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Abstract
Generative AI foundation models offer transfor-
mative potential for processing structured biologi-
cal data, particularly in single-cell RNA sequenc-
ing, where datasets are rapidly scaling toward
billions of cells. We propose the use of agentic
generative AI foundation models with real-time
web search to automate the labeling of experimen-
tal data, achieving up to 82.5% accuracy. This
addresses a key bottleneck in supervised learn-
ing for structured omics data by increasing an-
notation throughput without manual curation and
human error. Our approach enables the develop-
ment of virtual cell foundation models capable of
downstream tasks such as cell-typing and pertur-
bation prediction. As data volume grows, these
models may surpass human performance in la-
beling, paving the way for reliable inference in
large-scale perturbation screens. This applica-
tion demonstrates domain-specific innovation in
health monitoring and diagnostics, aligned with
efforts like the Human Cell Atlas and Human Tu-
mor Atlas Network.

1. Introduction & Background
Single-cell RNA sequencing (scRNA-seq) has transformed
our ability to understand biological systems at cellular res-
olution, enabling the decomposition of heterogeneous tis-
sues into interpretable cellular subpopulations (Hicks, 2018;
Shalek et al., 2013). Unlike bulk sequencing, which aver-
ages gene expression across thousands of cells, single-cell
approaches preserve cellular diversity and support down-
stream analyses such as lineage tracing, perturbation infer-
ence, and cell-type identification.
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A key challenge emerging from these advances is scale.
With improved protocols and barcoding methods, scRNA-
seq datasets have grown from thousands to millions of cells
per experiment, opening the door to system-level modeling
of gene regulation and cellular behavior. However, the
complexity and dimensionality of these datasets far outpace
manual annotation methods, particularly as the number of
clusters grows with data volume. This challenge becomes
even more pressing when considering tasks like supervised
learning, pseudotime ordering, and perturbation modeling,
which rely on accurate and interpretable cell-type labels.

Figure 1. Exponential growth of single-cell sequencing enables
foundation model–scale datasets. The number of single cells pro-
filed per study has followed an exponential trend since 2009, resem-
bling Moore’s law and enabling projections exceeding 109 cells
by 2030. Historical data points (black dots) are shown alongside
a log-scale projection (red dashed line), adapted from (Svensson
et al., 2018). This scaling trend motivates the development of
foundation models tailored to structured single-cell data, which
require billion-scale inputs for training on tasks such as annotation,
perturbation modeling, and virtual cell simulation.

In this work, we introduce DeepSeq, https://github.
com/saleemaldajani/deepseq a pipeline that ap-
plies large language models (LLMs) to automate labeling
of structured single-cell data using top marker genes from
unsupervised clustering. DeepSeq supports both local infer-
ence using lightweight models and agentic web-enhanced
querying via GPT-4o. The system is designed for repro-
ducibility and scalability, incorporating filtering, dimension-
ality reduction, structured prompt generation, and accuracy
benchmarking.

1

https://github.com/saleemaldajani/deepseq
https://github.com/saleemaldajani/deepseq


DeepSeq — Agentic Generative AI Foundation Models for Structured Single-Cell RNA Sequencing Data

In the following sections, we describe the DeepSeq archi-
tecture and algorithms in detail, demonstrate its annotation
accuracy across multiple LLM configurations, and discuss
implications for high-throughput cell atlas construction and
virtual cell modeling.

Figure 2. DeepSeq system architecture. DeepSeq is a foundation
model–powered web application designed for automated label-
ing of structured single-cell RNA sequencing data. The pipeline
integrates large language models (OpenAI, Ollama), orchestra-
tion frameworks (LangChain), and differential expression analysis
tools (Scanpy, TRADE) to process high-throughput omics data. It
spans ETL, analytics, and deployment layers using cloud-native
platforms (Colab, Codespaces) and standardized biological for-
mats (CRAM, H5AD). DeepSeq demonstrates a domain-specific
application of foundation models for scalable biomedical data an-
notation and virtual cell modeling.

2. Methods
The DeepSeq pipeline integrates single-cell RNA-seq pre-
processing with foundation model–driven cell-type annota-
tion using large language models (LLMs). The full work-
flow spans filtering, clustering, marker gene extraction,
prompting, and structured evaluation. All core analysis
and evaluation scripts are provided in the public repository.

