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ABSTRACT

The breadth, scale, and temporal granularity of modern electronic health records
(EHR) systems offers great potential for estimating personalized and contextual
patient health trajectories using sequential deep learning. However, learning use-
ful representations of EHR data is challenging due to its high dimensionality,
sparsity, multimodality, irregular and variable-specific recording frequency, and
timestamp duplication when multiple measurements are recorded simultaneously.
Although recent efforts to fuse structured EHR and unstructured clinical notes
suggest the potential for more accurate prediction of clinical outcomes, less fo-
cus has been placed on EHR embedding approaches that directly address tem-
poral EHR challenges by learning time-aware representations from multimodal
patient time series. In this paper, we introduce a dynamic embedding and tok-
enization framework for precise representation of multimodal clinical time series
that combines novel methods for encoding time and sequential position with tem-
poral cross-attention. Our embedding and tokenization framework, when inte-
grated into a multitask transformer classifier with sliding window attention, out-
performed baseline approaches on the exemplar task of predicting the occurrence
of nine postoperative complications of more than 120,000 major inpatient surg-
eries using multimodal data from three hospitals and two academic health centers
in the United States.

1 INTRODUCTION

Electronic health records (EHRs) contain important information about patient encounters that sup-
port real-world healthcare delivery, and while artificial intelligence and machine learning have the
theoretical potential to support clinical decision-making based on contextual representations of pa-
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tient data, modeling real-world EHR time series is challenging due to its high dimensionality, mul-
timodality, and temporal characteristics of the healthcare domain.

While evidence suggests that sequential deep learning approaches can outperform conventional ma-
chine learning for patient-level predictions (Shickel et al., 2023; Adiyeke et al., 2023; Morid et al.,
2023), popular approaches such as recurrent neural networks (RNN) with long short-term mem-
ory (LSTM) (Memory, 2010) and gated recurrent networks (Chung et al., 2014) do not account for
the temporal complexities of EHR data and may be suboptimal when learning temporal dynamics
of patient health trajectories. Recently, transformers have been used for modeling temporal EHR
data (Li et al., 2020; Shickel et al., 2022; Tipirneni & Reddy, 2022) and have been established as
state-of-the-art approaches for predicting clinical outcomes from patient data sequences.

However, additional challenges persist when modeling EHR data with transformers, such as captur-
ing temporal dependency across very long sequences (Li et al., 2022a) and modeling heterogeneous
dependencies across variables (Zhang & Yan, 2022). Unstructured clinical notes, which contain
important information about a patient encounter (Jensen et al., 2017), have the potential to provide
added context to structured EHR. Recent studies have shown performance improvements obtained
from jointly modeling structured EHR data and unstructured clinical notes for various multimodal
clinical prediction tasks (Liu et al., 2022; Zhang et al., 2023). However, how to effectively learn the
multimodal EHR representations in light of temporal EHR complexities remains an open question.

In this paper, we introduce a dynamic embedding and tokenization scheme to enable transformers
to adapt to the unique challenges of multimodal clinical time series. Our scheme uses flexible po-
sitional encoding and a learnable time embedding to address the challenge of sparsity and irregular
sampling, and a variable-specific encoding strategy for capturing distinct characteristics and rela-
tionships between temporal variables. To effectively combine structured, numerical time series data
and free-text clinical notes, we adopted a cross-attention-based approach that learns a joint multi-
modal temporal representation. We demonstrate the effectiveness of our approach and analyze the
relative contributions of each component of our framework using the benchmark task of predicting
the onset of multiple postoperative complications following major inpatient surgery.

2 METHODS

Our dynamic embedding and tokenization framework for multimodal clinical time series includes
methods designed to address (a) the temporal complexities of real-world EHR, and (b) the multi-
modal integration of structured EHR and unstructured clinical notes.

2.1 ENCODING DYNAMIC TEMPORALITY IN CLINICAL TIME SERIES

Figure 1 shows an overview of our dynamic embedding and tokenization scheme, which introduces
three novelties to existing approaches: a flexible positional encoding, a learnable time encoding, and
variable-specific encoding.

