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ABSTRACT

Finding densest subgraphs is a classical graph-mining problem that

has many applications in Web-data analysis, such as identifying

groups of related Web documents, finding communities of users,

detecting fraudulent behavior, and more. In this paper, we consider

a variant of the densest subgraph problem in networks with sin-

gle or multiple edge attributes. For example, in a social network,

the edge attributes may describe the type of relationship between

users, such as friends, family, or acquaintances, or different types of

communication between users. For conceptual simplicity, we view

the attributes as edge colors. The new problem we address is to find

a diverse densest subgraph that fulfills given requirements on the

numbers of edges of specific colors. When searching for a dense so-

cial network community, our problem will enforce the requirement

that the community is diverse according to criteria specified by

the edge attributes. We show that the decision versions for finding

exactly, at most, and at least h colored edges densest subgraph,

where h is a vector of color requirements, are NP-complete, for

already two colors. For the problem of finding a densest subgraph

with at least h colored edges, we provide a linear-time constant-

factor approximation algorithm when the input graph is sparse. On

the way, we introduce the related at least ℎ (non-colored) edges

densest subgraph problem, show its hardness, and also provide a

linear-time constant-factor approximation. In our experiments, we

demonstrate the efficacy and efficiency of our new algorithms.

CCS CONCEPTS

• Information systems→ Social networks; • Theory of com-

putation→ Graph algorithms analysis.
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1 INTRODUCTION

Graph analysis plays a pivotal role in understanding the intricate

structure of the World Wide Web, offering insights into the rela-

tionships and connections that underpin its vast digital landscape.

Finding densest subgraphs is a classical graph-theoretic problem
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Figure 1: Example for the at least h colored edges densest

subgraph problem in a toy social network with two rela-

tionship types. The subgraph induced by 𝑆1 is the densest

unconstrained subgraph. If we require the densest subgraph

to contain at least four edges of type two (red dashed), the

graph induced by 𝑆2 is optimal.

and one of the most fundamental issues in graph data mining and

social network analyses [20, 29]. In one of its most basic versions of

the densest-subgraph problem (DSP), we are given an undirected fi-

nite graph𝐺 = (𝑉 , 𝐸), and the goal is to find a subset of nodes 𝑆 ⊆ 𝑉
such that the induced subgraph maximizes the ratio between edges

and nodes |𝐸 (𝑆) |/|𝑆 |. Examples of the many Web-related applica-

tions are, e.g., community detection in social networks [11, 15, 40],

real-time story identification [3], identifying malicious behavior

in financial transaction networks [28] or link-spam manipulating

search engines [19], and team formation in social networks [17, 35].

The problem also has applications in other domains such as, e.g., an-

alyzing biological networks [36, 42], or general applications in data

structures like indexing of reachability and distance queries [12].

Recently, the increasing interest in algorithms that ensure fairness

or diversity [27, 33] has been extended to finding diverse dense sub-

graphs. Anagnostopoulos et al. [1] and Miyauchi et al. [34] discuss

variants of the DSP that include fairness and diversity properties

in graphs with respect to the node attributes.

Our work:We introduce new problem definitions for finding edge-

diverse dense subgraphs in graphs with categorical edge attributes,

which we, for conceptual simplicity, denote as edge colors. More

specifically, we introduce the problems of finding a densest sub-

graph with at least h colored edges, where the vector h contains

for each attribute, i.e., color, the minimum number of edges that

are required to be in the solution. Similarly, we define two variants

for exactly and at most h colored edges. Figure 1 shows a small

toy example of a network containing two different relationship

types. Computing the standard densest subgraph leads to the mono-

chrome subgraph induced by 𝑆1. To obtain a diverse subgraph that

also contains edges of relationship type two, we apply the at least h
colored edges densest subgraph variant and can identify the densest

subgraph induced by 𝑆2 that contains edges of relationship type

two. We can apply our new problem in the following scenarios in

Web-related networks.

