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Abstract

Forecasting in the real world often requires combining structured time-series1

data with unstructured textual information, yet most existing methods treat these2

modalities in isolation. We address this gap with the LLM-integrated Bayesian3

State Space Model (LBS), a probabilistic framework for multimodal temporal4

forecasting. At a high level, LBS consists of two components: (1) a state space5

model (SSM) backbone captures the temporal dynamics of latent states from which6

both numerical and textual observations are generated, and (2) a pretrained large7

language model (LLM) is adapted to encode textual inputs for posterior state8

estimation and decode textual forecasts consistent with the latent trajectory. This9

design enables flexible lookback and forecast windows, principled uncertainty10

quantification, and improved temporal generalization thanks to the well-suited11

inductive bias of SSMs toward modeling dynamical systems. Experiments on12

the TimeText Corpus benchmark demonstrate that LBS improves the previous13

state-of-the-art by 13.20% while providing human-readable textual summaries.14

Our work is the first to unify LLMs and SSMs for joint numerical and textual15

prediction, offering a novel foundation for multimodal temporal reasoning.16

1 Introduction17

Time-series forecasting is a core machine learning task traditionally centered on predicting future18

numerical values from past data [27]. However, in many real-world domains, contextual information19

expressed in natural language—such as clinical notes, financial reports, or weather descriptions—20

plays a critical role in forecasting. This complementary modality can offer valuable signals that21

cannot be fully extracted from numeric data alone [25, 19]. Similarly, generating textual forecasts22

alongside numerical predictions can be particularly useful in high-stakes decision-making scenarios.23

These opportunities motivate the development of models that not only forecast from multimodal24

inputs, but also communicate their predictions through natural language, augmenting quantitative25

accuracy with qualitative explanations.26

Probabilistic state space models (SSMs) offer compelling advantages for time-series forecasting:27

their inductive biases fit will for modeling temporal dynamics, quantify uncertainty in a principled28

manner, and support variable-length input/prediction horizons. While integrating probabilistic SSMs29

with pretrained large language models (LLMs) appear to be a natural direction to enable joint numeric30

and textual modalities, the direction presents two yet unexplored fundamental challenges: (C1)31

Text-conditioned posterior state estimation: How can we update the latent state of the SSM using32

a pretrained LLM and textual observations? (C2) Latent state-conditioned text generation: How33

can we adapt the LLM to generate accurate, temporally grounded textual forecasts conditioned on34

latent state trajectories?35
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Figure 1: An illustration of LBS under for a single-step forecasting scenario. Bottom: To enable
Bayesian updates with text, the LLM is tuned to summarize the context into a set of summarization
tokens, which are then used together with the target value to obtain the posterior state distribution.
Top: Conditioned on the state forecast, the shared LLM is trained to generate its corresponding text.
When using instruction-tuned LLMs, both steps are accompanied by prompt templates in order to
preserve its capabilities.

In response, we propose the LLM-integrated Bayesian State Space Model (LBS), a novel architec-36

ture that unifies a probabilistic SSM with a pretrained LLM for joint numeric and textual forecasting37

(see Figure 1). For (C1), we adapt the LLM to summarize and compress textual inputs into a sequence38

of summary tokens, which are projected into the low-dimensional latent state space for deep Bayesian39

filtering. For (C2), we leverage the LLM’s in-context generation capabilities by conditioning it on40

latent state trajectories—treated as non-textual context akin to images or videos—enabling temporally41

coherent, state-grounded textual forecasts. Evaluated on the TIMETEXT CORPUS (TTC) spanning42

climate and clinical domains, LBS outperforms unimodal and multimodal baselines, improving43

numeric accuracy by 13.20% on average while producing coherent textual predictions.44

2 Preliminaries45

In this section, we provide background information on multimodal time-series forecasting, followed46

by a discussion on our assumed latent state space model and the objective function used to optimize47

its parameters. A comprehensive discussion of related work can be found in Appendix A.48
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Figure 2: The latent model assumed in
LBS. The temporal backbone SSM mod-
els the dynamics of states xt, from which
multimodal data yt and Dt are generated.

