
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Finding Densest Subgraphs with Edge-Color Constraints
Anonymous Author(s)

∗

ABSTRACT

Finding densest subgraphs is a classical graph-mining problem that

has many applications in Web-data analysis, such as identifying

groups of related Web documents, finding communities of users,

detecting fraudulent behavior, and more. In this paper, we consider

a variant of the densest subgraph problem in networks with sin-

gle or multiple edge attributes. For example, in a social network,

the edge attributes may describe the type of relationship between

users, such as friends, family, or acquaintances, or different types of

communication between users. For conceptual simplicity, we view

the attributes as edge colors. The new problem we address is to find

a diverse densest subgraph that fulfills given requirements on the

numbers of edges of specific colors. When searching for a dense so-

cial network community, our problem will enforce the requirement

that the community is diverse according to criteria specified by

the edge attributes. We show that the decision versions for finding

exactly, at most, and at least h colored edges densest subgraph,

where h is a vector of color requirements, are NP-complete, for

already two colors. For the problem of finding a densest subgraph

with at least h colored edges, we provide a linear-time constant-

factor approximation algorithm when the input graph is sparse. On

the way, we introduce the related at least ℎ (non-colored) edges

densest subgraph problem, show its hardness, and also provide a

linear-time constant-factor approximation. In our experiments, we

demonstrate the efficacy and efficiency of our new algorithms.

CCS CONCEPTS

• Information systems→ Social networks; • Theory of com-

putation→ Graph algorithms analysis.

KEYWORDS

Density, Densest subgraph, Diversity, Social networks

ACM Reference Format:

Anonymous Author(s). 2018. Finding Densest Subgraphs with Edge-Color

Constraints. In Proceedings of Make sure to enter the correct conference title

from your rights confirmation emai (Conference acronym ’XX). ACM, New

York, NY, USA, 12 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION

Graph analysis plays a pivotal role in understanding the intricate

structure of the World Wide Web, offering insights into the rela-

tionships and connections that underpin its vast digital landscape.

Finding densest subgraphs is a classical graph-theoretic problem

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00

https://doi.org/XXXXXXX.XXXXXXX

Figure 1: Example for the at least h colored edges densest

subgraph problem in a toy social network with two rela-

tionship types. The subgraph induced by 𝑆1 is the densest

unconstrained subgraph. If we require the densest subgraph

to contain at least four edges of type two (red dashed), the

graph induced by 𝑆2 is optimal.

and one of the most fundamental issues in graph data mining and

social network analyses [20, 29]. In one of its most basic versions of

the densest-subgraph problem (DSP), we are given an undirected fi-

nite graph𝐺 = (𝑉 , 𝐸), and the goal is to find a subset of nodes 𝑆 ⊆ 𝑉
such that the induced subgraph maximizes the ratio between edges

and nodes |𝐸 (𝑆) |/|𝑆 |. Examples of the many Web-related applica-

tions are, e.g., community detection in social networks [11, 15, 40],

real-time story identification [3], identifying malicious behavior

in financial transaction networks [28] or link-spam manipulating

search engines [19], and team formation in social networks [17, 35].

The problem also has applications in other domains such as, e.g., an-

alyzing biological networks [36, 42], or general applications in data

structures like indexing of reachability and distance queries [12].

Recently, the increasing interest in algorithms that ensure fairness

or diversity [27, 33] has been extended to finding diverse dense sub-

graphs. Anagnostopoulos et al. [1] and Miyauchi et al. [34] discuss

variants of the DSP that include fairness and diversity properties

in graphs with respect to the node attributes.

Our work:We introduce new problem definitions for finding edge-

diverse dense subgraphs in graphs with categorical edge attributes,

which we, for conceptual simplicity, denote as edge colors. More

specifically, we introduce the problems of finding a densest sub-

graph with at least h colored edges, where the vector h contains

for each attribute, i.e., color, the minimum number of edges that

are required to be in the solution. Similarly, we define two variants

for exactly and at most h colored edges. Figure 1 shows a small

toy example of a network containing two different relationship

types. Computing the standard densest subgraph leads to the mono-

chrome subgraph induced by 𝑆1. To obtain a diverse subgraph that

also contains edges of relationship type two, we apply the at least h
colored edges densest subgraph variant and can identify the densest

subgraph induced by 𝑆2 that contains edges of relationship type

two. We can apply our new problem in the following scenarios in

Web-related networks.

Web Graph Analysis: Consider a large web graph in which nodes

represent online articles published on websites or blogs and edges

represent relations between articles. The edges can represent, e.g.,

1

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

citations, extensions, or hyperlinks between the websites. Addi-

tionally, the edges are annotated with meta-information further

describing the relationship, e.g., shared topic, type of relationship

between the articles, agreement, refusal, or sentiment between

articles. Now, a typical task is to obtain a summary highlighting

the most interconnected parts of the network [28, 29]. However,

without further restrictions on the edge attributes, the resulting

subgraph may completely ignore or exclude specific attributes that

are not part of the unconstrained densest subgraph. Using the at

least h colored densest subgraph, a user has the possibility to in-

clude specific attributes into the network summary by setting the

corresponding entries in the requirement vector h to the minimum

number of included relations between the articles.

Online Social Network Analysis: The participants of large-scale

social networks are commonly connected to hundreds or even thou-

sands of other users. Typically, user relationships are heterogenic

and can be distinguished in, e.g., friendship, family membership,

acquaintance, or work colleague [23]. Additionally, the strength of

the relationship is often classified into weak and strong ties, where

weak ties often have the capacity to bridge diverse social groups

and facilitate the flow of information [22, 38]. By requiring specific

numbers of edge attributes, we identify densest subgraphs related

across multiple attribute dimensions. In addition to mere intercon-

nections, the resulting dense subgraphs embody communities with

diverse relationships. Moreover, identifying dense subgraphs with

minimal specific relationships can be advantageous for subsequent

tasks, such as content recommendation. For instance, a dense sub-

graph including many weak professional connections can form the

foundation for recommending new professional contacts bridging

into new social groups.

Contributions: Our contributions are the following.

(1) We introduce new variants of diverse densest subgraph prob-

lems in edge-colored graphs. We are interested in finding

densest subgraphs that contain exactly ℎ𝑖 , at most ℎ𝑖 , or at

least ℎ𝑖 edges of color 𝑖 ∈ [𝜋] where 𝜋 is the number of colors

in the graph. We discuss variants of the problems in which

each edge either has a single or multiple colors. We show that

the corresponding decision problems are NP-complete.

(2) For the problem of at least h colored edges in sparse graphs

we introduce a linear-time O(1) approximation algorithm.

(3) As an additional result, we introduce the densest subgraph

problem with at least ℎ (non-colored) edges, show that the

problem is NP-hard as well, and also provide a linear-time

O(1) approximation algorithm.

(4) We evaluate our algorithms on real-world networks and

demonstrate that (i) our approximation algorithms have very

low relative approximation errors, in most cases under one

percent, and (ii) are highly efficient computable.

Please refer to Appendix A for the omitted proofs.

2 RELATEDWORK

Finding densest subgraphs. Finding densest subgraphs is a fun-

damental problem in network analysis and has a variety of applica-

tions. The problem has gained increasing interest in recent years,

both in theoretical computer science and data-mining communities.

An extensive review of the densest subgraph problem, its variants,

properties, and algorithms is beyond the scope of this paper, so

here we discuss only the most relevant work. For a recent survey

on the topic, we refer the reader to Lanciano et al. [28].

The unconstrained version of the problem, when the density

of a subgraph induced by a subset of vertices 𝑆 ⊆ 𝑉 of a graph

𝐺 = (𝑉 , 𝐸) is defined as 𝑑 (𝑆) = |𝐸 (𝑆) |/|𝑆 |, is solvable in polyno-

mial time via max-flow computations [21]. For a more efficient

but approximate solution, a linear-time greedy algorithm, which

removes iteratively the node of the smallest degree and returns the

best solution encountered, provides an approximation ratio equal

to two [4, 9]. That type of greedy algorithm is often referred to as

peeling. Recently, Chekuri et al. [10] provided an almost linear-time

flow-based algorithm, approximating the densest subgraph prob-

lem within (1 + 𝜖). Chekuri et al. [10] also analyzed an iterative

peeling algorithm proposed by Boob et al. [7] and showed that it

converges to optimality. Research has also focused on the problems

of finding densest subgraphs with at most 𝑘 nodes (Dam𝑘S), at least

𝑘 nodes (Dal𝑘S), and exactly 𝑘 nodes (D𝑘S). The D𝑘S problem is

NP-hard, even when restricted to graphs of maximum degree equal

to 3 [16], and the best-known approximation ratio is O(𝑛1/4) [6].
With respect to the upper-bound variant, Khuller and Saha [26]

showed that an 𝛼-approximation for the Dam𝑘S problem leads to

an 𝛼/4-approximation for D𝑘S.

More related to our work is the Dal𝑘S problem, which is also NP-
hard [26]. Andersen and Chellapilla [2] designed a linear-time 1/3-

approximation algorithm based on greedy peeling, while Khuller

and Saha [26] provided two algorithms, both yielding a 1/2-approx-

imation, using flow computations and solving an LP, respectively.

Finally, our work is related to finding densest subgraphs in multi-

layer networks. Galimberti et al. [18] discussed the 𝑘-core decompo-

sition and densest subgraph problems for multilayer networks and

provided an approximation algorithm for a different formulation

than the one we study in this paper. We experimentally compare

our algorithm with the method of Galimberti et al. [18] and show

that our approach finds denser subgraphs.

Diverse densest subgraphs. Two recent works consider diversity

in finding densest subgraphs. Anagnostopoulos et al. [1] introduce

the fair densest subgraph problem. The authors consider graphs

with nodes labeled by two colors, and the goal is to find a subset of

nodes that contains an equal number of colors. They show that their

problem is at least as hard as the Dam𝑘S problem. Moreover, they

propose a spectral algorithm based on ideas by Kannan and Vinay

[25]. In the secondwork,Miyauchi et al. [34] discuss generalizations

of the problem introduced by Anagnostopoulos et al. [1]. They

introduce two problem variants. The first problem guarantees that

no color represents more than some fraction of the nodes in the

output subgraph. The second problem is the “node version” of the

problem we discuss, i.e., they study the densest subgraph problem,

in which, given a vector of cardinality demands for each color class,

the task is to find a densest subgraph fulfilling the demands.

Both of these works focus on node-attributed graphs, while we

study the densest subgraph problem for edge-attributed graphs.

