
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

REMIX: REINFORCEMENT ROUTING FOR MIXTURES
OF LORAS IN LLM FINETUNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Low-rank adapters (LoRAs) are a parameter-efficient finetuning technique that
injects trainable low-rank matrices into pretrained models to adapt them to new
tasks. Mixture-of-LoRAs models expand neural networks efficiently by routing
each layer input to a small subset of specialized LoRAs of the layer. Existing
Mixture-of-LoRAs routers assign a learned routing weight to each LoRA to en-
able end-to-end training of the router. Despite their empirical promise, we dis-
cover, both theoretically and empirically, that the routing weights are typically
extremely imbalanced across LoRAs in practice, where only one or two LoRAs
often dominate the routing weights. This essentially limits the number of effec-
tive LoRAs and thus severely hinders the expressive power of existing Mixture-of-
LoRAs models. In this work, we attribute this weakness to the nature of learnable
routing weights and rethink the fundamental design of the router. To address this
critical issue, we propose a new router design that we call Reinforcement Rout-
ing for Mixture-of-LoRAs (ReMix). Our key idea is using non-learnable routing
weights to ensure all active LoRAs to be equally effective, with no single LoRA
dominating the routing weights. However, such non-learnable routing weights
make it infeasible to directly train routers via gradient descent. In response, we
further propose an unbiased gradient estimator for the router and employ the re-
inforce leave-one-out (RLOO) technique to reduce the variance of the estimator.
Our gradient estimator also enables to scale up training compute to boost the pre-
dictive performance of our ReMix. Extensive experiments demonstrate that our
proposed ReMix significantly outperform state-of-the-art parameter-efficient fine-
tuning methods under a small number of activated parameters.

1 INTRODUCTION

Parameter-efficient fine-tuning (PEFT) aims to reduce the number of trainable parameters while
achieving strong task performance (e.g., He et al., 2022; Rücklé et al., 2020; Jie et al., 2023). Among
PEFT methods, low-rank adapters (LoRAs, Hu et al., 2021) have become particularly prominent
due to their simplicity and effectiveness. By injecting lightweight low-rank matrices into pretrained
weight matrices, LoRAs allow downstream adaptation with a small fraction of trainable parame-
ters, making them particularly attractive for resource-constrained settings and large-scale multi-task
deployments.

Building on the success of LoRAs, researchers have proposed Mixture-of-LoRAs to further enhance
parameter efficiency and expressive power (e.g., Huang et al., 2023; Wang et al., 2023; Tian et al.,
2024; Zeng et al., 2025). The key idea is to route each input through a small pool of LoRAs per
layer, thereby enabling specialization of LoRAs across different input distributions. Central to this
framework is the router, which assigns routing weights across a pool of multiple LoRAs. Current
approaches rely on learned routing weights, trained jointly with task objectives via gradient descent.
In principle, such routers should flexibly allocate inputs across LoRAs and balance capacity usage.

Despite their empirical promise, we theoretically reveal a striking weakness of existing Mixture-
of-LoRAs routers: routing weights can be extremely imbalanced, often with one or two LoRAs
dominating the routing weights. Furthermore, we empirically observe that the imbalance even wors-
ens during finetuning, where the effective number of LoRAs drops to 1 quickly. This essentially
disables all other LoRAs, thereby limiting the expressive power of the mixture.
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To address this critical limitation, we revisit the fundamental design of the router. Instead of relying
on learned continuous weights that tend to result in extreme imbalance, we propose Reinforcement
Routing for Mixture-of-LoRAs (ReMix), which enforces a constant routing weights across all acti-
vated experts. This ensures that all active LoRAs contribute equally, avoiding collapse into a single
dominant LoRA. Since non-learnable weights prevent direct training via backpropagation, we refor-
mulate the router training problem as reinforcement learning (RL), where we view the supervised
finetuning loss as the negative reward and the router as the policy model of RL. We then propose an
unbiased, RLOO-based gradient estimator tailored for our proposed router. This unbiased estimator
enables stable training and scales efficiently to large compute budgets, unlocking the full potential
of mixture-based parameter-efficient finetuning. Our main contributions are as follows.

• Theoretical insights on routing imbalance: We theoretically reveal and empirically ob-
serve a fundamental limitation of routers: We observe that for each given input, often only
one LoRA has a dominating routing weight that is close to one. This extreme imbalance
essentially disables all other LoRAs and severely limits the expressive power of the model.

• Simple yet effective router: To address routing imbalance, we propose a new router design
with a constant routing weight across all activated LoRAs. Our design does not introduce
any additional inference cost over existing Mixture-of-LoRAs methods.

• Reinforcement learning for router training. To address the non-differentiability of our
proposed router, we reformulate the router training problem as reinforcement learning and
propose an unbiased, RLOO-based gradient estimator tailored for our proposed router.

• Empirical evaluation: Through extensive experiments across diverse benchmarks, we
demonstrate that ReMix consistently outperforms state-of-the-art parameter-efficient fine-
tuning methods under comparable parameter budgets.

2 EXTREME IMBALANCE OF ROUTING WEIGHTS

In this section, we analyze and reveal a critical limitation of existing Mixture-of-LoRAs routers: the
extreme imbalance in routing weights assigned to different LoRAs. After introducing preliminaries
in Section 2.1, we first make a fundamental theoretical analysis showing that the number of effective
LoRAs per layer is severely limited. Then, we corroborate this finding with empirical evidence from
our experiments.

2.1 PRELIMINARIES: MIXTURE OF LORAS

Mixture-of-LoRAs is a type of parameter-efficient adapter that enhances the capacity of large models
using only a small number of LoRAs and a lightweight router to dynamically select the LoRAs for
each input.

Let D denote the hidden dimensionality of the model. Following prior work, we apply LoRAs to
feedforward layers in the LLM, and all other layers are frozen. Let x(l),y(l) ∈ RD denote the
input and the output of feedforward layer l (l = 1, . . . , L), respectively. Let n denote the number
of LoRAs we use in the mixture. Each LoRA i = 1, . . . , n is a linear map parameterized as a
low-rank decomposition B

(l)
i A

(l)
i ∈ RD×D, where A

(l)
i ∈ Rr×D and B

(l)
i ∈ RD×r are learnable

parameters, and r ≪ D is the rank of LoRAs. A router of a layer l is a small neural network
parameterized by a matrix P (l) ∈ Rn×D that predicts a categorical distribution over n LoRAs via
the softmax operation:

π(l) := softmax(P (l)x(l)) ∈ Rn. (1)

Here, π(l)
i := (π(l))i represents the routing weight assigned to the i-th LoRA. Given the routing

weights, the output of a typical Mixture-of-LoRAs layer is computed as:

y(l) := W (l)x(l) +

n∑
i=1

π
(l)
i B

(l)
i A

(l)
i x(l). (2)

where W (l) ∈ RD×D denotes the frozen weight of the layer l. This formulation intends to differen-
tiably select a specialized subset of LoRAs for each given layer input x(l).
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2.2 THEORETICAL ANALYSIS

We make a fundamental theoretical analysis showing that the number of effective LoRAs is severely
limited. Recall that the output of a Mixture-of-LoRAs layer is a weighted sum of the LoRA outputs,
where the routing weights are typically normalized via a softmax function. While this design allows
for end-to-end training, we show that it introduces a strong tendency for the router to concentrate
most of the weight on only one or two LoRAs.