Web Graph Analysis: Consider a large web graph in which nodes

represent online articles published on websites or blogs and edges

represent relations between articles. The edges can represent, e.g.,

1
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citations, extensions, or hyperlinks between the websites. Addi-

tionally, the edges are annotated with meta-information further

describing the relationship, e.g., shared topic, type of relationship

between the articles, agreement, refusal, or sentiment between

articles. Now, a typical task is to obtain a summary highlighting

the most interconnected parts of the network [28, 29]. However,

without further restrictions on the edge attributes, the resulting

subgraph may completely ignore or exclude specific attributes that

are not part of the unconstrained densest subgraph. Using the at

least h colored densest subgraph, a user has the possibility to in-

clude specific attributes into the network summary by setting the

corresponding entries in the requirement vector h to the minimum

number of included relations between the articles.

Online Social Network Analysis: The participants of large-scale

social networks are commonly connected to hundreds or even thou-

sands of other users. Typically, user relationships are heterogenic

and can be distinguished in, e.g., friendship, family membership,

acquaintance, or work colleague [23]. Additionally, the strength of

the relationship is often classified into weak and strong ties, where

weak ties often have the capacity to bridge diverse social groups

and facilitate the flow of information [22, 38]. By requiring specific

numbers of edge attributes, we identify densest subgraphs related

across multiple attribute dimensions. In addition to mere intercon-

nections, the resulting dense subgraphs embody communities with

diverse relationships. Moreover, identifying dense subgraphs with

minimal specific relationships can be advantageous for subsequent

tasks, such as content recommendation. For instance, a dense sub-

graph including many weak professional connections can form the

foundation for recommending new professional contacts bridging

into new social groups.

Contributions: Our contributions are the following.

(1) We introduce new variants of diverse densest subgraph prob-

lems in edge-colored graphs. We are interested in finding

densest subgraphs that contain exactly ℎ𝑖 , at most ℎ𝑖 , or at

least ℎ𝑖 edges of color 𝑖 ∈ [𝜋] where 𝜋 is the number of colors

in the graph. We discuss variants of the problems in which

each edge either has a single or multiple colors. We show that

the corresponding decision problems are NP-complete.

(2) For the problem of at least h colored edges in sparse graphs

we introduce a linear-time O(1) approximation algorithm.

(3) As an additional result, we introduce the densest subgraph

problem with at least ℎ (non-colored) edges, show that the

problem is NP-hard as well, and also provide a linear-time

O(1) approximation algorithm.

(4) We evaluate our algorithms on real-world networks and

demonstrate that (i) our approximation algorithms have very

low relative approximation errors, in most cases under one

percent, and (ii) are highly efficient computable.

Please refer to Appendix A for the omitted proofs.

2 RELATEDWORK

Finding densest subgraphs. Finding densest subgraphs is a fun-

damental problem in network analysis and has a variety of applica-

tions. The problem has gained increasing interest in recent years,

both in theoretical computer science and data-mining communities.

An extensive review of the densest subgraph problem, its variants,

properties, and algorithms is beyond the scope of this paper, so

here we discuss only the most relevant work. For a recent survey

on the topic, we refer the reader to Lanciano et al. [28].

The unconstrained version of the problem, when the density

of a subgraph induced by a subset of vertices 𝑆 ⊆ 𝑉 of a graph

𝐺 = (𝑉 , 𝐸) is defined as 𝑑 (𝑆) = |𝐸 (𝑆) |/|𝑆 |, is solvable in polyno-

mial time via max-flow computations [21]. For a more efficient

but approximate solution, a linear-time greedy algorithm, which

removes iteratively the node of the smallest degree and returns the

best solution encountered, provides an approximation ratio equal

to two [4, 9]. That type of greedy algorithm is often referred to as

peeling. Recently, Chekuri et al. [10] provided an almost linear-time

flow-based algorithm, approximating the densest subgraph prob-

lem within (1 + 𝜖). Chekuri et al. [10] also analyzed an iterative

peeling algorithm proposed by Boob et al. [7] and showed that it

converges to optimality. Research has also focused on the problems

of finding densest subgraphs with at most 𝑘 nodes (Dam𝑘S), at least

𝑘 nodes (Dal𝑘S), and exactly 𝑘 nodes (D𝑘S). The D𝑘S problem is

NP-hard, even when restricted to graphs of maximum degree equal

to 3 [16], and the best-known approximation ratio is O(𝑛1/4) [6].
With respect to the upper-bound variant, Khuller and Saha [26]

showed that an 𝛼-approximation for the Dam𝑘S problem leads to

an 𝛼/4-approximation for D𝑘S.