3 PROBLEM DEFINITIONS

We use N to denote the natural numbers (without zero). Further-

more, for 𝑥 ∈ N, we use [𝑥] to denote the set {1, . . . , 𝑥}. Vectors are
2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Finding Densest Subgraphs with Edge-Color Constraints Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

denoted in boldface, e.g., h ∈ N𝑥 , and ℎ𝑖 represents the 𝑖-th entry

of h. An undirected, simple graph𝐺 = (𝑉 , 𝐸) consists of a finite set
of vertices𝑉 and a finite set 𝐸 ⊆ {{𝑢, 𝑣} ⊆ 𝑉 | 𝑢 ≠ 𝑣} of undirected
edges. We define 𝑛 = |𝑉 | and 𝑚 = |𝐸 |. An edge-colored graph

𝐺 = (𝑉 , 𝐸, 𝑐) is a graph with an additional function 𝑐 : 𝐸 → 2
N

assigning sets of colors to the edges. For notational convenience,

we write 𝑐 (𝑒) = 𝑖 instead of 𝑐 (𝑒) = {𝑖} if edge 𝑒 ∈ 𝐸 is assigned a

single color. For 𝑆 ⊆ 𝑉 , we define 𝐸 (𝑆) = {{𝑢, 𝑣} ∈ 𝐸 | 𝑢, 𝑣 ∈ 𝑆}
and 𝐺 (𝑆) = (𝑆, 𝐸 (𝑆)) the subgraph induced by 𝑆 .

Definition 1. Given an edge-colored graph 𝐺 = (𝑉 , 𝐸, 𝑐), a number

of colors 𝜋 ∈ N, and a vector h ∈ N𝜋 , find a subset 𝑆 ⊆ 𝑉 such that

• 𝐸 (𝑆) contains at least ℎ𝑖 edges with 𝑖 ∈ 𝑐 (𝑒) for all 𝑖 ∈ [𝜋], and
• the density 𝑑 (𝑆) = |𝐸 (𝑆) ||𝑆 | is maximized.

Similarly, we define the exactly h and the at most h colored edges

densest subgraph problem variants.

We can check the feasibility for the at least h and the exactly h
colored edges variants in linear time by counting the occurrences of

colors 𝑖 ∈ [𝜋] at all edges in 𝐺 . In the case of the at most h colored

edges variant, the empty subgraph is a feasible solution. Hence, in

the following, we do not make the feasibility check explicit and

consider instances to be feasible.

Complexity. In contrast to the standard variant of the densest

subgraph problem, which can be solved optimally in polynomial

time, adding constraints on the numbers of colored edges makes

the problems hard. Indeed, we show hardness already for the case

that each edge is colored by one of only two colors.

Theorem 1. The decision versions of the exactly, at most, and at

least h colored edges version are NP-complete.

The proofs are based on reductions from the 𝑘-clique problem

and are provided in detail in Appendix A.1.

4 APPROXIMATION IN SPARSE GRAPHS

In this section, we present a O(1)-approximation for at least h
colored edges densest subgraph problem (in the following also

denoted as alhcEdgesDSP) for everywhere sparse graphs.

We call a graph 𝐺 = (𝑉 , 𝐸) sparse if |𝐸 | = O(|𝑉 |). A graph

𝐺 = (𝑉 , 𝐸) is everywhere sparse if for any subset 𝑉 ′ ⊆ 𝑉 the by 𝑉 ′

induced subgraph 𝐺 (𝑉 ′) is sparse. We first focus on the case that

each edge in the graph is assigned a single color and discuss the

general case in Section 4.3.

Our approximation for alhcEdgesDSP is based on finding dens-

est subgraphs with at least ℎ edges (ignoring colors of the edges).

We define the problem as follows.

Definition 2 (At least ℎ edges densest subgraph problem). Given

a graph 𝐺 = (𝑉 , 𝐸) and ℎ ∈ N, find a subset 𝑆 ⊆ 𝑉 such that

|𝐸 (𝑆) | ≥ ℎ, and the density 𝑑 (𝑆) = |𝐸 (𝑆) ||𝑆 | is maximized.

We denote the problem with atLeastHEdgesDSP and show that

this problem without colors is already hard.

Theorem 2. The decision problem of the at least ℎ edges DSP is

NP-complete.

4.1 Solving the at Least ℎ-Edges DSP

First, assume we have an algorithm for the at least 𝑘-nodes DSP

problem. We can use it to solve the at least ℎ-edges DSP problem

(atLeastHEdgesDSP). To this end, let ℓ (ℎ) a lower bound on the

number of nodes of a graph with at least ℎ edges. For generality,

define the lower bound ℓ (ℎ, 𝑝) for graphs with up to 𝑝 parallel edges
between two nodes and define ℓ (ℎ) = ℓ (ℎ, 1) (we use the general
version for the case of multigraphs as discussed in Section 4.3).

Lemma 1. Let 𝐺 = (𝑉 , 𝐸) be a graph with |𝐸 | ≥ ℎ and at most 𝑝

parallel edges between each pair of nodes. Then ℓ (ℎ, 𝑝) = 1

2
+
√
𝑝2+8ℎ𝑝
2𝑝 .

Proof. The number of nodes of a graph with |𝐸 | = ℎ is mini-

mized if 𝐺 is complete and there are 𝑝 parallel edges between each

pair of nodes, i.e., ℎ = 𝑝
(|𝑉 |
2

)
. Solving for |𝑉 | leads to ℓ (ℎ, 𝑝). □

Algorithm 1: Algorithm for atLeastHEdgesDSP

Input: Graph 𝐺 = (𝑉 , 𝐸) and ℎ ∈ N
Output: Densest subgraph with at least ℎ edges

1 for 𝑖 ∈ {ℓ (ℎ), . . . , 𝑛} do
2 Compute the at least 𝑖 nodes DSP 𝑆𝑖

3 return 𝑆𝑖 with maximal density and at least ℎ edges

The following lemma establishes a connection between the at

least 𝑘 nodes and at least ℎ edges DSP.

Lemma 2. Given a graph 𝐺 and ℎ ∈ N. Let 𝑘 be the minimum

number of nodes over all graphs that are densest subgraphs of𝐺 with

at least ℎ edges. Furthermore, let 𝑆 be an optimal solution for the at

least 𝑘-nodes DSP problem in 𝐺 . Then 𝑆 is also an optimal solution

for the densest subgraph with at least ℎ edges.

Based on Lemma 2 Algorithm 1 computes the solution of the at

least ℎ edges DSP.

Theorem 3. Algorithm 1 is optimal for atLeastHEdgesDSP.

Proof. Algorithm 1 computes an optimal solution of the at

least 𝑖-nodes DSP for each 𝑖 ∈ {ℓ (ℎ), . . . , 𝑛}. We know that the

optimal solution of atLeastHEdgesDSP has at most 𝑛 nodes. Due

to Lemma 2, Algorithm 1 discovers at least one optimal solution 𝑆

of the densest subgraph with at least ℎ edges. Finally, an optimal

solutionwill be returned as Algorithm 1 returns the 𝑆𝑖 withmaximal

density and at least ℎ edges. □

Now, let𝐺 be an everywhere sparse graph, and assume we have

an 𝛼-approximation algorithm for the at least 𝑘-nodes DSP problem.

We can obtain an O(1)-approximation for the least ℎ-edges DSP

problem (atLeastHEdgesDSP).

Theorem 4. Algorithm 2 gives anO(1)-approximation for atLeastH-

EdgesDSP.

Proof. Let 𝑘 be the minimum number of nodes over all graphs

that are densest subgraphs with at least ℎ edges. And, let 𝑑 (𝑆) be an
𝛼-approximation of the at least 𝑘-nodes DSP. Then, from Lemma 2,

it follows that 𝑑 (𝑆) is also an 𝛼-approximation of the at least ℎ-

edges DSP. However, 𝑆 may not be a feasible solution because it

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Algorithm 2: Algorithm for atLeastHEdgesDSP

Input: Everywhere sparse graph 𝐺 = (𝑉 , 𝐸) and ℎ ∈ N
Output: Approx. of densest subgraph with at least ℎ edges

1 for 𝑖 ∈ {ℓ (ℎ), . . . , 𝑛} do
2 𝛼-approximate the at least 𝑖-nodes DSP and obtain

solution 𝑆𝑖

3 if 𝐺 (𝑆𝑖) does not have at least ℎ edges then

4 add edges to𝐺 (𝑆𝑖) to obtain𝐺 ′
𝑖
with at least ℎ edges

5 return 𝐺 ′
𝑖
with maximum density

may have less than ℎ edges, i.e., |𝐸 (𝑆) | < ℎ. Assume that for a

constant 𝑐1 ∈ N the result of the 𝛼-approximation, it holds that

𝑐1 |𝐸 (𝑆) | ≥ |𝐸 (𝑆∗) | ≥ ℎ, where 𝑆∗ is the optimal solution for the at

least 𝑖-nodes DSP. Algorithm 2 adds the possibly missing edges to

obtain the subgraphs 𝐺 ′
𝑖
= (𝑆 ′

𝑖
, 𝐸′

𝑖
) (line 4). At most ℎ edges and 2ℎ

nodes are added, and |𝑆 ′
𝑖
| ≤ |𝑆 | + 2ℎ ≤ |𝑆 | + 2𝑐1 |𝐸 (𝑆) | ≤ 𝑐 |𝑆 | where

the last inequality holds due to the everywhere sparseness property

of 𝐺 for a large enough constant 𝑐 ∈ N. Consequently,

𝑑 (𝑆 ′) = |𝐸 (𝑆
′) |

|𝑆 ′ | ≥
|𝐸 (𝑆) |
𝑐 |𝑆 | =

1

𝑐
𝑑 (𝑆) ≥ 1

𝑐𝛼
𝑑∗,

where 𝑑∗ is the optimal density. □

The assumption that 𝑐1 |𝐸 (𝑆) | ≥ |𝐸 (𝑆∗) | ≥ ℎ with 𝑐1 ∈ N holds

for example for the 2-approximation and 3-approximation algo-

rithms provided by Khuller and Saha [26] and Andersen and Chel-

lapilla [2], respectively.

The running time complexity of Algorithm 2 is in O(𝑛(𝑇appr +
ℎ)) with 𝑇appr being the running time of the at least 𝑖 nodes DSP

approximation as we have 𝑛 rounds and in each round we call the

approximation and have to add at most ℎ edges to obtain𝐺 ′
𝑖
. Using

the 3-approximation algorithm by Andersen and Chellapilla [2]

based on the 𝑘-core computation, we can obtain an approximation

with total running time in O(𝑛 +𝑚).