To quantify the effective number of LoRAs, we use the effective support size notion from information
theory. For routing weights π(l) ̸= 0, the effective support size (ESS) of π(l) is defined as (Grendar,
2006)

ESS(π(l)) :=

(∑n
i=1 |π

(l)
i |
)2∑n

i=1 |π
(l)
i |2

=

(
∥π(l)∥1
∥π(l)∥2

)2
. (3)

The intuition of ESS(π(l)) is that it measures the number of LoRAs with relatively large routing
weights. For example, if π(l) is one-hot, then we have ESS(π(l)) = 1; if π(l) is uniform over n
LoRAs, then we have ESS(π(l)) = n. Note that ESS(π(l)) concerns only about the utilization
of LoRAs for each given input, not the overall utilization of each LoRA over the entire dataset.
With the help of this notion of ESS, we formally state our theoretical observation in the following
Theorem 1.

Theorem 1 (imbalance of routing weights). Suppose that the router parameter matrix P (l) follows
i.i.d. Gaussian initialization with variance σ2 > 0 (e.g., Kaiming initialization, He et al., 2015).
Then for any 0 < δ < 1, with probability at least 1− δ, the effective support size of π(l) is at most

ESS(π(l)) ≤

1 +
1

exp

(
δσ∥x(l)∥2

3
2

√
π
ln 3 lnn+ 1√

2π 2n−log2 n−1

− ln(n− 1)

)

2

.

The proof of Theorem 1 is deferred to Appendix A.1. Our Theorem 1 shows that with high probabil-
ity, only an extremely small number of LoRAs have relatively large routing weights. For instance,
if σ = 1, and there are n = 8 LoRAs, and x(l) is a Rademacher random vector in RD=1024, then
our Theorem 1 shows that with probability at least 84.19%, at most two LoRAs have relatively
large routing weights. Since each routing weight is a coefficient in front of each LoRA, a rela-
tively small routing weight would essentially disable that LoRA. Moreover, those extremely small
routing weights also vanish the gradient back-propagated to the corresponding LoRAs and conse-
quently hinder the learning process of these LoRAs. Therefore, this phenomenon severely limits the
expressive power and performance of the Mixture-of-LoRAs model.

2.3 EMPIRICAL ANALYSIS

1 2 3 4 5 6 7 8
LoRA i

0.0

0.2

0.4

0.6

0.8

1.0

Ro
ut

in
g 

W
eig

ht
 

(l) i

ESS( (l)
i ) 1.15

Dominating
Dominated

Figure 1: We often observe that only
one LoRA has a dominating routing
weight that is close to one.

To further validate our theoretical result in Theorem 1, we
conduct a case study on the routing weights across Lo-
RAs in MixLoRA (Li et al., 2024a), a popular Mixture-
of-LoRAs method. Specifically, we track the routing
weights of the last layer throughout the training pro-
cess on the GSM8K dataset (a mathematical reasoning
dataset) and compute the distributions and the ESS of the
routing weights.

To visualize the distribution of routing weights, we plot
a typical histogram of routing weights during finetun-
ing, shown in Figure 1. We often observe that only
one LoRA has a dominating routing weight close to one
while all other seven LoRAs have negligibly small rout-
ing weights. The observation aligns with our Theorem 1
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Figure 2: The effective support size ESS(π(l)) often drops to 1 quickly during finetuning.

that the learned routing weights are indeed extremely imbalanced. The extremely limited number of
effective LoRAs severely restricts the expressive power of the Mixture-of-LoRAs model.

To further study how the distribution of routing weights evolve over the finetuning process, we plot
the ESS of the routing weights at each training step, as shown in Figure 2. In fact, the imbalance
even worsens as the finetuning process progresses. We often observe that the effective support size
ESS(π(l)) often drops to 1 quickly during finetuning. For instance, even though the ESS is around
4 at step 0, the ESS quickly decreases to 1 since only step 1000 and never increases thereafter.

These results highlight a fundamental limitation of current Mixture-of-LoRAs routers: despite the
potential for increased expressivity via multiple LoRAs, the model essentially activates only an
extremely small subset for each given input. This motivates our proposed method, which aims to
ensure a more balanced and effective use of other available LoRAs.

3 PROPOSED METHOD: REMIX

In this section, we introduce our proposed method Reinforcement Routing for Mixture-of-LoRAs
(ReMix). First, we introduce the adapter architecture in Section 3.1. Then, we describe the finetun-
ing procedure in Section 3.2 and the inference procedure in Section 3.3.

3.1 ADAPTER ARCHITECTURE

In this subsection, we introduce the adapter architecture of our proposed method ReMix.

Given layer input x(l) ∈ RD, we first produce an n-way categorical routing distribution q(l) :=
softmax(P (l)x(l)) ∈ Rn

≥0 over the n LoRAs, where P (l) ∈ Rn×D denotes the learnable parameter
matrix of the router. Then, we use the routing distribution q(l) to select the k LoRAs I(l) :=

{i(l)1 , . . . , i
(l)
k } to activate. The LoRA selection procedure differs between finetuning and inference,

which we will describe later in Sections 3.2 & 3.3.

To address the extreme imbalance of routing weights in existing Mixture-of-LoRAs models (Sec-
tion 2), we assign the a constant routing weight ω > 0 to all the k activated LoRAs and zero routing
weights to all non-activated LoRAs. Formally, our routing weights π(l) are defined as

π
(l)
i := ω1[i∈I(l)] =

{
ω, if i ∈ I(l),

0, if i /∈ I(l),
i = 1, . . . , n, (4)

where ω > 0 is a hyperparameter. Notably, our design ensures that ESS(π(l)) = k, which is in stark
contrast to existing learnable routing weights (Theorem 1). Finally, we compute the layer output
y(l) ∈ RD as a π(l)-weighted sum over k activated LoRAs. Using the sparse nature of our routing

4
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Figure 3: Finetuning procedure of our proposed ReMix.

weights π(l), the computation of layer output y(l) can be simplified as follows:

y(l) := W (l)x(l) +

n∑
i=1

π
(l)
i B

(l)
i A

(l)
i x(l) (5)

= W (l)x(l) + ω

k∑
j=1

B
(l)

i
(l)
j

A
(l)

i
(l)
j

x(l). (6)

3.2 FINETUNING PROCEDURE

In this subsection, we describe how to train our proposed ReMix during finetuning. Our finetuning
workflow is illustrated in Figure 3.