Flexible positional encoding. Multivariate EHR time series contain variables measured at different
frequencies (e.g., a vital sign saved every minute vs. a laboratory test taken every 24 hours), and
other variables that are measured at exactly the same time (e.g., blood pressure, heart rate, and
respiratory rate from a bedside monitor). Traditional approaches that enforce a single resampled
time interval, or present duplicate-time inputs in an arbitrary ordering, have the potential to lose
information or inject unnecessary bias into the data representation. Our approach uses non-unique
absolute positional indices based on the recorded timestamps so that variable tokens measured at the
same time will be assigned the same positional index. To model the relationships between clusters
of short-term activity across a long timeframe, we add a relative positional encoding to each token
embedding (Shaw et al., 2018), which can help capture local token dependencies, especially for
processing long sequences(Zaheer et al., 2020; Wei et al., 2021).

Learnable time encoding. Positional embeddings are used by models such as transformers to inject
information about sequential order into time series representations (Dufter et al., 2022). However,
positional embeddings alone omit critical information about the relative time between events. For
applications of transformers to time series, time embeddings can help capture important temporal
patterns (Zhang et al., 2020; Zeng et al., 2023). Our dynamic tokenization scheme uses Time2Vec
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Figure 1: Dynamic embedding and tokenization scheme for multivariate clinical time series.

(Kazemi et al., 2019) to learn a model-agnostic vector representation for time. In Time2Vec, a time t
is encoded to generate one non-periodic ωnpt+ϕnp, and one periodic sin(ωpt+ϕp) time dependent
vector, where ω and ϕ are learnable parameters (Liang et al., 2023).

Variable-specific encoding. A multivariate clinical time series often includes different categories
of health variables (e.g., vital signs, laboratory tests, medications) that tend to exhibit distinct char-
acteristics, numerical ranges, and temporal patterns. In recent EHR transformer implementations
like BEHRT (Li et al., 2020)), all tokens within the sequence are embedded with the same encoder,
which does not account for the heterogeneity among different variables. To address these existing
challenges, we propose to use a separate encoder for each clinical variable for intra-variable tempo-
ral dynamics, and then concatenate the outputs of the seperate encoders to learn the inter-variable
correlation and dependencies.

2.2 CROSS-ATTENTION FOR JOINT LEARNING FROM MULTIMODAL CLINICAL TIME SERIES

To learn multimodal representations, we merged the embeddings of structured clinical time series
and clinical notes using a validated cross-attention-based approach (Lu et al., 2019; Husmann et al.,
2022; Liu et al., 2023; Zhang et al., 2023). Notes were encoded using a pretrained Longformer
model(Li et al., 2022b), which outperformed other pretrained text models such as ClinicalBERT.

Consider the embeddings of clinical notes and structured EHR time series, denoted by Xnote

and Xtime, respectively. The core of this approach lies in generating enriched feature se-
quence by searching relevant information between modalities. For example, Wtime→note =

softmax(
QnoteK

T
time√

dk
) represent a scoring matrix, whose (i, j)-th element measures the attention

given by the information from the i-th time step from modality Xnote and the j-th time step from
modality Xtime.

3 EXPERIMENTS

In this section, we describe the evaluation of our approach on the benchmark task of predicting
multiple in-hospital complications of major inpatient surgery using a real-world EHR dataset. Some
technical details have been omitted for brevity and can be found in the Appendix.

3.1 DATASET

Our data consists of complete EHR records for all major inpatient surgeries occurring at three hos-
pitals split among three hospitals (UF Health Gainseville, UF Health Jacksonville, and UF Health
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North Jacksonville) between 2014 and 2019. The combined cohort consisted of 113,953 adult pa-
tients who underwent 124,777 inpatient surgeries.

For each inpatient surgery, our dataset consists of: (1) the patient’s demographic and admission
information, such as age, sex, and body mass index; (2) 14 intraoperative time series consisting
of vital signs such as blood pressure, heart rate, and body temperature; (3) all preoperative and
intraopertive clinical notes for an encounter, such as History and Physical (H&P notes) and operative
reports; and (4) 9 binary labels indicating the occurrence of 9 postoperative complications.