Algorithm 3: Approximation for atLeastHEdgesDSP

Input: Everywhere sparse graph 𝐺 = (𝑉 , 𝐸) and ℎ ∈ N
Output: Approx. of densest subgraph with at least ℎ edges

1 𝐺0 ← 𝐺 , 𝑖 ← 0, and 𝑖max ← 0

2 while |𝐸 (𝐺𝑖) | ≥ ℎ do

3 𝑖max ← 𝑖

4 Increment 𝑖

5 Let 𝑣𝑖 be a node with minimum degree

6 𝐺𝑖 ← 𝐺𝑖−1 \ {𝑣𝑖 } // remove 𝑣𝑖 and all incident edges

7 return 𝐺𝑖 for 𝑖 ∈ {0, . . . , 𝑖max} with maximum density

Theorem 5. Algorithm 3 is a O(1)-approximation for atLeastH-

EdgesDSP with running time in O(𝑛 +𝑚).

Proof. Algorithm 3 peels away low degree nodes and thus ob-

tains 𝐺0, . . . ,𝐺𝑖max
. Assume we similarly computed the remaining

graphs 𝐺𝑖max+1, . . . ,𝐺𝑛 (as in the standard 𝑘-core decomposition).

Andersen and Chellapilla [2] showed that for each possible 𝑗 ∈ [𝑛]

one of the𝐺0, . . . ,𝐺𝑛− 𝑗 is a 3-approximation for the at least 𝑗-nodes

DSP, and the number of edges is at least 1/3 of the optimal solution.

Now, let 𝑘 be the minimum number of nodes over all graphs that

are densest subgraphs with at least ℎ edges. And, let 𝑑 (𝑆) be the 3-
approximation of the at least 𝑘-nodes DSP. Then, from Lemma 2, it

follows that 𝑑 (𝑆) is also an 3-approximation of the at least ℎ-edges

DSP. There are two cases:

(1) 𝐺 (𝑆) contains at least ℎ edges, i.e., corresponds to one of the

graphs in {𝐺0, . . . ,𝐺𝑖max
}. In this case, we are done, and 𝐺 (𝑆)

is a 3-approximation for atLeastHEdgesDSP.

(2) 𝐺 (𝑆) contains less thanℎ edges (but at least 1/3 of the optimal

solution), i.e., corresponds to a graph 𝐻 in 𝐺𝑖max+1, . . . ,𝐺𝑛−𝑘 .
In this case, we need to add edges such that 𝐺 (𝑆) is feasible.
Let 𝑆 ′ be the resulting vertex set. With similar arguments as in

the proof of Theorem 4, it follows that 𝑑 (𝑆 ′) ≥ 1

𝑐𝑑
∗
for a large

enough constant 𝑐 ∈ N and with 𝑑∗ being the optimal density.

Now, as we can choose the edges that we add to achieve

feasibility, we choose exactly the edges in 𝐸 (𝐺𝑖max
) \ 𝐸 (𝐻)

such that 𝐺 (𝑆 ′) = 𝐺𝑖max
. Note that we add in the worst case

at most 2ℎ nodes. Hence, 𝐺𝑖max
is a 𝑐-approximation.

As Algorithm 3 returns the 𝐺𝑖 ∈ {𝐺0, . . . ,𝐺𝑖max
} with maximum

density, in either case, we obtain aO(1)-approximation for atLeastH-

EdgesDSP. The running time complexity of Algorithm 3 is equal

to the peeling-based 𝑘-core decomposition, which is O(|𝑉 | + |𝐸 |)
as shown by Batagelj and Zaversnik [5]. □

4.2 Approximation of the at Least h Colored

Edges DSP

We now can use Algorithm 2 or Algorithm 3 to obtain a O(1)-
approximation for the alhcEdgesDSP problem in everywhere

sparse graphs as shown in Algorithm 4.

Algorithm 4: Approximation for alhcEdgesDSP

Input: Everywhere sparse graph 𝐺 = (𝑉 , 𝐸) and h ∈ N𝜋
Output: Approx. of densest subgr. with at least ℎ𝑖 edges of

color 𝑖 ∈ [𝜋]
1 Approximate the densest subgraph 𝐺 ′ = (𝑉 ′, 𝐸′) with at

least

∑𝜋
𝑖=1 ℎ𝑖 edges

2 Let 𝑓𝑖 be the number of edges of color 𝑖 in 𝐺 ′ for 𝑖 ∈ [𝜋]
3 𝐺 ′′ ← 𝐺 ′

4 for 1 ≤ 𝑖 ≤ 𝜋 do

5 Add max{0, ℎ𝑖 − 𝑓𝑖 } edges of color 𝑖 to 𝐺 ′′

6 return 𝐺 ′′

Theorem 6. Algorithm 4 gives an O(1)-approximation for alhc-

EdgesDSP.

Proof. Let 𝐺 ′′ = (𝑉 ′′, 𝐸′′) be the final resulting subgraph.

Because atLeastHEdgesDSP relaxes alhcEdgesDSP, we have

𝑑 (𝑉 ′) ≥ 𝑑∗
𝛼 using an 𝛼-approximation for the at least ℎ edges sub-

graph, and where 𝑑∗ is the optimal density of atLeastHEdgesDSP.

We add in total

ℓ =

𝜋∑︁
𝑖=1

max{0, ℎ𝑖 − 𝑓𝑖 } ≤
𝜋∑︁
𝑖=1

ℎ𝑖 ≤ |𝐸′ |

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Finding Densest Subgraphs with Edge-Color Constraints Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

edges to 𝐺 ′′ = (𝑉 ′′, 𝐸′′) to ensure feasibility for alhcEdgesDSP.

Because each edge adds at most two vertices and |𝑉 ′′ | ≤ |𝑉 ′ | +2ℓ ≤
|𝑉 ′ | + 2|𝐸′ | ≤ 𝑐 |𝑉 ′ | with 3 ≤ 𝑐 ∈ N and it follows

𝑑 (𝑉 ′′) = |𝐸
′′ |
|𝑉 ′′ | ≥

|𝐸′ |
𝑐 |𝑉 ′ | =

1

𝑐
𝑑 (𝑉 ′) ≥ 1

𝑐𝛼
𝑑∗. □

In Algorithm 4, after obtaining 𝐺 ′ from Algorithm 3 we might

need to add missing edges. Note that 𝐺 ′ is node-induced, and we

have to insert at least one new node. Of course, adding all edges of

the new node to 𝐺 ′′ = (𝑉 ′′, 𝐸′′) only improves the density. To add

the missing nodes, we store the nodes that are removed in the call of

Algorithm 3 that lead to missing edges. Therefore, we use a slightly

modified version Algorithm 3 as a subroutine to approximate the

at least ℎ edges DSP. During the iterations of the while-loop in

Algorithm 3, vertices and their incident edges are removed from the

graph. Here, if in iteration 𝑖 we have to remove an edge 𝑒 = {𝑢, 𝑣}
with 𝑐 (𝑒) = 𝑐 and the remaining edges of color 𝑐 is smaller than ℎ𝑐 ,

i.e., removing 𝑒 leads to a deficit of color 𝑐 edges, then we add

both endpoints of 𝑒 to a set 𝐵𝑖 , where 𝐵𝑖 = 𝐵𝑖−1 ∪ {𝑢, 𝑣} (and
𝐵0 = ∅). At the end of the subroutine, we return 𝐺𝑖 = (𝑉𝑖 , 𝐸𝑖) for
𝑖 ∈ {0, . . . , 𝑖max} with maximum density and the corresponding set

𝐵𝑖 . Note that |𝐵𝑖 | ≤ 2ℓ , i.e., for each missing colored edge, at most

two nodes are in 𝐵𝑖 . Therefore, we can just add the nodes in 𝐵𝑖 and

return as a final result of Algorithm 4 the graph𝐺 ′′ = (𝑉 ′ ∪𝐵𝑖 , 𝐸′),
which leads to a running time of O(𝑛 +𝑚) of Algorithm 4.

4.3 Graphs with Multiple Edge Colors

Up to this point, our focus was on graphs with single-colored edges.

However, in practical contexts, edges often bear multiple distinct

colors, each representing diverse aspects of node interactions. Dis-

covering the densest subgraph that illuminates these varying types

of node interactions holds intrinsic value. To accommodate this

case, we transform a simple graph with multiple edge colors into a

colored multigraph, where each edge is assigned a single color.

An undirected edge-colored multigraph𝑀 is defined as a tuple

𝑀 = (𝑉 , 𝐸𝑀 , 𝑓 , 𝑐𝑀) where 𝑉 is a finite set of vertices, 𝐸𝑀 is a

finite set of edges, 𝑓 : 𝐸𝑀 → {{𝑢, 𝑣} : 𝑢, 𝑣 ∈ 𝑉 } is a function

mapping edges to pairs of vertices, and 𝑐𝑀 : 𝐸𝑀 → N is a function

assigning to each edge a single color. If 𝑒1, 𝑒2 ∈ 𝐸𝑀 and 𝑓 (𝑒1) =
𝑓 (𝑒2), then we call 𝑒1 and 𝑒2 multiple or parallel edges. For a subset

𝑆 of vertices 𝑆 ⊆ 𝑉 , we define 𝐸𝑀 (𝑆) = {𝑒 ∈ 𝐸𝑀 | 𝑓 (𝑒) ⊆ 𝑆} and
𝑀 (𝑆) = (𝑆, 𝐸𝑀 (𝑆), 𝑓 , 𝑐𝑀) the multigraph induced by 𝑆 . The density

of𝑀 (𝑆) is defined as 𝑑 (𝑆) = |𝐸𝑀 (𝑆) ||𝑆 | .

Given an edge-colored simple graph 𝐺 = (𝑉 , 𝐸, 𝑐) with multiple

edge colors, we construct an associated multigraph, denoted as

𝑀 = (𝑉 , 𝐸𝑀 , 𝑓 , 𝑐𝑀), sharing the same set of nodes,𝑉 . For each edge

𝑒 ∈ 𝐸 and for each color 𝑖 ∈ 𝑐 (𝑒), we introduce an edge 𝑒′ into 𝐸𝑀
and assign 𝑐𝑀 (𝑒′) to be equal to 𝑖 . If𝐺 is everywhere sparse, then it

follows that𝑀 is also everywhere sparse if we consider the number

of distinct colors 𝜋 to be a small constant, which is commonly the

case for real-world networks (see, e.g., Table 1). Furthermore, note

that the density of the obtained multigraph can be larger than that

of the original graph. By counting the parallel edges separately,

we account for the fact that edges with many colors have higher

importance as they cover more of the color requirements compared

to edges with single or few colors.

