
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

REMIX: REINFORCEMENT ROUTING FOR MIXTURES
OF LORAS IN LLM FINETUNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Low-rank adapters (LoRAs) are a parameter-efficient finetuning technique that
injects trainable low-rank matrices into pretrained models to adapt them to new
tasks. Mixture-of-LoRAs models expand neural networks efficiently by routing
each layer input to a small subset of specialized LoRAs of the layer. Existing
Mixture-of-LoRAs routers assign a learned routing weight to each LoRA to en-
able end-to-end training of the router. Despite their empirical promise, we dis-
cover, both theoretically and empirically, that the routing weights are typically
extremely imbalanced across LoRAs in practice, where only one or two LoRAs
often dominate the routing weights. This essentially limits the number of effec-
tive LoRAs and thus severely hinders the expressive power of existing Mixture-of-
LoRAs models. In this work, we attribute this weakness to the nature of learnable
routing weights and rethink the fundamental design of the router. To address this
critical issue, we propose a new router design that we call Reinforcement Rout-
ing for Mixture-of-LoRAs (ReMix). Our key idea is using non-learnable routing
weights to ensure all active LoRAs to be equally effective, with no single LoRA
dominating the routing weights. However, such non-learnable routing weights
make it infeasible to directly train routers via gradient descent. In response, we
further propose an unbiased gradient estimator for the router and employ the re-
inforce leave-one-out (RLOO) technique to reduce the variance of the estimator.
Our gradient estimator also enables to scale up training compute to boost the pre-
dictive performance of our ReMix. Extensive experiments demonstrate that our
proposed ReMix significantly outperform state-of-the-art parameter-efficient fine-
tuning methods under a small number of activated parameters.

1 INTRODUCTION

Parameter-efficient fine-tuning (PEFT) aims to reduce the number of trainable parameters while
achieving strong task performance (e.g., He et al., 2022; Rücklé et al., 2020; Jie et al., 2023). Among
PEFT methods, low-rank adapters (LoRAs, Hu et al., 2021) have become particularly prominent
due to their simplicity and effectiveness. By injecting lightweight low-rank matrices into pretrained
weight matrices, LoRAs allow downstream adaptation with a small fraction of trainable parame-
ters, making them particularly attractive for resource-constrained settings and large-scale multi-task
deployments.

Building on the success of LoRAs, researchers have proposed Mixture-of-LoRAs to further enhance
parameter efficiency and expressive power (e.g., Huang et al., 2023; Wang et al., 2023; Tian et al.,
2024; Zeng et al., 2025). The key idea is to route each input through a small pool of LoRAs per
layer, thereby enabling specialization of LoRAs across different input distributions. Central to this
framework is the router, which assigns routing weights across a pool of multiple LoRAs. Current
approaches rely on learned routing weights, trained jointly with task objectives via gradient descent.
In principle, such routers should flexibly allocate inputs across LoRAs and balance capacity usage.

Despite their empirical promise, we theoretically reveal a striking weakness of existing Mixture-
of-LoRAs routers: routing weights can be extremely imbalanced, often with one or two LoRAs
dominating the routing weights. Furthermore, we empirically observe that the imbalance even wors-
ens during finetuning, where the effective number of LoRAs drops to 1 quickly. This essentially
disables all other LoRAs, thereby limiting the expressive power of the mixture.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

To address this critical limitation, we revisit the fundamental design of the router. Instead of relying
on learned continuous weights that tend to result in extreme imbalance, we propose Reinforcement
Routing for Mixture-of-LoRAs (ReMix), which enforces a constant routing weights across all acti-
vated experts. This ensures that all active LoRAs contribute equally, avoiding collapse into a single
dominant LoRA. Since non-learnable weights prevent direct training via backpropagation, we refor-
mulate the router training problem as reinforcement learning (RL), where we view the supervised
finetuning loss as the negative reward and the router as the policy model of RL. We then propose an
unbiased, RLOO-based gradient estimator tailored for our proposed router. This unbiased estimator
enables stable training and scales efficiently to large compute budgets, unlocking the full potential
of mixture-based parameter-efficient finetuning. Our main contributions are as follows.

• Theoretical insights on routing imbalance: We theoretically reveal and empirically ob-
serve a fundamental limitation of routers: We observe that for each given input, often only
one LoRA has a dominating routing weight that is close to one. This extreme imbalance
essentially disables all other LoRAs and severely limits the expressive power of the model.

• Simple yet effective router: To address routing imbalance, we propose a new router design
with a constant routing weight across all activated LoRAs. Our design does not introduce
any additional inference cost over existing Mixture-of-LoRAs methods.

• Reinforcement learning for router training. To address the non-differentiability of our
proposed router, we reformulate the router training problem as reinforcement learning and
propose an unbiased, RLOO-based gradient estimator tailored for our proposed router.

• Empirical evaluation: Through extensive experiments across diverse benchmarks, we
demonstrate that ReMix consistently outperforms state-of-the-art parameter-efficient fine-
tuning methods under comparable parameter budgets.

2 EXTREME IMBALANCE OF ROUTING WEIGHTS

In this section, we analyze and reveal a critical limitation of existing Mixture-of-LoRAs routers: the
extreme imbalance in routing weights assigned to different LoRAs. After introducing preliminaries
in Section 2.1, we first make a fundamental theoretical analysis showing that the number of effective
LoRAs per layer is severely limited. Then, we corroborate this finding with empirical evidence from
our experiments.

2.1 PRELIMINARIES: MIXTURE OF LORAS

Mixture-of-LoRAs is a type of parameter-efficient adapter that enhances the capacity of large models
using only a small number of LoRAs and a lightweight router to dynamically select the LoRAs for
each input.

Let D denote the hidden dimensionality of the model. Following prior work, we apply LoRAs to
feedforward layers in the LLM, and all other layers are frozen. Let x(l),y(l) ∈ RD denote the
input and the output of feedforward layer l (l = 1, . . . , L), respectively. Let n denote the number
of LoRAs we use in the mixture. Each LoRA i = 1, . . . , n is a linear map parameterized as a
low-rank decomposition B

(l)
i A

(l)
i ∈ RD×D, where A

(l)
i ∈ Rr×D and B

(l)
i ∈ RD×r are learnable

parameters, and r ≪ D is the rank of LoRAs. A router of a layer l is a small neural network
parameterized by a matrix P (l) ∈ Rn×D that predicts a categorical distribution over n LoRAs via
the softmax operation:

π(l) := softmax(P (l)x(l)) ∈ Rn. (1)

Here, π(l)
i := (π(l))i represents the routing weight assigned to the i-th LoRA. Given the routing

weights, the output of a typical Mixture-of-LoRAs layer is computed as:

y(l) := W (l)x(l) +

n∑
i=1

π
(l)
i B

(l)
i A

(l)
i x(l). (2)

where W (l) ∈ RD×D denotes the frozen weight of the layer l. This formulation intends to differen-
tiably select a specialized subset of LoRAs for each given layer input x(l).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2.2 THEORETICAL ANALYSIS

We make a fundamental theoretical analysis showing that the number of effective LoRAs is severely
limited. Recall that the output of a Mixture-of-LoRAs layer is a weighted sum of the LoRA outputs,
where the routing weights are typically normalized via a softmax function. While this design allows
for end-to-end training, we show that it introduces a strong tendency for the router to concentrate
most of the weight on only one or two LoRAs.