Let I := (I(1), . . . , I(L)) denote the collection of activated LoRAs of the entire LLM for a given
model input, and we call I a selection. Let L(I) denote the supervised finetuning (SFT) loss when
activated LoRAs are I. Regarding LoRA parameters A(l)

i , B
(l)
i , since the LLM output is differen-

tiable w.r.t. LoRA parameters, we can simply use their gradients G
A

(l)
i

:= ∇
A

(l)
i
L(I), G

B
(l)
i

:=

∇
B

(l)
i
L(I) to train them.

Regarding router parameters, however, the LLM output is not differentiable w.r.t. router param-
eters P (l) because routing weights π

(l)
i are a constant hyperparameter ω. Consequently, we

cannot directly compute their gradients ∇
P

(l)
i

L(I) as it is not defined. To address this non-

differentiability, we propose sampling each I(l) from the corresponding routing distribution q(l)

so that EI(l)∼q(l) [L(I)] depends on router parameters P (l). This enables EI(l)∼q(l) [L(I)] to be dif-
ferentiable w.r.t. router parameters P (l). Hence, we propose using GP (l) := ∇P (l)EI(l)∼q(l) [L(I)]
as a surrogate gradient of P (l). Formally, given the routing distribution q(l) := softmax(P (l)x(l)),
we sample k LoRAs (i(l)1 , . . . , i

(l)
k ) ∼ q(l) from q(l) without replacement to compose the activated

LoRA subset I(l) := (i
(l)
1 , . . . , i

(l)
k ), where sampling without replacement ensures that the k acti-

vated LoRAs are mutually distinct.

However, due to the exponentially many possibilities of I, it is computationally intractable to
straightforwardly compute GP (l) = ∇P (l)EI(l)∼q(l) [L(I)] by definition. To address this intractabil-
ity, we alternatively consider router training as a reinforcement learning (RL) problem, where we
view the SFT loss L(I) as the negative reward and the routers q(l) as the policy model. With this
alternative view, we are able to employ the policy gradient estimator in RL to estimate the surrogate
gradient GP (l) . Formally, we independently sample M selections J1, . . . , JM , where M repre-
sents the training compute budget. Write each selection as Im =: (I(l)

m )Ll=1 =: ((i
(l)
m,j)

k
j=1)

L
l=1

(m = 1, . . . ,M ), where I(l)
m denotes the ordered set of selected LoRAs at the l-th layer in the m-th

selection Jm, and i
(l)
m,j denotes the j-th selected LoRA at the l-th layer in the m-th selection Jm.

5
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Due to sampling without replacement, the probability of each selection Jm is

Q(Jm) :=

L∏
l=1

k∏
j=1

q
i
(l)
m,j

1−
∑j−1

j′=1 qi(l)
m,j′

. (7)

Then, the REINFORCE policy gradient estimator (Willianms, 1988) for GP (l) can be expressed as

G̃P (l) :=
1

M

M∑
m=1

L(Im)∇P (l) logQ(Jm) (8)

=
1

M

M∑
m=1

L(Im)

k∑
j=1

∇P (l) log
q
i
(l)
m,j

1−
∑j−1

j′=1 qi(l)
m,j′

. (9)

Nevertheless, it is known that the vanilla REINFORCE estimator can have high variance (e.g., Kool
et al., 2019). To further reduce the variance of the gradient estimator, we further employ the RLOO
gradient estimator (Kool et al., 2019) to estimate the surrogate gradient GP (l) :

ĜP (l) :=
1

M − 1

M∑
m=1

(
L(Im)− L

)
∇P (l) logQ(Jm) (10)

=
1

M − 1

M∑
m=1

(
L(Im)− L

) k∑
j=1

∇P (l) log
q
i
(l)
m,j

1−
∑j−1

j′=1 qi(l)
m,j′

, (11)

where L denotes the average SFT loss across the M selections:

L :=
1

M

M∑
m=1

L(Im). (12)

It can be shown that our RLOO gradient estimator is unbiased: EJ1,...,Jm
[ĜP (l) ] = GP (l) .

3.3 INFERENCE PROCEDURE

In this subsection, we describe how our proposed ReMix selects the LoRAs to activate during in-
ference. While it is possible to randomly sample the LoRAs like the finetuning procedure, here we
propose a better, theoretically optimal approach to LoRA selection.

Our following Theorem 2 shows that the optimal strategy is in fact top-k selection as long as the
router is trained sufficiently well.

Theorem 2 (optimality of top-k selection). Let I(l)∗ = {i(l)∗1 , . . . , i
(l)∗
k } denote the optimal subset

of LoRAs for a given model input. As long as the router q(l) is trained sufficiently well such that

PI(l)∼q(l) [I(l) = I(l)∗] >
1

2
(13)

then the LoRAs i with top-k q
(l)
i are guaranteed to constitute the best subset I(l)∗:

n
argtopk

i=1
q
(l)
i = I(l)∗. (14)

The proof of Theorem 2 is deferred to Appendix A.2. Notably, our Theorem 2 shows that when
sampling yields the optimal subset with probability above 50%, then top-k selection substantially
improves this probability to 100%. Intuitively speaking, as long as the router is trained sufficiently
well, then the optimal choices of LoRAs are in fact those i with top-k q

(l)
i . Motivated by Theorem 2,

we employ top-k LoRA selection (instead of random sampling) during inference:

I(l) = {i(l)1 , . . . , i
(l)
k } :=

n
argtopk

i=1
q
(l)
i . (15)

6
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Table 1: Comparison with existing parameter-efficient finetuning methods. Our ReMix consistently
outperforms all baseline methods while maintaining strong parameter efficiency.