The insights and results derived in previous sections extend

seamlessly to this multigraph framework, resulting in Algorithm 5

and the following theorem.

Theorem 7. Algorithm 5 gives an O(1)-approximation for alhc-

EdgesDSP on graphs with multiple edge colors.

Algorithm 5: Approximation for alhcEdgesDSP on

graphs with multiple edge colors

Input: Everywhere sparse graph 𝐺 = (𝑉 , 𝐸, 𝑐) and h ∈ N𝜋
Output: Approximation of densest subgraph with at least

ℎ𝑖 edges of color 𝑖 for 𝑖 ∈ [𝜋]
1 Transform 𝐺 = (𝑉 , 𝐸, 𝑐) into multigraph𝑀 = (𝑉 , 𝐸𝑀 , 𝑓 , 𝑐𝑀)
2 Use Line 1-3 from Algorithm 4 applied to𝑀

3 while there exists 𝑖 ∈ [𝜋] such that 𝑓𝑖 < ℎ𝑖 do

4 choose two nodes 𝑢, 𝑣 ∈ 𝑉 that are connected by an edge

of color 𝑖 and add all parallel edges between 𝑢, 𝑣 to 𝐺
′′

5 Update 𝑓𝑖 for 𝑖 ∈ [𝜋]
6 return 𝐺 ′′

5 EXPERIMENTS

In this section, we evaluate our algorithms in terms of their efficacy

and efficiency by discussing the following research questions:

Q1: How does our approximation for at least ℎ edges problem

perform in terms of approximation quality?

Q2: How does increasing ℎ affect the density and running time?

Q3: How are the colors in the data sets and the unconstrained

densest subgraphs distributed?

Q4: How does our approximation for the at least h color edges

problem perform in terms of approximation quality?

Q5: How do increasing color requirements affect the densities?

Q6: How is the efficiency of our approximation for the at least h
color edges problem in terms of running time?

Additionally, we discuss in Section 5.2, as a use case, the identifi-

cation of densest subgraphs that contain publications at popular

data mining conferences in a coauthor graph.

Algorithms: We use the following algorithms for our evaluation.

• AtLeastHApprox is the implementation of Algorithm 4 for

the at least ℎ edges DSP.

• ColApprox is the implementation of Algorithm 4 for the at

least ℎ colored edges DSP.

• AtLeastHILP and ColILP are the exact integer linear pro-

grams for finding the densest subgraph with at least ℎ edges

and the densest subgraph with at least h colored edges, re-

spectively. The ILPs are provided in Appendix B.

• Heuristic is a new baseline algorithm. As there is no baseline

available for the at least h colored edges problem (Defini-

tion 1), we introduce a heuristic, serving for comparison and

benchmarking. Given an edge colored graph𝐺 = (𝑉 , 𝐸, 𝑐), the
heuristic peels away nodes with the lowest degree as long as

all color requirements are fulfilled.

• Mlds is a state-of-the-art approximation for the multilayer

densest subgraph problem defined by Galimberti et al. [18].

The authors provided the source code.

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

We implemented our algorithms in C++ using GNU g++ compiler

11.4.0. with the flag –O3. The ILPs were implemented in Python 3.9

and ran with Gurobi 9.1.2. The experiments ran on a single machine

with an Intel i5-1345U CPU and 32GB of main memory. The source

code is available at https://gitlab.com/webconf24/ecdsp.

Data Sets: We use twelve real-world data sets from different do-

mains and a wide range of different numbers of attributes, i.e., col-

ors. Table 1 gives an overview of the statistics. We provide detailed

descriptions in Appendix C.

Table 1: Statistics of the data sets. 𝑑 (𝑆∗) denotes the density
of the unconstrained optimal densest subgraph and 𝜓 (𝐺)
denotes the maximal number of colors per edge.

Data set |𝑉 (𝐺) | |𝐸 (𝐺) | 𝑑 (𝑆∗) #Colors 𝜓 (𝐺) Category Ref.

AUCS 61 353 6.2 5 5 Multilayer social [32]

Hospital 75 1 139 16.3 5 5 Temporal face-to-face [41]

HtmlConf 113 2 196 20.5 3 3 Temporal face-to-face [24]

Airports 417 2953 16.5 37 5 Multilayer transportation [8]

Rattus 2 634 3 677 3.7 6 4 Multilayer biological [13]

FfTwYt 6 401 60 583 39.5 3 3 Multilayer social [14]

Knowledge 14 505 210 946 34.8 30 4 Knowledge graph [39]

HomoSap 18 190 137 659 38.5 7 5 Multilayer biological [18]

Epinions 131 580 592 013 85.6 2 2 Signed (trust/no trust) [30]

DBLP 344 814 1 528 399 57.0 168 21 Multilayer collaboration [31]

Twitter 346 573 1 088 260 45.1 2 2 Signed (fact/non-fact) [37]

FriendFeed 505 104 18 319 862 500.1 3 3 Multilayer social [14]

5.1 Results and Discussion

Q1–Approximation quality of AtLeastHApprox. To evaluate

the approximation error of AtLeastHApprox, we computed the at

leastℎ edges DSP for theAUCS,Hospital, andHtmlConf data sets us-

ing AtLeastHApprox and the exact ILP approach (AtLeastHILP)

for all values of𝑤 < ℎ ≤ |𝐸 (𝐺) | with𝑤 is the number of edges in

the optimal unconstrained DSP. Table 2 shows the percentage of

runs that were optimal, i.e., relative approximation error of zero,

the percentage of the runs with a relative approximation error of

at most one, and the statistics of the relative approximation errors

in percent (%) for the runs that were not optimal. For Hospital

and HtmlConf over 90% and 80%, respectively, of the instances are

solved perfectly by AtLeastHApprox, and all instances are solved

with a relative error of less than one. In the case of the AUCS data

set, this value is lower with 38.9%. However, here, the mean and

median relative approximation errors are also less than one percent,

and more than 93% of the instances are solved with an error of at

most one. The maximum relative error is at 1.24%.

Table 2: Results and relative approximation errors in percent

(%) for the at least ℎ edges DSP.

Relative approximation errors (%)

Data set Opt. solved (%) Within 1% err. (%) Mean Std. dev. Median Max.

AUCS 38.9 93.1 0.59 0.31 0.42 1.24

Hospital 91.7 100 0.44 0.23 0.47 0.81

HtmlConf 83.0 100 0.14 0.13 0.10 0.83

Q2–Density and running times for increasing ℎ.We computed

the at least ℎ-edges DSP where we choose ℎ = 𝑤 + 𝑖 with𝑤 being

the number of edges in the unconstrained DSP and 1 ≤ 𝑖 ≤ |𝐸 | −𝑤 .

Figure 2 shows the results for AUCS and FriendFeed, and Figure 7 in

the appendix shows results for the remaining data sets. In all data

sets, the densities of the subgraphs 𝑆𝑖 strongly decrease for larger 𝑖 .

As the size of ℎ increases, the peeling process can stop earlier,

which leads to shorter running times: Table 3 shows the running

times for the four largest data sets and increasing ratios 𝑟 such that

𝑖 = 𝑟 (|𝐸 | −𝑤). The reported running times are in seconds, and the

mean values and standard deviations are over ten repetitions. As

expected, the running time decreases with increasing value of 𝑖 .

100 101

i

5.8

6.0

6.2

De
ns

ity
 d

(S
i)

(a) AUCS

103 104

i

10

20

30

40

De
ns

ity
 d

(S
i)

(b) FfTwYt

106 107

i

200

400

De
ns

ity
 d

(S
i)

(c) FriendFeed

Figure 2: The density computed with AtLeastHApprox for

increasing numbers of required edges.

Table 3: Mean running times and standard deviations of

AtLeastHApprox in seconds (s).

𝑖 = 𝑟 · (|𝐸 | −𝑤)
Data set 𝑟 = 0.1 𝑟 = 0.2 𝑟 = 0.3 𝑟 = 0.4 𝑟 = 0.5 𝑟 = 0.6 𝑟 = 0.7 𝑟 = 0.8 𝑟 = 0.9

Epinions 0.31±0.0 0.28±0.0 0.25±0.0 0.22±0.0 0.19±0.0 0.16±0.0 0.14±0.0 0.10±0.0 0.07±0.0
DBLP 1.28±0.0 1.17±0.0 1.04±0.0 0.92±0.0 0.81±0.0 0.69±0.0 0.56±0.0 0.43±0.0 0.29±0.0
Twitter 0.84±0.0 0.76±0.0 0.69±0.0 0.63±0.0 0.56±0.0 0.49±0.0 0.42±0.0 0.32±0.0 0.19±0.0
FriendFeed 18.99±0.5 16.73±0.4 14.45±0.4 12.31±0.5 9.85±0.3 7.74±0.3 5.66±0.2 3.90±0.4 2.02±0.1

Q3–Distribution of Colors in Unconstrained DSP. First, we

empirically verify the necessity of diversity in edge-colored graphs

and the densest subgraphs by assessing the distribution of colors

in the graphs and densest subgraphs. The findings consistently

show that the fractions of the different colors are not equal in the

data sets. Furthermore, often, the distribution of the colors in the

unconstrained DSP differs significantly from the distribution in the

complete graph. Figure 3 shows the distributions of the Knowledge

and all data sets with two colors. For example, in Figure 3a and

Figure 3b show the color distributions in the Knowledge data set and

the (unconstrained) densest subgraph. The distribution between

the graph and the DSP differs for most colors. Similarly, we see

in the bichromatic data sets significant differences in the fractions

of colors between the complete graph and the densest subgraph.

Hence, even if there are many edges of a specific color in a graph,

this does not generally mean that the densest subgraph contains a

particular number of edges of this color. This validates the motiva-

tion for our new problems and algorithms. Furthermore, even if the

distributions of the colors in the graph and the DSP are similar, we

might want to specifically find a subgraph with specific numbers

of edges of given colors.