Problem Setup. Given a temporal series of numerical49

values y1:t = [y1, . . . ,yt] ∈ Rt×M and textual data50

D1:t = [D1, . . . ,Dt] across t time steps, the objective51

of multimodal time-series forecasting is to predict the52

target values as well as corresponding text for the next53

H steps:54

fΘ : (y1:t,D1:t) 7→ (yt+1:t+H ,Dt+1:t+H)

Compared to a unimodal setup with no textual inputs55

or outputs, this multimodal setup captures richer pre-56

dictive targets, modeling textual insights in addition to57

quantitative forecasts.58

Bayesian State Space Model. At each time step t, we assume that a shared unobservable latent state59

xt ∈ RN encodes the system’s internal condition, which evolves stochastically over time via a state60

transition model p(xt | xt−1). Then, the numeric emission model p(yt | xt) captures how the61

target numeric observations are generated from each latent state, and the textual emission model62

p(Dt | xt) models the generation of textual descriptions from the same latent state. All illustration63

of this dynamical model can be found in Figure 2.64

We parameterize the transition distribution p(xt | xt−1) as a multivariate Gaussian N (µt,σt), where65

both the mean µt and diagonal variance σt are produced by a recurrent neural network (e.g., GRU or66

LSTM) applied to the previous state xt−1. The numeric observation model p(yt | xt) is also modeled67

as a Gaussian with fixed variance, the mean of which can be computed by passing xt through a68
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multi-layer perceptron (MLP). To leverage the capability of LLMs in modeling the likelihood of text69

given textual or non-textual contexts [24], we incorporate a pretrained LLM to model the conditional70

distribution p(Dt | xt), architectural details for which are shared in the following section.71

Training Objective. We train the model by maximizing the evidence lower bound (ELBO) on the72

joint likelihood of the observed numeric and textual data. The classical ELBO objective naturally73

extends to our multimodal setting as74

log p(y1:T ,D1:T ) ≥
∑T

t=1 Eq(xt|yt,Dt)

[
log p(yt | xt)︸ ︷︷ ︸

value likelihood

+ log p(Dt | xt)︸ ︷︷ ︸
text likelihood

]
− KL(q(xt | y1:t,D1:t) || p(xt | xt−1))︸ ︷︷ ︸

temporal regularization

where the variational posterior q(xt | y1:t,D1:t) is parametrized via a deep Kalman filter [21, 9, 10],75

serving as a proxy for the computationally intractable p(xt | y1:t,D1:t). The full derivation and76

further discussions can be found in Appendix B.77

3 LBS: LLM-Integrated Bayesian State Space Model78

To integrate LLMs into our latent dynamical model, we must address two technical challenges: (C1)79

How can we design the LLM-based filter that estimates the a posteriori state conditioned on80

text (i.e., q(xt | yt,Dt))? (C2) How can we model the likelihood of text conditioned on the81

latent state (i.e. p(Dt | xt))? In this section, we detail the architectural components that tackle these82

challenges, together forming our proposed framework LBS (Figure 1).83

3.1 Text-conditioned Posterior State Estimation84

Text Compression. To efficiently update our prior state estimates conditioned on text, we adapt a85

pretrained LLM to perform context compression [2, 6], generating encodings of textual observations86

into latent state summaries. The core idea is to introduce special tokens unique to the task of87

summarization and finetune the LLM to allocate critical information into summary tokens for88

effective posterior inference. More concretely, we first augment the vocabulary of the pretrained89

