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Abstract

Forecasting in the real world often requires combining structured time-series
data with unstructured textual information, yet most existing methods treat these
modalities in isolation. We address this gap with the LLM-integrated Bayesian
State Space Model (LBS), a probabilistic framework for multimodal temporal
forecasting. At a high level, LBS consists of two components: (1) a state space
model (SSM) backbone captures the temporal dynamics of latent states from which
both numerical and textual observations are generated, and (2) a pretrained large
language model (LLM) is adapted to encode textual inputs for posterior state
estimation and decode textual forecasts consistent with the latent trajectory. This
design enables flexible lookback and forecast windows, principled uncertainty
quantification, and improved temporal generalization thanks to the well-suited
inductive bias of SSMs toward modeling dynamical systems. Experiments on
the TimeText Corpus benchmark demonstrate that LBS improves the previous
state-of-the-art by 13.20% while providing human-readable textual summaries.
Our work is the first to unify LL.Ms and SSMs for joint numerical and textual
prediction, offering a novel foundation for multimodal temporal reasoning.

1 Introduction

Time-series forecasting is a core machine learning task traditionally centered on predicting future
numerical values from past data [27]]. However, in many real-world domains, contextual information
expressed in natural language—such as clinical notes, financial reports, or weather descriptions—
plays a critical role in forecasting. This complementary modality can offer valuable signals that
cannot be fully extracted from numeric data alone [25} [19]]. Similarly, generating textual forecasts
alongside numerical predictions can be particularly useful in high-stakes decision-making scenarios.
These opportunities motivate the development of models that not only forecast from multimodal
inputs, but also communicate their predictions through natural language, augmenting quantitative
accuracy with qualitative explanations.

Probabilistic state space models (SSMs) offer compelling advantages for time-series forecasting:
their inductive biases fit will for modeling temporal dynamics, quantify uncertainty in a principled
manner, and support variable-length input/prediction horizons. While integrating probabilistic SSMs
with pretrained large language models (LLMs) appear to be a natural direction to enable joint numeric
and textual modalities, the direction presents two yet unexplored fundamental challenges: (C1)
Text-conditioned posterior state estimation: How can we update the latent state of the SSM using
a pretrained LLM and textual observations? (C2) Latent state-conditioned text generation: How
can we adapt the LLM to generate accurate, temporally grounded textual forecasts conditioned on
latent state trajectories?
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Figure 1: An illustration of LBS under for a single-step forecasting scenario. Bottom: To enable
Bayesian updates with text, the LLM is tuned to summarize the context into a set of summarization
tokens, which are then used together with the target value to obtain the posterior state distribution.
Top: Conditioned on the state forecast, the shared LLM is trained to generate its corresponding text.
When using instruction-tuned LLMs, both steps are accompanied by prompt templates in order to
preserve its capabilities.

In response, we propose the LLM-integrated Bayesian State Space Model (LBS), a novel architec-
ture that unifies a probabilistic SSM with a pretrained LLM for joint numeric and textual forecasting
(see[Figure T). For (C1), we adapt the LLM to summarize and compress textual inputs into a sequence
of summary tokens, which are projected into the low-dimensional latent state space for deep Bayesian
filtering. For (C2), we leverage the LLM’s in-context generation capabilities by conditioning it on
latent state trajectories—treated as non-textual context akin to images or videos—enabling temporally
coherent, state-grounded textual forecasts. Evaluated on the TIMETEXT CORPUS (TTC) spanning
climate and clinical domains, LBS outperforms unimodal and multimodal baselines, improving
numeric accuracy by 13.20% on average while producing coherent textual predictions.

2 Preliminaries

In this section, we provide background information on multimodal time-series forecasting, followed
by a discussion on our assumed latent state space model and the objective function used to optimize
its parameters. A comprehensive discussion of related work can be found in Appen [Appendix Al

Problem Setup. Given a temporal series of numerical
values y1.+ = [y1,...,Yt] € R**M and textual data
Dyt = [D1,...,D;] across t time steps, the objective

of multimodal time-series forecasting is to predict the
target values as well as corresponding text for the next

H steps:
fo : (Y1:t:Dit) = (Yesrt480 Degrern)

Compared to a unimodal setup with no textual inputs Figure 2: The latent model assumed in
or outputs, this multimodal setup captures richer pre- LBS. The temporal backbone SSM mod-
dictive targets, modeling textual insights in addition to els the dynamics of states x;, from which
quantitative forecasts. multimodal data y; and D; are generated.

