
ResAD: A Simple Framework for Class Generalizable
Anomaly Detection

Xincheng Yao1, Zixin Chen1, Chao Gao3, Guangtao Zhai1, Chongyang Zhang1,2∗
1School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University

2MoE Key Lab of Artificial Intelligence, AI Institute, Shanghai Jiao Tong University
3China Pacific Insurance (Group) Co., Ltd.

{i-Dover, CZX15724137864, zhaiguangtao, sunny_zhang}@sjtu.edu.cn1

gaochao-027@cpic.com.cn3

Abstract

This paper explores the problem of class-generalizable anomaly detection, where
the objective is to train one unified AD model that can generalize to detect anoma-
lies in diverse classes from different domains without any retraining or fine-tuning
on the target data. Because normal feature representations vary significantly across
classes, this will cause the widely studied one-for-one AD models to be poorly class-
generalizable (i.e., performance drops dramatically when used for new classes). In
this work, we propose a simple but effective framework (called ResAD) that can be
directly applied to detect anomalies in new classes. Our main insight is to learn the
residual feature distribution rather than the initial feature distribution. In this way,
we can significantly reduce feature variations. Even in new classes, the distribution
of normal residual features would not remarkably shift from the learned distribu-
tion. Therefore, the learned model can be directly adapted to new classes. ResAD
consists of three components: (1) a Feature Converter that converts initial features
into residual features; (2) a simple and shallow Feature Constraintor that constrains
normal residual features into a spatial hypersphere for further reducing feature
variations and maintaining consistency in feature scales among different classes;
(3) a Feature Distribution Estimator that estimates the normal residual feature distri-
bution, anomalies can be recognized as out-of-distribution. Despite the simplicity,
ResAD can achieve remarkable anomaly detection results when directly used in
new classes. The code is available at https://github.com/xcyao00/ResAD.

1 Introduction

Anomaly detection (AD) has achieved rapid advances in many application domains, such as industrial
inspection, video surveillance, and medical lesion detection [9, 26]. However, applying AD algorithms
in real-world scenarios still confronts many challenges. A critical challenge is that there are usually
diverse classes2 and new classes are continually emerging. Most previous one-for-one and also
one-for-many (i.e., learning one AD model for multiple classes) AD methods [13, 17, 43, 12, 30,
47, 46, 44] are still insufficient to satisfy the requirements of real-world applications. Because such
methods still require retraining or fine-tuning when encountering new classes, but application users
generally don’t have such ability. Another more fatal point is that some scenarios may not allow
retraining on target classes due to data privacy issues [41]. Therefore, the class-generalizable ability
is a critical issue in the AD community, but it still hasn’t been well studied in most AD literatures.

∗Corresponding Author.
2Class means the category of the object in the image. For industrial scenarios, it refers to the product category,

e.g., bottle, carpet, etc. For medical analysis, it refers to the body organ category, e.g., head CT, retina, etc.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/xcyao00/ResAD

(a) Class-Generalizable Anomaly Detection

Unified

Model

Initial Feature Distribution Residual Feature Distribution

Class 1

Class 2

Class 3

New Class

Normal Decision BoundaryAbnormal Known Classes New ClassesTraining on Known Classes

Known Class 1

Known Class 2

Known Class N

Input Image
Reference

Images

New Class 1

New Class 2

New Class N

Reference

ImagesInput Image

Unified

Model

Inference on Diverse New Classes

(b) Residual Feature Learning

Matching

Figure 1: (a): Intuitive illustration of class-generalizable anomaly detection (b): Conceptual illustra-
tion of residual features. The residual feature space has fewer variations compared to the initial feature
space. The decision boundary of the residual feature distribution can more effectively distinguish
anomalies in new classes, rather than treating features of new classes as anomalies.

In this paper, we aim to tackle an academy-valuable and application-required task: few-shot class-
generalizable anomaly detection, i.e., one unified model is trained with samples from multiple known
classes, and the goal is that the trained model can generalize to detect anomalies in new3 classes
without any retraining or fine-tuning on the target data, only few-shot new class normal samples are
required. Nonetheless, solving such a task is quite challenging. The current one-for-one/many AD
models have almost no ability to directly generalize to new classes. The main challenge is: the normal
patterns from different classes are significantly different. This can lead to many normal misdetections
of new classes, i.e., normal patches from new classes may be mistaken as abnormal as they are quite
different from the learned normal patterns. Thus, how to design a class-generalizable AD model under
the feature variation circumstance? Our design philosophy is: “seeking invariation from variation”.
We think that residual features (i.e., formed by subtracting normal reference features) can be regarded
as class-invariant4 representations compared to the significantly variant initial features. As shown in
Fig.1(b), the main merit of normal residual features is: even in new classes, the distribution of normal
residual features would not remarkably shift from the learned distribution. Regardless of classes,
larger residuals are expected for abnormal features than normal features (please see Sec.3.1).

To this end, we propose a simple but effective class-generalizable AD framework, called ResAD
(i.e., Residual Feature Learning based Class-Generalizable Anomaly Detection). ResAD is based
on one key insight: residual feature learning, and consists of two key designs: feature hypersphere
constraining and feature distribution estimating. First, we propose to use residual features for
reducing class feature variations. We employ a pre-trained feature extractor to generate normal
reference features from few-shot normal reference samples. Each input feature will match the nearest
normal reference feature and subtract it to form the residual feature. In this way, the most variable
class-related components are very likely to be mutually eliminated, resulting in residual features
distributed in a relatively fixed origin-centered region (please see Sec.3.1). Second, to further reduce
the variations in the residual feature space, we take the idea from the one-class-classification (OCC)
learning [37, 22] to constrain the feature space. Specifically, we employ a simple and shallow
network and propose an abnormal invariant OCC loss to transform normal residual features into
a constrained spatial hypersphere. Third, with the hypersphere-constrained feature space, we can
easily utilize a feature distribution estimator [14] to learn and estimate the normal residual feature
distribution, anomalies can be recognized as out-of-distribution. For new classes, as the residual
features have fewer variations or are covered by the learned distribution, the whole framework is
more class-generalizable. Our contributions are as follows:

1. To accomplish class-generalizable anomaly detection, we propose a simple but effective framework:
ResAD, which can be applied to detect and localize anomalies in new classes.

2. We are innovatively based on residual feature learning to address the issue of previous one-for-
one/many AD methods not being able to generalize to new classes.

3We call the classes in training as known classes, others are called as new (or novel, unknown) classes.
4Strictly speaking, the residual features are not fully invariant, while the variation is smaller.

2

3. Comprehensive experiments on six real-world AD datasets are performed to evaluate the AD
model’s class-generalizable ability. With only 4-shot normal samples as reference, ResAD can
achieve remarkable AD results, significantly outperforming the state-of-the-art competing methods.

2 Related Work

One-for-One/Many AD Methods. Most AD methods follow the one-for-one/many paradigm. (1)
Reconstruction-based methods are the most popular AD methods. These methods hold the insight
that models trained by normal samples would fail in abnormal image regions. Many previous works
utilize auto-encoders [8, 27, 42], masked auto-encoders [46], variational auto-encoders [21] and
generative adversarial networks [36, 1] to encode and reconstruct normal data. UniAD [47] is a
transformer-based reconstruction model and mainly based on neighbor masked attention to address
the “identical shortcut” issue to achieve one-for-many AD. (2) Distillation-based methods [6] can
also be considered as belonging to the reconstruction type. These methods train student networks
to reconstruct the representation of teacher networks on normal samples, and the assumption is that
the student would fail in abnormal features. Recent works mainly focus on feature pyramid [35, 39],
reverse distillation [13, 38], and asymmetric distillation [33]. (3) Embedding-based methods mainly
rely on good feature representation and assume that abnormal features are usually far from the normal
clusters. Most superior methods [11, 4, 12, 29, 30] utilize ImageNet pre-trained networks for feature
extraction. However, industrial images generally have an obvious distribution shift from ImageNet.
To better account for the distribution shift, subsequent adaptations should be done. The normalizing
flow-based methods [31, 17, 32, 48, 44] are proposed to transform the pre-trained feature distribution
into latent Gaussian distribution, and thus can better learn the normal data distribution. HGAD [44]
proposes a novel hierarchical Gaussian mixture normalizing flow modeling method to address the
“homogeneous mapping” issue for accomplishing one-for-many AD.