Algorithm 1 LLM-Based Cell-Type Labeling with DeepSeq
Require: Filtered gene expression matrix X with clusters

C1, C2, . . . , Ck

Ensure: Predicted cell-type label ŷi for each cluster Ci

1: for each cluster Ci do
2: Identify top marker genes Gi = rank genes(Ci)
3: Construct prompt Pi ← format(Gi)
4: if using Ollama then
5: ŷi ← local LLM(Pi)
6: else if using GPT-4o then
7: Perform web search via OpenAI Agent
8: ŷi ← gpt4o(Pi,web results)
9: end if

10: Evaluate ŷi via marker match and label accuracy
11: end for

2.1. Preprocessing and Filtering

Raw single-cell data is processed into gene-by-cell matri-
ces and converted into the AnnData format. Filtering is
performed using three strategies: (1) standard thresholding
(e.g., ≥200 genes per cell), (2) automated knee-point de-
tection using KneeLocator, and (3) smoothed inflection-
based filtering. These methods produce cleaned datasets
with visual diagnostics for quality control.

2.2. Clustering and Marker Gene Extraction

Dimensionality reduction is performed using PCA, and cells
are clustered using the Leiden algorithm based on neigh-
borhood graphs. UMAP is used to embed cells in 2D for
visualization. For each cluster, the top marker genes are
identified using Scanpy’s ranking functions and are used to
construct structured prompts for LLMs.

2.3. LLM-Based Annotation

LLMs are prompted with top-ranked marker genes per clus-
ter to generate candidate cell-type labels. DeepSeq supports
both local inference (via Ollama) and agentic inference
(via gpt-4o with web search). Prompt orchestration and
postprocessing are handled by LangChain. Prompts are de-
signed following the format described by Hou and Ji (Hou
& Ji, 2024), adapted to structured transcriptomic data.

Figure 3. Dual inference workflows in DeepSeq for structured data
annotation. The top panel illustrates local inference via the Ollama
client, enabling efficient deployment of domain-specialized LLMs
(e.g., LLaMA3) for on-device cell type labeling. The bottom
panel depicts a live agentic inference pipeline using GPT-4o with
web search capabilities, where an OpenAI agent autonomously
retrieves and summarizes external content to augment biological
annotations. Together, these workflows demonstrate the versatility
of foundation models in structured biomedical pipelines under
both offline and online settings.
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2.4. Label Evaluation and Ground Truth Assessment

To evaluate the precision of LLM-based labeling, we imple-
ment a two-stage validation protocol:

• Marker Gene Verification: We confirm that the top
marker genes per cluster sufficiently match known
canonical markers for each predicted label, ensuring
that the evaluation is biologically meaningful.

• Label Accuracy Assessment: We compute the accu-
racy of LLM-generated labels by comparing them to
manually curated ground truth labels. The comparison
accounts for fuzzy string matching and synonym reso-
lution to robustly assess agreement at the cluster level.

This framework ensures reproducible, interpretable evalu-
ation of foundation models in structured single-cell data
domains.

Figure 4. Evaluation of foundation model accuracy in cell-type
labeling from structured single-cell data. Top panel: Agreement
between top marker genes per cluster and a ground truth refer-
ence ensures the validity of downstream label evaluations. Bot-
tom panel: Accuracy comparison across LLMs using cluster-level
marker gene inputs. The evaluation method was automated through
prompting strategies inspired by (Hou & Ji, 2024). The agentic
gpt-4o model achieves the highest labeling accuracy (82.5%),
demonstrating its ability to interpret structured gene expression
signatures, and showcasing the feasibility of foundation models
for high-throughput annotation in single-cell transcriptomics.

3. Results
We evaluated DeepSeq’s ability to automate structured
single-cell annotation using foundation models prompted

with top marker genes per cluster. As shown in Figure 4,
our two-stage evaluation assesses both the biological plausi-
bility of marker gene matches and the accuracy of resulting
cell-type predictions relative to ground truth annotations.

