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Figure 1: Our automatic portrait video matting method does not require extra inputs. Most state-
of-the-art matting methods rely on semantic segmentation methods to automatically generate the
trimap. Their performance is compromised due to the lack of temporal information. Our method
exploits semantic information as well as temporal information from optical flow and produces high-
quality results.

ABSTRACT

Automatic portrait video matting is an under-constrained problem. Most state-
of-the-art methods only exploit the semantic information and process each frame
individually. Their performance is compromised due to the lack of temporal in-
formation between the frames. To solve this problem, we explore the optical flow
between video frames for the automatic portrait video matting. Specifically, we
propose the context motion network to leverage semantic information and motion
information. To capture the motion information, we estimate the optical flow and
design a context-motion updating operator to integrate features between frames
recurrently. Our experiments show that our network outperforms state-of-the-art
matting methods significantly on the Video240K SD dataset.

1 INTRODUCTION

Portrait video matting aims to recover the foreground portraits from a portrait video. It has attracted
extensive interest due to its wide applications in visual effects, video editing, and video meeting. It
is an under-constrained problem.

To solve the matting problem, most existing methods rely on extra inputs to provide external infor-
mation about the foreground or background areas. Trimap-based methods Xu et al. (2017); Hou &
Liu (2019); Lu et al. (2019); Li & Lu (2020); Forte & Pitié (2020) require a trimap image as the
extra input, where users specify known foreground and background areas, as well as an undefined
area. These methods recover alpha matte values in the undefined area by propagating the alpha val-
ues from known area. These methods achieve promising performance. However, obtaining accurate
trimaps often requires a vast amount of user effort. Alternatively, background-based methods Sen-
gupta et al. (2020); Lin et al. (2020) assume that the background is relatively static, and users can
capture the background. The matting problem is reduced to estimate the matte values with a known
background. These methods adopt an end-to-end network to estimate the alpha values directly and
produce high-quality results. However, it is challenging to capture background for videos with mov-
ing backgrounds, which impedes their applications to more general scenarios.

Our research is inspired by recent portrait image matting without any extra inputs Shen et al. (2016);
Zhu et al. (2017a). These methods incorporate the semantic information into the matting network
to automatically estimate the alpha maps for portraits. For instance, Shen et al. Shen et al. (2016)
employs a FCN Long et al. (2015) as a part of the whole network to estimate the trimap. They esti-
mate the matte values based on the trimap and achieve promising results. However, these methods
are designed for images. Their performance on videos might be compromised due to the lack of
temporal information. For instance, as shown in Figure 1, the hand in the semantic segmentation
is inaccurate, while the optical flow can provide useful temporal information for the hand. Further-
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more, adopting these methods to each frame individually sometimes leads to undesirable temporal
incoherence, such as flickering.

Our idea for portrait video matting is to make use of not only semantic information but also motion
information from optical flow. There are several advantages of introducing motion information to
the portrait video matting. First, the motions of foreground and background are typically different.
It will be easier to find the edges between foreground and background. Second, if the foreground
moves across the background, some portions of the background will be covered or revealed. We can
construct a more complete background to matte against.

We accordingly developed a context motion network dedicated to portrait video matting. Our net-
work takes a sequence of frames as inputs and estimates the alpha maps and foregrounds for each
frame. Specifically, our network contains four parts: the feature extraction network, the optical flow
estimator, the context motion updating operator, and the upsampler. We first extract the context fea-
tures for each frame and estimate the optical flow between consecutive frames. The optical flow and
context features are fed into the context motion updating operator. To get the motion features, the
context motion updating operator backwarps features from neighboring frames using optical flow
and calculate the correlation between the current features and the backwarped features. Our oper-
ator also encodes the optical flow directly. We employ ConvGRUs to recurrently integrate features
from consecutive frames. We then feed the resulting features to upsamplers to predict alpha maps
and foreground. Our network is trained in an end-to-end manner. Our experiments show that our
method outperforms the state-of-the-art trimap-based and background-based methods significantly.

This paper contributes to the research on automatic portrait video matting by leveraging semantic
information and temporal information. First, we propose a novel context motion network. It is the
first deep learning based method to utilize optical flow to capture the motion information in the
automatic portrait video matting. Second, we design a context motion updating operator to fuse
the context and temporal information and recurrently update features across consecutive frames.
Third, the proposed method achieves state-of-the-art performances compared to the trimap-based
and background-based methods.