Few-Shot AD Methods. The few-shot AD methods have more similarities with ours. Distance-based
approaches such as SPADE [11], PaDiM [12], and PatchCore [30] can be adapted to address few-shot
AD by only making use of few-shot normal samples to calculate distance-based anomaly scores
without training networks. RegAD [18] proposes to train a feature registration network to align input
images and follows PaDiM [12] to model Multivariate Gaussian distribution with few-shot normal
samples. The idea in FastRecon [15] is to reconstruct an anomalous sample to its normal version by
few-shot support samples. A novel regression with distribution regularization is proposed to obtain
the optimal transformation from support to query features. Recently, the CLIP-based AD methods,
including WinCLIP [19] and VAND [10] show better few-shot AD performance. They both employ a
text prompt ensemble strategy to obtain the language-guided anomaly map.

We think class-generalizable AD and few-shot AD are still not the same, they still have some
differences. Class-generalizable AD requires the model to be class-generalizable, and we only extract
features of normal samples in the new class as reference. Few-shot AD mainly focuses on how to
effectively utilize few-shot normal samples to construct AD models, some dedicated modules may be
introduced to handle the few-shot normal samples. These methods usually still need to re-model in
new classes based on few-shot normal samples, e.g., RegAD needs to re-model Multivariate Gaussian
distribution for new classes. The CLIP-based methods can be seen as class-generalizable, as these
methods can obtain anomaly maps by aligning vision features with text features. However, they
heavily rely on the visual-language comprehension abilities of CLIP and handcrafted text prompts
about defects, making them difficult to generalize to anomalies in diverse classes. Compared to the
few-shot AD methods, our method can learn a class-generalizable AD model, which can be directly
applied to new classes only requiring extracting features of few-shot normal samples as reference.

More recently, InCTRL [50] proposes to use few-shot normal images as sample prompts and learn to
capture in-context residuals between the query image and sample prompts. The idea of in-context
residuals in InCTRL is very similar to ours. But our method has obvious differences with InCTRL in
the definition and utilization of residuals (please see the detailed differences in Appendix A.1).

3 Method

Problem Statement. In the class-generalizable AD task, we focus on the performance of new classes.
Formally, let Itrain = In ∪ Ia be a training dataset with normal images and some anomalies (i.e.,

3

anomalies that exist in training set should also be effectively utilized), where In = {Ini }Ni=1 and
Ia = {Iaj }Mj=1 indicate the collection of normal samples and abnormal samples. As for testing, the
model is evaluated on a collection of other AD datasets (T = {Itest

1 , Itest
2 , . . . , Itest

T }) except the
training dataset. The classes in the test set are drawn from unknown classes Cu that are different from
the known classes Ck in the training set. Then the goal is to learn one unified model M : I → R that
is trained with known classes Ck and can directly adapt to unknown classes Cu without any retraining
or fine-tuning on the target data (only few-shot (e.g., 4) normal samples as reference).

Feature

Extractor

Feature

Extractor

Feature

Constraintor

Distribution

Estimator

Reference Feature Pool

Few-shot Reference Images

Test Image
Initial Features Residual Features Constrained Features

Residual

Feature

Generation

ℒ𝑜𝑐𝑐

ℒ𝑚𝑙 + ℒ𝑏𝑔−𝑠𝑝𝑝

Training

Testing

Figure 2: Framework overview. Note that the training samples belong to different classes. First,
few-shot normal reference samples are fed into a pre-trained Feature Extractor to obtain normal
reference features. Each initial feature will match the nearest normal reference feature and subtract it
to form the residual feature. Then, a Feature Constraintor is utilized to transform the normal residual
features into a constrained spatial hypersphere. Finally, we employ a normalizing flow model as the
Feature Distribution Estimator to learn and estimate the residual feature distribution.

Overview. The proposed ResAD framework is illustrated in Fig.2. The ResAD framework consists
of three parts: a Feature Extractor, a Feature Constraintor, and a Feature Distribution Estimator.
These modules will be described below in sequence.

3.1 Residual Feature Generating

Residual feature learning is our core insight for solving class-generalizable anomaly detection. In
this subsection, we describe how to generate residual features. For any input image Ii ∈ RH×W×3,
we follow the common practice of previous AD methods to employ a pre-trained feature extraction
network ϕ to extract features from different levels. Formally, we define L as the total number of
levels for use. The feature map from level l ∈ {1, 2, . . . , L} is denoted as ϕl(Ii) ∈ RHl×Wl×Cl ,
where Hl, Wl and Cl are the height, width, and channel dimension of the feature map. For an entry
xl
h,w = ϕl(Ii)h,w ∈ RCl at level l and location (h,w), we will match it with the nearest normal

reference feature from the corresponding reference feature pool, and then convert it into the residual
feature. The details are described in the following:

Reference Feature Pools. The reference feature pools are utilized to store some normal features as
reference. For new classes, we will provide few-shot normal samples (i.e., randomly selected and then
fixed, please see our discussion on sample selection in Appendix A.2) as reference. The pre-trained
network ϕ will extract hierarchical features for these normal reference images, then the extracted
features are sent into the feature pools as reference features. For lth level, the lth reference feature pool
is composed of Pl = {xl,i

h,w|h ∈ {1, . . . ,Hl}, w ∈ {1, . . . ,Wl}, l ∈ {1, . . . , L}, i ∈ {1, . . . , Nfs}},
where i denotes the ith normal sample, the Nfs is the number of normal reference samples.

Residual Features. For each initial feature xl
h,w, we can search the nearest nominal reference feature

x∗
n = argminx∈Pl

||x− xl
h,w||2 from the lth reference feature pool Pl. Then, we define the residual

representation of xl
h,w to its closest normal reference feature as:

xl,r
h,w = xl

h,w − x∗
n. (1)

Why can residual features be less sensitive to new classes compared to initial features? Because
they are obtained by matching and then subtracting. From the principles of representation learning,

4

we know that features of each class generated by well-trained neural networks usually have some
class-related attributes to the class for distinguishing from other classes [3]. The “class-related”
means these attributes are typical to the class and distinctive from other classes, representing the most
discriminative characteristics of the class. Thus, features from different classes are usually located in
different feature domains [40]. However, as class-related attributes can also exist in normal reference
features (they are usually in the same feature domain as the input query feature), the matching process
can be seen as matching the most similar class-related attributes to each query feature. Therefore,
by subtracting, the class-related components in the initial features are very likely to be mutually
eliminated, leaving the highlighted discrepancy between normals and anomalies (i.e., larger residuals
are more likely to be anomalies than normal features). Thus, it can be imagined that the normal
residual features generally will be distributed in an origin-centered region, even in new classes, the
feature distribution region would not remarkably shift (please see the t-SNE visualization in Fig.3).

3.2 Feature Hypersphere Constraining

Even if the feature variations in the residual feature space will be significantly reduced relative to
the initial feature space. Features of different classes may still have significant differences in scale,
namely, the numerical value scales in the features of different classes may be remarkably different.
This can lead to difficulty in obtaining a unified normal-abnormal decision boundary of different
classes, i.e., the scales of decision boundaries in different classes may be significantly different, a
good decision boundary in one class may be poor in another class. In order to further reduce feature
variations and also maintain the consistency in feature scales among different classes, we take the
idea from one-class-classification (OCC) learning [34, 22] and propose a Feature Constraintor to
constrain the initial normal residual features to a spatial hypersphere. The Feature Constraintor Cθ1

projects the initial residual feature xl,r
h,w to the constrained feature x′,l,r

h,w as x′,l,r
h,w = Cθ1(x

l,r
h,w).

Because we only want to further reduce the variations in the initial residual distribution by constraining
and don’t want to change the distribution overly, we adopt a simple Conv+BN+ReLU layer as the
network of our Feature Constraintor. A complex network may lead to overfitting known features,
reducing the generalization ability for new classes (please see ablation studies in Tab.2(b)).