.._uxt 1,_.. xt —"xt+1"—"“

Bayesian State Space Model. At each time step ¢, we assume that a shared unobservable latent state
x; € RY encodes the system’s internal condition, which evolves stochastically over time via a state
transition model p(x; | ;—1). Then, the numeric emission model p(y; | ;) captures how the
target numeric observations are generated from each latent state, and the textual emission model
p(D; | x;) models the generation of textual descriptions from the same latent state. All illustration

of this dynamical model can be found in

We parameterize the transition distribution p(x; | ;1) as a multivariate Gaussian N (1, o), where
both the mean u; and diagonal variance o are produced by a recurrent neural network (e.g., GRU or
LSTM) applied to the previous state ;. The numeric observation model p(y; | ;) is also modeled
as a Gaussian with fixed variance, the mean of which can be computed by passing x; through a
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multi-layer perceptron (MLP). To leverage the capability of LLMs in modeling the likelihood of text
given textual or non-textual contexts [24], we incorporate a pretrained LLM to model the conditional
distribution p(D; | x;), architectural details for which are shared in the following section.

Training Objective. We train the model by maximizing the evidence lower bound (ELBO) on the
joint likelihood of the observed numeric and textual data. The classical ELBO objective naturally
extends to our multimodal setting as

log p(y1.7, D1.7) > Zszl Eq(z, |y, D) | 10g0(y: | x4) +1og p(Dy | 1) | — KL(q(xt | Y1:6, D1t) || (@ | 26-1))

value likelihood text likelihood temporal regularization

where the variational posterior ¢(x; | Y1.t, D1.¢) is parametrized via a deep Kalman filter [21} [9} [10],
serving as a proxy for the computationally intractable p(x; | y1.¢, P1.t). The full derivation and

further discussions can be found in
3 LBS: LLM-Integrated Bayesian State Space Model

To integrate LLMs into our latent dynamical model, we must address two technical challenges: (C1)
How can we design the LLM-based filter that estimates the a posteriori state conditioned on
text (i.e., ¢(x; | yi, D:))? (C2) How can we model the likelihood of text conditioned on the
latent state (i.e. p(D; | x;))? In this section, we detail the architectural components that tackle these
challenges, together forming our proposed framework LBS (Figure T).

3.1 Text-conditioned Posterior State Estimation

Text Compression. To efficiently update our prior state estimates conditioned on text, we adapt a
pretrained LLM to perform context compression [2, (6], generating encodings of textual observations
into latent state summaries. The core idea is to introduce special tokens unique to the task of
summarization and finetune the LLM to allocate critical information into summary tokens for
effective posterior inference. More concretely, we first augment the vocabulary of the pretrained
LLM with K special learnable tokens <SUM>,, that facilitate the task of text compression. To encode
a textual observation Dy, we append all K summary tokens after the input sequence D;, and forward
the augmented sequence through the pretrained LLM. The detailed prompts used during compression

in our experiments can be found in

After processing the sequence through the LLM, we extract the final hidden states of the K summary
tokens, then concatenate along the feature dimension to form a single summary vector of D;. This
vector is then projected through a MLP to obtain a low-dimensional representation s, € R that
matches the latent states x; in dimension.

Posterior Inference. Given the summary vector s;, we compute the mean and diagonal covariance
of the variational posterior distribution ¢(x: | y:, ¢) (assumed to be Gaussian) via a neural Kalman
filter parameterized by another MLP [21]]. This MLP takes as input the summary vector s;, the
corresponding numeric target y;, the prior latent state x;, and outputs the mean and log-variance of
the posterior distribution. Note the entire process is end-to-end trainable, hence we finetune the LLM
using LoRA [13] to effectively encode forecast-relevant information into the <SUM>;, tokens without
significantly altering the generative capabilities within its pretrained weights.

3.2 State-conditioned Text Generation

Given the posterior distribution, we use the reparameterization trick [20] to generate &; ~ q(x; |
y:, D;), generating Monte-Carlo samples in an end-to-end learnable manner. Then, we can model
the posterior state-conditioned textual likelihood p(D; | &) by providing a projection of &, as a
prefix to the LLM [22]], similarly to vision-text instruction tuning frameworks [24]. Specifically, we
project the sampled low-dimensional latent state vector &; into a sequence of tokens for the LLM
using a linear layer. These projected tokens are then prepended to Dy, effectively allowing the LLM
to condition its generation on the state dynamics captured by the temporal SSM backbone.