3.1. Marker Match Validation

The top panel in Figure 4 confirms that marker genes
extracted for each cluster match canonical gene sets for
known cell types, validating the biological grounding of
the prompts used for LLM querying. This step ensures that
model outputs reflect meaningful transcriptional signatures
rather than spurious correlations.

3.2. LLM Label Accuracy

We then compared the predicted labels from each LLM
against manually curated ground truth. As shown in the
bottom panel, the agentic GPT-4o model achieved the high-
est accuracy (82.5%), outperforming both earlier GPT-3.5
variants and smaller local models like LLaMA3-1B. These
results demonstrate that foundation models, when structured
with domain-informed prompts, can approach expert-level
annotation performance in high-throughput settings.

3.3. Reproducibility and Benchmarking

The full set of results—including per-cluster marker genes,
predicted labels, ground truth matches, and evaluation
scores—is reproducibly generated via scripts provided in
the DeepSeq repository. Each step of the pipeline—from
filtering and dimensionality reduction to LLM prompting
and evaluation—outputs interpretable logs, enabling precise
traceability of every decision made during annotation. This
framework supports extensibility to larger datasets, alterna-
tive LLM configurations, or modified evaluation strategies.

4. Discussion
Our results show that foundation models, particularly agen-
tic variants like gpt-4o, can achieve strong performance in
structured biological tasks such as cell-type annotation. As
illustrated in Figure 5, GPT-4o achieved 82.5% agreement
with ground truth labels when prompted with top-ranked
marker genes per cluster. This level of accuracy, attained
without fine-tuning or task-specific supervision, underscores
the potential of foundation models for high-throughput bio-
logical interpretation.

Interestingly, model performance did not scale linearly with
size. The leap in accuracy from LLaMA3-2-1B to GPT-3.5-
turbo was larger than the improvement from GPT-3.5-turbo
to GPT-4o, despite the latter having significantly more pa-
rameters. Since both GPT-3.5 and GPT-4o leverage agentic
web search while LLaMA3-2-1B does not, these results
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Figure 5. Total parameter count versus labeling accuracy for foun-
dation models on structured single-cell data. Accuracy reflects
automated cell-type labeling using top marker genes per cluster
and prompting strategies derived from (Hou & Ji, 2024). Despite
similar active parameter counts, gpt-4o achieves the highest la-
beling accuracy (82.5%) while operating within a 1.8T parameter
architecture. The logarithmic y-axis reveals how model scale in-
fluences annotation performance, highlighting diminishing returns
beyond 100B parameters without more domain-specific single-cell
data. These trends underscore the need for continued data scal-
ing—toward billions or even trillions of single cells—to approach
human-level labeling accuracy.

suggest that agentic capabilities offer a baseline improve-
ment, but architectural refinements and scaling yield dimin-
ishing returns in structured reasoning tasks without more
domain-specific data — highlighting the need for experi-
mental generation of such data from high-throughput exper-
iments that will in turn require high-throughput labeling, as
demonstrated in this paper. Local models like LLaMA3-1B
also performed competitively given their size, reinforcing
lightweight deployments in constrained environments.

A key insight from our findings is that, similar to how lan-
guage models improve with larger parameter counts and
more diverse training data, cell-type annotation accuracy
also depends on the scale and diversity of experimental in-
put. As shown in Figure 1, the number of cells profiled in
single-cell studies has followed an exponential trajectory,
with projections suggesting that datasets containing over
109 cells will become feasible within the decade. This scale
is likely necessary to train robust, domain-specific models
capable of resolving subtle transcriptional differences across
tissues, conditions, and perturbations. We are now at a turn-
ing point where the volume of biological data is sufficient
to support foundation model–level training and evaluation
in structured omics.

Nonetheless, the observed gap between model predictions
and perfect label accuracy highlights current limitations in
both model capabilities and marker gene distinctiveness.

Marker-based prompts are only as informative as the signal
contained within each cluster, and foundational models still
exhibit brittleness in biologically ambiguous cases. Evalua-
tion scripts in our repository provide insight into these edge
cases for reproducible future benchmarking. These findings
validate the use of LLMs for structured omics annotation,
while motivating design of prompting protocols, marker
gene selection, and evaluation pipelines.