Q4–Approximation quality of ColApprox. To evaluate the

approximation quality of ColApprox, we first computed the at

least ℎ colored edges DSP for the AUCS, Hospital, and HtmlConf

data sets using Heuristic, ColApprox, and the exact ILP approach

(ColILP). We chose 100 random problem instances. To this end, let

6

https://gitlab.com/webconf24/ecdsp

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Finding Densest Subgraphs with Edge-Color Constraints Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

0 4 8 12 16 20 24 28
Color

0.00

0.05

0.10

0.15

0.20

Ra
tio

(a) Knowledge (Graph)

0 4 8 12 16 20 24 28
Color

0.0

0.2

0.4

0.6

Ra
tio

(b) Knowledge (DSP)

Epinion
 (G

rap
h)

Epinion
 (D

SP)

Tw
itte

r (G
rap

h)

Tw
itte

r (D
SP)

0.00

0.25

0.50

0.75

1.00

Ra
tio

Color
0
1

(c) Binary data sets

Figure 3: The distributions of colors in various data sets.

𝑓𝑖 and 𝑔𝑖 be the number of edges of color 𝑖 in the unconstrained

DSP and graph 𝐺 , respectively. For each color 𝑐 ∈ [𝜋], we chose
ℎ𝑐 uniformly at random from the interval [𝑓𝑐 , 𝑔𝑐]. Furthermore, let

𝜆 =

∑
𝑐∈ [𝜋] ℎ𝑐∑

𝑐∈ [𝜋] (𝑔𝑐−𝑓𝑐)
denote the fraction of edges that are required

from all possible additional edges. Figure 4 shows the densities of

the solved problem instances with respect to 𝜆. Moreover, Table 4

shows the statistics of the relative approximation errors in percent

as well as the percentage of instances solved optimally or within a

relative error of at most one. We see that ColApprox solves both

more instances optimally and in the range of an error of at most one

than Heuristic. The relative approximation errors are generally

lower for ColApprox with mean values (much) smaller than one

and maximum values of at most 1.89%.

Table 4: Results and relative approximation errors in percent

(%) for the at least h colored edges DSP.

Relative approximation errors (%)

Algorithm Data set Opt. solved (%) Within 1% err. (%) Mean Std. dev. Median Max.

AUCS 21 76 0.65 0.82 0.27 3.58

Heuristic Hospital 1 19 2.64 1.94 2.14 9.10

HtmlConf 6 62 0.99 0.87 0.79 3.69

AUCS 22 95 0.30 0.34 0.15 1.30

ColApprox Hospital 7 74 0.76 0.41 0.72 1.74

HtmlConf 9 86 0.46 0.40 0.36 1.89

0.2 0.4 0.6 0.8
26.0

26.5

27.0

27.5

28.0

28.5

De
ns

ity

Heuristic ColApprox ColILP

0.2 0.4 0.6 0.8

10.25

10.50

10.75

11.00

De
ns

ity

(a) AUCS

0.2 0.4 0.6 0.8

26

28

30

De
ns

ity

(b) Hospital

0.2 0.4 0.6 0.8
26

27

28

De
ns

ity

(c) HtmlConf

Figure 4: Comparison of the heuristic, approximation algo-

rithm, and exact ILP.

Q5–Density for increasing color requirements.We computed

the densities of the densest subgraph for increasing color require-

ments using ColApprox and Heuristic. To this end, we first com-

puted the unconstrained DSP𝐻 = (𝑆, 𝐹). Let 𝑓𝑐 be the number edges

of colors 𝑐 ∈ [𝜋] in 𝐹 , and 𝑡𝑐 be the total number of color 𝑐 ∈ [𝜋]
edges in𝐺 . For each color 𝑐 ∈ [𝜋], we split define 𝑟𝑐 = (𝑡𝑐 − 𝑓𝑐)/10.
We then defined ℎ𝑖𝑐 = 𝑖 · 𝑟𝑐 for 𝑖 ∈ [10], leading to ten color re-

quirement vectors ℎ𝑖 with 𝑖 ∈ [10]. Figure 5 shows the densities
computed with ColApprox and Heuristic. For increasing numbers

of required edges, the densities decrease. Compared to the Heuris-

tic, our approximation algorithm ColApprox leads to higher or

at least as high densities for all data sets. For some data sets, e.g.,

AUCS, HtmlConf, Epinions, and FriendFeed, the Heuristic performs

similarly good as our approximation. The reason is that for these

data sets, all required colored edges are in the densest subgraphs.

As the heuristic peels away nodes while the color requirements

are not violated, the densest, or close to the densest, subgraph can

be obtained in many cases. Also see Q4 for a comparison between

Heuristic and ColApprox with the optimal solutions, showing

that for random instances ColApprox consistently outperforms

Heuristic. Furthermore, Heuristic is bound to fail if the color

requirements are violated early in the peeling process. In the follow-

ing, we additionally show how the baseline fails in this case. To this

end, we modified each data set by adding two nodes connected by a

single edge of a new additional color. The results for Heuristic are

shown in Figure 5 labeled Heuristic
∗
. Because the nodes of the ad-

ditional edge have a degree of one, the heuristic will try to remove

them early on. But because the color of the new edge is required in

the solution, the nodes cannot be removed, and Heuristic stops

processing the graph, leading to much lower densities compared to

ColApprox. For ColApprox, the density only changes minimally

by the one additional edge and two additional nodes that need to

be considered.

Q6–Running times. Table 5 shows the mean running times and

standard deviations for ten repetitions of computations of the den-

sities for 𝑖 ∈ {2, 4, 6, 8} where 𝑖 and the color requirements are

chosen as in Q5. We show the results in seconds for the four largest

data sets. The running times are only a fraction of a second for

all other data sets. For both Heuristic and ColApprox the run-

ning time decreases for increasing 𝑖 and larger requirements of the

colors. In the case of Heuristic, the reason is that the higher the

requirements, the earlier the algorithm encounters a vertex whose

removal would lead to a color deficit, and it stops. For ColApprox,

the reason is that the higher the total color requirements, the earlier

the subroutine that finds the at least ℎ edges densest subgraph can

stop the peeling process.

Table 5: Running times in seconds (s) for computing the at

least h colored edges DSP.

𝑖 = 2 𝑖 = 4 𝑖 = 6 𝑖 = 8

Data set Heuristic ColApprox Heuristic ColApprox Heuristic ColApprox Heuristic ColApprox

Epinions 0.45±0.0 0.45±0.0 0.37±0.0 0.39±0.0 0.33±0.0 0.33±0.0 0.28±0.0 0.26±0.0
DBLP 1.25±0.0 1.74±0.0 1.01±0.0 1.48±0.0 0.94±0.0 1.21±0.1 0.84±0.1 0.88±0.0
Twitter 1.00±0.0 1.21±0.0 0.86±0.0 1.07±0.0 0.74±0.0 0.91±0.0 0.61±0.0 0.69±0.0
FriendFeed 18.85±0.2 21.06±0.3 16.69±0.2 16.50±0.2 13.97±0.2 12.11±0.2 10.25±0.1 8.25±0.1

5.2 Use Case: Diverse Coauthorship

In the following, we use a subgraph of the DBLP data set in which

edges describe the coauthorship of publications published at one of

ten data mining conferences. The network contains in total 44 823

nodes and 170 659 edges, each colored with one of ten colors rep-

resenting the conference, and we are interested in finding densest

subgraphs that contain publications of all conferences. Another

view is that edges of color 𝑐 belong to layer 𝑐 of a multilayer graph

with ten layers. Hence, we want to obtain densest subgraphs of the

multilayer coauthor graph that contain at least ℎ𝑖 edges in layer 𝑖 .

We compare our approximation algorithm ColApprox to the al-

gorithm for the multilayer densest subgraph problem Mlds. The

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

1 2 3 4 5 6 7 8 9 10
i

10.0

10.5

11.0

D
e
n
si
ty

ColApprox
Heuristic
Heuristic *

(a) AUCS

1 2 3 4 5 6 7 8 9 10
i

50

55

60

De
ns

ity
(b) Hospital

1 2 3 4 5 6 7 8 9 10
i

52

54

56

De
ns

ity

(c) HtmlConf

1 2 3 4 5 6 7 8 9 10
i

10

15

20

De
ns

ity

(d) Airports

1 2 3 4 5 6 7 8 9 10
i

2

3

De
ns

ity

(e) Rattus

1 2 3 4 5 6 7 8 9 10
i

20

40

De
ns

ity

(f) FfTwYt

1 2 3 4 5 6 7 8 9 10
i

20

25

De
ns

ity

(g) Knowledge

1 2 3 4 5 6 7 8 9 10
i

10

20

30

40

De
ns

ity

(h) HomoSap

1 2 3 4 5 6 7 8 9 10
i

50

100

De
ns

ity
(i) Epinions

1 2 3 4 5 6 7 8 9 10
i

5

10

15

20

De
ns

ity

(j) DBLP

1 2 3 4 5 6 7 8 9 10
i

10

20

30

De
ns

ity

(k) Twitter

1 2 3 4 5 6 7 8 9 10
i

200

400

De
ns

ity

(l) FriendFeed

Figure 5: Densities for increasing color requirements (the common legend is shown in (a)).

multilayer densest subgraph problem is defined as finding a subset

𝑆 ⊆ 𝑉 such that

max

𝐿̂⊆𝐿
min

ℓ∈𝐿̂

|𝐸ℓ (𝑆) |
|𝑆 | · |𝐿̂ |

𝛽 ,

is maximized, where 𝛽 ∈ R is a parameter controlling the impor-

tance of adding few or many layers and 𝐸ℓ are the edges in layer

ℓ [18]. We computed the unconstrained densest subgraph, the mul-

tilayer densest subgraph for 𝛽 ∈ {1, 2.2, 5}, where we chose the
values of 𝛽 by increasing in 0.1 steps starting from one until all lay-

ers are in the densest subgraph. Only for the values of 2.2 and five

do the results change. Furthermore, we use the at least h colored

edges densest subgraph with the following color requirements. Let

𝑡𝑐 be the total number of color 𝑐 ∈ [𝜋] edges in 𝐺 . For each color

𝑐 ∈ [10], we defineℎ𝑐 = 𝑡𝑐/𝜏 with 𝜏 ∈ {10, 100, 1000}. Table 6 shows
the results of the by 𝑆 induced subgraphs, including the density,

where we use the standard definition of density, i.e., 𝑑 (𝑆) = |𝐸 |/|𝑆 |.
For 𝛽 = 1, the result of Mlds equals the unconstrained DSP. For

𝛽 = 2.2, nine of the ten layers are included. Figure 6a shows the

distribution of the publications. There are no publications from the

KDD conference in the densest subgraph, and the density dropped

significantly to 6.1 from the initial 20. Further increasing 𝛽 to five

leads finally leads to a densest subgraph containing publications

from all conferences; however, the density further dropped to 4.5.