This design assumes that the temporal backbone is capable of encoding time-specific information
such as event structure, trends, or contextual shifts within a compact latent space [1]. By projecting
this information into the high-dimensional language space and augmenting it with instruction prompts,
we provide the LLM with the necessary information to generate fluent and temporally consistent text.
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Method TTC-CLIMATE TTC-MEDICAL

H=1 2 3 4 5 6 7 H=1 2 3 4 5 6
PatchTST [27] 4912 5305 6.021 6576 6980 7.170 7.360 | 5735 6.757 7.350 7.687 7.996 8.470
NLinear |37 4981 6.129 6.501 6.710 6.834 6916 6962 | 5195 5279 5275 5406 5562 5875
NLinear-Text [37] | 4.835 5.800 5951 5934 6.022 6.024 6.106 | 5.117 5.143 5.106 5300 5.492 5.759
TSFLib [25] 6.351 6446 6.143 6360 6.096 6.379 6.002 | 6.767 7.066 7.427 7.050 7.165 7.210
TT2TT [19] 5243 5955 6.724 7.253 7.678 8.034 7.666 | 6.689 6432 6.022 6483 6.747 6.731

HybridMMF [19] | 4.759 5597 5906 6.019 6.133 6.027 6.143 | 5202 5472 6.620 6.269 8.673 8.454

LBS (unimodal) 4224 5029 5523 5855 6.107 6303 6473 | 3910 4598 5.047 5268 5473 5.654
LBS (multimodal) | 4.117 4.908 5.341 5.627 5.833 5998 6.133 | 3.583 4.268 4.721 5.043 5.296 5.487

Table 1: Test RMSE results from TTC benchmark. Best results for each prediction horizon H are
highlighted in bold.

4 Experimental Results

Datasets. We perform experiments on the TIMETEXT CORPUS (TTC [19]), a multimodal time-
series forecasting benchmark that covers two distinct domains: TTC-CLIMATE consists of daily
temperature measurements at Washington DC with textual weather descriptions. TTC-MEDICAL
consists of daily heart rate measurements from hospitalized patients accompanied by nursing notes.
Following the original work [[19], we use a 8-1-1 train-validation-test split across time for both
domains. Further details on the benchmark can be found in

Setup. We compare LBS against existing multimodal forecasters TSFLib [25]], TextTime2TextTime
(TT2TT [19]]), NLinear-Text [37], and HybridMMF [19]]. For TSFLib, we use Reformer as its
time-series forecasting backbone, as it was the best-performing setup. We also compare against
strong unimodal methods PatchTST [27]] and NLinear [37]]. Note that all baselines are specifically
trained for each prediction horizon H, while for LBS which can generalize to arbitrary H, a single
model is optimized via stateful training and then evaluated on each possible H. All multimodal
models adopt LLaMA3.1-8B [7] as the base LLM, and LBS uses a single-layer GRU [3]] with latent
dimension 16 as the SSM backbone. Further details on training and model hyperparameters can be

found in Appendix

Results. [Table T|presents forecasting results across varying prediction horizons. For most prediction
horizons considered, LBS achieves substantial gains over all baselines, improving the state-of-
the-art by 5.13% and 21.28% on TTC-CLIMATE and TTC-MEDICAL on average, respectively.
Combined with the fact that a single LBS model is evaluated throughout all horizons, this result
highlights the strength and generalizability of SSMs in capturing temporal dependencies, validating
our choice of using a probabilistic SSM as our temporal backbone.

When comparing LBS against a unimodal variant of LBS that does not use textual data, we find that
the additional modality consistently leads to performance improvements, with 3.82% and 5.41% error
reduction for TTC-CLIMATE and TTC-MEDICAL, respectively. This highlights the model’s ability
to leverage textual information for more accurate posterior inference, leading to sharper and more
informed forecasts.

Extended results in further show that LBS can generate temporally coherent textual
forecasts. Interestingly, we also find that larger LLMs do not always improve forecasting accuracy, but
benefits of textual information consistently grow with longer prediction horizons. This suggests that
text provides complementary context that stabilizes long-term forecasts and mitigates compounding
errors in autoregressive dynamics.

