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Abstract

Self-supervised learning converts raw perceptual
data to a compact space using Euclidean distances
to measure variations in data. In this paper, we
enhance the embedding space by enforcing trans-
formations of input space to correspond to sim-
ple (i.e., linear) transformations of embedding
space. Specifically, in the contrastive learning set-
ting, we introduce an equivariance objective and
theoretically prove and empirically demonstrate
that its minima forces augmentations on inputs
to correspond to rotations on the spherical em-
bedding space. Our method, CARE: Contrastive
Augmentation-induced Rotational Equivariance,
improves performance on downstream tasks by
only allowing small rotations.

1. Introduction

Understanding the ideal structure of neural network repre-
sentation spaces for intelligent behavior to emerge remains
limited (Ma et al., 2022). Learning low-dimensional spaces
where simple Euclidean distances effectively measure data
similarity is a key factor. Recent advancements have success-
fully achieved this at web-scale using self-supervision (Chen
et al., 2020; Radford et al., 2021). However, many use cases
require richer structural relationships, such as encoding ob-
ject relations (e.g., parent-child or treatment-object) through
simple transformations of embeddings, which has driven
learning in knowledge graphs. (Bordes et al., 2013; Ya-
sunaga et al., 2022). But, similar capabilities have been no-
tably absent from existing self-supervised learning recipes.

Recent contrastive self-supervised learning approaches have
explored ways to close this gap by ensuring input transfor-
mations a 2 A correspond to predictable transformations
Ta in embedding space i.e., f(a(x)) ⇡ Taf(x), a notion
called equivariance (Dangovski et al., 2022; Devillers &
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Lefort, 2023; Garrido et al., 2023; Bhardwaj et al., 2023).
Typically, a learnable feed-forward network is used as Ta,
resulting in complex and hard-to-interpret relationships be-
tween the embeddings of x and a(x). It also suffers from
geometric pathologies, such as inconsistency under compo-
sitions: Ta2�a1f(x) 6= Ta2Ta1f(x).

To address these concerns, we propose CARE, an equivari-
ant contrastive learning framework that learns to approxi-
mately translate augmentations in the input space (such as
cropping, blurring, and jittering) into simple local linear

transformations in feature space. Here, we use the sphere as
our feature space (the standard space for contrastive learn-
ing), so we specifically consider transformations that are
isometries of the sphere: rotations and reflections, i.e., or-
thogonal transformations. CARE trains f to preserve angles,
i.e., f(a(x))>f(a(x0)) ⇡ f(x)>f(x0), a property that must
hold if f is orthogonally equivariant. We show that achiev-
ing low error on this seemingly weaker property also im-
plies approximate equivariance and enjoys consistency un-
der compositions. Critically, we can easily integrate CARE
into contrastive learning workflows since both operate by
comparing pairs of data.

2. Rethinking how augmentations are used in

self supervised learning

This work introduces CARE, an equivariant contrastive learn-
ing approach respecting two key design principles:

Principle 1. The map Ta satisfying f(a(x)) = Taf(x)
should be linear, where f : X ! Sd�1

is a feature extract-

ing model mapping to the unit sphere.

Principle 2. Equivariance should be learned from pairs of

data, as in invariant contrastive learning.

The first principle asks that f converts complex perturba-
tions a of input data into much simpler (i.e., linear) transfor-
mations in embedding space. Specifically, we constrain the
complexity of Ta by considering isometries of the sphere,
O(d) = {Q 2 Rd⇥d : QQT = QTQ = I}, containing
all rotations and reflections. Throughout this paper we de-
fine f(a(x)) = Taf(x) for Ta 2 O(d) to be orthogonal

equivariance. This approach draws heavily from ideas in
linear representation theory (Curtis & Reiner, 1966; Serre
et al., 1977), which studies how to convert abstract group
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Figure 1: CARE is an equivariant contrastive learning approach that trains augmentations (cropping, blurring, etc.) of input
data to correspond to orthogonal transformations of embedding space.

structures into matrix spaces equipped with standard matrix
multiplication as the group operation.