LLM with K special learnable tokens <SUM>k that facilitate the task of text compression. To encode90

a textual observation Dt, we append all K summary tokens after the input sequence Dt, and forward91

the augmented sequence through the pretrained LLM. The detailed prompts used during compression92

in our experiments can be found in Appendix C.93

After processing the sequence through the LLM, we extract the final hidden states of the K summary94

tokens, then concatenate along the feature dimension to form a single summary vector of Dt. This95

vector is then projected through a MLP to obtain a low-dimensional representation st ∈ RN that96

matches the latent states xt in dimension.97

Posterior Inference. Given the summary vector st, we compute the mean and diagonal covariance98

of the variational posterior distribution q(xt | yt, st) (assumed to be Gaussian) via a neural Kalman99

filter parameterized by another MLP [21]. This MLP takes as input the summary vector st, the100

corresponding numeric target yt, the prior latent state xt, and outputs the mean and log-variance of101

the posterior distribution. Note the entire process is end-to-end trainable, hence we finetune the LLM102

using LoRA [13] to effectively encode forecast-relevant information into the <SUM>k tokens without103

significantly altering the generative capabilities within its pretrained weights.104

3.2 State-conditioned Text Generation105

Given the posterior distribution, we use the reparameterization trick [20] to generate x̂t ∼ q(xt |106

yt,Dt), generating Monte-Carlo samples in an end-to-end learnable manner. Then, we can model107

the posterior state-conditioned textual likelihood p(Dt | x̂t) by providing a projection of x̂t as a108

prefix to the LLM [22], similarly to vision-text instruction tuning frameworks [24]. Specifically, we109

project the sampled low-dimensional latent state vector x̂t into a sequence of tokens for the LLM110

using a linear layer. These projected tokens are then prepended to Dt, effectively allowing the LLM111

to condition its generation on the state dynamics captured by the temporal SSM backbone.112

This design assumes that the temporal backbone is capable of encoding time-specific information113

such as event structure, trends, or contextual shifts within a compact latent space [1]. By projecting114

this information into the high-dimensional language space and augmenting it with instruction prompts,115

we provide the LLM with the necessary information to generate fluent and temporally consistent text.116
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Method TTC-CLIMATE TTC-MEDICAL
H = 1 2 3 4 5 6 7 H = 1 2 3 4 5 6

PatchTST [27] 4.912 5.305 6.021 6.576 6.980 7.170 7.360 5.735 6.757 7.350 7.687 7.996 8.470
NLinear [37] 4.981 6.129 6.501 6.710 6.834 6.916 6.962 5.195 5.279 5.275 5.406 5.562 5.875

NLinear-Text [37] 4.835 5.800 5.951 5.934 6.022 6.024 6.106 5.117 5.143 5.106 5.300 5.492 5.759
TSFLib [25] 6.351 6.446 6.143 6.360 6.096 6.379 6.002 6.767 7.066 7.427 7.050 7.165 7.210
TT2TT [19] 5.243 5.955 6.724 7.253 7.678 8.034 7.666 6.689 6.432 6.022 6.483 6.747 6.731

HybridMMF [19] 4.759 5.597 5.906 6.019 6.133 6.027 6.143 5.202 5.472 6.620 6.269 8.673 8.454

LBS (unimodal) 4.224 5.029 5.523 5.855 6.107 6.303 6.473 3.910 4.598 5.047 5.268 5.473 5.654
LBS (multimodal) 4.117 4.908 5.341 5.627 5.833 5.998 6.133 3.583 4.268 4.721 5.043 5.296 5.487

Table 1: Test RMSE results from TTC benchmark. Best results for each prediction horizon H are
highlighted in bold.

4 Experimental Results117

Datasets. We perform experiments on the TIMETEXT CORPUS (TTC [19]), a multimodal time-118

series forecasting benchmark that covers two distinct domains: TTC-CLIMATE consists of daily119

temperature measurements at Washington DC with textual weather descriptions. TTC-MEDICAL120

consists of daily heart rate measurements from hospitalized patients accompanied by nursing notes.121

Following the original work [19], we use a 8-1-1 train-validation-test split across time for both122

domains. Further details on the benchmark can be found in Appendix C.123

Setup. We compare LBS against existing multimodal forecasters TSFLib [25], TextTime2TextTime124