To quantify the effective number of LoRAs, we use the effective support size notion from information
theory. For routing weights π(l) ̸= 0, the effective support size (ESS) of π(l) is defined as (Grendar,
2006)

ESS(π(l)) :=

(∑n
i=1 |π

(l)
i |
)2∑n

i=1 |π
(l)
i |2

=

(
∥π(l)∥1
∥π(l)∥2

)2
. (3)

The intuition of ESS(π(l)) is that it measures the number of LoRAs with relatively large routing
weights. For example, if π(l) is one-hot, then we have ESS(π(l)) = 1; if π(l) is uniform over n
LoRAs, then we have ESS(π(l)) = n. Note that ESS(π(l)) concerns only about the utilization
of LoRAs for each given input, not the overall utilization of each LoRA over the entire dataset.
With the help of this notion of ESS, we formally state our theoretical observation in the following
Theorem 1.

Theorem 1 (imbalance of routing weights). Suppose that the router parameter matrix P (l) follows
i.i.d. Gaussian initialization with variance σ2 > 0 (e.g., Kaiming initialization, He et al., 2015).
Then for any 0 < δ < 1, with probability at least 1− δ, the effective support size of π(l) is at most

ESS(π(l)) ≤

1 +
1

exp

(
δσ∥x(l)∥2

3
2

√
π
ln 3 lnn+ 1√

2π 2n−log2 n−1

− ln(n− 1)

)

2

.

The proof of Theorem 1 is deferred to Appendix A.1. Our Theorem 1 shows that with high probabil-
ity, only an extremely small number of LoRAs have relatively large routing weights. For instance,
if σ = 1, and there are n = 8 LoRAs, and x(l) is a Rademacher random vector in RD=1024, then
our Theorem 1 shows that with probability at least 84.19%, at most two LoRAs have relatively
large routing weights. Since each routing weight is a coefficient in front of each LoRA, a rela-
tively small routing weight would essentially disable that LoRA. Moreover, those extremely small
routing weights also vanish the gradient back-propagated to the corresponding LoRAs and conse-
quently hinder the learning process of these LoRAs. Therefore, this phenomenon severely limits the
expressive power and performance of the Mixture-of-LoRAs model.

2.3 EMPIRICAL ANALYSIS

1 2 3 4 5 6 7 8
LoRA i

0.0

0.2

0.4

0.6

0.8

1.0

Ro
ut

in
g

W
eig

ht

(l) i

ESS((l)
i) 1.15

Dominating
Dominated

Figure 1: We often observe that only
one LoRA has a dominating routing
weight that is close to one.

To further validate our theoretical result in Theorem 1, we
conduct a case study on the routing weights across Lo-
RAs in MixLoRA (Li et al., 2024a), a popular Mixture-
of-LoRAs method. Specifically, we track the routing
weights of the last layer throughout the training pro-
cess on the GSM8K dataset (a mathematical reasoning
dataset) and compute the distributions and the ESS of the
routing weights.

To visualize the distribution of routing weights, we plot
a typical histogram of routing weights during finetun-
ing, shown in Figure 1. We often observe that only
one LoRA has a dominating routing weight close to one
while all other seven LoRAs have negligibly small rout-
ing weights. The observation aligns with our Theorem 1

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

0 250 500 750 1000 1250 1500 1750 2000
Finetuning Step

1

3

5

7

ES
S(

(l)
)

Evolution of Effective Support Size

Figure 2: The effective support size ESS(π(l)) often drops to 1 quickly during finetuning.

that the learned routing weights are indeed extremely imbalanced. The extremely limited number of
effective LoRAs severely restricts the expressive power of the Mixture-of-LoRAs model.

To further study how the distribution of routing weights evolve over the finetuning process, we plot
the ESS of the routing weights at each training step, as shown in Figure 2. In fact, the imbalance
even worsens as the finetuning process progresses. We often observe that the effective support size
ESS(π(l)) often drops to 1 quickly during finetuning. For instance, even though the ESS is around
4 at step 0, the ESS quickly decreases to 1 since only step 1000 and never increases thereafter.

These results highlight a fundamental limitation of current Mixture-of-LoRAs routers: despite the
potential for increased expressivity via multiple LoRAs, the model essentially activates only an
extremely small subset for each given input. This motivates our proposed method, which aims to
ensure a more balanced and effective use of other available LoRAs.

3 PROPOSED METHOD: REMIX

In this section, we introduce our proposed method Reinforcement Routing for Mixture-of-LoRAs
(ReMix). First, we introduce the adapter architecture in Section 3.1. Then, we describe the finetun-
ing procedure in Section 3.2 and the inference procedure in Section 3.3.

3.1 ADAPTER ARCHITECTURE

In this subsection, we introduce the adapter architecture of our proposed method ReMix.

Given layer input x(l) ∈ RD, we first produce an n-way categorical routing distribution q(l) :=
softmax(P (l)x(l)) ∈ Rn

≥0 over the n LoRAs, where P (l) ∈ Rn×D denotes the learnable parameter
matrix of the router. Then, we use the routing distribution q(l) to select the k LoRAs I(l) :=

{i(l)1 , . . . , i
(l)
k } to activate. The LoRA selection procedure differs between finetuning and inference,

which we will describe later in Sections 3.2 & 3.3.

To address the extreme imbalance of routing weights in existing Mixture-of-LoRAs models (Sec-
tion 2), we assign the a constant routing weight ω > 0 to all the k activated LoRAs and zero routing
weights to all non-activated LoRAs. Formally, our routing weights π(l) are defined as

π
(l)
i := ω1[i∈I(l)] =

{
ω, if i ∈ I(l),

0, if i /∈ I(l),
i = 1, . . . , n, (4)

where ω > 0 is a hyperparameter. Notably, our design ensures that ESS(π(l)) = k, which is in stark
contrast to existing learnable routing weights (Theorem 1). Finally, we compute the layer output
y(l) ∈ RD as a π(l)-weighted sum over k activated LoRAs. Using the sparse nature of our routing

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Selection ℑ!

LoRA Pool

Non-
Activated

Activated

Model Input

…

SFT Loss ℒ ℑ!

Layer #1

Layer #2

Layer #L

Layer
Input

Constant
Weights

Layer
Output

RLOO Gradient Estimator !𝑮𝑷 !

…

Selection ℑ"

Model Input

…

SFT Loss ℒ ℑ"

Layer #1

Layer #2

Layer #L

Model Input

…

SFT Loss ℒ ℑ#

Layer #1

Layer #2

Layer #L

Selection ℑ#

Selection Probabilities𝑄 ℑ$

Router

Our ReMix
Router

Figure 3: Finetuning procedure of our proposed ReMix.

weights π(l), the computation of layer output y(l) can be simplified as follows:

y(l) := W (l)x(l) +

n∑
i=1

π
(l)
i B

(l)
i A

(l)
i x(l) (5)

= W (l)x(l) + ω

k∑
j=1

B
(l)

i
(l)
j

A
(l)

i
(l)
j

x(l). (6)

3.2 FINETUNING PROCEDURE

In this subsection, we describe how to train our proposed ReMix during finetuning. Our finetuning
workflow is illustrated in Figure 3.

Let I := (I(1), . . . , I(L)) denote the collection of activated LoRAs of the entire LLM for a given
model input, and we call I a selection. Let L(I) denote the supervised finetuning (SFT) loss when
activated LoRAs are I. Regarding LoRA parameters A(l)

i , B
(l)
i , since the LLM output is differen-

tiable w.r.t. LoRA parameters, we can simply use their gradients G
A

(l)
i

:= ∇
A

(l)
i
L(I), G

B
(l)
i

:=

∇
B

(l)
i
L(I) to train them.