3.2 BENCHMARK MULTITASK CLASSIFICATION

The goal is to predict the onset of nine postoperative complications following major inpatient
surgery: prolonged (> 48 hours) intensive care unit (ICU) stay, acute kidney injury (AKI), pro-
longed mechanical ventilation (MV), wound complications, neurological complications, sepsis, car-
diovascular complications, venous thromboembolism (VTE), and in-hospital mortality. Models are
trained on data available in the EHR up to the recorded timestamp of surgery end.

3.3 MODELS

Our embedding and tokenization scheme was designed for use with clinical transformers, and our
primary classification model is a Longformer with sliding window attention. We compared the
model trained with our dynamic embedding and tokenization scheme with several widely adopted
baselines:

Tokenized gated recurrent units (GRUs) with attention: the tokenized sequential data was pro-
vided as input to a multi-layer GRU, followed by a self-attention layer (Tan et al., 2020; Shi et al.,
2021).

Tokenized XGBoost: an XGBoost model was trained on tokenized sequential data (Wang et al.,
2020a; Liu et al., 2022).

BHERT(Li et al., 2020), a widely used baseline transformer model for EHR data. In this baseline
model, we removed variable-specific encoders and used one single embedding layer to encode se-
quential data. We also removed the relative positional embedding and time embedding, as they were
not included in BHERT tokenization scheme.

Hi-BEHRT (Li et al., 2022a), a hierarchical transformer-based model for EHR data, which employs
a sliding window to partition the long sequence into smaller segments. Within each segment, a
transformer was utilized as a local feature extractor to capture temporal dynamics.

Self-supervised Transformer for Time-Series (STraTS) (Tipirneni & Reddy, 2022). STraTS uses
a unique transformer to encode each variable with transformers and then uses a self-attention layer
to generate the time-series embedding.

4 RESULTS AND DISCUSSION

4.1 TIME SERIES MODELING

Table 1: Model performance learning from clinical time series. Comparing the AUROC scores of
different approaches for predicting nine postoperative outcomes.

Task Mean ICU AKI MV Mortality Wound Neurological Sepsis Cardiovascular VTE

GRU + Attention 0.771±0.04 0.857 0.718 0.783 0.816 0.712 0.753 0.791 0.762 0.747
XGBoost 0.765±0.03 0.851 0.716 0.771 0.815 0.709 0.748 0.788 0.760 0.727

Transformer (BEHRT) 0.749±0.01 0.843 0.701 0.765 0.800 0.701 0.725 0.770 0.748 0.699
Hi-BEHRT 0.781±0.03 0.863 0.730 0.789 0.835 0.721 0.769 0.801 0.780 0.769

STraTS 0.797±0.04 0.881 0.742 0.803 0.857 0.734 0.797 0.813 0.791 0.772
Transformer (Ours) 0.801±0.02 0.883 0.749 0.810 0.853 0.739 0.800 0.811 0.797 0.774

Table 1 compares the area under the receiver operating characteristic curve (AUROC) for our bench-
mark multitask classification task. As shown in the table, our dynamic tokenization scheme-based
transformer model outperform all baseline models with the highest mean AUROC of 0.801. We
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experimented with different types of variable-specific encoders (1-D convolutional layers (Kiranyaz
et al., 2021) and transformer layers (Tipirneni & Reddy, 2022)) and found similar results (For 1-D
CNN, transformer, and linear, the mean AUROC score was 0.796, 0.800, and 0.798, respectively).
STraTS (Tipirneni & Reddy, 2022) slightly underperformed our approach, suggesting the utility of
the added relative positional embeddings used by our approach. With the same tokenized sequence,
GRU + Attention (mean AUROC: 0.771) outperformed transformer models with traditional tok-
enization scheme (mean AUROC: 0.749), indicating the advantages offered by our embedding and
tokenization framework for other non-transformer modeling approaches.

4.2 MULTIMODAL FUSION

Table 2: Model performance using multimodal fusion of structured time series and free-text clinical
notes. Shown are the AUROC of different approaches for predicting nine postoperative outcomes.