(TT2TT [19]), NLinear-Text [37], and HybridMMF [19]. For TSFLib, we use Reformer as its125

time-series forecasting backbone, as it was the best-performing setup. We also compare against126

strong unimodal methods PatchTST [27] and NLinear [37]. Note that all baselines are specifically127

trained for each prediction horizon H , while for LBS which can generalize to arbitrary H , a single128

model is optimized via stateful training and then evaluated on each possible H . All multimodal129

models adopt LLaMA3.1-8B [7] as the base LLM, and LBS uses a single-layer GRU [3] with latent130

dimension 16 as the SSM backbone. Further details on training and model hyperparameters can be131

found in Appendix C.132

Results. Table 1 presents forecasting results across varying prediction horizons. For most prediction133

horizons considered, LBS achieves substantial gains over all baselines, improving the state-of-134

the-art by 5.13% and 21.28% on TTC-CLIMATE and TTC-MEDICAL on average, respectively.135

Combined with the fact that a single LBS model is evaluated throughout all horizons, this result136

highlights the strength and generalizability of SSMs in capturing temporal dependencies, validating137

our choice of using a probabilistic SSM as our temporal backbone.138

When comparing LBS against a unimodal variant of LBS that does not use textual data, we find that139

the additional modality consistently leads to performance improvements, with 3.82% and 5.41% error140

reduction for TTC-CLIMATE and TTC-MEDICAL, respectively. This highlights the model’s ability141

to leverage textual information for more accurate posterior inference, leading to sharper and more142

informed forecasts.143

Extended results in Appendix D further show that LBS can generate temporally coherent textual144

forecasts. Interestingly, we also find that larger LLMs do not always improve forecasting accuracy, but145

benefits of textual information consistently grow with longer prediction horizons. This suggests that146

text provides complementary context that stabilizes long-term forecasts and mitigates compounding147

errors in autoregressive dynamics.148

5 Concluding Remarks149

We propose LBS, a novel architecture that integrates a Bayesian SSM with pretrained LLMs for150

multimodal time-series forecasting. By grounding both numeric and textual observations in a shared151

latent dynamical system, LBS enables coherent forecasting along with uncertainty estimation and152

flexible prediction horizons. Experiments on the TTC benchmark demonstrate that LBS outperforms153

existing baselines, with textual data providing greater gains at longer forecasting horizons. Our154

findings highlight the promise of probabilistic, LLM-integrated SSMs for robust and interpretable155

forecasting in real-world scenarios.156
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A Related Work247

Multimodal Time-Series Forecasting. With the recent advancements in LLMs, several approaches248

have emerged to integrate language models with time-series forecasting. [14] introduces a textual249

data collection pipeline and a modified transformer architecture that uses pre-trained transformers.250

[26] examines whether LLMs can perform zero-shot time series forecasting with the aid of textual251

data, extending [8], and concludes that even frontier models still perform poorly. [34] proposes252

the Text-Guided Time Series Forecasting framework, which integrates news and descriptive textual253

data for time-series forecasting and introduces a new architecture that leverages a cross-attention254

layer for modality fusion. [25] presents the Time-MMD benchmark for evaluating text-time series255

multimodal models and demonstrates that incorporating additional textual data can improve time-256

series forecasting. [33] develops a reasoning agent for selecting and analyzing textual (news) data,257

streamlining the text processing pipeline for multimodal time-series forecasting. [19] develops the258

TimeText Corpus (TTC), a time-aligned text and time-series dataset for multimodal forecasting, along259

with a hybrid forecasting model (HybridMMF) that jointly predicts both text and time-series data260

using shared embeddings. [32] introduces ChatTime, a time-series foundation model that facilitates261

various zero-shot time-series tasks through continuous pretraining and instruction tuning on pretrained262

language models. [23] presents Texts as Time Series (TaTS), a multimodal time-series forecasting263

framework that incorporates concurrent textual data by converting it into auxiliary variables. This264

approach enables seamless integration of text-augmented time series into existing time-series models.265