Regarding router parameters, however, the LLM output is not differentiable w.r.t. router param-
eters P (l) because routing weights π

(l)
i are a constant hyperparameter ω. Consequently, we

cannot directly compute their gradients ∇
P

(l)
i

L(I) as it is not defined. To address this non-

differentiability, we propose sampling each I(l) from the corresponding routing distribution q(l)

so that EI(l)∼q(l) [L(I)] depends on router parameters P (l). This enables EI(l)∼q(l) [L(I)] to be dif-
ferentiable w.r.t. router parameters P (l). Hence, we propose using GP (l) := ∇P (l)EI(l)∼q(l) [L(I)]
as a surrogate gradient of P (l). Formally, given the routing distribution q(l) := softmax(P (l)x(l)),
we sample k LoRAs (i(l)1 , . . . , i

(l)
k) ∼ q(l) from q(l) without replacement to compose the activated

LoRA subset I(l) := (i
(l)
1 , . . . , i

(l)
k), where sampling without replacement ensures that the k acti-

vated LoRAs are mutually distinct.

However, due to the exponentially many possibilities of I, it is computationally intractable to
straightforwardly compute GP (l) = ∇P (l)EI(l)∼q(l) [L(I)] by definition. To address this intractabil-
ity, we alternatively consider router training as a reinforcement learning (RL) problem, where we
view the SFT loss L(I) as the negative reward and the routers q(l) as the policy model. With this
alternative view, we are able to employ the policy gradient estimator in RL to estimate the surrogate
gradient GP (l) . Formally, we independently sample M selections J1, . . . , JM , where M repre-
sents the training compute budget. Write each selection as Im =: (I(l)

m)Ll=1 =: ((i
(l)
m,j)

k
j=1)

L
l=1

(m = 1, . . . ,M), where I(l)
m denotes the ordered set of selected LoRAs at the l-th layer in the m-th

selection Jm, and i
(l)
m,j denotes the j-th selected LoRA at the l-th layer in the m-th selection Jm.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Due to sampling without replacement, the probability of each selection Jm is

Q(Jm) :=

L∏
l=1

k∏
j=1

q
i
(l)
m,j

1−
∑j−1

j′=1 qi(l)
m,j′

. (7)

Then, the REINFORCE policy gradient estimator (Willianms, 1988) for GP (l) can be expressed as

G̃P (l) :=
1

M

M∑
m=1

L(Im)∇P (l) logQ(Jm) (8)

=
1

M

M∑
m=1

L(Im)

k∑
j=1

∇P (l) log
q
i
(l)
m,j

1−
∑j−1

j′=1 qi(l)
m,j′

. (9)

Nevertheless, it is known that the vanilla REINFORCE estimator can have high variance (e.g., Kool
et al., 2019). To further reduce the variance of the gradient estimator, we further employ the RLOO
gradient estimator (Kool et al., 2019) to estimate the surrogate gradient GP (l) :

ĜP (l) :=
1

M − 1

M∑
m=1

(
L(Im)− L

)
∇P (l) logQ(Jm) (10)

=
1

M − 1

M∑
m=1

(
L(Im)− L

) k∑
j=1

∇P (l) log
q
i
(l)
m,j

1−
∑j−1

j′=1 qi(l)
m,j′

, (11)

where L denotes the average SFT loss across the M selections:

L :=
1

M

M∑
m=1

L(Im). (12)

It can be shown that our RLOO gradient estimator is unbiased: EJ1,...,Jm
[ĜP (l)] = GP (l) .

3.3 INFERENCE PROCEDURE

In this subsection, we describe how our proposed ReMix selects the LoRAs to activate during in-
ference. While it is possible to randomly sample the LoRAs like the finetuning procedure, here we
propose a better, theoretically optimal approach to LoRA selection.

Our following Theorem 2 shows that the optimal strategy is in fact top-k selection as long as the
router is trained sufficiently well.

Theorem 2 (optimality of top-k selection). Let I(l)∗ = {i(l)∗1 , . . . , i
(l)∗
k } denote the optimal subset

of LoRAs for a given model input. As long as the router q(l) is trained sufficiently well such that

PI(l)∼q(l) [I(l) = I(l)∗] >
1

2
(13)

then the LoRAs i with top-k q
(l)
i are guaranteed to constitute the best subset I(l)∗:

n
argtopk

i=1
q
(l)
i = I(l)∗. (14)

The proof of Theorem 2 is deferred to Appendix A.2. Notably, our Theorem 2 shows that when
sampling yields the optimal subset with probability above 50%, then top-k selection substantially
improves this probability to 100%. Intuitively speaking, as long as the router is trained sufficiently
well, then the optimal choices of LoRAs are in fact those i with top-k q

(l)
i . Motivated by Theorem 2,

we employ top-k LoRA selection (instead of random sampling) during inference:

I(l) = {i(l)1 , . . . , i
(l)
k } :=

n
argtopk

i=1
q
(l)
i . (15)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Comparison with existing parameter-efficient finetuning methods. Our ReMix consistently
outperforms all baseline methods while maintaining strong parameter efficiency.

Type Method GSM8K HumanEval ARC-c Average
Accuracy Params Pass@1 Params Accuracy Params Accuracy Params

No Tuning Zero-Shot 04.78 N/A 13.41 N/A 22.03 N/A 13.41 N/A
Few-Shot 55.95 N/A 17.68 N/A 81.36 N/A 51.66 N/A

Prefix
Injection

Prefix Tuning 02.65 0.034B 00.00 0.034B 28.47 0.004B 10.37 0.024B
Prompt Tuning 04.70 0.000B 26.22 0.000B 23.73 0.000B 18.22 0.000B
P-Tuning 34.19 0.001B 27.44 0.001B 43.05 0.001B 34.89 0.001B

Weight
Modulation

(IA)3 08.57 0.001B 31.10 0.001B 23.39 0.001B 21.02 0.001B
LoRA 59.21 0.168B 26.83 0.084B 83.05 0.084B 56.36 0.112B
DoRA 55.34 0.043B 31.10 0.169B 83.39 0.169B 56.61 0.127B
rsLoRA 62.47 0.042B 28.66 0.021B 82.71 0.021B 57.95 0.028B

Mixture

VB-LoRA 34.27 0.677B 29.27 0.673B 23.73 0.674B 29.09 0.675B
MixLoRA 61.87 0.068B 28.05 0.116B 82.37 0.119B 57.43 0.101B
HydraLoRA 62.47 0.092B 20.12 0.079B 82.71 0.082B 55.10 0.084B
ReMix (Ours) 65.66 0.106B 32.93 0.090B 83.73 0.016B 60.77 0.070B

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Baselines. We comprehensively compare our proposed ReMix against various types of baseline
methods. (i) No tuning methods: testing the base LLM directly under zero-shot and few-shot
prompting. (ii) Prefix injection methods: Prefix Tuning (Li & Liang, 2021), Prompt Tuning (Lester
et al., 2021), and P-Tuning (Liu et al., 2021b). (iii) Weight modulation methods: (IA)3 (Liu et al.,
2022), LoRA (Hu et al., 2021), DoRA (Liu et al., 2024), and rsLoRA (Kalajdzievski, 2023). (iv)
Mixture methods: VB-LoRA (Li et al., 2024b), MixLoRA, (Li et al., 2024a), and HydraLoRA (Tian
et al., 2024). For each baseline method, we perform a hyperparameter search and report the best
results.

