the need for for prior knowledge of the
specific patterns or access to labeled false statements.

During validation on a hallucination dataset, our approach achieved performance similar to, and
sometimes surpassing a baseline fully supervised out-of-distribution classifier. Importantly, our ap-
proach only requires access to samples labeled as “normal” (true) eliminating the need for anomalous
pattern data, which can be costly and ethically challenging to obtain (especially for other types of
anomalies, such as toxicity and stereotypes). This makes our method highly suitable for real-world
applications. Nonetheless, recent research [31] has raised doubts about the generalizability of prior
methods [3, 10] in detecting hallucinations, which we intend to explore further. Our work makes
assumptions about the background dataset, assuming it only contains “normal” statements tailored to
the problem at hand. We plan to extend our work to more realistic assumptions by including small
amounts of anomalous data in the reference dataset and composing it of various data sources.

Finally, similar to work using metrics such as cosine-similarity [32], our method only has positive
predictive ability: it can be used to detect the presence of anomalies but not their absence. To
understand how much of our experimental results can be attributed to our method’s detection power
and how much is due to the LLM not encoding the anomalous pattern, we have compared it to a
supervised baseline. Our results indeed show that our method, which requires no training and no
prior exposure to false statements, performs comparably to the supervised baseline.

5 Outlook: Informing Fine-tuning

We briefly discuss the potential expansion of our work. Unsupervised pre-training and task-specific
fine-tuning have become the standard approach for various LLM tasks [19, 23, 50]. Despite their
impressive achievements, these methods face challenges in generalization performance on down-
stream tasks [25, 30, 44] and suffer from catastrophic forgetting [1, 34, 54]. To address these issues,
sub-network optimization approaches have emerged as a promising method to enhance stability and
reduce overfitting without requiring full network retraining [51, 54].

We believe that our method can build on the advancement of this line of research for bias mitigation
strategies. As detailed in § 2, our method allows identifying the subset of nodes OS? that are most
responsible for the anomalous patterns found. This means, for each layer, we are able to identify
the nodes that align with the most anomalous subset of sentences, that is those nodes for which the
empirical p-values of their activations deviate from the uniform distribution such that they are flagged
anomalous. This suggests that these nodes are pivotal in identifying anomalous patterns within the
data, which could guide the efficient fine-tuning of sub-networks for bias mitigation strategies. We
show initial findings in Appendix E.
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