While prior work demonstrates the potential of LLMs for time-series forecasting, none integrate them266

into state-space models—our key contribution.This integration enhances forecasting performance267

and enables principled uncertainty quantification.268

Bayesian State Space Models. Bayesian state estimation has a long-standing history in control269

theory and time-series analysis. The classical Kalman filter [16], provides an optimal recursive270

solution for state estimation in linear dynamical systems with Gaussian noise. To accommodate271

the nonlinearities common in real-world systems, the Extended Kalman Filter was developed by272

linearizing nonlinear functions via Taylor expansion around the current estimate. Later, the Unscented273

Kalman Filter was introduced to improve upon EKF by using deterministic sampling to better capture274

the mean and covariance of nonlinear transformations [15]. Other sampling-based methods, such as275

the Ensemble Kalman Filter [12] and Sequential Monte Carlo [4], have further advanced Bayesian276

filtering in nonlinear and non-Gaussian settings by representing posterior distributions through277

particle ensembles.278

More recently, researchers have sought to combine the structure of state-space models with the279

flexibility of deep neural networks. For example, KVAE introduced variational approaches to280

learning latent dynamics in sequential data using neural parameterizations of the transition and281

emission functions [5]. [28] adapted state-space formulations for multivariate time-series forecasting282

in large-scale retail demand. In reinforcement learning and model-based control, works such as283

PlaNet [10], Dreamer [11], and KalmanNet [29] have shown that combining deep neural networks284

with probabilistic latent dynamics models can yield strong performance across pixel-based partially285

observable domains.286

Despite these advances, existing work largely targets unimodal data like images or numerical signals.287

In contrast, our work is the first to combine pretrained LLMs with probabilistic state-space models288

for joint forecasting over numeric and textual inputs, extending Bayesian state estimation to the289

multimodal setting.290
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B Implementation Details291

B.1 Derivation of Training Objective292

Our training objective can be derived using the autoregressive structure of the latent dynamical model293

as well as Jensen’s inequality.294

log p(y1:T ,D1:T )

= log

∫
x1:T

p(y1:T ,D1:T ,x1:T )dx1:T

= log

∫
x1:T

T∏
t=1

p(xt | xt−1)p(yt | xt)p(Dt | xt)dx1:T

= logEq(x1:T |y1:T ,D1:T )

[∏T
t=1 p(xt | xt−1)p(yt | xt)p(Dt | xt)

q(x1:T | y1:T ,D1:T )

]

≥ Eq(x1:T |y1:T ,D1:T )

[
log

∏T
t=1 p(xt | xt−1)p(yt | xt)p(Dt | xt)

q(x1:T | y1:T ,D1:T )

]

=Eq(x1:T |y1:T ,D1:T )

[
t∑

t=1

log p(yt | xt) + log p(Dt | xt) + log
p(xt | xt−1)

q(xt | y1:t,D1:t)

]

=

T∑
t=1

Eq(xt|yt,Dt)

[
log p(yt | xt)︸ ︷︷ ︸

value likelihood

+ log p(Dt | xt)︸ ︷︷ ︸
text likelihood

]
− KL(q(xt | y1:t,D1:t) || p(xt | xt−1))︸ ︷︷ ︸

temporal regularization

Replacing the computationally intractable posterior distribution p(xt | y1:t,D1:t), we introduce295

a variational posterior q(xt | y1:t,D1:t) over the latent states, parameterized via a deep Kalman296

filter [21, 9, 10]. Intuitively, the training objective effectively balances three essential aspects of297

Bayesian state estimation. First, the expected likelihood terms ensure fidelity to the observed data298

by encouraging the latent states to retain enough information to accurately reconstruct both the299

numeric values and textual descriptions. Second, the KL regularizer imposes temporal coherence300

by penalizing latent trajectories that deviate too strongly from the prior dynamics controlled by the301