Datasets & evaluation metrics. We finetune the base LLM and evaluate them on a diverse set of
benchmarks, including GSM8K (Cobbe et al., 2021) to evaluate mathematical reasoning capabilities,
HumanEval (Chen et al., 2021) to evaluate code generation capabilities, and ARC-c (Clark et al.,
2018) to evaluate knowledge recall capabilities. For HumanEval, since HumanEval does not contain
a training set, we follow Tian et al. (2024) to finetune the base LLM on CodeAlpaca (Chaudhary,
2023) and report the Pass@1 metric on HumanEval. For all other datasets, we finetune the base LLM
on their training split and report the accuracy metric on their test split. In this work, we use Llama
3 8B (Dubey et al., 2024) as the base LLM. Besides that, we also report the number of activated
parameters (in billion, B) under the best-performing hyperparameters.

Implementation details. We train all methods using the same number of epochs, learning rate
schedule, gradient accumulation steps and machine type. All methods are trained using the LLaMA-
Factory (Zheng et al., 2024) framework and evaluated using the OpenCompass (Contributors, 2023)
framework. For the no-tuning few-shot method, we use 4 shots for GSM8K and HumanEval and 5
shots for ARC-c.

4.2 MAIN RESULTS

We evaluate the performance of various fine-tuning strategies on three representative tasks: Hu-
manEval (code generation), GSM8K (math reasoning), and ARC-c (knowledge recall). As shown
in Table 1, our ReMix consistently outperforms all baselines across these benchmarks while main-
taining strong parameter efficiency.

From a performance standpoint, ReMix surpasses all baseline methods, achieving an average accu-
racy improvement of 2.82 over the strongest competing approach. Specifically, ReMix outperforms
the best Prefix Injection baseline by a substantial 25.88, the best Weight Modulation baseline by
2.82, and the strongest Mixture competitor by 3.34 on average across the three tasks. On Hu-

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

No RLOO No top-k Ours
45

50

55

60

65

Ac
cu

ra
cy

 (%
)

(a) Both of our proposed components RLOO
and top-k selection contribute significantly to the
strong performance of our ReMix.

2 4 8 32
Number M of sampled selections

55

56

57

58

59

A
cc

ur
ac

y
(%

)

56.03%

56.79%

57.47%

58.83%

(b) Our proposed ReMix can further benefit from
scaling up the training compute while existing
methods are not able to.

Figure 4: Additional experimental analyses.

manEval, ReMix achieves a Pass@1 of 32.93, outperforming the best baseline, (IA)3, by 1.83. For
GSM8K, ReMix attains an accuracy of 65.66, showing a clear gain of 3.19 over the best competitors
(rsLoRA and HydraLoRA). On ARC-c, ReMix reaches 83.73, exceeding the best-performing low-
rank method DoRA by 0.34. These results highlight the consistent advantages of our reinforcement-
trained router across diverse task types. Notably, within the Mixture methods, ReMix provides con-
sistent improvements, suggesting that reinforcement-guided, balance-aware routing enhances both
reasoning-intensive tasks (e.g., GSM8K) and generation tasks (e.g., HumanEval), while preserving
strong retrieval performance on ARC-c.

In terms of parameter efficiency, ReMix achieves these performance gains with a competitive bud-
get of only 0.070B trainable parameters. Compared to other mixture methods, this represents a
90% reduction relative to the most parameter-heavy baseline VB-LoRA (0.675B), and a 31% re-
duction compared to the most effective baseline MixLoRA (0.101B). Even when compared to the
lightweight rsLoRA (0.028B), ReMix delivers a +2.82 average-accuracy improvement at the cost of
only 0.042B more parameters, demonstrating a superior accuracy-to-parameter trade-off. Overall,
these results confirm that reinforcement-guided mixture routing achieves state-of-the-art accuracy
with minimal and often reduced parameter overhead.

4.3 ABLATION STUDIES

To understand the contributions of the key components in our proposed ReMix (i.e., RLOO for
router training and top-k LoRA selection for inference), we conducte ablation studies on GSM8K
comparing its performance against the ablated variants with each component removed. The results
are presented in Figure 4a, which visualizes the accuracy achieved by different configurations.

From Figure 4a, we observe that our full ReMix method achieves the highest accuracy among all
ablated variants. When removing the RLOO from our finetuning procedure ReMix (No RLOO), we
observe a significant drop in accuracy compared to the full ReMix, indicating that RLOO plays a
crucial role in enhancing the model’s performance. Similarly, disabling the top-k LoRA selection
(No top-k) also results in lower accuracy than the complete ReMix, demonstrating the importance
of this component in optimizing the model performance. These findings underscore the value of
integrating both RLOO and top-k selection into our ReMix method.

4.4 TRAINING EFFICIENCY

In this subsection, we study the training efficiency of our proposed method. Note that MixLoRA
can be regarded as an ablated variant where our reinforcement router is replaced with an ordinary
learnable router. Hence, we compare our ReMix and MixLoRA under comparable training time to
show the training efficiency of our proposed ReMix. The results are presented in Table 2.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 2: Our ReMix significantly outperforms
MixLoRA even under similar training time.

Method Time Accuracy
MixLoRA 8.95 s 50.34
ReMix (Ours) 9.87 s 56.03

As shown in Table 2, our ReMix achieves an ac-
curacy of 56.03% with a training time of 9.87 sec-
onds per step, while MixLoRA achieves an accu-
racy of 50.34% in 8.95 seconds per step. Although
our ReMix consumes only 10% more training time
than MixLoRA, it yields a substantial improvement
of 5.69 percentage points in accuracy. This demon-
strates that our ReMix still retains strong perfor-
mance even under small training compute budget.

4.5 BENEFITS FROM TRAINING COMPUTE SCALING

Since our ReMix incorporates RL-based gradient estimator, we can effectively scale up training
compute by increasing the number M of sampled selections. To evaluate how training compute
scaling benefits our ReMix, we examine its performance under varying numbers M of sampled se-
lections. As shown in Figure 4b, increasing M from 2 to 32 leads to a steady improvement in accu-
racy, rising from 56.03% to 58.83%. This indicates that our ReMix effectively leverages additional
computational resources to enhance its performance. Notably, the consistent gains observed across
different scales suggest that further increases in M could yield even better results. This demon-
strates that ReMix offers a favorable trade-off between training efficiency and performance. In stark
contrast, existing methods do not benefit from similar scaling, underscoring the unique advantage
offered by ReMix in utilizing increased training compute to achieve improved outcomes.

5 RELATED WORK

Parameter-efficient fine-tuning (PEFT) aims to reduce the number of trainable parameters while
achieving strong task performance. Due to the page limit, please refer to Appendix B for related
work on general PEFT. More recent efforts in PEFT have explored new multi-LoRA architectures
that go beyond single low-rank adapters by explicitly restructuring how multiple LoRA modules
are organized and combined, offering advantages on complex data distributions. LoraHub (Huang
et al., 2023) introduces a dynamic composition framework that integrates multiple LoRAs at the ar-
chitectural level, enabling cross-task generalization without retraining by assembling adapters into
a unified pipeline. MultiLoRA (Wang et al., 2023) modifies the structural initialization of LoRA
subspaces and horizontally expands adapters across layers, thereby mitigating the dominance of top
singular vectors and achieving more balanced representations in multi-task learning. HydraLoRA
(Tian et al., 2024) departs from the symmetric LoRA design and proposes an asymmetric archi-
tecture that decouples the projection and update pathways, substantially improving parameter and
training efficiency. Beyond linear compositions, S’MoRE (Zeng et al., 2025) integrates LoRA with
mixture-of-experts style routing by hierarchically decomposing expert weights into low-rank resid-
ual components and routing them through a structured multi-layer architecture. Meanwhile, LoRA-
Flow (Wang et al., 2024) rethinks the architecture for generative tasks by embedding a lightweight,
token-level fusion gate that dynamically modulates multiple LoRAs during inference, and MultLFG
(Roy et al., 2025) introduces a frequency-aware fusion mechanism that structurally guides LoRA
composition across denoising steps.