Task Mean ICU AKI MV Mortality Wound Neurological Sepsis Cardiovascular VTE

Time Series Only 0.801±0.02 0.883 0.749 0.810 0.853 0.739 0.800 0.811 0.797 0.774
Clinical Notes Only 0.821±0.02 0.868 0.756 0.815 0.883 0.758 0.836 0.869 0.796 0.823

Late Weighted Fusion 0.813±0.03 0.882 0.748 0.807 0.850 0.752 0.815 0.809 0.797 0.778
Crossmodal Fusion + Concat2 0.822±0.01 0.866 0.755 0.816 0.881 0.754 0.831 0.867 0.797 0.831
Concat + Crossmodal Fusion3 0.845±0.03 0.908 0.781 0.845 0.905 0.780 0.855 0.882 0.823 0.838

Table 2 compares the AUROC of different models for multimodal learning of structured time series
and free-text clinical notes. All of the multimodal models (time series + clinical notes) outperformed
unimodal models utilizing either time series or clinical notes, aligning with conclusions from prior
work(Husmann et al., 2022; Lyu et al., 2022). Concat + Crossmodal Fusion (shown in Appendix,
Figure 2) performed the best, establishing a state-of-the-art mean AUROC of 0.845 for this task.
Multimodal models trained without cross-attention resulted in less accurate predictions, suggesting
this cross-attention-based fusion approach can effectively learn joint multimodal representations of
time series data and clinical notes.

5 CONCLUSION

In this work, we introduced a dynamic embedding and tokenization scheme to adapt to the unique
temporal challenges found in multimodal clinical time series. Experiments with real-world EHR
databases on a benchmark clinical prediction task highlighted its advantages. Our work makes
several contributions to the ongoing research of clinical time series modeling, as well as exploring
innovative approaches to incorporate diverse health data sources.

A APPENDIX

Below is the appendex section, including multimodal architectures, dataset statistics, data prepro-
cessing details, experiment details, and related work.

A.1 MULTIMODAL ARCHITECTURES

Please see Figure 2 and Figure 3 for two cross-attention-based fusion architectures.

A.2 DATASET STATISTICS

For each patient who underwent surgeries, we extracted following features:

1. 9 preoperative demographic and admission information from 113,953 patients, including
age (Mean 51 y, Min 18 y, Max 106 y), sex (48% male, 52% female), language, ethnicity,
race, smoking status, zip code, and body mass index.

2. 14 intraoperative temporal vital signs, including systolic blood pressure, diastolic blood
pressure, mean arterial pressure, heart rate, respiratory rate, oxygen flow rate, fraction of
inspired oxygen (FIO2), oxygen saturation (SPO2), end-tidal carbon dioxide (ETCO2),
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minimum alveolar concentration (MAC), positive end-expiratory pressure (PEEP), peak
inspiratory pressure (PIP), tidal volume, and body temperature.

3. 173 types of all preoperative and intraopertive clinical notes for an encounter, such as His-
tory and Physical (H&P notes) and operative reports.

4. 9 clinical outcomes, the incidence of complications include 23.29% ICU stay (for 48 h
or more), 13.09% acute kidney injury, 8.64% prolonged mechanical ventilation, 2.00%
in-hospital mortality, 13.48% wound complications, 15.09% neurological complications,
8.20% sepsis, 12.18% cardiovascular complications, and 4.51% venous thromboembolism.

A.3 DATA PREPROCESSING

Demographic and Admission Information For categorical data, we converted each to one-hot
vectors, and concatenated with remaining numerical values. Missing static features was imputed
with cohort medians.

Time Series Data For 14 intraoperative time series data, their variable names were converted to
unique integer identifiers; the measured values for each variable was were normalized to zero mean
and unit variance based on the values from the training set; their measurement time, in the format of
“month/day/year hour:min:sec”, were first converted to unix timestamps and then also normalized
similarly. For absolute positional indices, we assign one integer positional index for each token
yet not enforcing the restriction that positional indices are unique and if different variables were
measured at the same time. For relative positional embeddings, we generated the relative positional
representation based on the GitHub code1 for the original paper (Shaw et al., 2018).

Clinical Notes In the preprocessing phase, we merged all types of notes per surgery, converted the
text to lowercase, and removed special characters and de-identification placeholders. Subsequently,
we generated embeddings by first tokenizing the whole text using the clinically pretrained tokenizer.
The tokens were then chunked to fit the pretrained clinical LLM, and the last hidden layer output
for the CLS token was extracted as the embedding for each chunk. The final representation for
each surgery was obtained by calculating the average of all these embeddings. We fixated on the
Clinical Longformer 2 for generating the embeddings due to its superior performance in classifying
with clinical notes, following extensive testing with various models from Huggingface including
BioBERT 3, BiomedBERT4, ClinicalBERT 5, and Clinical Longformer6.