More related to our work is the Dal𝑘S problem, which is also NP-
hard [26]. Andersen and Chellapilla [2] designed a linear-time 1/3-

approximation algorithm based on greedy peeling, while Khuller

and Saha [26] provided two algorithms, both yielding a 1/2-approx-

imation, using flow computations and solving an LP, respectively.

Finally, our work is related to finding densest subgraphs in multi-

layer networks. Galimberti et al. [18] discussed the 𝑘-core decompo-

sition and densest subgraph problems for multilayer networks and

provided an approximation algorithm for a different formulation

than the one we study in this paper. We experimentally compare

our algorithm with the method of Galimberti et al. [18] and show

that our approach finds denser subgraphs.

Diverse densest subgraphs. Two recent works consider diversity

in finding densest subgraphs. Anagnostopoulos et al. [1] introduce

the fair densest subgraph problem. The authors consider graphs

with nodes labeled by two colors, and the goal is to find a subset of

nodes that contains an equal number of colors. They show that their

problem is at least as hard as the Dam𝑘S problem. Moreover, they

propose a spectral algorithm based on ideas by Kannan and Vinay

[25]. In the secondwork,Miyauchi et al. [34] discuss generalizations

of the problem introduced by Anagnostopoulos et al. [1]. They

introduce two problem variants. The first problem guarantees that

no color represents more than some fraction of the nodes in the

output subgraph. The second problem is the “node version” of the

problem we discuss, i.e., they study the densest subgraph problem,

in which, given a vector of cardinality demands for each color class,

the task is to find a densest subgraph fulfilling the demands.

Both of these works focus on node-attributed graphs, while we

study the densest subgraph problem for edge-attributed graphs.

3 PROBLEM DEFINITIONS

We use N to denote the natural numbers (without zero). Further-

more, for 𝑥 ∈ N, we use [𝑥] to denote the set {1, . . . , 𝑥}. Vectors are
2
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denoted in boldface, e.g., h ∈ N𝑥 , and ℎ𝑖 represents the 𝑖-th entry

of h. An undirected, simple graph𝐺 = (𝑉 , 𝐸) consists of a finite set
of vertices𝑉 and a finite set 𝐸 ⊆ {{𝑢, 𝑣} ⊆ 𝑉 | 𝑢 ≠ 𝑣} of undirected
edges. We define 𝑛 = |𝑉 | and 𝑚 = |𝐸 |. An edge-colored graph

𝐺 = (𝑉 , 𝐸, 𝑐) is a graph with an additional function 𝑐 : 𝐸 → 2
N

assigning sets of colors to the edges. For notational convenience,

we write 𝑐 (𝑒) = 𝑖 instead of 𝑐 (𝑒) = {𝑖} if edge 𝑒 ∈ 𝐸 is assigned a

single color. For 𝑆 ⊆ 𝑉 , we define 𝐸 (𝑆) = {{𝑢, 𝑣} ∈ 𝐸 | 𝑢, 𝑣 ∈ 𝑆}
and 𝐺 (𝑆) = (𝑆, 𝐸 (𝑆)) the subgraph induced by 𝑆 .

Definition 1. Given an edge-colored graph 𝐺 = (𝑉 , 𝐸, 𝑐), a number

of colors 𝜋 ∈ N, and a vector h ∈ N𝜋 , find a subset 𝑆 ⊆ 𝑉 such that

• 𝐸 (𝑆) contains at least ℎ𝑖 edges with 𝑖 ∈ 𝑐 (𝑒) for all 𝑖 ∈ [𝜋], and
• the density 𝑑 (𝑆) = |𝐸 (𝑆 ) ||𝑆 | is maximized.

Similarly, we define the exactly h and the at most h colored edges

densest subgraph problem variants.

We can check the feasibility for the at least h and the exactly h
colored edges variants in linear time by counting the occurrences of

colors 𝑖 ∈ [𝜋] at all edges in 𝐺 . In the case of the at most h colored

edges variant, the empty subgraph is a feasible solution. Hence, in

the following, we do not make the feasibility check explicit and

consider instances to be feasible.

Complexity. In contrast to the standard variant of the densest

subgraph problem, which can be solved optimally in polynomial

time, adding constraints on the numbers of colored edges makes

the problems hard. Indeed, we show hardness already for the case

that each edge is colored by one of only two colors.

Theorem 1. The decision versions of the exactly, at most, and at

least h colored edges version are NP-complete.