Abnormal Invariant OCC Loss. We propose an abnormal invariant OCC loss to optimize our
Feature Constraintor. The loss is defined as:

Locc =
1

L

L∑
l=1

(
1

HlWl

Hl∑
h=1

Wl∑
w=1

(1− ylh,w)||
√
||x′,l,r

h,w ||2 + 1− 1||1 + ylh,w||x
′,l,r
h,w − xl,r

h,w||2
)
. (2)

where ylh,w = 1 denotes the (h,w) position on the feature map is anomalous and ylh,w = 0 denotes a
normal position (we can downsample the ground-truth mask to a low-resolution mask, which can
indicate normal and abnormal positions). The first part in the loss function is a pseudo-Huber loss
[22], which is used for constraining the normal residual features to a hypersphere. However, if we
only constrain features to the hypersphere, the network may more easily overfit and simply map all
features to the hypersphere. If we give the network another objective for anomalous features, this will
urge the network to distinguish between normal and abnormal, rather than forming a shortcut solution.
Thus, we further introduce an abnormal invariant term by simply predicting the initial features
||x′,l,r

h,w − xl,r
h,w||2. “Invariant” means the abnormal residual features remain relatively unchanged

relative to themselves and will not be mapped to the hypersphere. In this way, our proposed abnormal
invariant OCC loss can not only make the distribution of normal residual features more compact but
also keep abnormal residual features as invariant as possible. In addition, by constraining normal
features into a hypersphere, the normal feature scales of different classes can also be more consistent.
Therefore, after the Feature Constraintor, the normal and abnormal residual features are more
distinguishable (see Fig.3), namely, we can obtain a better unified decision boundary.

3.3 Feature Distribution Estimating

We employ the normalizing flow (NF) model [14] as our Feature Distribution Estimator to estimate
the residual feature distribution. Note that our framework is not limited to normalizing flow, and
other generative models can also be used as the distribution estimator. Formally, we denote φθ2 :

X ∈ RCl → Z ∈ RCl as our NF model. The input residual feature x′,l,r
h,w will be transformed into a

5

latent feature zlh,w = φθ2(x
′,l,r
h,w) by the NF model. The estimated residual distribution pθ2(x) can be

calculated according to the change of variables formula as follows [14, 20]:

logpθ2(x) = logpZ(z) + log|detJ |. (3)

where the J = ∇xz is the Jacobian matrix of the bijective transformation φθ2 . The model parameters
θ2 can be optimized by maximizing the log-likelihoods, and the latent variables Z for normal features
are usually assumed to obey N (0, I). The maximum likelihood loss function for learning normal
residual feature distribution is derived as:

Lml =
1

L

L∑
l=1

(
1

HlWl

Hl∑
h=1

Wl∑
w=1

Cl

2
log(2π) +

1

2
(zlh,w)

T zlh,w − log|detJ l
h,w|

)
. (4)

In the class-generalizable AD task, in addition to learning from normal samples, it’s also valuable
for us to effectively utilize abnormal samples that exist in known classes. Considering that we focus
on detecting unknown anomalies in new classes, we cannot overfit the anomalies in known classes.
Thus, following BGAD [45], we employ the explicit boundary guided semi-push-pull loss to learn a
more discriminative and also generalizable feature distribution estimator. The loss is defined as:

Lbg−spp =

Nn∑
i=1

|min(logpi − bn, 0)|+
Na∑
j=1

|max(logpj − bn + τ, 0)|. (5)

where bn is an explicit normal boundary, τ is a margin, Nn and Na denote the number of normal and
abnormal features in a training batch. We set bn according to the way in BGAD, and τ is set to 0.1.
Then, the whole loss function for training is as follows:

L = Locc + Lml + Lbg−spp. (6)

In Appendix E, we further discuss the sensitivity of balancing among the three loss terms.

3.4 Inference and Anomaly Scoring

For new classes, our method only requires few-shot normal samples to extract features as reference,
without any fine-tuning. We feed each test feature xl

i into the Feature Constraintor Cθ1 and the
Feature Distribution Estimator φθ2 to get the latent feature zli. The anomaly score is calculated as:

s(xl
i) = 1− exp

(
− Cl

2
log(2π)− 1

2
(zli)

T zli + log|detJ l
i |
)
. (7)

Then, we upsample all s(xl
i) in the lth level to the input image resolution (H ×W) using bilinear

interpolation and combine all levels (i.e., sum) to obtain the final anomaly map. The maximum score
of the anomaly map is taken as the anomaly detection score of the image.

4 Experiments

4.1 Experimental Setup

Datasets and Metrics. We conduct comprehensive experiments on four real-world industrial
AD datasets, including MVTecAD [5], VisA [51], BTAD [25], and MVTec3D [7]. The detailed
introduction to these datasets is provided in Appendix D. For MVTec3D, we only use RGB images in
the dataset. As for our method’s generalizability to other domains, we further evaluate our method
on a medical image dataset, BraTS [24] (for brain tumor segmentation) and a video AD dataset,
ShanghaiTech [23]. As our method is image-based, we extract video frames in ShanghaiTech as
images for use.

Following previous works [5, 6], the anomaly detection performance is evaluated using the Area
Under the Receiver Operating Characteristic Curve (AUROC).

To examine the model’s class-generalizable ability, we evaluate the cross-dataset performance. We
combine the training and test sets of the MVTecAD dataset to train AD methods, and they are
subsequently evaluated on the test set of other five datasets without any retraining, e.g., we train AD

6

models on MVTecAD and test on VisA. For MVTecAD, we train AD models on VisA. We report the
performance with the number of few-shot normal samples set to K = 2, 4.

Implementation Details. All the training and test images are resized and cropped to 224 × 224
resolution. Following the common practice in AD literatures, we utilize the commonly used WideRes-
Net50 [49] as the feature extractor, and the outputs from the [1, 2, 3] layers of WideResNet50 are used
as the pre-trained features. The parameters of the feature extractor are frozen during training. The
layer numbers of the NF model are set as 8. We use the Adam [28] optimizer with weight decay 5e−4

to train the model. The total training epochs are set as 100, and the batch size is 32. The learning
rate is 1e−5 initially and dropped by 0.1 after [70, 90] epochs. During training, we randomly select
reference samples for each input image to increase residual feature diversity. The network details are
in Appendix B, we also evaluate the computation costs of our model and other competing models.
We run all the experiments with a single NVIDIA RTX 4090 GPU and random seed 42.

Table 1: Anomaly detection and localization results with AUROC metric on six real-world AD
datasets under various few-shot AD settings. ·/· means image-level and pixel-level AUROCs. RDAD
and UniAD don’t utilize the few-shot normal samples to fine-tune, so the results under 2-shot and
4-shot are the same. For each input image, InCTRL only outputs an image-level anomaly score. Thus,
the pixel-level AUROCs of InCTRL are missing.

Setting Datasets
Baselines Few-shot AD Methods (Non-CLIP-based) CLIP-based AD Methods

RDAD
CVPR2022

UniAD
NeurIPS2022 SPADE PaDiM PatchCore

CVPR2022
RegAD

ECCV2022
ResAD
(Ours)

WinCLIP
CVPR2023

InCTRL
CVPR2024

ResAD†

(Ours)

Industrial AD Datasets

2-shot

MVTecAD 65.9/71.9 67.4/81.1 74.6/64.0 79.5/93.8 74.7/85.2 80.4/93.3 85.6/94.1 93.1/93.8 94.0/- 94.4/95.6
VisA 56.4/79.9 52.1/81.8 71.7/65.4 68.7/91.5 65.0/80.4 70.6/93.3 79.9/96.4 81.9/94.9 85.8/- 84.5/95.1

BTAD 82.7/87.3 67.1/85.6 80.7/65.4 88.9/95.2 80.9/83.1 87.2/93.9 93.6/97.1 85.5/95.8 92.3/- 91.1/96.4
MVTec3D 58.7/90.4 51.7/89.4 62.5/78.6 59.6/94.3 58.8/83.4 59.5/96.4 64.5/95.4 74.1/96.8 68.9/- 78.5/97.5
Average 65.9/82.4 59.6/84.5 72.4/68.4 74.2/93.7 69.8/83.0 74.4/94.2 80.9/95.8 83.7/95.3 85.3/- 87.1/96.2

Medical AD Dataset
BraTS 49.8/66.7 59.5/88.5 58.0/92.8 49.4/90.2 58.2/93.5 54.6/81.4 65.7/91.2 55.9/91.5 74.6/- 67.9/94.3

Video AD Dataset
ShanghaiTech 56.2/77.6 55.9/79.4 73.8/87.0 70.4/85.6 71.8/87.8 72.7/87.3 78.4/88.5 78.5/88.1 68.7/- 82.4/91.9
All Average 61.6/79.0 58.9/84.3 70.2/75.6 69.4/91.8 68.2/85.6 70.8/90.9 78.0/93.8 78.2/93.5 80.8/- 83.1/95.2