5 Concluding Remarks

We propose LBS, a novel architecture that integrates a Bayesian SSM with pretrained LLMs for
multimodal time-series forecasting. By grounding both numeric and textual observations in a shared
latent dynamical system, LBS enables coherent forecasting along with uncertainty estimation and
flexible prediction horizons. Experiments on the TTC benchmark demonstrate that LBS outperforms
existing baselines, with textual data providing greater gains at longer forecasting horizons. Our
findings highlight the promise of probabilistic, LLM-integrated SSMs for robust and interpretable
forecasting in real-world scenarios.
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A Related Work

Multimodal Time-Series Forecasting. With the recent advancements in LLMs, several approaches
have emerged to integrate language models with time-series forecasting. [[14] introduces a textual
data collection pipeline and a modified transformer architecture that uses pre-trained transformers.
[26] examines whether LLMs can perform zero-shot time series forecasting with the aid of textual
data, extending [8], and concludes that even frontier models still perform poorly. [34] proposes
the Text-Guided Time Series Forecasting framework, which integrates news and descriptive textual
data for time-series forecasting and introduces a new architecture that leverages a cross-attention
layer for modality fusion. [25]] presents the Time-MMD benchmark for evaluating text-time series
multimodal models and demonstrates that incorporating additional textual data can improve time-
series forecasting. [[33]] develops a reasoning agent for selecting and analyzing textual (news) data,
streamlining the text processing pipeline for multimodal time-series forecasting. [19] develops the
TimeText Corpus (TTC), a time-aligned text and time-series dataset for multimodal forecasting, along
with a hybrid forecasting model (HybridMMEF) that jointly predicts both text and time-series data
using shared embeddings. [32] introduces ChatTime, a time-series foundation model that facilitates
various zero-shot time-series tasks through continuous pretraining and instruction tuning on pretrained
language models. [23] presents Texts as Time Series (TaTS), a multimodal time-series forecasting
framework that incorporates concurrent textual data by converting it into auxiliary variables. This
approach enables seamless integration of text-augmented time series into existing time-series models.

While prior work demonstrates the potential of LLMs for time-series forecasting, none integrate them
into state-space models—our key contribution.This integration enhances forecasting performance
and enables principled uncertainty quantification.

Bayesian State Space Models. Bayesian state estimation has a long-standing history in control
theory and time-series analysis. The classical Kalman filter [16]], provides an optimal recursive
solution for state estimation in linear dynamical systems with Gaussian noise. To accommodate
the nonlinearities common in real-world systems, the Extended Kalman Filter was developed by
linearizing nonlinear functions via Taylor expansion around the current estimate. Later, the Unscented
Kalman Filter was introduced to improve upon EKF by using deterministic sampling to better capture
the mean and covariance of nonlinear transformations [[15]. Other sampling-based methods, such as
the Ensemble Kalman Filter [12] and Sequential Monte Carlo [4]], have further advanced Bayesian
filtering in nonlinear and non-Gaussian settings by representing posterior distributions through
particle ensembles.

More recently, researchers have sought to combine the structure of state-space models with the
flexibility of deep neural networks. For example, KVAE introduced variational approaches to
learning latent dynamics in sequential data using neural parameterizations of the transition and
emission functions [3]. [28]] adapted state-space formulations for multivariate time-series forecasting
in large-scale retail demand. In reinforcement learning and model-based control, works such as
PlaNet [10], Dreamer [11], and KalmanNet [29] have shown that combining deep neural networks
with probabilistic latent dynamics models can yield strong performance across pixel-based partially
observable domains.

Despite these advances, existing work largely targets unimodal data like images or numerical signals.
In contrast, our work is the first to combine pretrained LLMs with probabilistic state-space models
for joint forecasting over numeric and textual inputs, extending Bayesian state estimation to the
multimodal setting.
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B Implementation Details

B.1 Derivation of Training Objective

Our training objective can be derived using the autoregressive structure of the latent dynamical model
as well as Jensen’s inequality.

log p(y1.7, D1.1)

:log/ p(y1.7, D11, T11)dXr.
1.7

=10g/ [ |z 1)p(y: | 2)p(D: | @))dar.r
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HtT=1 p(xe | T—1)p(ye | e)p(Dy | )
Q(mlzT | yl:TaplzT)