Moreover, the KDD conference is still underrepresented with only

one publication (see Figure 6b). For our ColApprox, we obtain the

densest subgraphs with 1/1000th, 1/100th, and 1/10th of the edges

of each color while obtaining higher density values. Figure 6c and

Figure 6d show the color distributions for 𝜏 = 1000 and 𝜏 = 100,

respectively.

Table 6: Computing densest coauthor subgraphs.

Algorithm Density Nodes Edges Layers

Unconstrained DSP 20.0 41 820 2

𝛽 = 1 20.0 41 820 2

Mlds 𝛽 = 2.2 6.1 232 1407 9

𝛽 = 5 4.5 396 1766 10

𝜏 = 1000 8.7 137 1194 10

ColApprox 𝜏 = 100 9.5 409 3890 10

𝜏 = 10 9.4 2692 25324 10

CIKM

WebConf
SDM

PAKDD
ICDM

ECML
VLD

B
WSDM

ICDE
KDD

101

102

Pu

bl
ica

tio
ns

(a) Mlds (𝛽 = 2.5)

CIKM

WebConf
SDM

PAKDD
ICDM

ECML
VLD

B
WSDM

ICDE
KDD

100

101

102

Pu

bl
ica

tio
ns

(b) Mlds (𝛽 = 5)

CIKM

WebConf
SDM

PAKDD
ICDM

ECML
VLD

B
WSDM

ICDE
KDD

100

101

102

103

Pu

bl
ica

tio
ns

(c) ColApprox (𝜏 = 1000)

CIKM

WebConf
SDM

PAKDD
ICDM

ECML
VLD

B
WSDM

ICDE
KDD

101

102

103

Pu

bl
ica

tio
ns

(d) ColApprox (𝜏 = 100)

Figure 6: Distributions of conferences in the densest coauthor

subgraphs computed with Mlds and ColApprox.

6 CONCLUSION AND FUTUREWORK

We introduced new variants of diverse densest subgraph problems

in networks with single or multiple edge attributes. We established

the NP-completeness of decision versions for finding exactly, at

most, and at least h colored edges densest subgraphs, even for

just two colors. Furthermore, we presented a linear-time constant-

factor approximation algorithm for the problem of finding a densest

subgraph with at least h colored edges in sparse graphs. As an addi-

tional result, we introduced the related at least ℎ non-colored edges

densest subgraph problem and provided a linear-time constant-

factor approximation for it. Our experimental results validated the

practical efficacy and efficiency of the proposed algorithms on a

wide range of real-world graphs.

Future work directions include improving the approximation

results for non-sparse graphs and introducing algorithms for the

exact and at most h variants. Additionally, we plan to extend the

problems and algorithms to dynamic settings where the topology

and edge attributes of graphs can change over time, enabling us to

better adapt to the evolving nature of the World Wide Web.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Finding Densest Subgraphs with Edge-Color Constraints Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES

[1] Aris Anagnostopoulos, Luca Becchetti, Adriano Fazzone, Cristina Menghini, and

Chris Schwiegelshohn. 2020. Spectral relaxations and fair densest subgraphs. In

Proceedings of the 29th ACM International Conference on Information & Knowledge

Management. 35–44.

[2] Reid Andersen and Kumar Chellapilla. 2009. Finding dense subgraphs with size

bounds. In International workshop on algorithms and models for the web-graph.

Springer, 25–37.

[3] Albert Angel, Nick Koudas, Nikos Sarkas, Divesh Srivastava, Michael Svendsen,

and Srikanta Tirthapura. 2014. Dense subgraph maintenance under streaming

edge weight updates for real-time story identification. The VLDB journal 23

(2014), 175–199.

[4] Yuichi Asahiro, Kazuo Iwama, Hisao Tamaki, and Takeshi Tokuyama. 2000.

Greedily finding a dense subgraph. Journal of algorithms 34, 2 (2000), 203–221.

[5] Vladimir Batagelj and Matjaz Zaversnik. 2003. An O(m) algorithm for cores

decomposition of networks. arXiv preprint cs/0310049 (2003).

[6] Aditya Bhaskara, Moses Charikar, Eden Chlamtac, Uriel Feige, and Aravindan

Vijayaraghavan. 2010. Detecting high log-densities: an O (n 1/4) approximation

for densest k-subgraph. In Proceedings of the forty-second ACM symposium on

Theory of computing. 201–210.

[7] Digvijay Boob, Yu Gao, Richard Peng, Saurabh Sawlani, Charalampos

Tsourakakis, Di Wang, and Junxing Wang. 2020. Flowless: Extracting dens-

est subgraphs without flow computations. In Proceedings of The Web Conference

2020. 573–583.

[8] Alessio Cardillo, Jesús Gómez-Gardenes, Massimiliano Zanin, Miguel Romance,

David Papo, Francisco del Pozo, and Stefano Boccaletti. 2013. Emergence of

network features from multiplexity. Scientific reports 3, 1 (2013), 1344.

[9] Moses Charikar. 2000. Greedy approximation algorithms for finding dense

components in a graph. In International workshop on approximation algorithms

for combinatorial optimization. Springer, 84–95.

[10] Chandra Chekuri, Kent Quanrud, and Manuel R Torres. 2022. Densest subgraph:

Supermodularity, iterative peeling, and flow. In Proceedings of the 2022 Annual

ACM-SIAM Symposium on Discrete Algorithms (SODA). SIAM, 1531–1555.

[11] Jie Chen and Yousef Saad. 2010. Dense subgraph extraction with application to

community detection. IEEE Transactions on knowledge and data engineering 24, 7

(2010), 1216–1230.

[12] Edith Cohen, Eran Halperin, Haim Kaplan, and Uri Zwick. 2003. Reachability

and distance queries via 2-hop labels. SIAM J. Comput. 32, 5 (2003), 1338–1355.

[13] Manlio De Domenico, Vincenzo Nicosia, Alexandre Arenas, and Vito Latora.

2015. Structural reducibility of multilayer networks. Nature communications 6, 1

(2015), 6864.

[14] Mark E. Dickison, Matteo Magnani, and Luca Rossi. 2016. Multilayer Social

Networks. Cambridge University Press.

[15] Yon Dourisboure, Filippo Geraci, and Marco Pellegrini. 2007. Extraction and clas-

sification of dense communities in the web. In Proceedings of the 16th international

conference on World Wide Web. 461–470.

[16] Uriel Feige and Michael Seltser. 1997. On the densest k-subgraph problem.

[17] Amita Gajewar and Atish Das Sarma. 2012. Multi-skill collaborative teams based

on densest subgraphs. In Proceedings of the 2012 SIAM international conference

on data mining. SIAM, 165–176.

[18] Edoardo Galimberti, Francesco Bonchi, and Francesco Gullo. 2017. Core decom-

position and densest subgraph in multilayer networks. In Proceedings of the 2017

ACM on Conference on Information and Knowledge Management. 1807–1816.

[19] David Gibson, Ravi Kumar, and Andrew Tomkins. 2005. Discovering large dense

subgraphs in massive graphs. In Proceedings of the 31st international conference

on Very large data bases. 721–732.

[20] Aristides Gionis and Charalampos E Tsourakakis. 2015. Dense subgraph dis-

covery: Kdd 2015 tutorial. In Proceedings of the 21th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining. 2313–2314.

[21] Andrew V Goldberg. 1984. Finding a maximum density subgraph. (1984).

[22] Mark S Granovetter. 1973. The strength of weak ties. American journal of

sociology 78, 6 (1973), 1360–1380.

[23] Julia Heidemann, Mathias Klier, and Florian Probst. 2012. Online social networks:

A survey of a global phenomenon. Computer networks 56, 18 (2012), 3866–3878.

[24] Lorenzo Isella, Juliette Stehlé, Alain Barrat, Ciro Cattuto, Jean-François Pinton,

and Wouter Van den Broeck. 2011. What’s in a crowd? Analysis of face-to-face

behavioral networks. Journal of theoretical biology 271, 1 (2011), 166–180.

[25] Ravindran Kannan and V Vinay. 1999. Analyzing the structure of large graphs.

Universität Bonn. Institut für Ökonometrie und Operations Research.

[26] Samir Khuller and Barna Saha. 2009. On finding dense subgraphs. In International

colloquium on automata, languages, and programming (ICALP). 597–608.

[27] Jon Kleinberg, Jens Ludwig, Sendhil Mullainathan, and Ashesh Rambachan. 2018.

Algorithmic fairness. InAea papers and proceedings, Vol. 108. American Economic

Association 2014 Broadway, Suite 305, Nashville, TN 37203, 22–27.

[28] Tommaso Lanciano, Atsushi Miyauchi, Adriano Fazzone, and Francesco Bonchi.

2023. A survey on the densest subgraph problem and its variants. arXiv preprint

arXiv:2303.14467 (2023).

[29] Victor E Lee, Ning Ruan, Ruoming Jin, and Charu Aggarwal. 2010. A survey

of algorithms for dense subgraph discovery. Managing and mining graph data

(2010), 303–336.

[30] Jure Leskovec, Daniel Huttenlocher, and Jon Kleinberg. 2010. Signed networks

in social media. In Proceedings of the SIGCHI conference on human factors in

computing systems. 1361–1370.

[31] Michael Ley. 2002. The DBLP computer science bibliography: Evolution, re-

search issues, perspectives. In International symposium on string processing and

information retrieval. Springer, 1–10.

[32] Matteo Magnani, Barbora Micenkova, and Luca Rossi. 2013. Combinatorial

analysis of multiple networks. arXiv preprint arXiv:1303.4986 (2013).

[33] Shira Mitchell, Eric Potash, Solon Barocas, Alexander D’Amour, and Kristian

Lum. 2021. Algorithmic fairness: Choices, assumptions, and definitions. Annual

Review of Statistics and Its Application 8 (2021), 141–163.

[34] Atsushi Miyauchi, Tianyi Chen, Konstantinos Sotiropoulos, and Charalampos E.

Tsourakakis. 2023. Densest Diverse Subgraphs: How to Plan a Successful Cocktail

Party with Diversity. 1710–1721.

[35] Syama Sundar Rangapuram, Thomas Bühler, and Matthias Hein. 2013. Towards

realistic team formation in social networks based on densest subgraphs. In

Proceedings of the 22nd international conference on World Wide Web. 1077–1088.

[36] Barna Saha, Allison Hoch, Samir Khuller, Louiqa Raschid, and Xiao-Ning Zhang.

2010. Dense subgraphs with restrictions and applications to gene annotation

graphs. In Research in Computational Molecular Biology (RECOMB). 456–472.