Industrial AD Datasets

4-shot

MVTecAD 65.9/71.9 67.4/81.1 75.5/64.0 82.5/94.9 80.6/90.2 84.8/94.5 90.5/95.7 94.6/94.2 94.5/- 94.2/96.9
VisA 56.4/79.9 52.1/81.8 75.0/65.4 75.3/93.3 71.7/87.1 78.0/93.5 86.2/97.4 84.1/95.2 87.7/- 90.8/97.5

BTAD 82.7/87.3 67.1/85.6 81.7/65.5 89.9/95.8 84.0/89.4 90.8/94.9 95.6/97.6 87.2/95.8 91.7/- 91.5/96.8
MVTec3D 58.7/90.4 51.7/89.4 62.3/78.6 62.8/94.5 61.5/87.1 62.3/96.7 70.9/97.3 76.0/97.0 69.1/- 82.4/97.9
Average 65.9/82.4 59.6/84.5 73.6/68.4 77.6/94.6 74.5/88.5 79.0/94.9 85.8/97.0 85.5/95.6 85.8/- 89.7/97.3

Medical AD Dataset
BraTS 49.8/66.7 59.5/88.5 66.3/94.8 60.6/94.5 71.2/95.9 60.0/87.3 74.7/94.0 67.3/93.2 76.9/- 84.6/96.1

Video AD Dataset
ShanghaiTech 56.2/77.6 55.9/79.4 77.1/87.4 74.3/85.9 77.8/88.2 76.4/87.7 79.8/89.5 79.6/88.6 69.2/- 84.3/92.6
All Average 61.6/79.0 58.9/84.3 73.0/76.0 74.2/93.2 74.5/89.7 75.4/92.4 83.0/95.3 81.5/94.0 81.5/- 88.0/96.3

Competing Methods. We select the representative one-for-one AD method (RDAD [13]) and the
one-for-many AD method (UniAD [47]) as baselines. Our method is mainly compared with few-
shot AD methods. Following WinCLIP [19], we adapt three conventional full-shot AD methods,
including SPADE [11], PaDiM [12], and PatchCore [30], to the few-shot setting by making use of
few-shot normal samples to calculate distance-based anomaly scores. We also compare with the
few-shot AD method RegAD [18]. Most of these methods are based on WideResNet50 to extract
features. However, these methods still need to re-model in new classes based on few-shot normal
samples (see Sec.2), while our ResAD can be directly applied to new classes only requiring extracting
features of few-shot normal samples as reference. Then, we also compare with the recent CLIP-based
few-shot AD methods, including WinCLIP [19]5 and InCTRL [50]. To guarantee the rationality of
result comparison, we ensure all methods use the same few-shot normal samples, and all results are
evaluated based on 224×224 resolution.

4.2 Main Results

Tab.1 represents the comparison results of our ResAD and other SOTA competing methods in image-
level AUROC and pixel-level AUROC, respectively, on six real-world AD datasets. Note that all

5No official implementation of WinCLIP is available. We use the public implementation at https://
github.com/zqhang/Accurate-WinCLIP-pytorch.

7

https://github.com/zqhang/Accurate-WinCLIP-pytorch
https://github.com/zqhang/Accurate-WinCLIP-pytorch

the results are dataset-level average results across their respective data subsets. Compared to the
results on known classes (results in the original papers), the performance of conventional AD methods
will drop dramatically when used for new classes, whether it is the one-for-one6 (RDAD) or the
one-for-many (UniAD) AD method.

By comparison, we can see that our ResAD can significantly outperform all non-CLIP-based AD
methods on both the 2-shot and 4-shot settings. With more few-shot normal images, the performance
of all methods generally becomes better. On average, our ResAD outperforms the best competing
model, RegAD, with up to 7.2%/2.9% and 7.6%/2.9% improvements under the 2-shot and 4-shot
settings, respectively. In addition, please note that when evaluating RegAD, we utilize the few-shot
normal samples to re-model the Multivariate Gaussian distribution for each new class (see Sec.2),
while our ResAD is directly applied to each new class without any re-modeling or fine-tuning. Even
with re-modeling, our method still has advantages over the conventional few-shot AD methods in
cross-class detection.

We further implement a ResAD† model by utilizing the powerful ImageBind [16] as the feature
extractor. The outputs from the [8, 16, 24, 32] layers of ImageBind-Huge are used as the pre-trained
features. ImageBind is a recently proposed large-scale pre-trained multimodal model, which shows
emergent zero-shot and few-shot recognition capabilities across many vision tasks. As shown in
Tab.1, by employing a model with stronger representation capability, our method can achieve better
cross-dataset performance, which significantly outperforms the SOTA CLIP-based AD methods,
WinCLIP and InCTRL. This demonstrates that our framework can effectively combine the latest
vision models to manifest stronger class-generalizable ability. What’s more, under the 4-shot setting,
our ResAD by only using WideResNet50 can achieve comparable or even better results than WinCLIP
and InCTRL (with more powerful CLIP-based ViT-B/16+), further demonstrating our superiority.
Moreover, these two CLIP-based methods also heavily rely on CLIP-based image encoders. When
we employ WideResNet50 in these two methods, our method has more advantages than these two
methods (please see Appendix Tab.7).

When applied to other domains (medical images and video scenarios), our method also has better
cross-domain generalization ability, despite it being trained on industrial data (the MVTecAD dataset).

4.3 Ablation Studies

In ablation studies, we conduct experiments under the “VisA to MVTecAD” case and use the
commonly used WideResNet50 [49] as the feature extractor.

Residual Feature Learning. As shown in Tab.2(a), without residual feature learning, the cross-
dataset performance drops dramatically from 90.5%/95.7% to 72.8%/82.9%. This verifies our
confirmation that residual feature learning is of vital significance for class-generalizable anomaly
detection. Analogously, any method that can reduce the variations of new class distribution relative
to known class distributions is also promising to achieve class-generalizable anomaly detection.

Feature Constraintor. The ablation study on the effectiveness of the Feature Constraintor is also
in Tab.2(a). “w/o Feature Constraintor” means the Locc in E.q.(6) is not used. The effectiveness
indicates that by further reducing the variations in the feature distribution and making the distribution
of new classes more consistent with the learned distribution, we can achieve better cross-class AD
results. In Fig.3, we also present a visualization figure to intuitively show the effect of the Feature
Constraintor.

Abnormal Invariant OCC Loss. The effectiveness of abnormal invariant OCC loss is validated in
Tab.2(a). “w/o Abnormal Invariant OCC Loss” means the Locc only has the first part of E.q.(2). With
the abnormal invariant OCC loss, image-level and pixel-level AUROCs can be improved by 5.6% and
1.8%, respectively. Moreover, we also find that without this loss, the results would rapidly decrease
after certain epochs of training (i.e., overfitting). This shows that keeping abnormal residual features
as invariant as possible is beneficial to avoid the Feature Constraintor overfitting and thus achieve
better results.

Feature Constraintor Configuration. We further ablate the network architectures of the Feature
Constraintor, the results are shown in Tab.2(b). The results indicate that the simple Conv+BN+ReLU

6“one-for-one” means learning one specific AD model for each class, “one-for-many” means learning one
AD model for multiple classes. However, they both don’t consider new classes.

8

Table 2: Ablation studies on MVTecAD. (a) “Ours” implementation follows the same configuration
as in Tab.1. “w/o...” indicates that we remove a certain component relative to “Ours”. I-AUROC
and P-AUROC mean image-level AUROC and pixel-level AUROC, respectively. (b) “ConvBnRelu”
implements a simple Conv+BN+ReLU network. “BasicBlock” adopts the BasicBlock in ResNet.
“BottleNeck” adopts the BottleNeck in ResNet. “MultiScaleFusion” is a FPN-like architecture to fuse
multi-scale features. In “MultiScaleFusion+BasicBlock/BottleNeck”, we add BasicBlock/BottleNeck
after the multi-scale fusion.

(a) Framework ablation studies.

Model I-AUROC P-AUROC

Ours 90.5 95.7

w/o Residual Feature Learning 72.8 82.9

w/o Feature Constraintor 82.3 93.5

w/o Abnormal Invariant OCC Loss 84.9 93.9

(b) Comparison of different feature constraintors.