6 CONCLUSION

In this paper, we investigate the problem of imbalanced routing weights that hinder effective LoRA
utilization, and propose a reinforcement-based router design named ReMix to address this prob-
lem. Our theoretical and empirical analysis shows that existing methods relying on learnable routing
weights inherently lead to such imbalance, severely limiting the effective utilization of diverse LoRA
knowledge. To overcome this limitation, we replace learnable routing weights with non-learnable
balanced assignments, and introduce an unbiased gradient estimator with RLOO variance reduc-
tion to enable scalable and stable training under non-differentiable settings. Extensive experiments
across diverse benchmarks demonstrate that our ReMix consistently outperforms state-of-the-art
parameter-efficient finetuning methods, achieving superior predictive power and computational effi-
ciency.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Zygmunt Wilhelm Birnbaum. An inequality for Mill’s ratio. The Annals of Mathematical Statistics,
13(2):245–246, 1942.

Sahil Chaudhary. Code alpaca: An instruction-following llama model for code generation. https:
//github.com/sahil280114/codealpaca, 2023.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Pondé de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavar-
ian, Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plap-
pert, Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol,
Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William
Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Pe-
ter Welinder, Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech
Zaremba. Evaluating large language models trained on code. CoRR, abs/2107.03374, 2021.
URL https://arxiv.org/abs/2107.03374.

Yifan Chen, Devamanyu Hazarika, Mahdi Namazifar, Yang Liu, Di Jin, and Dilek Hakkani-Tur.
Inducer-tuning: Connecting prefix-tuning and adapter-tuning. arXiv preprint arXiv:2210.14469,
2022.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. CoRR, abs/2110.14168, 2021. URL
https://arxiv.org/abs/2110.14168.

OpenCompass Contributors. Opencompass: A universal evaluation platform for foundation models.
https://github.com/open-compass/opencompass, 2023.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Robert D. Gordon. Values of Mills’ ratio of area to bounding ordinate and of the normal probability
integral for large values of the argument. The Annals of Mathematical Statistics, 12(3):364–366,
1941.

Marian Grendar. Entropy and effective support size. Entropy, 8(3):169–174, 2006.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the IEEE international
conference on computer vision, pp. 1026–1034, 2015.

Shwai He, Liang Ding, Daize Dong, Miao Zhang, and Dacheng Tao. Sparseadapter: An easy
approach for improving the parameter-efficiency of adapters. arXiv preprint arXiv:2210.04284,
2022.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR, 1(2):3, 2022.

10

https://github.com/sahil280114/codealpaca
https://github.com/sahil280114/codealpaca
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2110.14168
https://github.com/open-compass/opencompass

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Chengsong Huang, Qian Liu, Bill Yuchen Lin, Tianyu Pang, Chao Du, and Min Lin. Lorahub: Effi-
cient cross-task generalization via dynamic lora composition. arXiv preprint arXiv:2307.13269,
2023.

Shibo Jie, Haoqing Wang, and Zhi-Hong Deng. Revisiting the parameter efficiency of adapters from
the perspective of precision redundancy. In Proceedings of the IEEE/CVf international conference
on computer vision, pp. 17217–17226, 2023.

Damjan Kalajdzievski. A rank stabilization scaling factor for fine-tuning with LoRA. arXiv preprint
arXiv:2312.03732, 2023.

Wouter Kool, Herke van Hoof, and Max Welling. Buy 4 REINFORCE samples, get a baseline for
free! In ICLR 2019 workshop: Deep RL Meets Structured Prediction, 2019.

Minh Le, Chau Nguyen, Huy Nguyen, Quyen Tran, Trung Le, and Nhat Ho. Revisit-
ing prefix-tuning: Statistical benefits of reparameterization among prompts. arXiv preprint
arXiv:2410.02200, 2024.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
tuning. arXiv preprint arXiv:2104.08691, 2021.

Dengchun Li, Yingzi Ma, Naizheng Wang, Zhiyuan Cheng, Lei Duan, Jie Zuo, Cal Yang, and
Mingjie Tang. Mixlora: Enhancing large language models fine-tuning with lora based mixture of
experts. arXiv preprint arXiv:2404.15159, 2024a.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. arXiv
preprint arXiv:2101.00190, 2021.

Yang Li, Shaobo Han, and Shihao Ji. VB-LoRA: Extreme parameter efficient fine-tuning with vector
banks. Advances in Neural Information Processing Systems, 37:16724–16751, 2024b.

Haokun Liu, Derek Tam, Mohammed Muqeeth, Jay Mohta, Tenghao Huang, Mohit Bansal, and
Colin A Raffel. Few-shot parameter-efficient fine-tuning is better and cheaper than in-context
learning. Advances in Neural Information Processing Systems, 35:1950–1965, 2022.

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-
Ting Cheng, and Min-Hung Chen. DoRA: Weight-decomposed low-rank adaptation. In Forty-first
International Conference on Machine Learning, 2024.

Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Lam Tam, Zhengxiao Du, Zhilin Yang, and Jie Tang. P-
tuning v2: Prompt tuning can be comparable to fine-tuning universally across scales and tasks.
arXiv preprint arXiv:2110.07602, 2021a.

Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding, Yujie Qian, Zhilin Yang, and Jie Tang. Gpt
understands, too. arXiv preprint arXiv:2103.10385, 2021b.

Aleksandar Petrov, Philip HS Torr, and Adel Bibi. When do prompting and prefix-tuning work? a
theory of capabilities and limitations. arXiv preprint arXiv:2310.19698, 2023.

Aniket Roy, Maitreya Suin, Ketul Shah, and Rama Chellappa. Multlfg: Training-free multi-lora
composition using frequency-domain guidance. arXiv preprint arXiv:2505.20525, 2025.

Andreas Rücklé, Gregor Geigle, Max Glockner, Tilman Beck, Jonas Pfeiffer, Nils Reimers, and
Iryna Gurevych. Adapterdrop: On the efficiency of adapters in transformers. arXiv preprint
arXiv:2010.11918, 2020.

Zhengxiang Shi and Aldo Lipani. Dept: Decomposed prompt tuning for parameter-efficient fine-
tuning. arXiv preprint arXiv:2309.05173, 2023.

Chunlin Tian, Zhan Shi, Zhijiang Guo, Li Li, and Chengzhong Xu. Hydralora: An asymmetric
lora architecture for efficient fine-tuning. In Advances in Neural Information Processing Systems
(NeurIPS), 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Mojtaba Valipour, Mehdi Rezagholizadeh, Ivan Kobyzev, and Ali Ghodsi. Dylora: Parameter effi-
cient tuning of pre-trained models using dynamic search-free low-rank adaptation. arXiv preprint
arXiv:2210.07558, 2022.

Chaozheng Wang, Yuanhang Yang, Cuiyun Gao, Yun Peng, Hongyu Zhang, and Michael R Lyu.
No more fine-tuning? an experimental evaluation of prompt tuning in code intelligence. In Pro-
ceedings of the 30th ACM joint European software engineering conference and symposium on the
foundations of software engineering, pp. 382–394, 2022.

Hanqing Wang, Bowen Ping, Shuo Wang, Xu Han, Yun Chen, Zhiyuan Liu, and Maosong Sun.
Lora-flow: Dynamic lora fusion for large language models in generative tasks. arXiv preprint
arXiv:2402.11455, 2024.

Yiming Wang, Yu Lin, Xiaodong Zeng, and Guannan Zhang. Multilora: Democratizing lora for
better multi-task learning. arXiv preprint arXiv:2311.11501, 2023.