SSM. Lastly, the variational expectation allows the model to predict under uncertainty in the latent302

trajectory, inducing more robust and generalizable forecasts.303

B.2 Architectural Details304

Shared or Separate LLMs? While it is possible to use two separate LLMs for encoding and305

decoding, for LBS we assume the same LLM weights are shared between the two steps: the LLM306

that encodes text into compressed embeddings for posterior estimation also serves as the decoder for307

text generation. This weight sharing not only reduces the computational burden, but also encourages308

the LLM to encode forecasting-relevant information in a way that it can later reuse for generation,309

learning prediction and inference in a self-consistent manner.310

Stateful single-step training. Ideally, training LBS on long sequences would allow the model311

to better capture long-range dependencies. However, each timestep t requires passing Dt through312

the LLM twice—once for encoding and once for decoding—making naïve long-horizon training313

computationally expensive. To address this, we adopt stateful training [36, 17], where the model is314

trained on single-step batches under its temporal ordering, with hidden states passed onto the next315

training iteration. The detailed algorithm and illustration of a single training step can be found in316

Algorithm 1 and Figure 3.317
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Algorithm 1: Stateful training step of LBS
Input : Previous state and hidden (x̂t−1,ht−1)

Current text and value (Dt,yt)

Output : Current state and hidden (x̂t,ht)

1 Get prior N (µt,σt),ht = SSM(x̂t−1,ht−1)

2 Summarize text st = LLMencoder(Dt)

3 Get posterior N (µ̂t, σ̂t) = MLPpost(ht,yt, st)

4 Sample x̂t ∼ N (µ̂t, σ̂t) via reparameterization

5 Lval = ∥yt − MLPval(x̂t)∥2

6 Ltext = LLMdecoder(x̂t,Dt)

7 LKL = KL(N (µ̂t, σ̂t) || N (µt,σt))

8 Update parameters via L = Lval + Ltext + LKL

9 return (x̂t,ht)

𝓓!

MLPval

LLMencoder

LLMdecoder

𝒔!

𝒙$!"#
𝒉!"#

SSM

𝒚!

𝒙$!

MLPpost

𝒉!

𝓓!

𝒙$!
𝒉!

Proj

LBS

Proj

𝒚!

Figure 3: Illustration of a single forward
pass through LBS.

318

C Details on Experimental Setup319

Datasets. TTC-CLIMATE is consisted of daily temperature measurements at Washington DC,320

accompanied by textual weather descriptions spanning from January 1st, 2014 to December 1st, 2023.321

TTC-MEDICAL stores daily heart rate measurements from 73 patients accompanied by nursing notes322

writing observations and treatment plans. Each patient data spans an average length of 104 days.323

Following previous work [19], we train the model on the first 80% of all timestamps, validate on the324

next 10%, then test on the last 10%.325

LLM Prompts. For both TTC-CLIMATE and TTC-MEDICAL experiments, we use the following326

prompts for text-conditioned posterior estimation and state-conditioned text generation, respectively.327

Prompt for text-conditioned posterior estimation

User: Encode the information into a sequence of vectors. <INSERT TEXT>
Assistant: <INSERT SUMMARY TOKENS>

Prompt for state-conditioned text generation

User: <INSERT STATE> Given this belief state, generate a textual forecast.
Date: <INSERT FORECAST DATE AS YYYY-MM-DD>
Assistant:

Models. For the SSM backbone, we use a single layer GRU with state and hidden dimensions328

both equal to 16. For the LLM, we use LLaMA3.1-8B [7] as the default model, and adapt the MLP329

weights is all layers using LoRA with rank and alpha parameters equal to 8 and 16, respectively. For330

text compression, we augment and use a set of 8 summary tokens. Similarly for textual forecasting,331

we project the states into 8 prefix tokens, which are prepended for in-context generation.332