Network Architecture I-AUROC P-AUROC

ConvBnRelu 90.5 95.7

BasicBlock 87.6 94.4

BottleNeck 86.0 94.4

MultiScaleFusion 84.1 92.9

MultiScaleFusion+BasicBlock 82.3 92.9

MultiScaleFusion+BottleNeck 81.0 93.3

(a) Initial Feature Distribution (b) Residual Feature Distribution (c) Initial Residual Features (d) Constrained Residual Features

Figure 3: Feature t-SNE visualization. (a) In the initial feature space, the features from different
classes are significantly different. (b) In the residual feature space, even the residual feature distribu-
tion of unknown classes would not remarkably shift from the known distribution. Note that in (a) and
(b), we only show normal residual features and use different colors to represent different classes. (c)
The initial residual features. (d) The residual features after the Feature Constraintor.

network can yield the best performance. We observe a significant performance drop with a more
complex feature constraintor (e.g., Bottleneck, MultiScaleFusion). One possible reason is that a
complex network may lead to overfitting, reducing the generalization ability for various anomalies in
new classes.

Table 3: Cross-class results with dif-
ferent numbers of training classes n.

n = 5 n = 10 VisA to MVTecAD

96.4/97.6 96.8/97.9 95.1/97.2

Cross-Class Within One Dataset. We show the results of
training with n classes from MVTecAD and testing on the
remaining 15−n classes. By varying n, we can demonstrate
the sensitivity of the model to different numbers of training
classes. Note that different n means the number of test
classes is different (this will cause the test results of different
n cannot be compared with each other). Thus, we use fixed
5 classes as the test classes, including hazelnut, pill, tile,
carpet, and zipper. For n = 5, the training classes include bottle, cable, capsule, grid, and leather. For
n = 10, the training classes include bottle, cable, capsule, grid, leather, metal nut, screw, toothbrush,
transistor, and wood. The results under the 4-shot setting are in Tab.3. The results demonstrate that
cross-dataset generalization is more challenging than cross-class generalization in a single dataset.
With more training classes, the results will be better, but the model is not very sensitive.

4.4 Generalization to Other Anomaly Detection Frameworks

Furthermore, we think that our residual feature learning insight is not limited to the model proposed
in this paper, but can be considered as an effective and general method for solving class-generalizable
anomaly detection. The main reasons are: 1) The process of converting initial features to residual
features can be easily applied to other AD models. 2) Residual features are less sensitive to new classes
(see Sec.3.1). In this subsection, we further extend our method to the popular reconstruction-based AD
framework. Specifically, we employ UniAD [47] as baseline and incorporate our method into it. As
UniAD is feature-based AD method, combining our residual feature learning with it is straightforward.

9

Table 4: Anomaly detection and localization re-
sults when incorporating our method into UniAD.
“RFL” represents residual feature learning.

MVTecAD VisA BTAD MVTec3D

UniAD [47] 67.4/81.1 52.1/81.8 67.1/85.6 51.7/89.4
+ RFL (Ours) 93.0/94.9 72.7/86.1 87.3/94.0 76.7/96.9

∆ +25.6/13.8 +20.4/3.3 +20.0/8.4 +25.0/7.0

We can convert the initial features into residual
features and then perform subsequent feature
reconstruction. The experimental results are
shown in Tab.4. It can be found that the per-
formance of UniAD is quite poor when used
for new classes, while converting to residual
feature learning can significantly improve the
model’s class-generalizable capacity. The re-
markable improvements (e.g., 25.6%/13.8% on

MVTecAD) validate the effectiveness and generalizability of residual features for designing general-
izable AD models.

4.5 Visualization and Qualitative Results

RDADGround TruthAbnormal UniAD PatchCore OursWinCLIP

Figure 4: Qualitative results. The anomaly
score maps are generated under the “VisA to
MVTecAD” case.

Visualization Results. Fig.3(a) and (b) show the t-
SNE visualization of initial features and residual fea-
tures. It can be found that in the initial feature space,
the feature distribution of new classes is significantly
different from the distribution of known classes, re-
sulting in poor adaptability of AD models to new
classes. However, the variations between different
classes can be significantly reduced by converting
into residual space. In this way, the model’s general-
izability to new classes can be effectively improved.
Fig.3(c) and (d) show the t-SNE visualization of ini-
tial residual features and residual features after the
Feature Constraintor. Results show that the Feature
Constraintor can make the normal residual features
more compact and more separated from the abnormal
features.

Qualitative Results. Fig.4 shows qualitative results under the “VisA to MVTecAD” case with
WideResNet50 as the feature extractor. It can be seen that most SOTA methods fail to generate good
anomaly localization maps for new classes, mainly existing many false positives in normal regions.
However, our method can effectively avoid false positives in normal regions and locate anomalies
more accurately. More qualitative results are in Appendix Fig.5.

5 Conclusion

In this paper, we propose a simple but effective framework: ResAD, for achieving class-generalizable
anomaly detection. ResAD consists of several simple neural network modules that are easy to train
and apply in real-world scenarios. Despite the simplicity, ResAD achieves remarkable anomaly
detection results in new classes. We conclude our findings for future research: residual features are
really effective for designing generalizable AD models, and our feature constraining insight also has
good reference values for future work.

Limitations. The limitations of our method are discussed in Appendix C.

Social Impacts. As a unified model for class-generalizable anomaly detection, the proposed method
does not suffer from particular ethical concerns or negative social impacts. All datasets used are
public. All qualitative visualizations are based on industrial product images, which does not infringe
personal privacy.

Acknowledgments

This work was supported in part by the National Natural Science Fund of China (62371295), the
Shanghai Municipal Science and Technology Major Project (2021SHZDZX0102), and the Science
and Technology Commission of Shanghai Municipality (22DZ2229005).

10

References
[1] Samet Akcay, Amir Atapour-Abarghouei, and Toby P. Breckon. Ganomaly: Semi-supervised

anomaly detection via adversarial training. In ACCV, page 622–637, 2018.

[2] Lynton Ardizzone, Carsten Lüth, Jakob Kruse, Carsten Rother, and Ullrich Köthe. Guided
image generation with conditional invertible neural networks. arXiv preprint arXiv: 1907.02392,
2019.

[3] Kourosh Teimouri Baghaei, Amirreza Payandeh, Pooya Fayyazsanavi, Shahram Rahimi, Zhiqian
Chen, and Somayeh Bakhtiari Ramezani. Deep representation learning: Fundamentals, perspec-
tives, applications, and open challenges. arXiv preprint arXiv:2211.14732, 2022.

[4] Liron Bergman, Niv Cohen, and Yedid Hoshen. Deep nearest neighbor anomaly detection.
arXiv preprint arXiv: 2002.10445, 2020.

[5] Paul Bergmann, Michael Fauser, David Sattlegger, and Carsten Steger. Mvtec ad - a compre-
hensive real-world dataset for unsupervised anomaly detection. In CVPR, 2019.

[6] Paul Bergmann, Michael Fauser, David Sattlegger, and Carsten Steger. Uninformed students:
Student-teacher anomaly detection with discriminative latent embeddings. In CVPR, 2020.

[7] Paul Bergmann, Xin Jin, David Sattlegger, and Carsten Steger. The mvtec 3d-ad dataset for
unsupervised 3d anomaly detection and localization. arXiv preprint arXiv:2112.09045, 2021.

[8] Paul Bergmann, Sindy Lowe, Michael Fauser, David Sattlegger, and Carsten Steger. Improv-
ing unsupervised defect segmentation by applying structural similarity to autoencoders. In
International Conference on Computational Vision Technologies and Applications, 2019.

[9] Yunkang Cao, Xiaohao Xu, Jiangning Zhang, Yuqi Cheng, Xiaonan Huang, Guansong Pang,
and Weiming Shen. A survey on visual anomaly detection: Chanllenge, approach, and prospect.
arXiv preprint arXiv:2401.16402, 2024.

[10] Xuhai Chen, Yue han, and Jiangning Zhang. A zero-/few-shot anomaly classification and
segmentation method for cvpr 2023 vnad workshop challenge tracks 1&2: 1st place on zero-
shot ad and 4th place on few-shot ad. arXiv preprint arXiv:2305.17382, 2023.

[11] Niv Cohen and Yedid Hoshen. Sub-image anomaly detection with deep pyramid correspon-
dences. arXiv preprint arXiv: 2005.02357v3, 2020.