2 RELATED WORK

Matting is a classic computer vision problem. For an image I, it assumes that I is a linear composi-
tion of a foreground F and a background B based on an alpha map α ∈ [0, 1],

I = αF+ (1−α)B, (1)

where F,B, and α are unknown. Matting aims to recover the foreground object, which is an under-
constrained problem. In this part, we discuss the most relevant works on image matting and video
matting. Due to the space limit, we refer readers to a comprehensive survey article Wang et.al. Wang
et al. (2008).

Image matting. To solve the matting problem, most of the current methods rely on the extra inputs
for external information. Trimap-based methods require a user-provided trimap or stokes which
specify the foreground, background, and unknown areas. To recover the matte values in the un-
known area, there are three categories of trimap-based matting methods: color sampling methods,
propagation methods, and deep learning methods. Color sampling methods Chuang et al. (2001);
Wang & Cohen (2005); He et al. (2011) are based on the observation that neighboring pixels’ al-
pha values are often similar if their colors are similar. However, the performance of color sampling
methods declines sharply when the color distributions of foreground and background have a large
overlap. Propagation methods Aksoy et al. (2017); Chen et al. (2013a;b); He et al. (2010); Lee &
Wu (2011); Levin et al. (2008a;b); Sun et al. (2004); Levin et al. (2008a); Aksoy et al. (2017); Chen
et al. (2013a) propagate alpha values from known to unknown pixels through various affinities be-
tween neighboring pixels. However, it is challenging to obtain accurate affinities because of color
ambiguity. Deep learning methods use a CNN and estimate the alpha map from the source images
Shen et al. (2016); Xu et al. (2017); Cho et al. (2016; 2019); Hou & Liu (2019); Lu et al. (2019);
Tang et al. (2019); Li & Lu (2020) or finetune the results from traditional methods Cho et al. (2016;
2019). Instead of using hand-crafted features, these methods learned the features which are more
robust to the challenging scenarios. These methods achieved promising results. However, trimap-
based methods require an amount of user effort in creating the trimap. The extensive requirements
of accurate trimaps pose a challenge, especially when running these methods on videos.
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Alternatively, background-based methods Sengupta et al. (2020); Lin et al. (2020) assume that the
background image is relatively static, and users can capture the background image. The matting
problem is reduced to estimate the foreground objects with a known background. These methods
take the image as well as the background image as inputs and estimate the alpha mattes with an
end-to-end trained network, which have shown particularly effective and high efficiency when the
background is relatively static. However, their performance drops sharply when it has a large mis-
match between the user-captured background and the real background. Furthermore, for the videos
with a moving background, it is difficult to capture the accurate background.

The semantic-based portrait matting methods Shen et al. (2016); Zhu et al. (2017a) leverage the se-
mantic information to estimate the matte values for the portrait matting without any user interaction.
For instance, Shen et al. accordingly proposed an end-to-end trained network Shen et al. (2016). It
first estimated the trimap. Then they designed a matting layer to estimate the matte values based on
the trimap. Their method achieved promising results for images. Compared to these methods, our
method improves the accuracy of automatic matting with temporal information.

Recently, some methods Li et al. (2020); Qiao et al. (2020) estimate the matte values for any objects
without any extra inputs. However, the generalization capability of these methods is compromised.

Video matting. Most traditional video matting methods solve the video matting problem in two
steps Chuang et al. (2002); Apostoloff & Fitzgibbon (2004); Lee et al. (2010); Bai et al. (2011).
In the first step, these methods employ semantic segmentation methods to estimate a binary seg-
mentation image of each frame independently. Based on the binary segmentation, these methods
generate trimaps for each frame by performing spatio-temporal optimizations. In the second step,
these methods apply image matting algorithms to estimate the matte values for each frame using
trimaps generated in the first step. While these methods have achieved promising results for some
scenes, the quality and stability of predictions from these methods decline when they are applied
to challenging scenarios because these methods heavily rely on hand-crafted features. Our method
addresses this challenging problem by learning the features with an end-to-end trained network.