[37] Chengcheng Shao, Pik-Mai Hui, Lei Wang, Xinwen Jiang, Alessandro Flammini,

Filippo Menczer, and Giovanni Luca Ciampaglia. 2018. Anatomy of an online

misinformation network. Plos one 13, 4 (2018).

[38] Stavros Sintos and Panayiotis Tsaparas. 2014. Using strong triadic closure to

characterize ties in social networks. In Proceedings of the 20th ACM SIGKDD

international conference on Knowledge discovery and data mining. 1466–1475.

[39] Kristina Toutanova, Danqi Chen, Patrick Pantel, Hoifung Poon, Pallavi Choud-

hury, and Michael Gamon. 2015. Representing text for joint embedding of text

and knowledge bases. In Proceedings of the 2015 conference on empirical methods

in natural language processing. 1499–1509.

[40] Charalampos Tsourakakis, Francesco Bonchi, Aristides Gionis, Francesco Gullo,

and Maria Tsiarli. 2013. Denser than the densest subgraph: extracting optimal

quasi-cliques with quality guarantees. In Proceedings of the 19th ACM SIGKDD

international conference on Knowledge discovery and data mining. 104–112.

[41] Philippe Vanhems, Alain Barrat, Ciro Cattuto, Jean-François Pinton, Nagham

Khanafer, Corinne Régis, Byeul-a Kim, Brigitte Comte, and Nicolas Voirin. 2013.

Estimating potential infection transmission routes in hospital wards using wear-

able proximity sensors. PloS one 8, 9 (2013), e73970.

[42] Serene WHWong, Chiara Pastrello, Max Kotlyar, Christos Faloutsos, and Igor

Jurisica. 2018. Sdregion: Fast spotting of changing communities in biological

networks. In Proceedings of the 24th ACM SIGKDD international conference on

Knowledge discovery & data mining. 867–875.

A OMITTED PROOFS

In this section, we provide the omitted proofs.

A.1 Proofs of Section 3

First, we provide the NP-completeness results for the decision ver-

sions of our edge-diverse densest subgraph problems.

Theorem 8. The decision version of the exactly h colored edges

version (ehcEdgesDSPdec) is NP-complete.

Proof. We show the result for the special case of two colors,

i.e., 𝜋 = 2. In this case, the decision version ehcEdgesDSP asks to

decide if there is a subset 𝑆 such that the induced subgraph has

exactly ℎ color 𝜎 ∈ [2] edges and a density of at least 𝛼 . It is clearly
inNP. We use a reduction from 𝑘-clique. Given an instance (𝐺,𝑘) of
𝑘-clique, we construct the following instance of ehcEdgesDSPdec:

• Let𝐺 ′ = (𝑉 ′, 𝐸′) with𝑉 ′ = 𝑉 ∪ {𝑡} and 𝐸′ = 𝐸 ∪ {{𝑡, 𝑣} | 𝑣 ∈
𝑉 }, and 𝑐 (𝑒) = 2 if 𝑒 ∈ 𝐸′ ∩ 𝐸, and 𝑐 (𝑒) = 1 otherwise,

• furthermore, let 𝜎 = 1, ℎ = 𝑘 , and 𝛼 =
(𝑘
2
)+𝑘

𝑘+1 = 𝑘
2
.

Now, if 𝐺 contains a 𝑘-clique, then ehcEdgesDSPdec has a yes

answer. Because 𝑡 is connected to all 𝑣 ∈ 𝑉 in 𝐺 ′, i.e., also to a set

9

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

𝐶 containing 𝑘 nodes of a 𝑘-clique, we find a subgraph 𝑆 = 𝐶 ∪ {𝑡}
containing a (𝑘 +1)-clique. Because𝐺 (𝑆) is complete, 𝑑 (𝑆) = (

𝑘
2
)+𝑘

𝑘+1 .

For the other direction, assume ehcEdgesDSPdec has a yes an-

swer. This means that |𝑆 | = 𝑘 + 1 because otherwise, the induced
subgraph would contain more thanℎ color 𝜎 edges as 𝑡 is connected

to all other vertices. Furthermore, in order to achieve the density

of 𝛼 ≥ (
𝑘
2
)+𝑘

𝑘+1 , there have to be

(𝑘
2

)
edges between the nodes 𝑆 \ {𝑡}

and 𝑘 edges from 𝑡 to the nodes 𝑆 \ {𝑡}. Because the graph 𝐺 ′ is
simple, the by 𝑆 induced subgraph is a (𝑘 + 1)-clique. And due to

the construction, 𝑆 \ {𝑡} is a 𝑘-clique in 𝐺 . □

Similarly, the decision version of the at-mostℎ colored edges DSP

(mhcEdgesDSPdec) is NP-complete. We now show the hardness

for the at-least ℎ colored edges variant.

Theorem 9. The decision version of the at least h colored edges

version (alhcEdgesDSPdec) is NP-complete.

Proof. We show the result for the special case 𝜋 = 2. The

decision version of alhcEdgesDSPdec asks to decide if there is

a subset 𝑆 such that the induced subgraph has at least ℎ color 𝜎

edges and a density of at least 𝛼 . It is clearly in NP. We use again a

reduction from 𝑘-clique.

Given an instance (𝐺,𝑘) of 𝑘-clique, we construct the following
instance of alhcEdgesDSPdec:

• Let 𝑛 = |𝑉 (𝐺) | and let 𝐾 ′ be the complete graph 𝐾𝑛4 in which

all edges are colored 1. Furthermore, we construct𝐺 ′ as in the

proof of Theorem 8. The graph 𝐻 is the union of 𝐾 ′ and 𝐺 ′.

• Moreover, we set 𝜎 = 1, ℎ =
(𝑛4

2

)
+ 𝑘 , and 𝛼 =

(𝑛4
2
)+(𝑘

2
)+𝑘

𝑛4+𝑘+1 .

Let 𝑆 ⊆ 𝑉 (𝐻) be a witness of alhcEdgesDSPdec. (i) First note
that 𝐾 ′ is completely in 𝐺 (𝑆). Assume that 𝐾 ′ is not completely in

𝐺 (𝑆) and let 𝑇 be the nodes from 𝐾 ′ that are in 𝑆 , then 𝑇 provides(|𝑇 |
2

)
color 1 edges. Thus we need to choose ℎ −

(|𝑇 |
2

)
color 1 edges

from 𝐺 ′, which is impossible because ℎ −
(𝑇
2

)
> 𝑛 when |𝑇 | < 𝑛4.

(ii) Next, we show that |𝑆∩𝑉 (𝐺 ′) | = 𝑘+1. Because |𝑆 | ≥ 𝑛4+𝑘+1
and 𝑛4 nodes belong to𝐾 ′, the number of nodes in 𝑆 ′ = 𝑆∩𝑉 (𝐺 ′) is
at least 𝑘+1. Now, we show that |𝑆 ′ | ≤ 𝑘+1, by showing that adding
additional edges beside the necessary 𝑘 edges would decrease the

density𝑑 (𝑆). Let 𝛽 = 𝑑 (𝑆 ′), 𝑠 = |𝑆 ′ |, 𝑒𝑘 = |𝐸 (𝐾 ′) |, and 𝑣𝑘 = |𝑉 (𝐾 ′) |.
We can express the density 𝑑 (𝑆) as follows

𝑑 (𝑆) = 𝛽 · 𝑠 + 𝑒𝑘
𝑠 + 𝑣𝑘

.

If we add another node 𝑢 ∈ 𝑉 (𝐺) to 𝑆 ′, we also add new edges

into the induced subgraph𝐺 (𝑆 ′). Let 𝑝 be the number of additional

edges. Then the density changes to

𝑑 (𝑆 ∪ {𝑢}) = 𝛽 · 𝑠 + 𝑒𝑘 + 𝑝
𝑠 + 𝑣𝑘 + 1

.

Note that by adding vertex 𝑢, we also add a new edge of color 1

between𝑢 and 𝑡 . We show that 𝑑 (𝑆) −𝑑 (𝑆 ∪{𝑢}) > 0, hence adding

additional nodes and, therefore, additional edges of color 1 leads to

decreased density.

𝑑 (𝑆) − 𝑑 (𝑆 ∪ {𝑢}) = 𝛽 · 𝑠 + 𝑒𝑘
𝑠 + 𝑣𝑘

− 𝛽 · 𝑠 + 𝑒𝑘 + 𝑝
𝑠 + 𝑣𝑘 + 1

> 0 (1)

⇔ 𝛽𝑠2 + 𝛽𝑠𝑣𝑘 + 𝛽𝑠 + 𝑒𝑘𝑠 + 𝑒𝑘𝑣𝑘 + 𝑒𝑘 (2)

− (𝛽𝑠2 + 𝛽𝑠𝑣𝑘 + 𝑒𝑘𝑠 + 𝑒𝑘𝑣𝑘 + 𝑝𝑠 + 𝑝𝑣𝑘) > 0 (3)

⇔ 𝛽𝑠 + 𝑒𝑘 − 𝑝 (𝑠 + 𝑣𝑘) > 𝑒𝑘 − 𝑝 (𝑠 + 𝑣𝑘) > 0

(4)

To see why the last inequality holds we upper bound 𝑝 with 𝑛2 and

𝑠 with 𝑛 such that we have(
𝑛4

2

)
− 𝑛2 (𝑛 + 𝑛4) > 0

which holds for 𝑛 ≥ 2.

Now let 𝐺 contain a 𝑘-clique 𝐶 . Hence, by setting 𝑆 = 𝐶 ∪ {𝑠},
we have at least ℎ edges with color 𝜎 = 1, and we obtain a total

density of 𝛼 .

If alhcEdgesDSPdec has a yes answer, then it holds that 𝛼 =

(𝑛4
2
)+(𝑘

2
)+𝑘

𝑛4+𝑘+1 due to the previous observations (i) and (ii). Specifically,

|𝑆 | = 𝑛4 + 𝑘 + 1 because otherwise, the induced subgraph would

contain more than ℎ color 𝜎 edges, which would reduce the density.

In order to achieve the density of 𝛼 , there need to be

(𝑘
2

)
+ 𝑘 edges

in 𝐺 ′, which means that the nodes in 𝐺 ′ are completely connected.