[12] Thomas Defard, Aleksandr Setkov, Angelique Loesch, and Romaric Audigier. Padim: a patch
distribution modeling framework for anomaly detection and localization. In 1st International
Workshop on Industrial Machine Learning, 2021.

[13] Hanqiu Deng and Xingyu Li. Anomaly detection via reverse distillation from one-class embed-
ding. In CVPR, 2022.

[14] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real nvp. In
International Conference on Learning Representations, 2017.

[15] Zheng Fang, Xiaoyang Wang, Haocheng Li, Jiejie Liu, Qiugui Hu, and Jimin Xiao. Fastrecon:
Few-shot industrial anomaly detection via fast feature reconstruction. In ICCV, 2023.

[16] Rohit Girdhar, Alaaeldin El-Nouby, Zhuang Liu, Mannat Singh, Kalyan Vasudev Alwala,
Armand Joulin, and Ishan Misra. Imagebind: One embedding space to bind them all. In CVPR,
2023.

[17] Denis Gudovskiy, Shun Ishizaka, and Kazuki Kozuka. Cflow-ad: Real-time unsupervised
anomaly detection with localization via conditional normalizing flows. In IEEE Winter Confer-
ence on Application of Computer Vision, 2022.

[18] Chaoqin Huang, Haoyan Guan, Aofan Jiang, Ya Zhang, Michael Spratling, and Yanfeng Wang.
Registration based few-shot anomaly detection. In ECCV, 2022.

11

[19] Jongheon Jeong, Yang Zou, Taewan Kim Dongqing Zhang, Avinash Ravichandran, and Onkar
Dabeer. Winclip: Zero-/few-shot anomaly classification and segmentation. In CVPR, 2023.

[20] Diederik P. Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible 1x1 convolu-
tions. In Conference and Workshop on Neural Information Processing Systems, 2019.

[21] Wenqian Liu, Runze Li, Meng Zheng, Srikrishna Karanam, Ziyan Wu, Bir Bhanu, Richard J.
Radke, and Octavia Camps. Towards visually explaining variational autoencoders. In CVPR,
2020.

[22] Philipp Liznerski, Lukas Ruff, Robert A. Vandermeulen, Billy Joe Franks, Marius Kloft, and
Klaus-Robert Muller. Explainable deep one-class classification. In International Conference on
Learning Representations, 2021.

[23] Weixin Luo, Wen Liu, and Shenghua Gao. A revisit of sparse coding based anomaly detection
in stacked rnn framework. In ICCV, 2017.

[24] Bjoern H. Menze, András Jakab, Stefan Bauer, Jayashree Kalpathy-Cramer, Keyvan Farahani,
Justin S. Kirby, Yuliya Burren, Nicole Porz, Johannes Slotboom, Roland Wiest, Levente Lanczi,
Elizabeth R. Gerstner, Marc-André Weber, Tal Arbel, Brian B. Avants, Nicholas Ayache, Pa-
tricia Buendia, D. Louis Collins, Nicolas Cordier, Jason J. Corso, Antonio Criminisi, Tilak
Das, Herve Delingette, Çagatay Demiralp, Christopher R. Durst, Michel Dojat, Senan Doyle,
Joana Festa, Florence Forbes, Ezequiel Geremia, Ben Glocker, Polina Golland, Xiaotao Guo,
Andac Hamamci, Khan M. Iftekharuddin, Raj Jena, Nigel M. John, Ender Konukoglu, Da-
nial Lashkari, José Antonio Mariz, Raphael Meier, Sérgio Pereira, Doina Precup, Stephen J.
Price, Tammy Riklin Raviv, Syed M. S. Reza, Michael T. Ryan, Duygu Sarikaya, Lawrence H.
Schwartz, Hoo-Chang Shin, Jamie Shotton, Carlos A. Silva, Nuno J. Sousa, Nagesh K. Sub-
banna, Gábor Székely, Thomas J. Taylor, Owen M. Thomas, Nicholas J. Tustison, Gözde B.
Ünal, Flor Vasseur, Max Wintermark, Dong Hye Ye, Liang Zhao, Binsheng Zhao, Darko Zikic,
Marcel Prastawa, Mauricio Reyes, and Koen Van Leemput. The multimodal brain tumor image
segmentation benchmark (brats). IEEE Transactions on Medical Imaging, 2015.

[25] Pankaj Mishra, Riccardo Verk, Daniele Fornasier, Claudio Piciarelli, and Gian Luca Foresti.
Vt-adl: A vision transformer network for image anomaly detection and localization. arXiv
preprint arXiv:2104.10036, 2021.

[26] Guansong Pang, Chunhua Shen, Longbing Cao, and Anton Van Den Hengel. Deep learning for
anomaly detection: A review. ACM computing surveys (CSUR), 2021.

[27] Hyunjong Park, Jongyoun Noh, and Bumsub Ham. Learning memory-guided normality for
anomaly detection. In CVPR, 2020.

[28] Diederik P.Kingma and Jimmy Lei Ba. Adam: A method for stochastic optimization. In ICLR,
2015.

[29] Oliver Rippel, Patrick Mertens, and Dorit Merhof. Modeling the distribution of normal data in
pre-trained deep features for anomaly detection. arXiv preprint arXiv: 2005.14140, 2020.

[30] Karsten Roth, Latha Pemula, Joaquin Zepeda, Bernhard Scholkopf, Thomas Brox, and Peter
Gehler. Towards total recall in industrial anomaly detection. In CVPR, 2022.

[31] Marco Rudolph, Bastian Wandt, and Bodo Rosenhahn. Same same but differnet: Semi-
supervised defect detection with normalizing flows. In IEEE Winter Conference on Application
of Computer Vision, 2021.

[32] Marco Rudolph, Tom Wehrbein, Bodo Rosenhahn, and Bastian Wandt. Fully convolutional
cross-scale-flows for image-based defect detection. In IEEE Winter Conference on Application
of Computer Vision, 2022.

[33] Marco Rudolph, Tom Wehrbein, Bodo Rosenhahn, and Bastian Wandt. Asymmetric student-
teacher networks for industrial anomaly detection. In WACV, 2023.

[34] Lukas Ruff, Robert A. Vandermeulen, Nico Gornitz, Lucas Deecke, and Shoaib A. Siddiqui.
Deep one-class classification. In International Conference on Machine Learning, 2021.

12

[35] Mohammadreza Salehi, Niousha Sadjadi, Soroos Hossein Rohban, and Hamid R.Rabiee. Mul-
tiresolution knowledge distillation for anomaly detection. In CVPR, 2021.

[36] Thomas Schlegl, Philipp Seeb¨ock, Sebastian M. Waldstein, Ursula Schmidt-Erfurth, and Georg
Langs. Unsupervised anomaly detection with generative adversarial networks to guide marker
discovery. In International Conference on Information Processing in Medical Imaging, 2017.

[37] David M.J. Tax and Robert P.W. Duin. Support vector data description. In Machine Learning,
pages 45–66, 2004.

[38] Tran Dinh Tien, Anh Tuan Nguyen, Nguyen Hoang Tran, Ta Duc Huy, Soan T.M Duong, Chanh
D. Tr. Nguyen, and Steven Q.H. Truong. Revisting reverse distillation for anomaly detection.
In CVPR, 2023.

[39] Guodong Wang, Shumin Han, Errui Ding, and Di Huang. Student-teacher feature pyramid
matching for unsupervised anomaly detection. In British Machine Vision Conference, 2021.

[40] Jindong Wang, Cuiling Lan, Chang Liu, Yidong Ouyang, Tao Qin, Wang Lu, Yiqiang Chen,
Wenjun Zeng, and Philip S. Yu. Generalizing to unseen domains: A survey on domain
generalization. arXiv preprint arXiv:2103.03097, 2021.

[41] Heng Xu, Tianqing Zhu, Lefeng Zhang, Wanlei Zhou, and Philip S Yu. Machine unlearning: A
survey. ACM Computing Surveys, 2023.

[42] Jie Yang, Yong Shi, and Zhiquan Qi. Dfr: Deep feature reconstruction for unsupervised anomaly
segmentation. arXiv preprint arXiv: 2012.07122, 2020.

[43] Xincheng Yao, Ruoqi Li, Zefeng Qian, Yan Luo, and Chongyang Zhang. Focus the discrepancy:
Intra- and inter-correlation learning for image anomaly detection. In ICCV, 2023.