The proofs are based on reductions from the 𝑘-clique problem

and are provided in detail in Appendix A.1.

4 APPROXIMATION IN SPARSE GRAPHS

In this section, we present a O(1)-approximation for at least h
colored edges densest subgraph problem (in the following also

denoted as alhcEdgesDSP) for everywhere sparse graphs.

We call a graph 𝐺 = (𝑉 , 𝐸) sparse if |𝐸 | = O(|𝑉 |). A graph

𝐺 = (𝑉 , 𝐸) is everywhere sparse if for any subset 𝑉 ′ ⊆ 𝑉 the by 𝑉 ′

induced subgraph 𝐺 (𝑉 ′) is sparse. We first focus on the case that

each edge in the graph is assigned a single color and discuss the

general case in Section 4.3.

Our approximation for alhcEdgesDSP is based on finding dens-

est subgraphs with at least ℎ edges (ignoring colors of the edges).

We define the problem as follows.

Definition 2 (At least ℎ edges densest subgraph problem). Given

a graph 𝐺 = (𝑉 , 𝐸) and ℎ ∈ N, find a subset 𝑆 ⊆ 𝑉 such that

|𝐸 (𝑆) | ≥ ℎ, and the density 𝑑 (𝑆) = |𝐸 (𝑆 ) ||𝑆 | is maximized.

We denote the problem with atLeastHEdgesDSP and show that

this problem without colors is already hard.

Theorem 2. The decision problem of the at least ℎ edges DSP is

NP-complete.

4.1 Solving the at Least ℎ-Edges DSP

First, assume we have an algorithm for the at least 𝑘-nodes DSP

problem. We can use it to solve the at least ℎ-edges DSP problem

(atLeastHEdgesDSP). To this end, let ℓ (ℎ) a lower bound on the

number of nodes of a graph with at least ℎ edges. For generality,

define the lower bound ℓ (ℎ, 𝑝) for graphs with up to 𝑝 parallel edges
between two nodes and define ℓ (ℎ) = ℓ (ℎ, 1) (we use the general
version for the case of multigraphs as discussed in Section 4.3).

Lemma 1. Let 𝐺 = (𝑉 , 𝐸) be a graph with |𝐸 | ≥ ℎ and at most 𝑝

parallel edges between each pair of nodes. Then ℓ (ℎ, 𝑝) = 1

2
+
√
𝑝2+8ℎ𝑝
2𝑝 .

Proof. The number of nodes of a graph with |𝐸 | = ℎ is mini-

mized if 𝐺 is complete and there are 𝑝 parallel edges between each

pair of nodes, i.e., ℎ = 𝑝
( |𝑉 |
2

)
. Solving for |𝑉 | leads to ℓ (ℎ, 𝑝). □

Algorithm 1: Algorithm for atLeastHEdgesDSP

Input: Graph 𝐺 = (𝑉 , 𝐸) and ℎ ∈ N
Output: Densest subgraph with at least ℎ edges

1 for 𝑖 ∈ {ℓ (ℎ), . . . , 𝑛} do
2 Compute the at least 𝑖 nodes DSP 𝑆𝑖

3 return 𝑆𝑖 with maximal density and at least ℎ edges

The following lemma establishes a connection between the at

least 𝑘 nodes and at least ℎ edges DSP.

Lemma 2. Given a graph 𝐺 and ℎ ∈ N. Let 𝑘 be the minimum

number of nodes over all graphs that are densest subgraphs of𝐺 with

at least ℎ edges. Furthermore, let 𝑆 be an optimal solution for the at

least 𝑘-nodes DSP problem in 𝐺 . Then 𝑆 is also an optimal solution

for the densest subgraph with at least ℎ edges.

Based on Lemma 2 Algorithm 1 computes the solution of the at

least ℎ edges DSP.

Theorem 3. Algorithm 1 is optimal for atLeastHEdgesDSP.

Proof. Algorithm 1 computes an optimal solution of the at

least 𝑖-nodes DSP for each 𝑖 ∈ {ℓ (ℎ), . . . , 𝑛}. We know that the

optimal solution of atLeastHEdgesDSP has at most 𝑛 nodes. Due

to Lemma 2, Algorithm 1 discovers at least one optimal solution 𝑆

of the densest subgraph with at least ℎ edges. Finally, an optimal

solutionwill be returned as Algorithm 1 returns the 𝑆𝑖 withmaximal

density and at least ℎ edges. □

Now, let𝐺 be an everywhere sparse graph, and assume we have

an 𝛼-approximation algorithm for the at least 𝑘-nodes DSP problem.