= IOg Eq(ml:T|y1:T7D1:T) [

1, p(a: | @ 1)p(y: | ®)p(Dy | 20)
Q(wl:T | Yi.1, Dl:T)
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=1

value likelihood text likelihood temporal regularization

Replacing the computationally intractable posterior distribution p(@; | y1.t, D1.t), we introduce
a variational posterior q(x: | y1.+, D1.t) over the latent states, parameterized via a deep Kalman
filter [21, 9, [10]. Intuitively, the training objective effectively balances three essential aspects of
Bayesian state estimation. First, the expected likelihood terms ensure fidelity to the observed data
by encouraging the latent states to retain enough information to accurately reconstruct both the
numeric values and textual descriptions. Second, the KL regularizer imposes temporal coherence
by penalizing latent trajectories that deviate too strongly from the prior dynamics controlled by the
SSM. Lastly, the variational expectation allows the model to predict under uncertainty in the latent
trajectory, inducing more robust and generalizable forecasts.

B.2 Architectural Details

Shared or Separate LLMs? While it is possible to use two separate LLMs for encoding and
decoding, for LBS we assume the same LLLM weights are shared between the two steps: the LLM
that encodes text into compressed embeddings for posterior estimation also serves as the decoder for
text generation. This weight sharing not only reduces the computational burden, but also encourages
the LLM to encode forecasting-relevant information in a way that it can later reuse for generation,
learning prediction and inference in a self-consistent manner.

Stateful single-step training. Ideally, training LBS on long sequences would allow the model
to better capture long-range dependencies. However, each timestep ¢ requires passing D; through
the LLM twice—once for encoding and once for decoding—making naive long-horizon training
computationally expensive. To address this, we adopt stateful training [36 [17], where the model is
trained on single-step batches under its temporal ordering, with hidden states passed onto the next
training iteration. The detailed algorithm and illustration of a single training step can be found in

Algorithm[T]and
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Algorithm 1: Stateful training step of LBS D, 3: t

4

( | | )

Input : Previous state and hidden (&;—1, ht—1)
Current text and value (D;, y:) LLMyecoger MLP,
Output : Current state and hidden (&, h;) Prol
1 Get prior N (ps, 0¢), hy = SSM(&;_1, hy_ ~ Xt ~
p . (Ht t) t ( t—1, 1 1) X1 | ht ‘—I %
2 Summarize text 8; = LLMencoder (D) h > SSM : h
. N . t-1 t
3 Get posterior N(fi;, 64) = MLPpo(hy, Yy, St) s MLP o
. JRN . L. t pos
4 Sample &; ~ N (fi;, 6¢) via reparameterization Proj
5 Lva = |lys — MLPy(2¢) | LLM, coger G
6 £lexl = LLMdecoder(ih Dt) ~ ? | <
7 Lxr, = KL(N (1, 6) || N (e, 01)) D, Ye
8 Update parameters via £ = Ly + Liext + Lk Figure 3: Illustration of a single forward
9 return (¢, hy) pass through LBS.

C Details on Experimental Setup

Datasets. TTC-CLIMATE is consisted of daily temperature measurements at Washington DC,
accompanied by textual weather descriptions spanning from January 1st, 2014 to December 1st, 2023.
TTC-MEDICAL stores daily heart rate measurements from 73 patients accompanied by nursing notes
writing observations and treatment plans. Each patient data spans an average length of 104 days.
Following previous work [[19], we train the model on the first 80% of all timestamps, validate on the
next 10%, then test on the last 10%.

LLM Prompts. For both TTC-CLIMATE and TTC-MEDICAL experiments, we use the following
prompts for text-conditioned posterior estimation and state-conditioned text generation, respectively.

Prompt for text-conditioned posterior estimation

User: Encode the information into a sequence of vectors. <INSERT TEXT>
Assistant: <INSERT SUMMARY TOKENS>

Prompt for state-conditioned text generation

User: <INSERT STATE> Given this belief state, generate a textual forecast.
Date: <INSERT FORECAST DATE AS YYYY-MM-DD>
Assistant:

Models. For the SSM backbone, we use a single layer GRU with state and hidden dimensions
both equal to 16. For the LLM, we use LLaMA3.1-8B [7] as the default model, and adapt the MLP
weights is all layers using LoRA with rank and alpha parameters equal to 8 and 16, respectively. For
text compression, we augment and use a set of 8 summary tokens. Similarly for textual forecasting,
we project the states into 8 prefix tokens, which are prepended for in-context generation.