[44] Xincheng Yao, Ruoqi Li, Zefeng Qian, Lu Wang, and Chongyang Zhang. Hierarchical gaussian
mixture normalizing flow modeling for unified anomaly detection. In ECCV, 2024.

[45] Xincheng Yao, Ruoqi Li, Jing Zhang, Jun Sun, and Chongyang Zhang. Explicit boundary
guided semi-push-pull contrastive learning for supervised anomaly detection. In CVPR, 2023.

[46] Xincheng Yao, Chongyang Zhang, Ruoqi Li, Jun Sun, and Zhenyu Liu. One-for-all: Proposal
masked cross-class anomaly detection. In AAAI, 2023.

[47] Zhiyuan You, Lei Cui, Yujun Shen, Kai Yang, Xin Lu, Yu Zheng, and Xinyi Le. A unified
model for multi-class anomaly detection. arXiv preprint arXiv:2206.03687, 2022.

[48] Jiawei Yu, Ye Zheng, Xiang Wang, Wei Li, Yushuang Wu, Rui Zhao, and Liwei Wu. Fastflow:
Unsupervised anomaly detection and localization via 2d normalizing flows. arXiv preprint
arXiv:2111.07677, 2021.

[49] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. In BMVC, 2016.

[50] Jiawen Zhu and Guansong Pang. Toward generalist anomaly detection via in-context residual
learning with few-shot sample prompts. In CVPR, 2024.

[51] Yang Zou, Jongheon Jeong, Latha Pemula, Dongqing Zhang, and Onkar Dabeer. Spot-the-
difference self-supervised pre-training for anomaly detection and segmentation. In ECCV,
2022.

13

Appendix

A More Discussions

A.1 Detailed Comparison with InCTRL

We should have proposed the idea of residual learning independently of InCTRL and almost at the
same time (i.e., we completed the initial version of our method during CVPR 2024). But our method
has obvious differences with InCTRL in the definition and utilization of residuals. This (i.e., two
independent works almost simultaneously proposed the residual learning idea) also demonstrates
residual learning is an effective way to achieve class-generalizable anomaly detection. The main
differences between our method and InCTRL [50] are as follows:

(1) The definition of residuals in InCTRL is based on feature distances. The residual map is defined
by ((E.q.(1) in the InCTRL paper): M l

x(i, j) = 1−
〈
T l
x(i, j), h(T

l
x(i, j)|P ′)

〉
, where h(T l

x(i, j)|P ′)

returns the embedding of the patch token that is most similar to T l
x(i, j) among all image patches in

P ′, and ⟨·⟩ is the cosine similarity function. Thus, InCTRL is based on residual distance maps, while
our method is based on residual features.

By comparison, we think that residual distances in InCTRL can limit the range of residual representa-
tion (as the cosine similarity is in [-1,1]). This is not beneficial for distinguishing between normal and
abnormal regions, as a position on the residual map is only represented by a residual distance value.
Within a limited representation range (1-[-1,1] → [0,2]), normal and abnormal residual distance
values are more likely to be not strictly separable. Thus, for a position on the residual map, it’s hard
for us to make decision based on a scalar value. So, InCTRL makes image-level classification based
on a whole residual map (see the following (2)). In contrast, our residual features don’t limit the
range of residual representation and can retain the feature properties. In high-dimensional feature
space, we can also establish better decision boundaries between normal and abnormal (a basic idea in
machine learning: solving low-dimensional inseparability by converting to high-dimension).

(2) InCTRL devises a holistic anomaly scoring function ϕ to learn the residual distance map Mx =
1
n

∑n
l=1 M

l
x and convert it to an anomaly score: s(x) = ϕ(M+

x ; Θϕ) + αsp(x) (E.q.(8) in the
InCTRL paper), where M+

x = Mx ⊕ si(x)⊕ sa(x) (E.q.(7)). si(x) is an anomaly score based on
an image-level residual map Fx (see E.q.(4) in the InCTRL paper) and sa(x) is a text prompt-based
anomaly score. Thus, InCTRL is to train a binary classification network based on residual distance
maps. For each input image, InCTRL finally only outputs an image-level anomaly score. Our method
is to learn the distribution of residual features, an anomaly score can be estimated for each feature,
thus can be used to locate anomalies.

(3) Due to the designs in InCTRL that we mentioned above, one main advantage of our method is
that it can achieve image-level anomaly detection and also pixel-level anomaly localization, while
InCTRL only achieves image-level anomaly detection functionality.

As for performance, the average results on six AD datasets of our method are better than InCTRL’s
(please see Tab.1 in the main text).

A.2 Discussion on Few-Shot Normal Sample Selection Strategy

In our paper, the few-shot normal reference samples are randomly selected and fixed. This will
raise concerns about whether random selection is reasonable and whether it may lead to insufficient
representativeness of the reference feature pools. From the perspective of method comparison, we
think that random selection is feasible, as long as we ensure that all methods use the same reference
samples, the result comparison is reasonable. However, when the difference between normal images
is too large, it may cause the reference feature pools are not representative. Nonetheless, please
further note that, in our method, we only extract the features of the few-shot normal samples and
store all the features in the reference feature pools. The reference feature pools don’t impair or
lose any representation features. For the few-shot normal samples, the reference feature pools are
representative enough to them. Therefore, whether the representativeness is sufficient is determined
by the few-shot normal samples themselves rather than our method. For some classes, the few-shot
normal samples are representative, while for some hard classes, they may mot be representative
enough.

14

For practical applications, this issue should be particularly focused and reasonably addressed. We
expect that the reference samples can fully represent their class, so it’s best to have sufficient
differences between the reference samples. Thus, the sample selection strategy cannot be random. Of
course, the simplest resolution is to increase the number of reference samples. This is feasible, as
in practical applications, the number of reference samples is usually not as strict as the 2-shot and
4-shot in our paper.

A feasible method is to first cluster all available normal samples into different clusters based on a
clustering algorithm (e.g., KMeans). Then, based on the number of reference samples, we evenly
distribute it to each cluster. When selecting from a cluster, we can prioritize selecting samples closer
to the center. During clustering, we think that the FID and LPIPS metrics are good ways to calculate
the difference between two samples. In addition, when there are a large number of reference samples,
we can also use the method in PatchCore [30] to select coreset features as reference features, which
will be more efficient and also representative.

A.3 Feature Constraintor and Feature Distribution Estimator

The goal of our Feature Constraintor is to constrain initial residual features to a spatial hypersphere for
further reducing feature variations. After the Feature Constraintor, feature variations can effectively
be reduced, but this does not mean that the feature distribution is fixed within the hypersphere. The
ideal situation is that even in new classes, normal feature distribution is fixed within a hypersphere,
while all anomalous features are outside the hypersphere. Then, only the Feature Constraintor part
is enough to achieve good AD results. However, in practical optimization, it’s hard to achieve the
ideal situation. After the Feature Constraintor, normal and abnormal features may still not be fully
separable based on the distances from the features to the center. Therefore, the Feature Distribution
Estimator (namely the normalizing flow model used in our method) is used to learn the feature
distribution, which can assist us in better distinguishing normal and abnormal features.

B Model Architecture and Complexity

Normalizing Flow Model Architecture. The normalizing flow model is mainly based on Real-NVP
[14] architecture, which is composed of the so-called coupling layers. All coupling layers have
the same architecture, where a learnable subnet is utilized to predict the affine parameters [14].
The convolutional subnet in Real-NVP is replaced with a two-layer MLP network. Each coupling
layer is followed by a random and fixed soft permutation of channels [2] and a fixed scaling by a
constant, similar to ActNorm layers introduced by [20]. Furthermore, we adopt the soft clamping
of multiplication coefficients used by [14]. Following [17], we add positional embeddings to each
coupling layer, which are concatenated with the first half of the input features. The dimension of all
positional embeddings is set to 256.

Complexity Comparison. With the image size fixed as 224 × 224, we compare the number of
parameters and per-image inference time with all competitors. We conclude that the advantage of
ResAD does not come from a larger model capacity.