The second principle stipulates how we want to learn or-
thogonal equivariance. Our method, CARE, explicitly learns
Ta by training f so that an augmentation a applied to two
different inputs x, x+ 2 X produces the same change in
embedding space.

encodes data augmentations (cropping, blurring, jittering,
etc.) as O(d) transformations of embeddings using an
equivariance-promoting objective function. CARE can be
viewed as an instance of symmetry regularization, a term
introduced by (Shakerinava et al., 2022).

3. CARE: Contrastive Augmentation-induced

Rotational Equivariance

This section introduces a simple and practical approach for
training a model f : X ! Sd�1 so that f is orthogonally
equivariant: i.e., a data augmentation a ⇠ A (cropping,
blurring, jittering, etc.) applied to any input x 2 X causes
the embedding f(x) to transformed by the same Ra 2 O(d)
for all x 2 X : f(a(x)) = Raf(x).

To achieve this, we consider the loss Lequi(f) =

Ea⇠AEx,x0⇠X
⇥
f(a(x0))>f(a(x))� f(x)>f(x0)

⇤2

This is necessarily true if f is orthogonally equivariant or,
more generally, Ra 2 O(d) exists. But the converse—that
Lequi = 0 implies orthogonal equivariance—is non-obvious
and is theoretically analyzed in Section 3.1.

A trivial but undesirable solution that minimizes Lequi
is to collapse the embeddings of all points to be the
same (see Figure 2). One natural approach to avoid-
ing trivial solutions is to combine the equivariance
loss with a non-collapse term such as the uniformity
Lunif(f) = logEx,x0⇠X exp

�
f(x)>f(x0)

�
(Wang & Isola,

2020) whose optima f distribute points uniformly over the
sphere L(f) = Lequi(f) + Lunif(f). This is directly com-

parable to the InfoNCE loss, which can similarly be de-
composed into two terms LInfoNCE(f) = Linv(f) + Lunif(f)
where Linv(f) = Ea,a0⇠Akf(a(x)) � f(a0(x))k is mini-
mized when f is invariant to A—i.e., f(a(x)) = f(x). Fig-
ure 2 shows that training using Lequi+Lunif yields non-trivial
representations. However, the performance is below that
of invariance-based contrastive learning approaches. We
hypothesize that this is because data augmentations—which
make small perceptual changes to data—should correspond
to small perturbations of embeddings, which Lequi does not
enforce.

To rule out this possibility, we introduce CARE: Contrastive
Augmentation-induced Rotational Equivariance. CARE ad-
ditionally enforces the orthogonal transformations in embed-
ding space to be localized by reintroducing an invariance
loss term Linv to encourage f to be approximately invari-
ant. Doing so breaks the indifference of Lequi between large
and small rotations, biasing towards small. Specifically, we
propose the following objective that combines our equiv-
ariant loss with InfoNCE LCARE(f) = Linv(f) + Lunif(f) +
�Lequi(f) where � weights the equivariant loss.

3.1. Theoretical properties of the orthogonally

equivariant loss

Proposition 1. Suppose Lequi(f) = 0. Then for almost

every a 2 A, there is an orthogonal matrix Ra 2 O(d)
such that f(a(x)) = Raf(x) for almost all x 2 X .

Figure 1 illustrates this result. This result can be expressed
as the existence of a mapping ⇢ : A ! O(d) that encodes
the space of augmentations within O(d). This raises a nat-
ural question: how much of the structure of A does this
encoding preserve?

Corollary 1. If Lequi(f) = 0, then ⇢ : A ! O(d) given by

⇢(a) = Ra satisfies ⇢(a0 � a) = ⇢(a0)⇢(a) for almost all

a, a0. That is, ⇢ defines a group action on Sd�1
up to a set

of measure zero.
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Figure 2: Ablating different loss terms. Combining Lequi with a unifor-
mity promoting non-collapses term suffices to learn non-trivial features.
However, optimal performance is achieved when encouraging smaller

rotations, as in CARE. ResNet-50 models pretrained on CIFAR10 and
evaluated with linear probes.

Figure 3: CARE learns a representation space
with better rotational equivariance. We compare
the models by the error of optimally rotating a
set of embeddings to match the embeddings of
augmented inputs, known as Wahba’s problem
(Section 4).