Recently, there are deep-learning based methods for video matting, including Ke et al. (2020);
Zhang et al. (2021); Sun et al. (2021). For instance, Ke et al. (2020) first estimates the alpha maps
for each frame and employs a self-supervised strategy to preserve the temporal coherence. Zhang
et al. (2021) employs an attention-based temporal aggregation module to recurrently predicts the
alpha maps for videos. Sun et al. (2021) fuses the features from multiple frames to estimate the
alpha maps for the target frame. There is also a concurrent work by by Lin et al. (2021) that also
applies temporal information for video matting. But it targets efficient video matting, while our
method focuses on the high quality video matting. Furthermore, most of these works leverage
recurrent network to capture the temporal information. Compared to these methods, our method use
optical flow to capture the motion information.

Optical flow. Optical flow measures the per-pixel motions between video frames. It has been
widely used in high-level video tasks, including video in-painting Xu et al. (2019), moving-object
detection Yang et al. (2019), video recognition Zhu et al. (2017b), video segmentation Cheng et al.
(2017), and video frame interpolation Niklaus & Liu (2020). We method employ the optical flow to
measure the motion in the video matting task.

3 METHOD

Our method takes a sequence of portrait frames {It}Nt=1 as inputs and aims to estimate their corre-
sponding alpha maps {αt}Nt=1 as well as their foregrounds {Ft}Nt=1, where N indicates the number
of frames. Our network leverages not only semantic information but also temporal information.

As shown in Figure 2, we develop a new deep network architecture for automatic portrait video
matting. It recurrently estimates the alpha maps and foreground images. Our network can be dis-
tilled into four parts: (1) feature extraction, (2) optical flow estimation, (3) context-motion updating
operator, and (4) upsampler. All parts are differentiable, and we train the network in an end-to-end
manner. Given an input frame It, our network first extracts the context features Feat from an en-
coder pretrained on the image classification task. We capture the motion information by estimating
the backward optical flow ft→t−1 from the current frame It to the previous frame It−1 by the PWC-
Net Sun et al. (2018). To fuse the context information and the motion information, we develop a
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Figure 2: The architecture of our network. Our network takes a sequence of frames as inputs and
estimate the alpha maps and foreground image for each frame.

context-motion updating operator, which integrates context features, optical flow as well as the fea-
tures from the previous frame. Finally, we upscale the resulting features Ht and predict the alpha
maps αt and the foreground Ft. Below we describe the network in detail.

Feature extraction. We extract the features from the input images using a convolutional network.
The feature encoder network is applied to all the input frames. It maps the input images to feature
maps at a lower resolution as follows

Feat = gencoder(It), (2)
where gencoder indicates the encoder network. We adopt the modified ResNet50 He et al. (2016)
pretrained on the ImageNet dataset. Our encoder outputs features at 1/16 resolution of the source
frame as we empirically find that the large receptive field is critical for the semantic information.
Aside from the context features, we also extract the multi-scale intermediate features from the en-
coder to capture the fine structures. We use 3 × 3 convolutional layers to map these intermediate
feature maps to 32 channels. The weights of the feature extraction network are shared for all the
input frames.

Optical flow estimation. We calculate the optical flow between the current frame It and the previous
frame It−1, which indicates the per-pixel motion between these two frames. Inspired by the success
of state-of-the-art optical flow networks Sun et al. (2018); Zhao et al. (2020); Teed & Deng (2020),
we leverage the PWC-Net Sun et al. (2018) as a sub-network in our network to estimate the optical
flow. It takes two consecutive video frames as input and output the backward optical flow as follows,

ft→t−1 = gflow(It, It−1), (3)

where gflow indicates the optical flow network. ft→t−1 ∈ RH×W×2 indicates the backward optical
flow. We initialize the the optical flow subnetwork using weights pretrained on the Sintel dataset But-
ler et al. (2012). During our training, we train the whole network in an end-to-end manner.

Context-motion updating operator. Context-motion updating operator is designed to fuse seman-
tic information and temporal information. The context-motion updating operator is recurrent. The
features from the previous frames are utilized in the context-motion updating operator to provide
temporal information.