R. J. Willianms. Toward a theory of reinforcement-learning connectionist systems. Technical Report,
1988.

Adam X Yang, Maxime Robeyns, Xi Wang, and Laurence Aitchison. Bayesian low-rank adaptation
for large language models. arXiv preprint arXiv:2308.13111, 2023.

Yuhang Zang, Wei Li, Kaiyang Zhou, Chen Huang, and Chen Change Loy. Unified vision and
language prompt learning. arXiv preprint arXiv:2210.07225, 2022.

Hanqing Zeng, Yinglong Xia, Zhuokai Zhao, Gilbert Jiang, Qiang Zhang, Jiayi Liu, Lizhu Zhang,
Xiangjun Fan, and Benyu Zhang. S’MoRE: Structural mixture of residual experts for llm fine-
tuning. arXiv preprint arXiv:2504.06426, 2025.

Qingru Zhang, Minshuo Chen, Alexander Bukharin, Nikos Karampatziakis, Pengcheng He,
Yu Cheng, Weizhu Chen, and Tuo Zhao. Adalora: Adaptive budget allocation for parameter-
efficient fine-tuning. arXiv preprint arXiv:2303.10512, 2023.

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, Zheyan Luo, Zhangchi Feng, and
Yongqiang Ma. Llamafactory: Unified efficient fine-tuning of 100+ language models. In Pro-
ceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume
3: System Demonstrations), Bangkok, Thailand, 2024. Association for Computational Linguis-
tics. URL http://arxiv.org/abs/2403.13372.

12

http://arxiv.org/abs/2403.13372

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

CONTENTS

A Theoretical Proofs 13

A.1 Proof of Theorem 1 . 13

A.2 Proof of Theorem 2 . 17

B Related Work (Cont’d) 19

C Use of LLMs 19

A THEORETICAL PROOFS

A.1 PROOF OF THEOREM 1

Before stating our proof of Theorem 1, we present a few technical lemmata that we will employ.

Let φ(z) := 1√
2π

e−x2/2, Φ(z) :=
∫ z

−∞ φ(x) dx, and Φ(z) := 1 − Φ(z) (z ∈ R) denote the prob-
ability density function, the cumulative distribution function, and the complementary cumulative
distribution function of the standard Gaussian distribution N (0, 1), respectively.

Lemma 3 (a Gaussian gap estimate). For every z ∈ R and α > 0,

Φ(z + α)− Φ(z) ≤ α√
2π

. (16)

Proof. Since Φ′(t) = φ(t) = e−t2/2
√
2π

, then

Φ(z + α)− Φ(z) =

∫ z+α

z

Φ′(t) dt =

∫ z+α

z

e−t2/2

√
2π

dt ≤
∫ z+α

z

1√
2π

dt =
α√
2π

.

Lemma 4 (a Gaussian upper-tail gap estimate). For any z ≥ 0 and any α > 0,

Φ(z + α)− Φ(z) ≤
√
2π (Φ(α)− Φ(0))φ(z) ≤ αφ(z). (17)

Proof. Define a function h : R≥0 → R as

h(z) :=
Φ(z + α)− Φ(z)

φ(z)
, z ≥ 0. (18)

Since Φ′(z) = φ(z), and φ′(z) = −zφ(z), then

h′(z) =
(φ(z + α)− φ(z))Φ′(z) + (Φ(z + α)− Φ(z))(−φ′(z))

φ(z)2
(19)

=
(φ(z + α)− φ(z))φ(z) + (Φ(z + α)− Φ(z))(zφ(z))

φ(z)2
(20)

=
φ(z + α)− φ(z) + z(Φ(z + α)− Φ(z))

φ(z)
(21)

=

∫ z+α

z
φ′(t) dt+z

∫ z+α

z
Φ′(t) dt

φ(z)
(22)

=

∫ z+α

z
(−tφ(t)) dt+z

∫ z+α

z
φ(t) dt

φ(z)
(23)

= −
∫ z+α

z
(t− z)φ(t) dt

φ(z)
< 0. (24)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Hence, h(z) is a decreasing function. It follows from Lemma 3 that

Φ(z + α)− Φ(z)

φ(z)
= h(z) ≤ h(0) =

Φ(α)− Φ(0)

φ(0)
=

√
2π (Φ(α)− Φ(0)) (25)

=
√
2π

∫ α

0

Φ′(t) dt =
√
2π

∫ α

0

e−t2/2

√
2π

dt ≤
√
2π

∫ α

0

1√
2π

dt =

∫ α

0

dt = α.

Lemma 5 (a Gaussian inverse estimate). For every 0 < v ≤ 1
2 ,

φ(Φ−1(1− v)) ≤ v

√
2 ln

1

v
. (26)

Proof. Let z := Φ−1(1− v) ≥ 0, so that v = 1− Φ(z) = Φ(z).

Note that it is equivalent to show that

ln
(1

Φ(z)

)
≥ φ(z)2

2Φ(z)2
. (27)

Define a function h : R≥0 → R as

h(z) := ln
(1

Φ(z)

)
− φ(z)2

2Φ(z)2
, z ≥ 0. (28)

Since z ≥ 0, then by Gordon (1941),

φ(z)

Φ(z)
≥ z ≥ z

2
. (29)

and by Birnbaum (1942),

φ(z)

Φ(z)
≤ 2√

z2 + 4− z
=

√
z2 + 4 + z

2
=

z

2
+

√
z2 + 4

2
. (30)

Together, we have

z

2
<

φ(z)

Φ(z)
≤ z

2
+

√
z2 + 4

2
. (31)

Furthermore, since Φ
′
(z) = −φ(z), and φ′(z) = −zφ(z),

h′(z) =
φ(z)

Φ(z)

(
1 + z

φ(z)

Φ(z)
−
(φ(z)
Φ(z)

)2)
(32)

=
φ(z)

Φ(z)

(φ(z)
Φ(z)

− z

2
+

√
z2 + 4

2

)(z
2
+

√
z2 + 4

2
− φ(z)

Φ(z)

)
(33)

≥ 0. (34)

Hence, the function h(z) is non-decreasing w.r.t. z. It follows that for any 0 < v ≤ 1
2 ,

ln
(1
v

)
− φ(Φ(1− v))2

2v2
= ln

(1

Φ(z)

)
− φ(z)2

2Φ(z)2
= h(z) ≥ h(0) = ln 2− 1

π
> 0. (35)

Therefore, φ(Φ−1(1− v)) ≤ v
√
2 ln 1

v .

Lemma 6 (a Gamma integral). Let Γ(β) denote the Gamma function (β > 0). For any α, β > 0,∫ 1

0

tα−1
(
ln

1

t

)β−1

dt =
Γ(β)

αβ
. (36)

In particular, ∫ 1

0

t

√
ln

1

t
dt =

Γ
(
1
2 + 1

)
(1 + 1)1/2+1

=

√
π

4
√
2
. (37)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Proof. Let z := α ln 1
t . Then,∫ 1

0

tα−1
(
ln

1

t

)β−1

dt =

∫ +∞

0

(
e−z/α

)α−1
(z
α

)β−1 e−z/α

α
dz (38)

=
1

αβ

∫ +∞

0

e−zzβ−1 dz =
1

αβ
Γ(β).