Formally, this result states that if A is a semi-group, then
⇢ : A ! O(d) defines a group homomorphism, or a linear
group representation of A (Curtis & Reiner, 1966). This
property does not hold for non-linear actions (Devillers &
Lefort, 2023).

3.2. Extensions to other groups

Notably, the computation of Lequi solely relies on pairwise
data instances x, x0 2 X , so it naturally aligns with the
contrastive learning paradigm that already works with pairs
of data. By changing the inner product, our method applies
to other groups that are defined as stabilizers of bilinear
forms, such as the Lorentz group, or the symplectic group.

Such extensions to other groups also allow us to use CARE
for different embedding space geometries, such as hyper-
bolic space for self-supervised learners (Ge et al., 2022).
If we constrain our embedding to a hyperboloid model of
hyperbolic space, then linear isometries of this space are pre-
cisely the Lorentz group. Hence, using our equivariance loss
with the Minkowski inner product replacing the Euclidean
inner product would allow us to learn hyperbolic representa-
tions that transform the embeddings according to the action
of the Lorentz group. Further discussions on extensions to
other groups and geometries are given in Appendix D.

4. Measuring orthogonal action on embedding

space

Wahba’s problem. We sample a batch of data {xi}ni=1 and
an augmentation a and measure how applying a transforms
the embeddings of each xi consistently. Let F and Fa 2

Rd⇥n have ith columns f(xi) and f(a(xi)) respectively,
then we compute the error Wf = minR2SO(d) kRF �
FakFro. Here, k · kFro represents the Frobenius norm. If
Wf = 0, it means that f(a(xi)) = Raf(xi) holds for all i.
This problem is widely known as Wahba’s problem.

Relative rotational equivariance. We de-
fine a metric for measuring the equivari-
ance relative to the invariance of f , �f =

Ea⇠AEx,x0⇠X

(
(kf(a(x0))�f(a(x))k2�kf(x0)�f(x)k2)2

(kf(a(x0))�f(x0)k2+kf(a(x))�f(x)k2)2

)
.

Details about the metric and the corresponding experimen-
tal results are provided in Appendix H.2.1

5. Experiments

We examine the representations learned by CARE, as well
as those obtained from purely invariance-based contrastive
approaches. We study three aspects of our model: 1) quali-
tative measures of orthogonal equivariance, 2) quantitative
evaluation of the effect of equivariance on sensitivity to data
transforms, and 3) performance of features learned by CARE
on image classification tasks. Results for qualitative mea-
sures and detailed experiment configurations are presented
in Appendix H.2.1 and G, respectively.

5.1. Quantitative measures for orthogonal equivariance

Wahba’s Problem We compare ResNet-18 models pre-
trained with CARE and with SimCLR on CIFAR10. For
each model, we compute the optimal value Wf of Wahba’s
problem, as introduced in Section 4, over repeated trials.
In each trial, we sample a single augmentation a ⇠ A at
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Figure 4: Top-1 linear readout accuracy (%) on CIFAR10, CIFAR100, STL10 and ImageNet100. All results are from 5
independent seed runs for the linear probe. We refer to the model trained using CARE with SimCLR or MoCo-v2 backbone
as CARESimCLR and CAREMoCo-v2 respectively.

random and compute Wf for f = fCARE and f = fSimCLR
over the test data. We repeat this process 20 times and plot
the results in Figure 3, where the colors of dots indicate the
sampled augmentation. Results show that CARE has a lower
average error and worst-case error. Furthermore, comparing
point-wise for a single augmentation, CARE achieves lower
error in nearly all cases.

Results for relative rotational equivariance metric are re-
ported in Appendix H.2.1

5.2. Linear probe for image classification

We examine the quality of features learned by CARE for
solving image classification tasks on four benchmarks: CI-
FAR10, CIFAR100, STL10, and ImageNet100 using CARE,
SimCLR and MoCo-v2 (see Appendix G for details). Fig-
ure 4 shows consistent improvements in performance using
CARE, showing the benefits of our structured embedding
approach for image recognition tasks.

Detailed discussion about the limitations and broader impact
of our work is provided in Appendix I.
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