Optimization. For all experiments, we use the AdamW optimizer with a learning rate that follows333

a cosine annealing schedule, starting from 5e-4 and reduced towards 5e-5 during training. We334

run a maximum of 20 training epochs, and if the model does not improve its validation loss for 5335

consecutive epochs, we stop early to prevent further overfitting. Following previous work [10], we336

use a free nats parmaeter set to 2.5, which effectively clamps the KL loss and thus allows the model337

to learn meaningful latents at the beginning of training. This free nats parameters is linearly annealed338

towards zero during training.339
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Ground Truth
Cooler than normal temperatures in the central and eastern U.S., with warmth in the western U.S. A couple of rounds of heavy rain expected
in the East, particularly from Friday into Saturday, with moisture from the Gulf of Mexico and western Atlantic contributing to rainfall.
Heavy rainfall risks are present for the Mid-Atlantic and southern Plains, with potential local runoff issues due to expected convection.
A significant closed upper low/trough will bring much below normal temperatures and an unsettled pattern across the north-central U.S.
and Great Lakes. Much above average temperatures with some record values possible in the West Coast and Interior West. High winds
anticipated in the Central Rockies, Central Plains, and Northern Rockies on Friday, April 28. Flooding concerns exist in the Upper and
Middle Mississippi Valleys, along with parts of the Northern Plains and Great Basin.

Output from LBS
From April 28 to May 2, 2023, expect a persistent weather pattern with troughing in the eastern U.S. and ridging in the western U.S. This will
lead to a wet pattern in the east and dry conditions in the west. A deep cyclone will track from the Midwest to the Northeast, causing moderate
to heavy rainfall, particularly in the Ohio Valley, Appalachians, and Northeast, with potential flooding. Light to moderate precipitation is
expected across the Midwest, Great Lakes, and Northeast, with the heaviest rainfall on Friday and Saturday. In contrast, the western U.S. will
experience well above normal temperatures (10-20°F above normal) with little to no precipitation, increasing drought concerns. A cold front
will bring cooler temperatures to the east, with the first half of May likely seeing above normal temperatures. Flooding is possible in the
Southern Plains and the Pacific Northwest, with severe weather forecasted for the Southern Plains on April 28.

Figure 4: Example text comparison generated by LBS vs. ground truth text from TTC-CLIMATE.
LBS is able to textually forecast key characteristics by contextualizing the LLM on the latent states.

Our training process uses the AdamW optimizer in combination with a cosine decay schedule that340

initiates at a learning rate of 5e-4 and anneals gradually to 5e-5. Each model is trained for up to341

20 epochs, with early termination triggered if validation performance fails to improve over five342

successive epochs. Inspired by strategies in prior latent sequence modeling [10], we introduce a "free343

nats" threshold of 2.5 to restrict the KL penalty early in training. This constraint encourages the344

model to utilize its latent capacity more effectively at initialization and is gradually reduced to zero345

as optimization proceeds.346

Loss weighting. Despite using a small LoRA rank, the number of trainable parameters in the347

LLM still far exceeds those in the SSM. Consequently, we find that uniform weighting of the loss348

components in our objective function tends to bias optimization toward the text likelihood term, often349

overfitting to language modeling while underfitting on structured numerical predictions. Although350

dynamic or adaptive weighting schemes (e.g., uncertainty-based or gradient norm balancing) could351

be employed [18], we find that a simple weighting scheme with αval = αKL = 1.0 and αtext = 0.1352

provide a good trade-off between tasks without requiring additional tuning.353

D Additional Experimental Results354

D.1 Text Generation355

Beyond forecasting numeric values, LBS is also capable of generating temporally coherent textual356

forecasts. Figure 4 shows a sample forecast generated by LBS on the TTC-CLIMATE dataset. While357

only provided with the prior state embedding and a simple prompt, LBS can produce context-aware358

descriptions that align well with the ground-truth dynamics without direct access to previous text.359

This result highlights the latent states’ ability to encode rich semantic structure that can further360

rationalize model forecasts, and also demonstrates its utility in applications where human-readable361

justifications are essential alongside quantitative predictions.362

D.2 Uncertainty in Forecasts363

Setup. In order to observe how LBS allocates uncertainty across forecasting, we compute and364

report the variance in predictions across 10 states sampled from the prior distribution at each step,365

during test time on TTC-Climate. We compare results from LBS against those from deterministic366

HybridMMF.367

Results. Figure 5 shows that in contrast to deterministic baselines such as HybridMMF, LBS368

provides meaningful uncertainty intervals in addition to accurately capturing the overall trend.369