5. Conclusion
We introduced DeepSeq, a modular pipeline that applies
foundation models to the structured domain of single-cell
transcriptomics. By using top-ranked marker genes as
prompts, DeepSeq enables large language models to per-
form scalable, automated cell-type labeling with strong
agreement to expert-curated ground truth. Our evaluation
shows that agentic models equipped with real-time retrieval
capabilities outperform static or smaller models, highlight-
ing the importance of model architecture and inference con-
text in structured annotation tasks.

Future work will extend this approach beyond cell-type
classification to dynamic biological modeling, including
transcriptional perturbation prediction and temporal infer-
ence. As single-cell datasets continue to scale, structured
prompting combined with model-guided annotation offers a
promising foundation for building interpretable, data-driven
systems capable of capturing complex biological processes.

These results also suggest that the scaling laws of language
models—where performance improves with model size and
data—extend to biological annotation. As illustrated in
our scaling projections, the exponential growth in single-
cell sequencing puts billion-cell datasets within reach. This
volume of training data opens the door to training virtual cell
foundation models that operate at scale and can generalize
across tissue types, organisms, and experimental conditions.

Unlike traditional pipelines constrained by human cura-
tion, DeepSeq leverages the compositional reasoning and
retrieval capabilities of LLMs to automate annotation with
high reproducibility and throughput. As more high-quality
single-cell data becomes available, these models will con-
tinue to improve. Ultimately, foundation models applied
to structured biological data will not only match—but are
likely to surpass—human-level annotation performance in
both speed and accuracy.

Looking ahead, integrating DeepSeq with multi-omic
datasets—such as single-cell ATAC-seq or spatial transcrip-
tomic (Wang et al., 2025)—could further enhance resolving
cell identity and state. By extending the prompting frame-
work to handle diverse molecular modalities, DeepSeq can
evolve into a general-purpose interface for querying struc-
tured biological systems using natural language.
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Impact Statement
This paper presents work whose goal is to advance the ap-
plication of generative AI foundation models for structured
biological data, specifically in the context of single-cell tran-
scriptomics. By automating cell-type labeling using agentic
prompting strategies, our approach increases annotation
throughput and enables scalable deployment in biomedical
pipelines. These capabilities have potential implications for
diagnostics, perturbation screening, and biological discov-
ery at scale. The methodology developed reflects a broader
trend toward integrating generative models with structured
biological data, offering a pathway for more versatile and
data-driven approaches to life science applications.

As the underlying datasets grow toward billions or tril-
lions of cells, ethical considerations emerge around pri-
vacy, model transparency, and equitable generalization. We
emphasize the importance of responsible deployment and
alignment with expert oversight in real-world health con-
texts.

References
Hicks, S. C. Introduction to single-cell RNA-

seq. https://www.stephaniehicks.com/
2018-bioinfosummer-scrnaseq/, 2018. Pre-
sented at BioInfoSummer 2018, Accessed: 2025-04-23.

Hou, W. and Ji, Z. Assessing GPT-4 for cell type annotation
in single-cell RNA-seq analysis. Nature Methods, 21(8):
1462–1465, 2024.

Shalek, A. K., Satija, R., Adiconis, X., Gertner, R. S.,
Gaublomme, J. T., Raychowdhury, R., Schwartz, S.,
Yosef, N., Malboeuf, C., Lu, D., et al. Single-cell tran-

scriptomics reveals bimodality in expression and splicing
in immune cells. Nature, 498(7453):236–240, 2013.

Svensson, V., Vento-Tormo, R., and Teichmann, S. A. Expo-
nential scaling of single-cell RNA-seq in the past decade.
Nature Protocols, 13(4):599–604, 2018.

Wang, H., He, Y., Coelho, P. P., Bucci, M., Nazir, A., Chen,
B., Trinh, L., Zhang, S., Huang, K., Chandrasekar, V.,
et al. SpatialAgent: An Autonomous AI Agent for Spatial
Biology. bioRxiv, pp. 2025–04, 2025.

5

https://www.stephaniehicks.com/2018-bioinfosummer-scrnaseq/
https://www.stephaniehicks.com/2018-bioinfosummer-scrnaseq/