Given the frame feature Feat, Feat−1 as well as the backward optical flow ft→t−1, our goal is to
capture the motion information. Inspired by the design of PWCNet Sun et al. (2018), we backwarp
the features Feat−1 from previous frame to the current frame by

Bt−1 = gbackwarp(Feat−1, ft→t−1), (4)
where gbackwarp(·) indicates the operator of backwarping. Bt−1 indicates the backwarped features.
We calculate the correlation between the current feature Feat and the backwarped feature Bt−1

Ct = gcorr([Feat,Bt−1]), (5)
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where [·] indicates the concenating operator. gcorr indicates the operator to calculate the correlation.
Our network adopts two 3× 3 convolutional layers with 32 channels.
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Figure 3: Visual example of backwarp-
ing. Backwarping can help construct a
more complete background. Please note
that our method backwarps the feature
maps instead of images.

Our network also encodes the optical flow to capture the
motion information from optical flow directly. We first
bilinear downsample the optical flow size to the size of
Feat. The optical flow is encoded as

Flot = gflow encode(ft→t−1), (6)

where gflow encode indicates the operator for optical flow
encoding. Our network adopts two 7 × 7 convolutional
layers with 32 channels.

We fuse the correlation Ct and optical flow feature Flot
to get the motion features

Mt = gmotion([Ct,Flot]), (7)

where gflow encode(·) indicates the operator for motion
encoding. Our network adopts a 3× 3 convolutional layer with 62 channels.

By concatenating the semantic feature Feat, motion feature Mt, as well as the optical flow ft→t−1,
our method gets the fused feature Fust,

Fust = [Feat,Mt, ft→t−1]. (8)

Inspired by RAFT Teed & Deng (2020), our network adopts separable ConvGRUs to leverage the
features from the previous frame. It replaces the fully connected layers in the GRU with separable
convolutions. It can be represented as

zt = gz([Ht−1,Fust]), (9)

rt = gr([Ht−1,Fust]) (10)

H̃t = gh([rt ·Ht−1,Fust]) (11)

Ht = (1− zt) ·Ht−1 + zt · H̃t, (12)
where gz(·), gr(·), and gh(·) indicate the gated activation units. Specifically, gz(·) and gr(·) employs
sigmoid(·) as their activation function. gh(·) uses tanh(·). Our network adopts two ConvGRUs.
In the first ConvGRU, gz(·), gr(·) and gh(·) are one 1 × 5 convolutional layer. And in the second
ConvGRU, they are 5 × 1 convolutional layers. It can increase the receptive field while keeps the
model size small.

Upsampler. As shown in Figure 2, our network contains two decoders: one for the alpha maps
and the other for the foreground. They have the identity network architecture. We first bilinearly
upsample the features by a factor of 2. Our network concatenates the upsampled features with the
intermediate features from the encoder. Our network fuses them by two 3 × 3 convolutional layers
with 32 channels. We repeat the process until the resolution of upsampled features is the same as the
input frame. The last layer of the alpha decoder has two convolutional layers. We use the activation
function sigmoid() for the second convolutional layer. The last layer of the foreground decoder also
has two convolutional layers. The second convolutional layer direct outputs the foreground image
without activation function.

Loss functions. For each frame of the input video, we compute the loss over the alpha maps and the
foreground images. For the alpha maps, we use the standard `1 to measure the difference between
the predicted alpha maps αt and the ground truth α̂t as follows

Lα1,t = ‖αt − α̂t‖1. (13)

Following Context Matting Hou & Liu (2019), we also employ the Laplacian loss for the alpha
maps. Instead of measuring the difference from the image directly, it measures the differences of
two Laplacian pyramid as follows,

Lαlap,t =
5∑
i=1

2i−1‖Li(αt)− Li(α̂t)‖1, (14)
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Figure 4: Examples from our background video dataset. It contains various indoor scenarios.

where Li(·) indicates the ith level of the Laplacian pyramid.

For the foreground image, we also employ the standard `1 to measure the difference between the
predicted foreground image Ft and F̂t. We only calculate the loss where the foreground is visible

Lfg1,t = ‖I(α̂t > 0) · (Ft − F̂t)‖1, (15)

where I(·) indicates a binary function whose value is 1 if the condition is true and 0 otherwise.

We get the total loss as

Ltotal =
N∑
t=1

Lα1,t + Lαlap,t + 0.1Lfg1,t, (16)

where N indicates the length of the input video.