Lemma 7 (a mixed integral estimate). For every α > 0 and 0 < β ≤ α,∫ β

0

te−t

√
ln

α

t
dt ≤

√
lnα (1− e−β+ln(β+1)) +

√
π

4
√
2
. (39)

Proof. Since ln 1
t ≥ 0 only when 0 ≤ t ≤ 1, then by the triangle inequality,√

ln
α

t
=

√
lnα+ ln

1

t
≤
√
lnα+ 1[0≤t≤1] ln

1

t
(40)

≤
√
lnα+

√
1[0≤t≤1] ln

1

t
=

√
lnα+ 1[0≤t≤1]

√
ln

1

t
. (41)

It follows from Lemma 6 that∫ β

0

te−t

√
ln

α

t
dt ≤

∫ β

0

te−t
(√

lnα+ 1[0≤t≤1]

√
ln

1

t

)
dt (42)

=
√
lnα

∫ β

0

te−t dt+

∫ min{1,β}

0

te−t

√
ln

1

t
dt (43)

≤
√
lnα

∫ β

0

te−t dt+

∫ 1

0

te−t

√
ln

1

t
dt (44)

≤
√
lnα

∫ β

0

te−t dt+

∫ 1

0

t

√
ln

1

t
dt (45)

=
√
lnα (1− e−β+ln(β+1)) +

√
π

4
√
2
.

Lemma 8 (an integer function bound). For every integer n ≥ 3,
√
2

(n− 2)2

(√
ln(n− 2)(1− e−

n
2 −1+ln n

2) +

√
π

4
√
2

)
≤ 3

2

√
π

ln 3

√
lnn

n(n− 1)
. (46)

Proof. Define a function h : N≥3 → R:

h(n) :=

√
2

(n−2)2

(√
ln(n− 2)(1− e−

n
2 −1+ln n

2) +
√
π

4
√
2

)
√
lnn

n(n−1)

, n ≥ 3. (47)

Note that when n ≥ 9, we have

h(n) ≤

√
2

(n−2)2

(√
ln(n− 2) +

√
π

4
√
2

)
√
lnn

n(n−1)

=

√
2

(n−2)2

(√
ln(n− 2) +

√
π

4
√
2

)
√
lnn

n(n−1)

(48)

=
(√

2

√
ln(n− 2)

lnn
+

1

4

√
π

lnn

)(
1 +

2

n− 2
+

3

(n− 2)2

)
(49)

≤
(√

2 +
1

4

√
π

lnn

)(
1 +

2

n− 2
+

3

(n− 2)2

)
(50)

≤
(√

2 +
1

4

√
π

ln 9

)(
1 +

2

9− 2
+

3

(9− 2)2

)
(51)

=
(√

2 +
1

4

√
π

ln 9

)72
49

< 2.52. (52)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

It follows that
√
2

(n−2)2

(√
ln(n− 2) +

√
π

4
√
2

)
√
lnn

n(n−1)

= h(n) (53)

≤ max
{
h(3), h(4), . . . , h(8),

(√
2 +

1

4

√
π

ln 9

)72
49

}
(54)

= h(3) =
3

2

√
π

ln 3
< 2.54.

Lemma 9 (a Gaussian integral estimate). For every integer n ≥ 3,∫ +∞

0

Φ(z)n−2φ(z)2 dz ≤ 3

2

√
π

ln 3

√
lnn

n(n− 1)
. (55)

Proof. Let v := 1− Φ(z) and t := (n− 2)v. By the fact that 1− v ≤ e−v and Lemmas 5, 7, & 8,∫ +∞

0

Φ(z)n−2φ(z)2 dz =

∫ 1/2

0

(1− v)n−2φ(Φ−1(1− v)) dv ≤
∫ 1/2

0

(e−v)n−2φ(Φ−1(1− v)) dv

(56)

≤
∫ 1/2

0

(e−v)n−2v

√
2 ln

1

v
dv =

√
2

(n− 2)2

∫ n
2 −1

0

te−t

√
ln

n− 2

t
dt (57)

≤
√
2

(n− 2)2

(√
ln(n− 2)(1− e−

n
2 −1+ln n

2) +

√
π

4
√
2

)
(58)

≤ 3

2

√
π

ln 3

√
lnn

n(n− 1)
< 2.54

√
lnn

n(n− 1)
.

With the technical lemmata above, we are now ready to prove Theorem 1.

Proof of Theorem 1. Let ξ := P (l)x(l) denote the logits of routing weights, so that π(l) =
softmax(ξ). Let ξ(1) ≥ · · · ≥ ξ(n) denote the order statistics of ξ (i.e., ξ(1) is the largest entry
of ξ, ξ(2) is the second largest entry of ξ, etc.). Note that

ESS(π(l)) =
∥π(l)∥21
∥π(l)∥22

=

(∑n
i=1 π

(l)
i

)2∑n
i=1(π

(l)
i)2

=

(∑n
i=1 softmax(ξ)i

)2∑n
i=1 softmax(ξ)2i

(59)

=

(∑n
i=1 e

ξi
)2∑n

i=1(e
ξi)2

=

(∑n
i=1 e

ξ(i)
)2∑n

i=1(e
ξ(i))2

≤
(∑n

i=1 e
ξ(i)
)2

(eξ(1))2
(60)

=

(
1 +

n∑
i=2

1

eξ(1)−ξ(i)

)2
≤
(
1 +

n∑
i=2

1

eξ(1)−ξ(2)

)2
(61)

=
(
1 +

n− 1

eξ(1)−ξ(2)

)2
=
(
1 +

1

eξ(1)−ξ(2)−ln(n−1)

)2
. (62)

Since P (l) have i.i.d. N (0, σ2) entries, then ξ = P (l)x(l) have i.i.d N (0, σ2∥x(l)∥22) entries. Let

κ :=
1

3
2

√
π
ln 3 lnn+ 1√

2π 2n−log2 n−1

. (63)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

For any 0 < δ < 1, with z(i) :=
ξ(i)−0

σ∥x(l)∥2
(i = 1, 2), by Lemmas 3, 4, & 9,

P[ξ(1) − ξ(2) ≤ δκσ∥x(l)∥2] = P[z(1) − z(2) ≤ δκ] (64)

=

∫ +∞

−∞

∫ z(2)+δκ

z(2)

n(n− 1)φ(z(1))φ(z(2))Φ(z(2))
n−2 dz(1) dz(2) (65)

= n(n− 1)

∫ +∞

−∞

∫ z(2)+δκ

z(2)

φ(z(1)) dz(1) φ(z(2))Φ(z(2))
n−2 dz(2) (66)

= n(n− 1)

∫ +∞

−∞
(Φ(z(2) + δκ)− Φ(z(2)))φ(z(2))Φ(z(2))

n−2 dz(2) (67)

= n(n− 1)

(∫ 0

−∞
+

∫ +∞

0

)
(Φ(z(2) + δκ)− Φ(z(2)))φ(z(2))Φ(z(2))

n−2 dz(2) (68)

≤ n(n− 1)

(∫ 0

−∞

δκ√
2π

φ(z(2))Φ(z(2))
n−2 dz(2) +

∫ +∞

0

δκφ(z(2))φ(z(2))Φ(z(2))
n−2 dz(2)

)
(69)

= δκn(n− 1)

(
1√
2π

∫ 0

−∞
φ(z(2))Φ(z(2))

n−2 dz(2) +

∫ +∞

0

Φ(z(2))
n−2φ(z(2))

2 dz(2)

)
(70)

= δκn(n− 1)

(
1√
2π

Φ(0)n−1 − Φ(−∞)n−1

n− 1
+

∫ +∞

0

Φ(z(2))
n−2φ(z(2))

2 dz(2)

)
(71)

= δκn(n− 1)

(
1√

2π(n− 1)2n−1
+

∫ +∞

0

Φ(z(2))
n−2φ(z(2))

2 dz(2)

)
(72)

≤ δκn(n− 1)

(
1√

2π(n− 1)2n−1
+

3

2

√
π

ln 3

√
lnn

n(n− 1)

)
(73)

= δκ

(
3

2

√
π

ln 3
lnn+

n√
2π 2n−1

)
= δκ

(
3

2

√
π

ln 3
lnn+

1√
2π 2n−log2 n−1

)
= δ. (74)

This implies P[ξ(1) − ξ(2) > δκσ∥x(l)∥2] ≥ 1− δ. It follows that with probability at least 1− δ,

ESS(π(l)) ≤
(
1 +

1

eξ(1)−ξ(2)−ln(n−1)

)2
≤
(
1 +

1

eδκσ∥x(l)∥2−ln(n−1)

)2
(75)

=

1 +
1

exp

(
δσ∥x(l)∥2

3
2

√
π
ln 3 lnn+ 1√

2π 2n−log2 n−1

− ln(n− 1)

)

2

.