1https://github.com/microsoft/MPNet/blob/master/pretraining/fairseq/
modules/rel_multihead_attention.py

2https://huggingface.co/yikuan8/Clinical-Longformer
3https://huggingface.co/dmis-lab/biobert-base-cased-v1.2
4https://huggingface.co/allenai/biomed_roberta_base
5https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT
6https://huggingface.co/yikuan8/Clinical-Longformer
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Figure 2: Overview of Crossmodal Fusion + Concat.
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A.4 EXPERIMENT DETAILS

Multi-task Training Our model was trained with the multi-task fashion for predicting 9 postop-
erative outcomes. To do this, we expanded the notion of “[CLS]” token for text classification and
prepended 9 global tokens to our tokenized sequences, one for each of our postoperative outcomes,
so that self-attentions were computed among all sequence elements for each clinical outcome token.

Longformer for processing long sequences Vanilla transformer models are largely limited by their
capacity in processing long sequences (max sequence = 512) because of its quadratic complexity
with respect to the sequence length. Therefore, in this paper we used Longformer (Beltagy et al.,
2020) for time series modeling transformers. Longformer architecture introduces sliding window
attention that allows the model to attend to only a subset of tokens within a window, reducing the
overall computational complexity. This design makes Longformer well-suited for processing longer
sequences (max sequence = 4096).

Experimental Setup We trained the models on two NVIDIA A100-SXM4-80GB GPUs for 30
epochs to leverage hardware acceleration. We used a batch size of 32 per GPU for the best perform-
ing model.

Hyperparameters We used the following hyperparameters for optimization and regularization,
Adam optimizer with a learning rate of 1e-4, dropout of 0.2, and weight decay of 1e-4. For the
transformer models, including the Longformer, we limited the models to only 1 attention head and
1 layer per head, as this configuration produced the best results.

Loss Function We chose to use a Binary Cross-Entropy with Logits (BCEWithLogitsLoss) with
the parameter pos weight set to the weight of the positive class for each prediction outcome, given
the unbalanced nature of our dataset. This allows models to be more sensitive to minority class by
increasing the cost of misclassification of it.

A.5 RELATED WORK

Transformers for EHRs Recent transformers for EHRs focused on adapting vanilla transformer ar-
chitecture for tokenizing irregular sampling and learning temporal dependencies in long sequences.
For example, for sparsity and irregular sampling, Zhang et al. (2021) used graph neural network to
embed irregularly sampled and multivariate time series, capturing sensor dynamics from observa-
tional data. Tipirneni & Reddy (2022) treated time-series as sets of observation triplets and uses
transformers to encode continuous time and variable values, eliminating the need for discretization.
For processing long sequences, Li et al. (2022a) employed a sliding window to partition the com-
plete medical history into smaller segments. Within each segment, a Transformer was utilized as a
local feature extractor to capture temporal interactions. Motivated by this line of research, we intro-
duced our dynamic embedding approache in this paper, aiming to address temporal EHR challenges
by learning time-aware representations patient time series.

Multimodal Representation Learning for Health Combining diverse sources of data sources in
medical domain is promising for more comprehensive understanding of patients’ health conditions
(Raghupathi & Raghupathi, 2014), more accurate health outcome predictions (Shickel & Bihorac,
2023), and building next-generation foundational medical models for generative AI (Moor et al.,
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2023). The core of this research effort is multimodal representation learning where all the modalities
are projected to a common space while preserving information from the given modalities (Liang
et al., 2022). Traditional data fusion methods, such as early and late fusion, are insufficient to
learn the correlations and dependencies among different modalities (Ma et al., 2022). Recently,
transformer-based architecture, thanks to its superior ability to capture cross-modal interactions by
self-attention and its variants (Xu et al., 2023), has achieved great success in various multimodal
machine learning tasks in different domains, such as multimodal action recognition (Wang et al.,
2020b), image segmentation (Xiao et al., 2023), and affect detection (Ma et al., 2023).
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