Optimization. For all experiments, we use the AdamW optimizer with a learning rate that follows
a cosine annealing schedule, starting from 5e-4 and reduced towards Se-5 during training. We
run a maximum of 20 training epochs, and if the model does not improve its validation loss for 5
consecutive epochs, we stop early to prevent further overfitting. Following previous work [[10], we
use a free nats parmaeter set to 2.5, which effectively clamps the KL loss and thus allows the model
to learn meaningful latents at the beginning of training. This free nats parameters is linearly annealed
towards zero during training.
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Ground Truth

Cooler than normal temperatures in the central and eastern U.S., with warmth in the western U.S. A couple of rounds of heavy rain expected
in the East, particularly from Friday into Saturday, with moisture from the Gulf of Mexico and western Atlantic contributing to rainfall.
Heavy rainfall risks are present for the Mid-Atlantic and southern Plains, with potential local runoff issues due to expected convection.
A significant closed upper low/trough will bring much below normal temperatures and an unsettled pattern across the north-central U.S.
and Great Lakes. Much above average temperatures with some record values possible in the West Coast and Interior West. High winds
anticipated in the Central Rockies, Central Plains, and Northern Rockies on Friday, April 28. Flooding concerns exist in the Upper and
Middle Mississippi Valleys, along with parts of the Northern Plains and Great Basin.

Output from LBS

From April 28 to May 2, 2023, expect a persistent weather pattern with troughing in the eastern U.S. and ridging in the western U.S. This will

lead to a wet pattern in the east and dry conditions in the west. A deep cyclone will track from the Midwest to the Northeast, causing moderate

to heavy rainfall, particularly in the Ohio Valley, Appalachians, and Northeast, with potential flooding. Light to moderate precipitation is

expected across the Midwest, Great Lakes, and Northeast, with the heaviest rainfall on Friday and Saturday. In contrast, the western U.S. will

experience well above normal temperatures (10-20°F above normal) with little to no precipitation, increasing drought concerns. A cold front

will bring cooler temperatures to the east, with the first half of May likely seeing above normal temperatures. Flooding is possible in the
LSouthern Plains and the Pacific Northwest, with severe weather forecasted for the Southern Plains on April 28.

.

Figure 4: Example text comparison generated by LBS vs. ground truth text from TTC-CLIMATE.
LBS is able to textually forecast key characteristics by contextualizing the LLM on the latent states.

Our training process uses the AdamW optimizer in combination with a cosine decay schedule that
initiates at a learning rate of 5e-4 and anneals gradually to 5e-5. Each model is trained for up to
20 epochs, with early termination triggered if validation performance fails to improve over five
successive epochs. Inspired by strategies in prior latent sequence modeling [10], we introduce a "free
nats" threshold of 2.5 to restrict the KL penalty early in training. This constraint encourages the
model to utilize its latent capacity more effectively at initialization and is gradually reduced to zero
as optimization proceeds.

Loss weighting. Despite using a small LoRA rank, the number of trainable parameters in the
LLM still far exceeds those in the SSM. Consequently, we find that uniform weighting of the loss
components in our objective function tends to bias optimization toward the text likelihood term, often
overfitting to language modeling while underfitting on structured numerical predictions. Although
dynamic or adaptive weighting schemes (e.g., uncertainty-based or gradient norm balancing) could
be employed [[18]], we find that a simple weighting scheme with .y, = agy = 1.0 and quexe = 0.1
provide a good trade-off between tasks without requiring additional tuning.

D Additional Experimental Results

D.1 Text Generation

Beyond forecasting numeric values, LBS is also capable of generating temporally coherent textual
forecasts. shows a sample forecast generated by LBS on the TTC-CLIMATE dataset. While
only provided with the prior state embedding and a simple prompt, LBS can produce context-aware
descriptions that align well with the ground-truth dynamics without direct access to previous text.
This result highlights the latent states’ ability to encode rich semantic structure that can further
rationalize model forecasts, and also demonstrates its utility in applications where human-readable
justifications are essential alongside quantitative predictions.