Type Method GSM8K HumanEval ARC-c Average
Accuracy Params Pass@1 Params Accuracy Params Accuracy Params

No Tuning Zero-Shot 04.78 N/A 13.41 N/A 22.03 N/A 13.41 N/A
Few-Shot 55.95 N/A 17.68 N/A 81.36 N/A 51.66 N/A

Prefix
Injection

Prefix Tuning 02.65 0.034B 00.00 0.034B 28.47 0.004B 10.37 0.024B
Prompt Tuning 04.70 0.000B 26.22 0.000B 23.73 0.000B 18.22 0.000B
P-Tuning 34.19 0.001B 27.44 0.001B 43.05 0.001B 34.89 0.001B

Weight
Modulation

(IA)3 08.57 0.001B 31.10 0.001B 23.39 0.001B 21.02 0.001B
LoRA 59.21 0.168B 26.83 0.084B 83.05 0.084B 56.36 0.112B
DoRA 55.34 0.043B 31.10 0.169B 83.39 0.169B 56.61 0.127B
rsLoRA 62.47 0.042B 28.66 0.021B 82.71 0.021B 57.95 0.028B

Mixture

VB-LoRA 34.27 0.677B 29.27 0.673B 23.73 0.674B 29.09 0.675B
MixLoRA 61.87 0.068B 28.05 0.116B 82.37 0.119B 57.43 0.101B
HydraLoRA 62.47 0.092B 20.12 0.079B 82.71 0.082B 55.10 0.084B
ReMix (Ours) 65.66 0.106B 32.93 0.090B 83.73 0.016B 60.77 0.070B

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Baselines. We comprehensively compare our proposed ReMix against various types of baseline
methods. (i) No tuning methods: testing the base LLM directly under zero-shot and few-shot
prompting. (ii) Prefix injection methods: Prefix Tuning (Li & Liang, 2021), Prompt Tuning (Lester
et al., 2021), and P-Tuning (Liu et al., 2021b). (iii) Weight modulation methods: (IA)3 (Liu et al.,
2022), LoRA (Hu et al., 2021), DoRA (Liu et al., 2024), and rsLoRA (Kalajdzievski, 2023). (iv)
Mixture methods: VB-LoRA (Li et al., 2024b), MixLoRA, (Li et al., 2024a), and HydraLoRA (Tian
et al., 2024). For each baseline method, we perform a hyperparameter search and report the best
results.

Datasets & evaluation metrics. We finetune the base LLM and evaluate them on a diverse set of
benchmarks, including GSM8K (Cobbe et al., 2021) to evaluate mathematical reasoning capabilities,
HumanEval (Chen et al., 2021) to evaluate code generation capabilities, and ARC-c (Clark et al.,
2018) to evaluate knowledge recall capabilities. For HumanEval, since HumanEval does not contain
a training set, we follow Tian et al. (2024) to finetune the base LLM on CodeAlpaca (Chaudhary,
2023) and report the Pass@1 metric on HumanEval. For all other datasets, we finetune the base LLM
on their training split and report the accuracy metric on their test split. In this work, we use Llama
3 8B (Dubey et al., 2024) as the base LLM. Besides that, we also report the number of activated
parameters (in billion, B) under the best-performing hyperparameters.

Implementation details. We train all methods using the same number of epochs, learning rate
schedule, gradient accumulation steps and machine type. All methods are trained using the LLaMA-
Factory (Zheng et al., 2024) framework and evaluated using the OpenCompass (Contributors, 2023)
framework. For the no-tuning few-shot method, we use 4 shots for GSM8K and HumanEval and 5
shots for ARC-c.

4.2 MAIN RESULTS

We evaluate the performance of various fine-tuning strategies on three representative tasks: Hu-
manEval (code generation), GSM8K (math reasoning), and ARC-c (knowledge recall). As shown
in Table 1, our ReMix consistently outperforms all baselines across these benchmarks while main-
taining strong parameter efficiency.

From a performance standpoint, ReMix surpasses all baseline methods, achieving an average accu-
racy improvement of 2.82 over the strongest competing approach. Specifically, ReMix outperforms
the best Prefix Injection baseline by a substantial 25.88, the best Weight Modulation baseline by
2.82, and the strongest Mixture competitor by 3.34 on average across the three tasks. On Hu-
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methods are not able to.

Figure 4: Additional experimental analyses.

manEval, ReMix achieves a Pass@1 of 32.93, outperforming the best baseline, (IA)3, by 1.83. For
GSM8K, ReMix attains an accuracy of 65.66, showing a clear gain of 3.19 over the best competitors
(rsLoRA and HydraLoRA). On ARC-c, ReMix reaches 83.73, exceeding the best-performing low-
rank method DoRA by 0.34. These results highlight the consistent advantages of our reinforcement-
trained router across diverse task types. Notably, within the Mixture methods, ReMix provides con-
sistent improvements, suggesting that reinforcement-guided, balance-aware routing enhances both
reasoning-intensive tasks (e.g., GSM8K) and generation tasks (e.g., HumanEval), while preserving
strong retrieval performance on ARC-c.

In terms of parameter efficiency, ReMix achieves these performance gains with a competitive bud-
get of only 0.070B trainable parameters. Compared to other mixture methods, this represents a
90% reduction relative to the most parameter-heavy baseline VB-LoRA (0.675B), and a 31% re-
duction compared to the most effective baseline MixLoRA (0.101B). Even when compared to the
lightweight rsLoRA (0.028B), ReMix delivers a +2.82 average-accuracy improvement at the cost of
only 0.042B more parameters, demonstrating a superior accuracy-to-parameter trade-off. Overall,
these results confirm that reinforcement-guided mixture routing achieves state-of-the-art accuracy
with minimal and often reduced parameter overhead.

4.3 ABLATION STUDIES

To understand the contributions of the key components in our proposed ReMix (i.e., RLOO for
router training and top-k LoRA selection for inference), we conducte ablation studies on GSM8K
comparing its performance against the ablated variants with each component removed. The results
are presented in Figure 4a, which visualizes the accuracy achieved by different configurations.

From Figure 4a, we observe that our full ReMix method achieves the highest accuracy among all
ablated variants. When removing the RLOO from our finetuning procedure ReMix (No RLOO), we
observe a significant drop in accuracy compared to the full ReMix, indicating that RLOO plays a
crucial role in enhancing the model’s performance. Similarly, disabling the top-k LoRA selection
(No top-k) also results in lower accuracy than the complete ReMix, demonstrating the importance
of this component in optimizing the model performance. These findings underscore the value of
integrating both RLOO and top-k selection into our ReMix method.

4.4 TRAINING EFFICIENCY

In this subsection, we study the training efficiency of our proposed method. Note that MixLoRA
can be regarded as an ablated variant where our reinforcement router is replaced with an ordinary
learnable router. Hence, we compare our ReMix and MixLoRA under comparable training time to
show the training efficiency of our proposed ReMix. The results are presented in Table 2.
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Table 2: Our ReMix significantly outperforms
MixLoRA even under similar training time.

Method Time Accuracy
MixLoRA 8.95 s 50.34
ReMix (Ours) 9.87 s 56.03

As shown in Table 2, our ReMix achieves an ac-
curacy of 56.03% with a training time of 9.87 sec-
onds per step, while MixLoRA achieves an accu-
racy of 50.34% in 8.95 seconds per step. Although
our ReMix consumes only 10% more training time
than MixLoRA, it yields a substantial improvement
of 5.69 percentage points in accuracy. This demon-
strates that our ReMix still retains strong perfor-
mance even under small training compute budget.