Training. We use PyTorch to train our neural network. The feature extraction network is initialized
with the official weights pretrained on the ImageNet dataset. And the optical flow network is initial-
ized with the weights pretrained on the Sintel dataset. The other modules are initialized with random
weights. We adopt AdamW Loshchilov & Hutter (2017) as our optimizer. Our initial learning rate
is set to 10−4. We use the “OneCycleLR” learning rate policy Smith & Topin (2019) in training,
which we empirically find it converges faster than other policies. Furthermore, we clip gradients in
the range [−1, 1].
We train our network for 300k iterations on a single NVIDIA Titan RTX GPU. In the first 150k
iterations, we freeze the parameters of the optical flow network. We empirically find that freezing
the parameters of the optical flow network in the early stages can make the training process more
stable. Our batchsize is set to 4. In the following 150k iterations, we unfreeze the parameters of
the optical flow network and train the network in an end-to-end manner. We set the batchsize to 2
due to the GPU memory limitation. We set the length of frames as 3 for training. Furthermore, our
network freezes the parameters of batch norm layers during the whole training process.

Dataset. We train our network using the video portrait matting dataset, Video240K SD, shared by
Lin et al. (2020). This dataset contains 484 training videos with the corresponding alpha maps and
the foreground images, including 479 videos for training and 5 videos for testing. The resolution
of videos is 768 × 432. The Video240K SD dataset only releases the background images, while
our method is designed for the videos. We collected 82 indoor videos as the background videos.
These videos are under Common Creative Licenses from YouTube. The resolution of these videos
is higher than or equal to 1080p. Most videos last more than 10 minutes, and the frame rate is higher
than or equal to 24fps. We randomly extracted frame sequences from these videos. Each frame
sequence contains 50 consecutive frames. We also downsampled the frames to 720p. We manually
removed the sequences with cut shots, visual effects, and extremely fast motion. We also removed
the sequences which contain humans. This culling process reduced the total number of sequences
to 5636, consisting of 281,800 individual video frames with a typical resolution of 1080 × 720.
We split them into two parts: 5586 sequences from 68 videos as the training background and 50
sequences from 14 videos as the testing background. There is no overlap among them. As shown in
Figure 4, our dataset covers various indoor scenarios. For training, we created the training samples
by compositing the foreground video onto a randomly selected background sequences. For the
testing, we composite each testing foreground video onto 10 randomly selected background videos.
There are 50 testing videos in total.

Data augmentation. As discussed in Hou & Liu (2019), the foreground videos and background
videos often contain different artifacts. Directly training the network on the composited videos
without augmentation might compromise the generalization capability of the trained network. Fol-
lowing Hou & Liu (2019), we leveraged the JPEG noise to the composited videos. We keep the

6



Under review as a conference paper at ICLR 2022

Method
Extra Alpha Foreground

input SAD MSE Grad Conn MSE

Context Matting Hou & Liu (2019) Tseg 5.39 13.38 18.09 5.34 5.17
Tgt 1.41 1.78 4.24 1.31 4.26

Index Matting Lu et al. (2019) Tseg 4.32 10.32 13.03 4.22 -
Tgt 1.47 1.57 2.74 1.28 -

GCA Matting Li & Lu (2020) Tseg 4.33 10.91 14.14 4.24 -
Tgt 1.49 2.32 3.29 1.37 -

FBA Matting Forte & Pitié (2020) Tseg 4.17 10.18 12.36 4.10 2.50
Tgt 1.02 0.87 1.84 0.91 2.25

BGMV2 Lin et al. (2020) Bfirst 83.56 247.03 16.79 - 3.79
Bgt 1.07 1.41 2.47 0.94 4.01

MODNet Ke et al. (2020) - 3.62 8.47 4.11 3.42 9.63
RVM Lin et al. (2021) - 1.06 0.89 1.85 0.96 3.15

Ours - 0.44 0.27 0.38 0.26 0.88

Table 1: Comparison on the Video240K SD dataset. Tseg indicates the trimap generated from the
semantic segmentation method Chen et al. (2018). Tgt indicates the trimap generated from the
ground truth alpha maps. Bfirst indicates the background image from the first frame. Bgt indicates
the ground truth background image for each frame in the video.

quality of the composited videos in the range of [70%, 100%]. Aside from the augmentations of
images, we also introduced the H264 noise to our composited videos, which is commonly used in
video compression. Our method also uses standard augmentations. Specifically, we randomly crop
the composited videos to patches of size 384×384, as the large cropping size is critical for semantic
information. We randomly flip the images horizontally. We also employ the color jitter for the fore-
ground video to increase the color diversity, where we set the brightness in a range of [0.85, 1.15],
the contrast in the range of [0.85, 1.15], the hue in the range of [0.9, 1.1], and the saturation in the
range of [0.7, 1.3]. We also employ the gamma transformation for the alpha maps, in which we set
the gamma value in the range of [0.2, 2].