We can obtain an O(1)-approximation for the least ℎ-edges DSP

problem (atLeastHEdgesDSP).

Theorem 4. Algorithm 2 gives anO(1)-approximation for atLeastH-

EdgesDSP.

Proof. Let 𝑘 be the minimum number of nodes over all graphs

that are densest subgraphs with at least ℎ edges. And, let 𝑑 (𝑆) be an
𝛼-approximation of the at least 𝑘-nodes DSP. Then, from Lemma 2,

it follows that 𝑑 (𝑆) is also an 𝛼-approximation of the at least ℎ-

edges DSP. However, 𝑆 may not be a feasible solution because it

3
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Algorithm 2: Algorithm for atLeastHEdgesDSP

Input: Everywhere sparse graph 𝐺 = (𝑉 , 𝐸) and ℎ ∈ N
Output: Approx. of densest subgraph with at least ℎ edges

1 for 𝑖 ∈ {ℓ (ℎ), . . . , 𝑛} do
2 𝛼-approximate the at least 𝑖-nodes DSP and obtain

solution 𝑆𝑖

3 if 𝐺 (𝑆𝑖 ) does not have at least ℎ edges then

4 add edges to𝐺 (𝑆𝑖 ) to obtain𝐺 ′
𝑖
with at least ℎ edges

5 return 𝐺 ′
𝑖
with maximum density

may have less than ℎ edges, i.e., |𝐸 (𝑆) | < ℎ. Assume that for a

constant 𝑐1 ∈ N the result of the 𝛼-approximation, it holds that

𝑐1 |𝐸 (𝑆) | ≥ |𝐸 (𝑆∗) | ≥ ℎ, where 𝑆∗ is the optimal solution for the at

least 𝑖-nodes DSP. Algorithm 2 adds the possibly missing edges to

obtain the subgraphs 𝐺 ′
𝑖
= (𝑆 ′

𝑖
, 𝐸′

𝑖
) (line 4). At most ℎ edges and 2ℎ

nodes are added, and |𝑆 ′
𝑖
| ≤ |𝑆 | + 2ℎ ≤ |𝑆 | + 2𝑐1 |𝐸 (𝑆) | ≤ 𝑐 |𝑆 | where

the last inequality holds due to the everywhere sparseness property

of 𝐺 for a large enough constant 𝑐 ∈ N. Consequently,

𝑑 (𝑆 ′) = |𝐸 (𝑆
′) |

|𝑆 ′ | ≥
|𝐸 (𝑆) |
𝑐 |𝑆 | =

1

𝑐
𝑑 (𝑆) ≥ 1

𝑐𝛼
𝑑∗,

where 𝑑∗ is the optimal density. □

The assumption that 𝑐1 |𝐸 (𝑆) | ≥ |𝐸 (𝑆∗) | ≥ ℎ with 𝑐1 ∈ N holds

for example for the 2-approximation and 3-approximation algo-

rithms provided by Khuller and Saha [26] and Andersen and Chel-

lapilla [2], respectively.

The running time complexity of Algorithm 2 is in O(𝑛(𝑇appr +
ℎ)) with 𝑇appr being the running time of the at least 𝑖 nodes DSP

approximation as we have 𝑛 rounds and in each round we call the

approximation and have to add at most ℎ edges to obtain𝐺 ′
𝑖
. Using

the 3-approximation algorithm by Andersen and Chellapilla [2]

based on the 𝑘-core computation, we can obtain an approximation

with total running time in O(𝑛 +𝑚).

Algorithm 3: Approximation for atLeastHEdgesDSP

Input: Everywhere sparse graph 𝐺 = (𝑉 , 𝐸) and ℎ ∈ N
Output: Approx. of densest subgraph with at least ℎ edges

1 𝐺0 ← 𝐺 , 𝑖 ← 0, and 𝑖max ← 0

2 while |𝐸 (𝐺𝑖 ) | ≥ ℎ do

3 𝑖max ← 𝑖

4 Increment 𝑖

5 Let 𝑣𝑖 be a node with minimum degree

6 𝐺𝑖 ← 𝐺𝑖−1 \ {𝑣𝑖 } // remove 𝑣𝑖 and all incident edges

7 return 𝐺𝑖 for 𝑖 ∈ {0, . . . , 𝑖max} with maximum density

Theorem 5. Algorithm 3 is a O(1)-approximation for atLeastH-

EdgesDSP with running time in O(𝑛 +𝑚).