4.5 BENEFITS FROM TRAINING COMPUTE SCALING

Since our ReMix incorporates RL-based gradient estimator, we can effectively scale up training
compute by increasing the number M of sampled selections. To evaluate how training compute
scaling benefits our ReMix, we examine its performance under varying numbers M of sampled se-
lections. As shown in Figure 4b, increasing M from 2 to 32 leads to a steady improvement in accu-
racy, rising from 56.03% to 58.83%. This indicates that our ReMix effectively leverages additional
computational resources to enhance its performance. Notably, the consistent gains observed across
different scales suggest that further increases in M could yield even better results. This demon-
strates that ReMix offers a favorable trade-off between training efficiency and performance. In stark
contrast, existing methods do not benefit from similar scaling, underscoring the unique advantage
offered by ReMix in utilizing increased training compute to achieve improved outcomes.

5 RELATED WORK

Parameter-efficient fine-tuning (PEFT) aims to reduce the number of trainable parameters while
achieving strong task performance. Due to the page limit, please refer to Appendix B for related
work on general PEFT. More recent efforts in PEFT have explored new multi-LoRA architectures
that go beyond single low-rank adapters by explicitly restructuring how multiple LoRA modules
are organized and combined, offering advantages on complex data distributions. LoraHub (Huang
et al., 2023) introduces a dynamic composition framework that integrates multiple LoRAs at the ar-
chitectural level, enabling cross-task generalization without retraining by assembling adapters into
a unified pipeline. MultiLoRA (Wang et al., 2023) modifies the structural initialization of LoRA
subspaces and horizontally expands adapters across layers, thereby mitigating the dominance of top
singular vectors and achieving more balanced representations in multi-task learning. HydraLoRA
(Tian et al., 2024) departs from the symmetric LoRA design and proposes an asymmetric archi-
tecture that decouples the projection and update pathways, substantially improving parameter and
training efficiency. Beyond linear compositions, S’MoRE (Zeng et al., 2025) integrates LoRA with
mixture-of-experts style routing by hierarchically decomposing expert weights into low-rank resid-
ual components and routing them through a structured multi-layer architecture. Meanwhile, LoRA-
Flow (Wang et al., 2024) rethinks the architecture for generative tasks by embedding a lightweight,
token-level fusion gate that dynamically modulates multiple LoRAs during inference, and MultLFG
(Roy et al., 2025) introduces a frequency-aware fusion mechanism that structurally guides LoRA
composition across denoising steps.

6 CONCLUSION

In this paper, we investigate the problem of imbalanced routing weights that hinder effective LoRA
utilization, and propose a reinforcement-based router design named ReMix to address this prob-
lem. Our theoretical and empirical analysis shows that existing methods relying on learnable routing
weights inherently lead to such imbalance, severely limiting the effective utilization of diverse LoRA
knowledge. To overcome this limitation, we replace learnable routing weights with non-learnable
balanced assignments, and introduce an unbiased gradient estimator with RLOO variance reduc-
tion to enable scalable and stable training under non-differentiable settings. Extensive experiments
across diverse benchmarks demonstrate that our ReMix consistently outperforms state-of-the-art
parameter-efficient finetuning methods, achieving superior predictive power and computational effi-
ciency.
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Andreas Rücklé, Gregor Geigle, Max Glockner, Tilman Beck, Jonas Pfeiffer, Nils Reimers, and
Iryna Gurevych. Adapterdrop: On the efficiency of adapters in transformers. arXiv preprint
arXiv:2010.11918, 2020.

Zhengxiang Shi and Aldo Lipani. Dept: Decomposed prompt tuning for parameter-efficient fine-
tuning. arXiv preprint arXiv:2309.05173, 2023.

Chunlin Tian, Zhan Shi, Zhijiang Guo, Li Li, and Chengzhong Xu. Hydralora: An asymmetric
lora architecture for efficient fine-tuning. In Advances in Neural Information Processing Systems
(NeurIPS), 2024.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Mojtaba Valipour, Mehdi Rezagholizadeh, Ivan Kobyzev, and Ali Ghodsi. Dylora: Parameter effi-
cient tuning of pre-trained models using dynamic search-free low-rank adaptation. arXiv preprint
arXiv:2210.07558, 2022.

Chaozheng Wang, Yuanhang Yang, Cuiyun Gao, Yun Peng, Hongyu Zhang, and Michael R Lyu.
No more fine-tuning? an experimental evaluation of prompt tuning in code intelligence. In Pro-
ceedings of the 30th ACM joint European software engineering conference and symposium on the
foundations of software engineering, pp. 382–394, 2022.

Hanqing Wang, Bowen Ping, Shuo Wang, Xu Han, Yun Chen, Zhiyuan Liu, and Maosong Sun.
Lora-flow: Dynamic lora fusion for large language models in generative tasks. arXiv preprint
arXiv:2402.11455, 2024.

Yiming Wang, Yu Lin, Xiaodong Zeng, and Guannan Zhang. Multilora: Democratizing lora for
better multi-task learning. arXiv preprint arXiv:2311.11501, 2023.

R. J. Willianms. Toward a theory of reinforcement-learning connectionist systems. Technical Report,
1988.

Adam X Yang, Maxime Robeyns, Xi Wang, and Laurence Aitchison. Bayesian low-rank adaptation
for large language models. arXiv preprint arXiv:2308.13111, 2023.

Yuhang Zang, Wei Li, Kaiyang Zhou, Chen Huang, and Chen Change Loy. Unified vision and
language prompt learning. arXiv preprint arXiv:2210.07225, 2022.

Hanqing Zeng, Yinglong Xia, Zhuokai Zhao, Gilbert Jiang, Qiang Zhang, Jiayi Liu, Lizhu Zhang,
Xiangjun Fan, and Benyu Zhang. S’MoRE: Structural mixture of residual experts for llm fine-
tuning. arXiv preprint arXiv:2504.06426, 2025.

Qingru Zhang, Minshuo Chen, Alexander Bukharin, Nikos Karampatziakis, Pengcheng He,
Yu Cheng, Weizhu Chen, and Tuo Zhao. Adalora: Adaptive budget allocation for parameter-
efficient fine-tuning. arXiv preprint arXiv:2303.10512, 2023.

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, Zheyan Luo, Zhangchi Feng, and
Yongqiang Ma. Llamafactory: Unified efficient fine-tuning of 100+ language models. In Pro-
ceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume
3: System Demonstrations), Bangkok, Thailand, 2024. Association for Computational Linguis-
tics. URL http://arxiv.org/abs/2403.13372.

12

http://arxiv.org/abs/2403.13372


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

CONTENTS

A Theoretical Proofs 13

A.1 Proof of Theorem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

A.2 Proof of Theorem 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

B Related Work (Cont’d) 19

C Use of LLMs 19

A THEORETICAL PROOFS

A.1 PROOF OF THEOREM 1

Before stating our proof of Theorem 1, we present a few technical lemmata that we will employ.