4 EXPERIMENT

We conduct our experiments on the Video240K SD dataset. To compare with the trimap-based
methods, we generate two versions of trimaps. The first version Tgt follows the Adobe Matting
Dataset Xu et al. (2017), which is generated by dilating the ground truth alpha mattes. For each
video, we randomly select the size of dilation in the range of [5, 15]. Since manually creating
the trimaps will take a lot of user effort, some users automatically create the trimaps by dilating
the results from the semantic segmentation networks. As a consequence, we generate the second
version Tseg by dilating the semantic segmentation using the Deeplab V3+ Chen et al. (2018). We
set the size of dilation as 10 pixels.

Evaluation metrics. For the alpha maps, we adopt various metrics, including SAD, MSE, Gradient
(Grad), and Connectivity (Conn) Xu et al. (2017). For the foreground videos, we evaluate the MSE
of the foreground video. In our experiments, we employ the official evaluation codes from the
authors of the Video240K SD dataset Lin et al. (2020). We scale MSE, Grad, Conn by 103, 10−3
and 10−3, respectively. Please note that the evaluation codes only measure unknown areas on the
trimaps, while our method doesn’t require trimaps. For a fair comparison, we evaluate the whole
image for all comparing methods. Besides, Conn metric fails on some results, and some methods do
not estimate the foreground image. We use “-” to denote them.

4.1 COMPARISON WITH STATE-OF-THE-ART METHODS

We compare our methods with the state-of-the-art trimap-based methods, including Index Mat-
ting Lu et al. (2019), Context Matting Hou & Liu (2019), GCA Matting Li & Lu (2020) and FBA
Matting Forte & Pitié (2020), and the state-of-the-art background-based method BGMV2 Lin et al.
(2020). We also compare our method with the state-of-the-art video matting methods, including
MODNet Ke et al. (2020) and RVM Lin et al. (2021). We used the code / model shared by their
authors.
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Figure 5: Visual comparison on the Video240K SD dataset. Our method generates more plausible
results. We adopt the trimaps Tgt generated from the ground truth alpha maps for the trimap-based
methods, including Index Matting Lu et al. (2019), Context Matting Hou & Liu (2019), GCA
Matting Li & Lu (2020) and FBA Matting Forte & Pitié (2020). For the BGMV2 Lin et al. (2020),
we adopt the ground truth background Bgt for it.

Table 1 reports the quantitative results on the Video240K SD dataset. For each trimap-based method,
we report their results on the trimap Tseg which is generated from the semantic segmentation, and
Tgt which is generated from the ground truth alpha maps. For the background-based method, we
assume that users can capture the background image for the first frame and adopt it as the back-
ground for the whole video, whose result is denoted as Bfirst. We also report the results with the
ground truth background for each frame, which is denoted as Bgt. As shown in Table 1, our method
outperforms both trimap-based and background-based approaches by a large margin. Specifically,
our method wins 0.58 on SAD, 0.60 on MSE, 1.46 on Grad, and 0.65 on Conn for the alpha maps.
Our method wins 1.37 on MSE for the foreground. Figure 5 shows several visual examples on the
Video240k SD dataset. Our results contain more fine structures. In the first example, the girl’s hair
is our result is more accurate than others. In the second example, the stethoscope and arms in our
result preserve more details.

4.2 ABLATION STUDY

In this section, we examine several key components of our method.

Feature extraction network. We examine how the feature extraction network affects the final
results. In this experiment, we change the feature extraction network while fixing the other parts
of the network. Table 2 reports the results of MobileNetV2 Sandler et al. (2018), ResNet18 He
et al. (2016) and ResNet50 He et al. (2016). Compared with other backbones, ResNet50 is deeper
and has higher computational complexity. It achieves the best performance. We believe that these
improvements come from the more representative information of ResNet50, which is consistent
with the finding of the previous semantic segmentation methods Chen et al. (2017; 2018) and image
matting methods Forte & Pitié (2020).