D.2 Uncertainty in Forecasts

Setup. In order to observe how LBS allocates uncertainty across forecasting, we compute and
report the variance in predictions across 10 states sampled from the prior distribution at each step,
during test time on TTC-Climate. We compare results from LBS against those from deterministic
HybridMME.

Results. shows that in contrast to deterministic baselines such as HybridMMF, LBS
provides meaningful uncertainty intervals in addition to accurately capturing the overall trend.
We observe that the predicted variance increases in regions where the ground-truth data shows higher
fluctuation (e.g., the early winter), while periods with lower fluctuation leads to lower predicted

10
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Figure 6: Visualization of ground-truth signals and three t-SNE components of the state trajectory
during training on TTC-CLIMATE. The dashed lines indicate yearly intervals. LBS learns states that
exhibit the same seasonal patterns as the target values, promoting model transparency.

variance (e.g., the summer). This property makes LBS particularly suitable for real-world forecasting
tasks that require assessing confidence in predictions for risk-aware decision making.

D.3 Analysis on Latent State Trajectory

Setup. To evaluate the qualitative dynamics of states learned by LBS, we extract the posterior latent
state trajectory learned by LBS on the training set of TTC-CLIMATE. For visualization, we apply
t-SNE to the full trajectory and plot the top three components with the highest variance.

Results. As shown in the latent states in LBS exhibit strong seasonal periodicity
that is closely aligned with the ground-truth signal. This alignment promotes transparency: the
learned states are not black-box embeddings but instead encode temporally coherent structure and
semantics. Such feature supports straightforward validation of the learned dynamics and enables
effective diagnosis of potential errors, especially useful in high-stakes scenarios such as finance or
healthcare.

D.4 Effect of LLM Scaling

100
Setup. As larger LLMs are known to more ef-
fectively compress information into compact sum-
maries [2, 6], we verify whether increasing the LLM
size also improves forecasting performance by evalu-
ating LBS using a range of backbone LLMs with vary-
ing parameter sizes. While larger LLMs are known to
exhibit stronger reasoning and generation capabilities, 100 | Aia

~
wv

A

GT i
~—— HybridMMF
—— LBS (ours)

Temperature
N v
o w o

it remains unclear whether these benefits translate to %

the setting of text-conditioned time-series forecasting. e

We fix our evaluation domain to TTC-CLIMATE and g—

train LBS while switching the LLM within variants @

of LLaMA3 (1B, 3B, 8B) [[7] and Qwen2.5 (0.5B, 0

1.5B, 3B, 7B) [Bj]] Dec Mar Jun Sep Dec

Time

Results.  Surprisingly, [Figure 7| shows that scaling

the LLM does not necessarily lead to better fore- Figure 5: Single-step predictions (H = 1) of
casting performance: for instance, Qwen2.5-7B is HybridMMF (top) and LBS (bottom) on the
consistently outperformed by its 1.5B variant. There TTC-CLIMATE test set. The shaded region in-
are several plausible explanations. First, the relatively  dicates the variance of each prediction of LBS,
low capacity of the SSM may introduce a representa-  with true values shown in light blue. Forecasts
tional bottleneck, preventing LBS from fully leverag- in the initial winter exhibits relatively larger
ing the richer representations offered by larger LLMs. variance than in the summer, as expected from
Second, the task of compressing text into a single the high variance in actual data.
significantly lower dimensional vector followed by

textual forecasting may not benefit from scaling as

with more conventional language tasks such as ques-
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Figure 7: Test RMSE reductions of LBS relative to its unimodal counterpart on TTC-CLIMATE with
varying LLMs from the Qwen2.5 (left) and LLaMA3 (right) series. The dashed line indicates the
baseline from unimodal LBS. A larger LLM does not consistently lead to better performance, but the
gain from textual inputs tends to increase with increasing prediction horizon.

tion answering or code generation [30]. Finally, larger LLMs may tend to memorize training patterns
rather than learn generalizable forecasting strategies, diminishing the role of the dynamical model.

Nonetheless, we observe an encouraging overall trend: the performance gain from incorporating
textual information tends to grow with longer prediction horizons. This suggests that textual
information offers complementary context that helps stabilize forecasts over time, making them more
robust to compounding noise in autoregressive dynamics.

In summary, our findings highlight potential directions to better integrate LLMs for multimodal
time-series forecasting: better posterior estimation strategies or capacity-aligned training of SSMs
could allow larger LLMs to be used more effectively.
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