Let φ(z) := 1√
2π

e−x2/2, Φ(z) :=
∫ z

−∞ φ(x) dx, and Φ(z) := 1 − Φ(z) (z ∈ R) denote the prob-
ability density function, the cumulative distribution function, and the complementary cumulative
distribution function of the standard Gaussian distribution N (0, 1), respectively.

Lemma 3 (a Gaussian gap estimate). For every z ∈ R and α > 0,

Φ(z + α)− Φ(z) ≤ α√
2π

. (16)

Proof. Since Φ′(t) = φ(t) = e−t2/2
√
2π

, then

Φ(z + α)− Φ(z) =

∫ z+α

z

Φ′(t) dt =

∫ z+α

z

e−t2/2

√
2π

dt ≤
∫ z+α

z

1√
2π

dt =
α√
2π

.

Lemma 4 (a Gaussian upper-tail gap estimate). For any z ≥ 0 and any α > 0,

Φ(z + α)− Φ(z) ≤
√
2π (Φ(α)− Φ(0))φ(z) ≤ αφ(z). (17)

Proof. Define a function h : R≥0 → R as

h(z) :=
Φ(z + α)− Φ(z)

φ(z)
, z ≥ 0. (18)

Since Φ′(z) = φ(z), and φ′(z) = −zφ(z), then

h′(z) =
(φ(z + α)− φ(z))Φ′(z) + (Φ(z + α)− Φ(z))(−φ′(z))

φ(z)2
(19)

=
(φ(z + α)− φ(z))φ(z) + (Φ(z + α)− Φ(z))(zφ(z))

φ(z)2
(20)

=
φ(z + α)− φ(z) + z(Φ(z + α)− Φ(z))

φ(z)
(21)

=

∫ z+α

z
φ′(t) dt+z

∫ z+α

z
Φ′(t) dt

φ(z)
(22)

=

∫ z+α

z
(−tφ(t)) dt+z

∫ z+α

z
φ(t) dt

φ(z)
(23)

= −
∫ z+α

z
(t− z)φ(t) dt

φ(z)
< 0. (24)
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Hence, h(z) is a decreasing function. It follows from Lemma 3 that

Φ(z + α)− Φ(z)

φ(z)
= h(z) ≤ h(0) =

Φ(α)− Φ(0)

φ(0)
=

√
2π (Φ(α)− Φ(0)) (25)

=
√
2π

∫ α

0

Φ′(t) dt =
√
2π

∫ α

0

e−t2/2

√
2π

dt ≤
√
2π

∫ α

0

1√
2π

dt =

∫ α

0

dt = α.

Lemma 5 (a Gaussian inverse estimate). For every 0 < v ≤ 1
2 ,

φ(Φ−1(1− v)) ≤ v

√
2 ln

1

v
. (26)

Proof. Let z := Φ−1(1− v) ≥ 0, so that v = 1− Φ(z) = Φ(z).

Note that it is equivalent to show that

ln
( 1

Φ(z)

)
≥ φ(z)2

2Φ(z)2
. (27)

Define a function h : R≥0 → R as

h(z) := ln
( 1

Φ(z)

)
− φ(z)2

2Φ(z)2
, z ≥ 0. (28)

Since z ≥ 0, then by Gordon (1941),

φ(z)

Φ(z)
≥ z ≥ z

2
. (29)

and by Birnbaum (1942),

φ(z)

Φ(z)
≤ 2√

z2 + 4− z
=

√
z2 + 4 + z

2
=

z

2
+

√
z2 + 4

2
. (30)

Together, we have

z

2
<

φ(z)

Φ(z)
≤ z

2
+

√
z2 + 4

2
. (31)

Furthermore, since Φ
′
(z) = −φ(z), and φ′(z) = −zφ(z),

h′(z) =
φ(z)

Φ(z)

(
1 + z

φ(z)

Φ(z)
−
(φ(z)
Φ(z)

)2)
(32)

=
φ(z)

Φ(z)

(φ(z)
Φ(z)

− z

2
+

√
z2 + 4

2

)(z
2
+

√
z2 + 4

2
− φ(z)

Φ(z)

)
(33)

≥ 0. (34)

Hence, the function h(z) is non-decreasing w.r.t. z. It follows that for any 0 < v ≤ 1
2 ,

ln
(1
v

)
− φ(Φ(1− v))2

2v2
= ln

( 1

Φ(z)

)
− φ(z)2

2Φ(z)2
= h(z) ≥ h(0) = ln 2− 1

π
> 0. (35)

Therefore, φ(Φ−1(1− v)) ≤ v
√
2 ln 1

v .

Lemma 6 (a Gamma integral). Let Γ(β) denote the Gamma function (β > 0). For any α, β > 0,∫ 1

0

tα−1
(
ln

1

t

)β−1

dt =
Γ(β)

αβ
. (36)

In particular, ∫ 1

0

t

√
ln

1

t
dt =

Γ
(
1
2 + 1

)
(1 + 1)1/2+1

=

√
π

4
√
2
. (37)
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Proof. Let z := α ln 1
t . Then,∫ 1

0

tα−1
(
ln

1

t

)β−1

dt =

∫ +∞

0

(
e−z/α

)α−1
( z
α

)β−1 e−z/α

α
dz (38)

=
1

αβ

∫ +∞

0

e−zzβ−1 dz =
1

αβ
Γ(β).

Lemma 7 (a mixed integral estimate). For every α > 0 and 0 < β ≤ α,∫ β

0

te−t

√
ln

α

t
dt ≤

√
lnα (1− e−β+ln(β+1)) +

√
π

4
√
2
. (39)

Proof. Since ln 1
t ≥ 0 only when 0 ≤ t ≤ 1, then by the triangle inequality,√

ln
α

t
=

√
lnα+ ln

1

t
≤
√
lnα+ 1[0≤t≤1] ln

1

t
(40)

≤
√
lnα+

√
1[0≤t≤1] ln

1

t
=

√
lnα+ 1[0≤t≤1]

√
ln

1

t
. (41)

It follows from Lemma 6 that∫ β

0

te−t

√
ln

α

t
dt ≤

∫ β

0

te−t
(√

lnα+ 1[0≤t≤1]

√
ln

1

t

)
dt (42)

=
√
lnα

∫ β

0

te−t dt+

∫ min{1,β}

0

te−t

√
ln

1

t
dt (43)

≤
√
lnα

∫ β

0

te−t dt+

∫ 1

0

te−t

√
ln

1

t
dt (44)

≤
√
lnα

∫ β

0

te−t dt+

∫ 1

0

t

√
ln

1

t
dt (45)

=
√
lnα (1− e−β+ln(β+1)) +

√
π

4
√
2
.