We observe that the predicted variance increases in regions where the ground-truth data shows higher370

fluctuation (e.g., the early winter), while periods with lower fluctuation leads to lower predicted371
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Figure 6: Visualization of ground-truth signals and three t-SNE components of the state trajectory
during training on TTC-CLIMATE. The dashed lines indicate yearly intervals. LBS learns states that
exhibit the same seasonal patterns as the target values, promoting model transparency.

variance (e.g., the summer). This property makes LBS particularly suitable for real-world forecasting372

tasks that require assessing confidence in predictions for risk-aware decision making.373

D.3 Analysis on Latent State Trajectory374

Setup. To evaluate the qualitative dynamics of states learned by LBS, we extract the posterior latent375

state trajectory learned by LBS on the training set of TTC-CLIMATE. For visualization, we apply376

t-SNE [31] to the full trajectory and plot the top three components with the highest variance.377

Results. As shown in Figure 6, the latent states in LBS exhibit strong seasonal periodicity378

that is closely aligned with the ground-truth signal. This alignment promotes transparency: the379

learned states are not black-box embeddings but instead encode temporally coherent structure and380

semantics. Such feature supports straightforward validation of the learned dynamics and enables381

effective diagnosis of potential errors, especially useful in high-stakes scenarios such as finance or382

healthcare.383

D.4 Effect of LLM Scaling384
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Figure 5: Single-step predictions (H = 1) of
HybridMMF (top) and LBS (bottom) on the
TTC-CLIMATE test set. The shaded region in-
dicates the variance of each prediction of LBS,
with true values shown in light blue. Forecasts
in the initial winter exhibits relatively larger
variance than in the summer, as expected from
the high variance in actual data.

Setup. As larger LLMs are known to more ef-385

fectively compress information into compact sum-386

maries [2, 6], we verify whether increasing the LLM387

size also improves forecasting performance by evalu-388

ating LBS using a range of backbone LLMs with vary-389

ing parameter sizes. While larger LLMs are known to390

exhibit stronger reasoning and generation capabilities,391

it remains unclear whether these benefits translate to392

the setting of text-conditioned time-series forecasting.393

We fix our evaluation domain to TTC-CLIMATE and394

train LBS while switching the LLM within variants395

of LLaMA3 (1B, 3B, 8B) [7] and Qwen2.5 (0.5B,396

1.5B, 3B, 7B) [35].397

Results. Surprisingly, Figure 7 shows that scaling398

the LLM does not necessarily lead to better fore-399

casting performance: for instance, Qwen2.5-7B is400

consistently outperformed by its 1.5B variant. There401

are several plausible explanations. First, the relatively402

low capacity of the SSM may introduce a representa-403

tional bottleneck, preventing LBS from fully leverag-404

ing the richer representations offered by larger LLMs.405

Second, the task of compressing text into a single406

significantly lower dimensional vector followed by407

textual forecasting may not benefit from scaling as408

with more conventional language tasks such as ques-409
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Figure 7: Test RMSE reductions of LBS relative to its unimodal counterpart on TTC-CLIMATE with
varying LLMs from the Qwen2.5 (left) and LLaMA3 (right) series. The dashed line indicates the
baseline from unimodal LBS. A larger LLM does not consistently lead to better performance, but the
gain from textual inputs tends to increase with increasing prediction horizon.

tion answering or code generation [30]. Finally, larger LLMs may tend to memorize training patterns410

rather than learn generalizable forecasting strategies, diminishing the role of the dynamical model.411

Nonetheless, we observe an encouraging overall trend: the performance gain from incorporating412

textual information tends to grow with longer prediction horizons. This suggests that textual413

information offers complementary context that helps stabilize forecasts over time, making them more414

robust to compounding noise in autoregressive dynamics.415

In summary, our findings highlight potential directions to better integrate LLMs for multimodal416

time-series forecasting: better posterior estimation strategies or capacity-aligned training of SSMs417

could allow larger LLMs to be used more effectively.418
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