Optical flow network. We examine how the optical flow network affects the final results. In this
experiment, we use the MobileNetV2 Sandler et al. (2018) as our feature extraction network. We
compare two models: one with PWC-Net Sun et al. (2018) as the optical flow network and the
other one with MaskFlownet Zhao et al. (2020) as the optical flow network. Although MaskFlownet
achieves better performance in the optical flow estimation task Zhao et al. (2020), PWC-Net gets
better matting results. As shown in Table 3, PWC-Net wins 0.10 on SAD, 0.28 on MSE, 0.14 on
Grad, and 0.09 on Conn on the alpha maps. It also wins 0.29 on the foreground MSE. This is
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Method
Alpha Foreground

SAD MSE Grad Conn MSE

MobileNetV2 0.63 0.54 0.80 0.41 1.32
ResNet18 0.48 0.27 0.48 0.29 1.51
ResNet50 0.44 0.27 0.38 0.26 0.88

Table 2: The effectiveness of the feature extrac-
tion network on the Video240K SD dataset.

Method
Alpha Foreground

SAD MSE Grad Conn MSE

MaskFlownet 0.73 0.82 0.94 0.52 1.61
PWC-Net 0.63 0.54 0.80 0.41 1.32

Table 3: The effectiveness of the optical flow
network on the Video240K SD dataset.

consistent with many other works that PWC-Net has great generalization capability Niklaus & Liu
(2018; 2020); Bao et al. (2019).

Method
Alpha Foreground

SAD MSE Grad Conn MSE

Baseline 0.95 1.45 1.22 0.75 1.66
+ ConvGRU 0.83 0.96 1.05 0.57 1.83

+ Motion 0.63 0.54 0.80 0.41 1.32

Table 4: The effectiveness of the context mo-
tion updating operator on the Video240K SD
dataset. We add the components cumula-
tively from top to bottom.

Context motion updating operator. We also inves-
tigate the contribution of each component in the con-
text motion updating operator. In this experiment,
we adopt the MobileNetV2 Sandler et al. (2018) as
the feature extraction and PWC-Net Sun et al. (2018)
as the optical flow network. In particular, we study
the impact of context motion updating operator by
removing it from the whole network. For the model
with “Baseline”, we remove the context motion up-
dating operator. For the model with “+ConvGRU”,
we only keep the ConvGRU while removing the other components from the context motion updat-
ing operator. For the model with “+Motion”, we keep the context motion updating operator. The
performance of these models can be found in Table 4. We can find that ConvGRU can improve all
the evaluation metrics on the alpha maps while slightly increasing the foreground MSE. Particularly,
the motion plays a crucial role, which improves the results by 0.20 on SAD, 0.42 on MSE, 0.25 on
Grad, and 0.16 on Conn. It also improves the foreground MSE by 0.51. It verifies our motivation to
introduce the motion information into the video matting network.

5 LIMITATION AND FUTURE WORK

There are several limitations and drawbacks of the proposed automatic portrait video matting
method.

Memory. Our method employs ResNet50 as our feature extraction network to capture semantic in-
formation. It will take too much GPU memory on high-resolution videos, e.g., videos of 4k resolu-
tion. Besides, the optical flow network also requires large memory. The high memory requirements
impede our training on high-resolution videos.

Optical flow. Our method currently relies on PWC-Net Sun et al. (2018) to estimate the optical flow
between frames. However, PWC-Net might not produce reliable optical flow for the challenging
scenarios, e.g., videos with large motion. In these videos, our method will fail to produce correct
matting results. An interesting future direction is to design an optical flow network specifically for
video matting.

6 CONCLUSION

This paper presented an automatic portrait video matting method. We designed a context motion
network for this task. Our network takes a sequence of frames as inputs and does not require ex-
tra inputs. Our network leverages context information and temporal information. Our method first
extracts the context features for each frame. It also extracts the optical flow between consecutive
frames. This is followed by a context motion updating operator to fuse the context and motion
features recurrently. Our experiments showed that our method is able to generate high-quality al-
pha maps and foreground images. Our experiments also showed that the context motion updating
operator is helpful to generate high-quality results.
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