Lemma 8 (an integer function bound). For every integer n ≥ 3,
√
2

(n− 2)2

(√
ln(n− 2)(1− e−

n
2 −1+ln n

2 ) +

√
π

4
√
2

)
≤ 3

2

√
π

ln 3

√
lnn

n(n− 1)
. (46)

Proof. Define a function h : N≥3 → R:

h(n) :=

√
2

(n−2)2

(√
ln(n− 2)(1− e−

n
2 −1+ln n

2 ) +
√
π

4
√
2

)
√
lnn

n(n−1)

, n ≥ 3. (47)

Note that when n ≥ 9, we have

h(n) ≤

√
2

(n−2)2

(√
ln(n− 2) +

√
π

4
√
2

)
√
lnn

n(n−1)

=

√
2

(n−2)2

(√
ln(n− 2) +

√
π

4
√
2

)
√
lnn

n(n−1)

(48)

=
(√

2

√
ln(n− 2)

lnn
+

1

4

√
π

lnn

)(
1 +

2

n− 2
+

3

(n− 2)2

)
(49)

≤
(√

2 +
1

4

√
π

lnn

)(
1 +

2

n− 2
+

3

(n− 2)2

)
(50)

≤
(√

2 +
1

4

√
π

ln 9

)(
1 +

2

9− 2
+

3

(9− 2)2

)
(51)

=
(√

2 +
1

4

√
π

ln 9

)72
49

< 2.52. (52)
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It follows that
√
2

(n−2)2

(√
ln(n− 2) +

√
π

4
√
2

)
√
lnn

n(n−1)

= h(n) (53)

≤ max
{
h(3), h(4), . . . , h(8),

(√
2 +

1

4

√
π

ln 9

)72
49

}
(54)

= h(3) =
3

2

√
π

ln 3
< 2.54.

Lemma 9 (a Gaussian integral estimate). For every integer n ≥ 3,∫ +∞

0

Φ(z)n−2φ(z)2 dz ≤ 3

2

√
π

ln 3

√
lnn

n(n− 1)
. (55)

Proof. Let v := 1− Φ(z) and t := (n− 2)v. By the fact that 1− v ≤ e−v and Lemmas 5, 7, & 8,∫ +∞

0

Φ(z)n−2φ(z)2 dz =

∫ 1/2

0

(1− v)n−2φ(Φ−1(1− v)) dv ≤
∫ 1/2

0

(e−v)n−2φ(Φ−1(1− v)) dv

(56)

≤
∫ 1/2

0

(e−v)n−2v

√
2 ln

1

v
dv =

√
2

(n− 2)2

∫ n
2 −1

0

te−t

√
ln

n− 2

t
dt (57)

≤
√
2

(n− 2)2

(√
ln(n− 2)(1− e−

n
2 −1+ln n

2 ) +

√
π

4
√
2

)
(58)

≤ 3

2

√
π

ln 3

√
lnn

n(n− 1)
< 2.54

√
lnn

n(n− 1)
.

With the technical lemmata above, we are now ready to prove Theorem 1.

Proof of Theorem 1. Let ξ := P (l)x(l) denote the logits of routing weights, so that π(l) =
softmax(ξ). Let ξ(1) ≥ · · · ≥ ξ(n) denote the order statistics of ξ (i.e., ξ(1) is the largest entry
of ξ, ξ(2) is the second largest entry of ξ, etc.). Note that

ESS(π(l)) =
∥π(l)∥21
∥π(l)∥22

=

(∑n
i=1 π

(l)
i

)2∑n
i=1(π

(l)
i )2

=

(∑n
i=1 softmax(ξ)i

)2∑n
i=1 softmax(ξ)2i

(59)

=

(∑n
i=1 e

ξi
)2∑n

i=1(e
ξi)2

=

(∑n
i=1 e

ξ(i)
)2∑n

i=1(e
ξ(i))2

≤
(∑n

i=1 e
ξ(i)
)2

(eξ(1))2
(60)

=

(
1 +

n∑
i=2

1

eξ(1)−ξ(i)

)2
≤
(
1 +

n∑
i=2

1

eξ(1)−ξ(2)

)2
(61)

=
(
1 +

n− 1

eξ(1)−ξ(2)

)2
=
(
1 +

1

eξ(1)−ξ(2)−ln(n−1)

)2
. (62)

Since P (l) have i.i.d. N (0, σ2) entries, then ξ = P (l)x(l) have i.i.d N (0, σ2∥x(l)∥22) entries. Let

κ :=
1

3
2

√
π
ln 3 lnn+ 1√

2π 2n−log2 n−1

. (63)
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For any 0 < δ < 1, with z(i) :=
ξ(i)−0

σ∥x(l)∥2
(i = 1, 2), by Lemmas 3, 4, & 9,

P[ξ(1) − ξ(2) ≤ δκσ∥x(l)∥2] = P[z(1) − z(2) ≤ δκ] (64)

=

∫ +∞

−∞

∫ z(2)+δκ

z(2)

n(n− 1)φ(z(1))φ(z(2))Φ(z(2))
n−2 dz(1) dz(2) (65)

= n(n− 1)

∫ +∞

−∞

∫ z(2)+δκ

z(2)

φ(z(1)) dz(1) φ(z(2))Φ(z(2))
n−2 dz(2) (66)

= n(n− 1)

∫ +∞

−∞
(Φ(z(2) + δκ)− Φ(z(2)))φ(z(2))Φ(z(2))

n−2 dz(2) (67)

= n(n− 1)

(∫ 0

−∞
+

∫ +∞

0

)
(Φ(z(2) + δκ)− Φ(z(2)))φ(z(2))Φ(z(2))

n−2 dz(2) (68)

≤ n(n− 1)

(∫ 0

−∞

δκ√
2π

φ(z(2))Φ(z(2))
n−2 dz(2) +

∫ +∞

0

δκφ(z(2))φ(z(2))Φ(z(2))
n−2 dz(2)

)
(69)

= δκn(n− 1)

(
1√
2π

∫ 0

−∞
φ(z(2))Φ(z(2))

n−2 dz(2) +

∫ +∞

0

Φ(z(2))
n−2φ(z(2))

2 dz(2)

)
(70)

= δκn(n− 1)

(
1√
2π

Φ(0)n−1 − Φ(−∞)n−1

n− 1
+

∫ +∞

0

Φ(z(2))
n−2φ(z(2))

2 dz(2)

)
(71)

= δκn(n− 1)

(
1√

2π(n− 1)2n−1
+

∫ +∞

0

Φ(z(2))
n−2φ(z(2))

2 dz(2)

)
(72)

≤ δκn(n− 1)

(
1√

2π(n− 1)2n−1
+

3

2

√
π

ln 3

√
lnn

n(n− 1)

)
(73)

= δκ

(
3

2

√
π

ln 3
lnn+

n√
2π 2n−1

)
= δκ

(
3

2

√
π

ln 3
lnn+

1√
2π 2n−log2 n−1

)
= δ. (74)

This implies P[ξ(1) − ξ(2) > δκσ∥x(l)∥2] ≥ 1− δ. It follows that with probability at least 1− δ,

ESS(π(l)) ≤
(
1 +

1

eξ(1)−ξ(2)−ln(n−1)

)2
≤
(
1 +

1

eδκσ∥x(l)∥2−ln(n−1)

)2
(75)

=

1 +
1

exp

(
δσ∥x(l)∥2

3
2

√
π
ln 3 lnn+ 1√

2π 2n−log2 n−1

− ln(n− 1)

)

2

.