Hence, there is a 𝑘-clique in 𝐺 . □

Proof of Theorem 2. Given a graph 𝐺 = (𝑉 , 𝐸), ℎ ∈ N, and
𝛼 ∈ R, the decision version asks if there there exists a densest

subgraph with at least ℎ edges and density at least 𝛼 . It is clearly in

NP. We use a reduction from the decision version of the at least 𝑘

nodes DSP, which asks for a densest subgraph with at least 𝑘 ∈ N
nodes and density of at least 𝛽 ∈ R. For our reduction, we construct
a family of at most |𝑉 |2 instances of the at least ℎ𝑖 edges densest
subgraph problem with ℎ𝑖 = 𝑖 for 𝑖 ∈ [|𝑉 |2] and 𝛼 = 𝛽 . We show

that the at least 𝑘 nodes instance has a yes answer iff. one of the

at least ℎ𝑖 edges instances has at least 𝑘 nodes and a density of at

least 𝛽 .

First we show that if the at least 𝑘 nodes instance has a yes

answer, one of the at least ℎ𝑖 edges instances has at least 𝑘 nodes

and a density of at least 𝛽 . Let 𝜙 be the minimum number of edges

over all graphs that are densest subgraphs of𝐺 with at least 𝑘 nodes.

Because 1 ≤ 𝜙 ≤ |𝑉 |2 there is a at least 𝜙 edges densest subgraph

instance. Let 𝑆 be an optimal solution for the at least 𝜙 edges DSP

and assume it would not be optimal for the at least 𝑘 nodes DSP.

Let 𝑆 ′ be optimal for the latter with the density of 𝑑∗ ≥ 𝛽 . Note
that |𝐸 (𝑆 ′) | ≥ 𝜙 which leads to a contradiction to the optimality of

𝑆 . Hence, 𝑑 (𝑆) ≥ 𝑑∗ ≥ 𝛽 .
For the other direction, it is clear that if there is a solution 𝑆 to

one of the at least ℎ𝑖 edges instances that has at least 𝑘 nodes and a

density of at least 𝛽 then 𝑆 is also a solution to the at least 𝑘 nodes

instance. □

A.2 Proofs of Section 4

Proof of Lemma 2. Assume 𝑆 is optimal for the at least 𝑘-nodes

DSP but not optimal for the at least ℎ-edges DSP. Let 𝑆 ′ be optimal

for the latter. Now because |𝑆 ′ | ≥ 𝑘 and 𝑑 (𝑆 ′) > 𝑑 (𝑆), we have a
contradiction to the optimality of 𝑆 . □

10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Finding Densest Subgraphs with Edge-Color Constraints Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

Before we prove Theorem 7, we introduce two lemmas.

Lemma 3. Algorithm 1 and Algorithm 2 can be adapted to every-

where sparse multigraph input𝑀 .

Proof. To adapt Algorithm 1 and Algorithm 2 for use with

the multigraph𝑀 , we need to make the following adjustments: In

Algorithm 1 and Algorithm 2, we use the general lower bound of

nodes ℓ (ℎ, 𝜋) instead of ℓ (ℎ). Furthermore, in Algorithm 2, when

adding an edge to𝑀 (𝑆𝑖), ensure that all parallel edges between a

pair of nodes are added. It is noteworthy that Lemma 2 remains

applicable to the multigraph 𝑀 . This follows directly from the

subgraph definition and density. Consequently, we can conclude

that the adapted Algorithm 1 is optimal for the multigraph𝑀 .

To demonstrate that Algorithm 2 provides a O(1)-approximation

for the multigraph𝑀 we need to establish the following:

(1) If 𝑀 (𝑆𝑖) does not contain at least ℎ edges, the addition of

parallel edges introduces fewer new nodes compared to the addition

of simple edges. Therefore, it can only enhance the density of the

resultant subgraph.

(2) Regardless of edge colors, a multigraph can be treated as a

weighted graph where edge weights correspond to the number

of parallel edges between a pair of nodes (𝑢, 𝑣). As a result, the

3-approximation algorithm introduced by [2] is applicable to multi-

graphs. This implies that the assumption 𝑐1 |𝐸 (𝑆) | ≥ |𝐸 (𝑆∗) | ≥ ℎ
used in the proof of Theorem 4 is valid.

The combination of points (1) and (2) concludes the proof. □

Lemma 4. Algorithm 3 gives an O(1)-approximation for atLeastH-

EdgesDSP on everywhere sparse multigraph input𝑀 .

Proof. To adapt Algorithm 3 for use with a multigraph input,

we should modify the peeling procedure in line 6 as follows: when

we remove edges during the peeling procedure, we should remove

all parallel edges that are incident to node 𝑣𝑖 .

With arguments analogous to those presented in points (1) and (2)

of the proof for Lemma 3, we can conclude that the theorem remains

valid when applied to multigraphs. Furthermore, the running time

complexity of Algorithm 3 remains unchanged. □

Proof of Theorem 7. Together with Lemma 4, the proof can

be adapted from the proof of Algorithm 4, following the same line

of reasoning that adding all parallel edges can only enhance the

density of the resulting subgraph. The running time increases to

O(𝑛+𝑚 ·𝜋) due to the transformation of the graph to themultigraph.

Note that 𝜋 is often a small constant. □

B ILP FORMULATIONS

For the exact solution of atLeastHEdgesDSP, we solve the fol-

lowing ILP where guess the number of nodes ℓ (ℎ) ≤ 𝑘 ≤ 𝑛 and

return the solution with the maximum density. We use 𝑦𝑢 ∈ {0, 1}
to denote if vertex 𝑢 ∈ 𝑉 belongs to the solution 𝑆 ⊆ 𝑉 . Moreover,

we use 𝑥𝑢𝑣 ∈ {0, 1} for each edge 𝑒 = {𝑢, 𝑣} ∈ 𝐸 to encode if 𝑒 is

in the densest subgraph (𝑥𝑢𝑣 = 1) or not (𝑥𝑢𝑣 = 0). We can relax

𝑥𝑢𝑣 ∈ {0, 1} to 𝑥𝑢𝑣 ∈ [0, 1] because we maximize over 𝑥 and due to

Equation (7).

102

i

15.5

16.0

De
ns

ity
 d

(S
i)

(a) Hospital

102

i

19.5

20.0

20.5

De
ns

ity
 d

(S
i)

(b) HtmlConf

102 103

i

10

15

De
ns

ity
 d

(S
i)

(c) Airports

102 103

i

2

3

De
ns

ity
 d

(S
i)

(d) Rattus

104 105

i

20

30

De
ns

ity
 d

(S
i)

(e) Knowledge

104 105

i

10

20

30

40

De
ns

ity
 d

(S
i)

(f) HomoSap

104 105

i

25

50

75

De
ns

ity
 d

(S
i)

(g) Epinions

105 106

i

20

40

De
ns

ity
 d

(S
i)

(h) DBLP

104 105 106

i

20

40

De
ns

ity
 d

(S
i)

(i) Twitter

Figure 7: The density computed with AtLeastHApprox for

increasing numbers of required edges.

max

∑︁
{𝑢,𝑣}∈𝐸

𝑥𝑢𝑣

𝑘
(5)

s.t.

∑︁
{𝑢,𝑣}∈𝐸

𝑥𝑢𝑣 ≥ ℎ and

∑︁
𝑢∈𝑉

= 𝑘 (6)

𝑥𝑢𝑣 ≤ 𝑦𝑢 and 𝑥𝑢𝑣 ≤ 𝑦𝑣 for all {𝑢, 𝑣} ∈ 𝐸 (7)

𝑥𝑢𝑣 ∈ [0, 1] for all {𝑢, 𝑣} ∈ 𝐸 (8)

𝑦𝑢 ∈ {0, 1} for all 𝑢 ∈ 𝑉 (9)

We can solve the at least ℎ colored edges DSP (alhcEdgesDSP)

by adding the following additional constraint:∑︁
{𝑢,𝑣}∈𝐸𝑐

𝑥𝑢𝑣 ≥ ℎ𝑐 for all 𝑐 ∈ [𝜋], (10)

where 𝐸𝑐 ⊆ 𝐸 is the subset of edges with color 𝑐 ∈ [𝜋].

C DATA SET DETAILS

• AUCS contains relations among the faculty and staffwithin the

Computer Science department at Aarhus University [32]. The

five layers correspond to the following relationship types: cur-

rent working relationship, repeated leisure activities, regular

lunch, co-authorship of publication, and facebook friendship.

• Hospital and HtmlConf are face-to-face contact networks be-

tween hospital patients and health care workers [41], and

between visitors of a conference [24]. The networks spans

five and three days, respectively, represented by the colors.

• Airports is an aviation transport network containing flight con-

nections between European airports [8]. The layers represent

different airline companies.

• Rattus contains different types of genetic interactions of Rat-

tus Norvegicus [13]. The six layers are physical association,

11

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

direct interaction, colocalization, association, additive genetic

interaction defined by inequality, and suppressive genetic in-

teraction defined by inequality.

• Knowledge is based on the FB15K-237 Knowledge Base data

set [39]. The FB15K-237 data set contains knowledge base re-

lation triples and textual mentions of the Freebase knowledge

graph entity pairs. We represent the entities as nodes and

different relations colored edges.

• HomoSap is a network representing different types of genetic

interactions between genes in Homo Sapiens [18].

• Epinions is an online social network and general consumer

review site. Members on the platform have the option to de-

termine whether or not they trust one another [30].

• DBLP is a subgraph of the DBLP graph [31] containing only

publications from 𝐴 and 𝐴∗ ranked conferences (according

to the Core ranking). The edges describe collaborations be-

tween authors, and the edge colors represent the different

conferences.

• Twitter is a subgraph of the Twitter graph representing users

and retweets in the period of six months before the 2016 US

Presidential Elections [37]. Each edge represents a retweet

and is labeled as factual or misinformation.

• FriendFeed and FfTwYt are based on the former FriendFeed

social media aggregation service that allowed users to con-

solidate and view updates from various social networking

platforms and websites [14]. The FriendFeed dataset contains

interactions among users collected over twomonths. The three

layers represent commenting, liking and following. FfTwYt is

a network in which users registered a Twitter and a Youtube

account associated to their Friendfeed account.

Received 20 February 2007; revised 12 March 2009; accepted 5 June 2009

12

	Abstract
	1 Introduction
	2 Related Work
	3 Problem Definitions
	4 Approximation in Sparse Graphs
	4.1 Solving the at Least h-Edges DSP
	4.2 Approximation of the at Least h Colored Edges DSP
	4.3 Graphs with Multiple Edge Colors

	5 Experiments
	5.1 Results and Discussion
	5.2 Use Case: Diverse Coauthorship

	6 Conclusion and Future Work
	References
	A Omitted Proofs
	A.1 Proofs of sec:problems
	A.2 Proofs of sec:approx

	B ILP Formulations
	C Data Set Details