Table 5: Complexity comparison between our ResAD and other competing methods.
RDAD UniAD SPADE PaDiM PatchCore RegAD WinCLIP InCTRL ResAD ResAD†

Parameters(M) 150.6 6.3 74.5 686.9 69.5 25.2 165.9 117.5 59.2 442.6
Infer time(fps) 5.6 24.4 4.8 14.1 21.5 20.2 0.51 0.53 21.3 18.8

C Limitations

In this paper, we propose a simple but effective AD framework, ResAD, to accomplish class-
generalizable anomaly detection. Even if our method manifests good AD performance on six
real-world industrial AD datasets, there are still some limitations of our work. One limitation of our
work is that we only conducted experiments on data of image modality, it’s very valuable to further
extend our method to other application domains and data modalities, such as video data and time
series, to more comprehensively validate our method’s generalizability. Our future work will focus

15

on further generalizing our method to other data modalities, not only to achieve class-generalizable
but also domain-generalizable anomaly detection. Another valuable future work is to incorporate our
method into recent SOTA AD methods for achieving better class-generalizable AD performance. In
Sec.4.4, we incorporate our method into UniAD and gain remarkable improvements. How to upgrade
the other types of anomaly detection methods to class-generalizable AD methods and how to find a
general approach for class-generalizable (or even domain-generalizable) anomaly detection will be
the future works.

D Datasets

MVTecAD. The MVTecAD [5] dataset is widely used as a standard benchmark for evaluating
unsupervised anomaly detection methods. This dataset contains 5354 high-resolution images (3629
images for training and 1725 images for testing) of 15 different product categories. 5 classes consist
of textures and the other 10 classes contain objects. A total of 73 different defect types are presented
and almost 1900 defective regions are manually annotated in this dataset.

BTAD. The BeanTech Anomaly Detection dataset [25] is an another popular benchmark, which
contains 2830 real-world images of 3 industrial products. Product 1, 2, and 3 of this dataset contain
400, 1000, and 399 training images respectively.

MVTec3D. The MVTec3D [7] dataset is for 3D anomaly detection, which contains 4147 high-
resolution 3D point cloud scans paired with 2D RGB images from 10 real-world categories. In this
dataset, most anomalies can also be detected only through RGB images. Since we focus on image
anomaly detection, we only use RGB images of the MVTec3D dataset.

VisA. The Visual Anomaly dataset [51] is a larger anomaly detection dataset compared to MVTecAD
[5]. This dataset contains 10821 images with 9621 normal and 1200 anomalous samples. In addition
to images that only contain single instance, the VisA dataset also have images that contain multiple
instances. Moreover, some product categories of the VisA dataset, such as Cashew, Chewing gum,
Fryum and Pipe fryum, have objects that are roughly aligned. These characteristics make the VisA
dataset more challenging than the MVTecAD dataset, whose images only have single instance and
are better aligned.

E Sensitivity of Balancing The Loss Terms

During training, we found that summing up the three loss terms (see E.q.(6)) and then backpropa-
gating gradients to optimize the whole model would lead to unstable training. Then, we used the
“torch.detach()” method in the Pytorch library to detach the features after the Feature Constraintor and
then sent the detached features into the normalizing flow (NF) model. This simple way can make the
model training more stable. Thus, the weight of Locc can be set as 1 (i.e., we can not need to balance
Locc with Lml and Lbg−spp, as the Feature Constraintor and the NF model parts are separated in the
gradient graph). When training the NF model, the Lml is the basic loss. Thus, we keep the weight
of Lml as 1 and set a variable λ as the weight of Lbg−spp. By varying different λ values, the results
(under the 4-shot setting, from VisA to MVTecAD) about the sensitivity are in Tab.6.

Table 6: Anomaly detection and localization results when varying different λ values for balancing the
three loss terms.

λ 0.1 0.5 1 2 3 5 10

89.1/94.9 90.0/95.6 90.5/95.7 90.6/96.0 89.8/95.3 89.3/95.2 88.7/94.9

Both small and large λ values can lead to performance degradation. Lbp−spp is to assist model in
learning abnormal residual features. Small λ may cause the impact of abnormal features on the whole
loss L (E.q.(6)) to be relatively small. Large λ may lead to overfitting to known anomalies, which is
not conducive to generalization.

16

F Additional Results

Extra Few-shot AD Results. In the main text, the WinCLIP and InCTRL utilize the CLIP-based
ViT-B/16+ as the feature extractor. We further employ the WideReset50, which is commonly used in
anomaly detection, as the feature extractor in these methods. We note that the two methods do not
necessarily need CLIP-based vision encoders. We can remove the vision-language alignment part in
the two methods and the remaining modules can also achieve anomaly detection. For example, we
can send image patches provided by WinCLIP’s window mechanism into WideResNet50, and also
obtain the window embedding maps of different scales as shown in Figure 4 of the WinCLIP paper.
However, because the features of WideResNet50 are not aligned with the text features, we remove the
language-guided anomaly score map and only generate the vision-based anomaly score map based on
the few-shot normal samples (the WinCLIP+ in the WinCLIP paper). The results under the 4-shot
setting are in Tab.7. The results show that our method has more significant superiorities on networks
with weaker representation capability. Thus, compared to WinCLIP and InCTRL, our method is less
reliant on the representation capability of the backbone network and is more widespreadly applicable
for various backbones.

Table 7: Anomaly detection and localization results with WideResNet50 as the feature extractor.

Dataset WinCLIP InCTRL ResAD

MVTecAD 86.6/91.6 86.9/- 90.5/95.7
VisA 80.7/92.5 82.3/- 86.2/97.4

BTAD 87.7/93.7 90.4/- 95.6/97.6
MVTec3D 63.1/91.7 63.2/- 70.9/97.3

Additional Results on Other Data Groups. In the main text, the results are evaluated on a single
group of few-shot reference samples. However, the selection of few-shot reference samples may
affect the performance of the model. To fully represent our model’s robustness, we further randomly
select two groups of few-shot reference samples. The results under the 4-shot setting are in Tab.8.

Table 8: Anomaly detection and localization results on other two groups of few-shot reference
samples.

Dataset Group1 Group2 Results in Tab.1 Mean±Std

MVTecAD 91.0/96.0 90.7/95.9 90.5/95.7 90.7±0.21/95.9±0.12
VisA 86.3/97.5 86.9/97.6 86.2/97.4 86.5±0.31/97.5±0.08

BTAD 95.3/97.5 95.4/97.6 95.6/97.6 95.4±0.12/97.6±0.05
MVTec3D 70.2/97.1 70.5/97.3 70.9/97.3 70.5±0.29/97.2±0.09

Additional Qualitative Results. We present in Fig.5 additional anomaly localization results of
categories from the MVTecAD dataset. The anomaly score maps are generated under the “VisA to
MVTecAD” case, where AD models are trained on the VisA dataset.

17

RDADGround TruthAbnormal UniAD PatchCore OursWinCLIP

Figure 5: Additional qualitative results on MVTecAD.

18

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We have summarized our contributions well in the abstract and introduction,
and the method and experiments sections also reflected these contributions.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Please see Appendix C.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]

19

Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Please see the implementation details in Sec.4 and network details in Appendix
B.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

20

Answer: [Yes]

Justification: As mentioned in Abstract, the open-source code will be available at https:
//github.com/xcyao/ResAD.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Please see Sec.4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Due to the large amount of experiments (please see Tab.1), we don’t have
enough time and resources to use different random seeds for multiple experiments. However,
we ensured that all experiments were conducted under the same condition of the random
seed set to 42.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

21

https://github.com/xcyao/ResAD
https://github.com/xcyao/ResAD
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Please see the computation costs in Tab.5.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have read the NeurIPS Code of Ethics, and believe that our research
conforms the Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: In the Conclusion section, we discussed the potential social impacts of our
method.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.

22

https://neurips.cc/public/EthicsGuidelines

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We think that our paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The datasets used in the paper are all open-sourced, we have also cited
corresponding papers.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

23

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: Our paper proposes a new anomaly detection model, does not release new
assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our paper does not involve research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

24

paperswithcode.com/datasets

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

25

	Introduction
	Related Work
	Method
	Residual Feature Generating
	Feature Hypersphere Constraining
	Feature Distribution Estimating
	Inference and Anomaly Scoring

	Experiments
	Experimental Setup
	Main Results
	Ablation Studies
	Generalization to Other Anomaly Detection Frameworks
	Visualization and Qualitative Results

	Conclusion
	More Discussions
	Detailed Comparison with InCTRL
	Discussion on Few-Shot Normal Sample Selection Strategy
	Feature Constraintor and Feature Distribution Estimator

	Model Architecture and Complexity
	Limitations
	Datasets
	Sensitivity of Balancing The Loss Terms
	Additional Results