A.2 PROOF OF THEOREM 2

Before stating our proof of Theorem 1, we present a technical lemma that we will employ.

To simplify notation, we omit the superscript (l) in this proof. For an ordered subset I =
(i1, . . . , ik) ⊆ {1, . . . , n}, let q(I) denote the probability of sampling an ordered subset I from
q without replace:

Q(I) = Q(i1, . . . , ik) :=

k∏
j=1

qij

1−
∑j−1

j′=1 qij′
. (76)

Let Pk denote the set of permutations over {1, . . . , n}. For ϖ ∈ Pk, define the permutation action
as ϖ(i1, . . . , ik) := (iϖ(1), . . . , iϖ(k)). Let Q(I) denote the probability of sampling an unordered
subset I from q without replacement:

Q(I) = PI∼q[I] =
∑

ϖ∈Pn

Q(ϖ(I)). (77)
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Lemma 10 (swapping a pair). Given a size-k subset I ⊆ {1, . . . , n}, for a LoRA i ∈ I and another
LoRA i† ∈ {1, . . . , n} \ I, if qi ≤ qi† , then replacing i with i† increases the unordered sampling
probability:

Q((I \ {i}) ∪ {i†}) > Q(I). (78)

Proof. Say I = (i1, . . . , ik). Without loss of generality, say i1 = i, and let I† := (i†, i2, . . . , ik)
denote the ordered subset after replacing i with i†. For any permutation ϖ ∈ Pk, let jϖ := ϖ−1(1)
denote the order of i under permutation ϖ (i.e., ϖ(I)jϖ = i). Since qi ≤ qi† , then

Q(ϖ(I†))

Q(ϖ(I))
=

qi†

qi

k∏
j=jϖ+1

1−
∑j−1

j′=1 qij′

1− qi† + qi −
∑j−1

j′=1 qij′
(79)

=
qi†

qi

k∏
j=jϖ+1

1

1− q
i†−qi

1−
∑j−1

j′=1
qi

j′

(80)

≥ qi†

qi

k∏
j=jϖ+1

1 =
qi†

qi
≥ 1. (81)

This means Q(ϖ(I†)) ≥ Q(ϖ(I)). It follows that

Q((I \ {i}) ∪ {i†}) = Q(I†) =
∑

ϖ∈Pn

Q(ϖ(I†)) (82)

≥
∑

ϖ∈Pn

Q(ϖ(I)) = Q(I).

We are now ready to prove Theorem 2.

Proof of Theorem 2. Suppose that

I† :=
n

argtopk
i=1

qi ̸= I∗, (83)

where we break ties arbitrarily. We will show that this premise leads to a contradiction.

Recall that by definition,

Q(I∗) = PI∼q[I = I∗] >
1

2
. (84)

Since I† ̸= I∗, then k∩ := |I∗ ∩ I†| < k. Say I∗ \ I† = {i∗1, . . . , i∗k−k∩}, I† \ I∗ =

{i†1, . . . , i
†
k−k∩}. Construct a series of subsets inductively as follows. Define Ĩ0 := I∗. For

j = 1, . . . , k− k∩, define Ĩj by replacing i∗j from Ĩj−1 with i†j and inheriting all other LoRAs from
Ĩj−1. Finally, we have Ĩk−k∩ = I†. Since I† consists of LoRAs i with top-k qi, then qi∗j ≤ qi†j

for

all j = 1, . . . , k−k∩. Hence, by Lemma 10, Q(Ĩj) ≥ Q(Ĩj−1) for all j = 1, . . . , k−k∩. Together,

Q(I†) = Q(Ĩk−k∩) ≥ Q(Ĩk−k∩−1) ≥ · · · ≥ Q(Ĩ0) = Q(I∗) >
1

2
. (85)

It follows that

Q(I†) +Q(I∗) >
1

2
+

1

2
= 1. (86)

However, this contradicts the fact that

Q(I†) +Q(I∗) ≤
∑
I

Q(I) = 1, (87)

falsifying the premise. Therefore,
n

argtopk
i=1

qi = I∗.
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B RELATED WORK (CONT’D)

PEFT approaches can be broadly categorized into four groups: prompt tuning, prefix tuning, adapter-
based methods, and low-rank adaptation methods. Early methods such as prompt tuning (Liu et al.,
2021a; Shi & Lipani, 2023; Lester et al., 2021; Zang et al., 2022; Wang et al., 2022) and prefix tuning
(Li & Liang, 2021; Le et al., 2024; Chen et al., 2022; Petrov et al., 2023) introduce small continuous
prompts, but often struggle to scale to deeper layers or larger models due to limited expressivity.
Adapter-based methods (He et al., 2022; Rücklé et al., 2020; Jie et al., 2023) mitigate some of these
issues by inserting lightweight bottleneck modules into transformer layers. However, as the depth
and dimensionality of models increase, the parameter overhead of adapters can become substantial,
creating significant bottlenecks in computation and scalability. To address these limitations, low-
rank adaptation methods (Hu et al., 2022; Valipour et al., 2022; Zhang et al., 2023; Yang et al.,
2023) are proposed. These methods inject rank-constrained updates into weight matrices, striking
a favorable balance between expressivity and parameter cost, and have become a de facto standard
for many adaptation tasks. Specifically, LoRA (Hu et al., 2022) introduces two trainable low-rank
matrices while keeping the original model weights frozen. By training these matrices to approximate
parameter perturbations, LoRA achieves effective fine-tuning with minimal overhead. Building
on this idea, DyLoRA (Valipour et al., 2022) dynamically trains LoRA modules across a range
of ranks within a predefined budget rather than fixing the rank. AdaLoRA (Zhang et al., 2023)
reformulates parameter perturbations using singular value decomposition (SVD), fine-tuning across
the three SVD components for improved flexibility. Laplace-LoRA (Yang et al., 2023) takes a
Bayesian perspective, applying a post-hoc Laplace approximation to the posterior distribution over
LoRA parameters, thereby offering a principled uncertainty-aware extension.

C USE OF LLMS

We have used multiple LLMs (including ChatGPT, Gemini, Claude, and Llama) to refine paper
writing and to draft the LATEX code of mathematical equations.
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