A.2 PROOF OF THEOREM 2

Before stating our proof of Theorem 1, we present a technical lemma that we will employ.

To simplify notation, we omit the superscript (l) in this proof. For an ordered subset I =
(i1, . . . , ik) ⊆ {1, . . . , n}, let q(I) denote the probability of sampling an ordered subset I from
q without replace:

Q(I) = Q(i1, . . . , ik) :=

k∏
j=1

qij

1−
∑j−1

j′=1 qij′
. (76)

Let Pk denote the set of permutations over {1, . . . , n}. For ϖ ∈ Pk, define the permutation action
as ϖ(i1, . . . , ik) := (iϖ(1), . . . , iϖ(k)). Let Q(I) denote the probability of sampling an unordered
subset I from q without replacement:

Q(I) = PI∼q[I] =
∑

ϖ∈Pn

Q(ϖ(I)). (77)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Lemma 10 (swapping a pair). Given a size-k subset I ⊆ {1, . . . , n}, for a LoRA i ∈ I and another
LoRA i† ∈ {1, . . . , n} \ I, if qi ≤ qi† , then replacing i with i† increases the unordered sampling
probability:

Q((I \ {i}) ∪ {i†}) > Q(I). (78)

Proof. Say I = (i1, . . . , ik). Without loss of generality, say i1 = i, and let I† := (i†, i2, . . . , ik)
denote the ordered subset after replacing i with i†. For any permutation ϖ ∈ Pk, let jϖ := ϖ−1(1)
denote the order of i under permutation ϖ (i.e., ϖ(I)jϖ = i). Since qi ≤ qi† , then

Q(ϖ(I†))

Q(ϖ(I))
=

qi†

qi

k∏
j=jϖ+1

1−
∑j−1

j′=1 qij′

1− qi† + qi −
∑j−1

j′=1 qij′
(79)

=
qi†

qi

k∏
j=jϖ+1

1

1− q
i†−qi

1−
∑j−1

j′=1
qi

j′

(80)

≥ qi†

qi

k∏
j=jϖ+1

1 =
qi†

qi
≥ 1. (81)

This means Q(ϖ(I†)) ≥ Q(ϖ(I)). It follows that

Q((I \ {i}) ∪ {i†}) = Q(I†) =
∑

ϖ∈Pn

Q(ϖ(I†)) (82)

≥
∑

ϖ∈Pn

Q(ϖ(I)) = Q(I).

We are now ready to prove Theorem 2.

Proof of Theorem 2. Suppose that

I† :=
n

argtopk
i=1

qi ̸= I∗, (83)

where we break ties arbitrarily. We will show that this premise leads to a contradiction.

Recall that by definition,

Q(I∗) = PI∼q[I = I∗] >
1

2
. (84)

Since I† ̸= I∗, then k∩ := |I∗ ∩ I†| < k. Say I∗ \ I† = {i∗1, . . . , i∗k−k∩}, I† \ I∗ =

{i†1, . . . , i
†
k−k∩}. Construct a series of subsets inductively as follows. Define Ĩ0 := I∗. For

j = 1, . . . , k− k∩, define Ĩj by replacing i∗j from Ĩj−1 with i†j and inheriting all other LoRAs from
Ĩj−1. Finally, we have Ĩk−k∩ = I†. Since I† consists of LoRAs i with top-k qi, then qi∗j ≤ qi†j

for

all j = 1, . . . , k−k∩. Hence, by Lemma 10, Q(Ĩj) ≥ Q(Ĩj−1) for all j = 1, . . . , k−k∩. Together,

Q(I†) = Q(Ĩk−k∩) ≥ Q(Ĩk−k∩−1) ≥ · · · ≥ Q(Ĩ0) = Q(I∗) >
1

2
. (85)

It follows that

Q(I†) +Q(I∗) >
1

2
+

1

2
= 1. (86)

However, this contradicts the fact that

Q(I†) +Q(I∗) ≤
∑
I

Q(I) = 1, (87)

falsifying the premise. Therefore,
n

argtopk
i=1

qi = I∗.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

B RELATED WORK (CONT’D)

PEFT approaches can be broadly categorized into four groups: prompt tuning, prefix tuning, adapter-
based methods, and low-rank adaptation methods. Early methods such as prompt tuning (Liu et al.,
2021a; Shi & Lipani, 2023; Lester et al., 2021; Zang et al., 2022; Wang et al., 2022) and prefix tuning
(Li & Liang, 2021; Le et al., 2024; Chen et al., 2022; Petrov et al., 2023) introduce small continuous
prompts, but often struggle to scale to deeper layers or larger models due to limited expressivity.
Adapter-based methods (He et al., 2022; Rücklé et al., 2020; Jie et al., 2023) mitigate some of these
issues by inserting lightweight bottleneck modules into transformer layers. However, as the depth
and dimensionality of models increase, the parameter overhead of adapters can become substantial,
creating significant bottlenecks in computation and scalability. To address these limitations, low-
rank adaptation methods (Hu et al., 2022; Valipour et al., 2022; Zhang et al., 2023; Yang et al.,
2023) are proposed. These methods inject rank-constrained updates into weight matrices, striking
a favorable balance between expressivity and parameter cost, and have become a de facto standard
for many adaptation tasks. Specifically, LoRA (Hu et al., 2022) introduces two trainable low-rank
matrices while keeping the original model weights frozen. By training these matrices to approximate
parameter perturbations, LoRA achieves effective fine-tuning with minimal overhead. Building
on this idea, DyLoRA (Valipour et al., 2022) dynamically trains LoRA modules across a range
of ranks within a predefined budget rather than fixing the rank. AdaLoRA (Zhang et al., 2023)
reformulates parameter perturbations using singular value decomposition (SVD), fine-tuning across
the three SVD components for improved flexibility. Laplace-LoRA (Yang et al., 2023) takes a
Bayesian perspective, applying a post-hoc Laplace approximation to the posterior distribution over
LoRA parameters, thereby offering a principled uncertainty-aware extension.

C USE OF LLMS

We have used multiple LLMs (including ChatGPT, Gemini, Claude, and Llama) to refine paper
writing and to draft the LATEX code of mathematical equations.

19

	Introduction
	Extreme Imbalance of Routing Weights
	Preliminaries: Mixture of LoRAs
	Theoretical Analysis
	Empirical Analysis

	Proposed Method: ReMix
	Adapter Architecture
	Finetuning Procedure
	Inference Procedure

	Experiments
	Experimental Setup
	Main Results
	Ablation Studies
	Training Efficiency
	Benefits from Training Compute Scaling

	Related Work
	Conclusion
	Theoretical Proofs
	Proof of Theorem 1
	Proof of Theorem 2

	Related Work (Cont'd)
	Use of LLMs