Proof. Algorithm 3 peels away low degree nodes and thus ob-

tains 𝐺0, . . . ,𝐺𝑖max
. Assume we similarly computed the remaining

graphs 𝐺𝑖max+1, . . . ,𝐺𝑛 (as in the standard 𝑘-core decomposition).

Andersen and Chellapilla [2] showed that for each possible 𝑗 ∈ [𝑛]

one of the𝐺0, . . . ,𝐺𝑛− 𝑗 is a 3-approximation for the at least 𝑗-nodes

DSP, and the number of edges is at least 1/3 of the optimal solution.

Now, let 𝑘 be the minimum number of nodes over all graphs that

are densest subgraphs with at least ℎ edges. And, let 𝑑 (𝑆) be the 3-
approximation of the at least 𝑘-nodes DSP. Then, from Lemma 2, it

follows that 𝑑 (𝑆) is also an 3-approximation of the at least ℎ-edges

DSP. There are two cases:

(1) 𝐺 (𝑆) contains at least ℎ edges, i.e., corresponds to one of the

graphs in {𝐺0, . . . ,𝐺𝑖max
}. In this case, we are done, and 𝐺 (𝑆)

is a 3-approximation for atLeastHEdgesDSP.

(2) 𝐺 (𝑆) contains less thanℎ edges (but at least 1/3 of the optimal

solution), i.e., corresponds to a graph 𝐻 in 𝐺𝑖max+1, . . . ,𝐺𝑛−𝑘 .
In this case, we need to add edges such that 𝐺 (𝑆) is feasible.
Let 𝑆 ′ be the resulting vertex set. With similar arguments as in

the proof of Theorem 4, it follows that 𝑑 (𝑆 ′) ≥ 1

𝑐𝑑
∗
for a large

enough constant 𝑐 ∈ N and with 𝑑∗ being the optimal density.

Now, as we can choose the edges that we add to achieve

feasibility, we choose exactly the edges in 𝐸 (𝐺𝑖max
) \ 𝐸 (𝐻 )

such that 𝐺 (𝑆 ′) = 𝐺𝑖max
. Note that we add in the worst case

at most 2ℎ nodes. Hence, 𝐺𝑖max
is a 𝑐-approximation.

As Algorithm 3 returns the 𝐺𝑖 ∈ {𝐺0, . . . ,𝐺𝑖max
} with maximum

density, in either case, we obtain aO(1)-approximation for atLeastH-

EdgesDSP. The running time complexity of Algorithm 3 is equal

to the peeling-based 𝑘-core decomposition, which is O(|𝑉 | + |𝐸 |)
as shown by Batagelj and Zaversnik [5]. □

4.2 Approximation of the at Least h Colored

Edges DSP

We now can use Algorithm 2 or Algorithm 3 to obtain a O(1)-
approximation for the alhcEdgesDSP problem in everywhere

sparse graphs as shown in Algorithm 4.

Algorithm 4: Approximation for alhcEdgesDSP

Input: Everywhere sparse graph 𝐺 = (𝑉 , 𝐸) and h ∈ N𝜋
Output: Approx. of densest subgr. with at least ℎ𝑖 edges of

color 𝑖 ∈ [𝜋]
1 Approximate the densest subgraph 𝐺 ′ = (𝑉 ′, 𝐸′) with at

least

∑𝜋
𝑖=1 ℎ𝑖 edges

2 Let 𝑓𝑖 be the number of edges of color 𝑖 in 𝐺 ′ for 𝑖 ∈ [𝜋]
3 𝐺 ′′ ← 𝐺 ′

4 for 1 ≤ 𝑖 ≤ 𝜋 do

5 Add max{0, ℎ𝑖 − 𝑓𝑖 } edges of color 𝑖 to 𝐺 ′′

6 return 𝐺 ′′

Theorem 6. Algorithm 4 gives an O(1)-approximation for alhc-

EdgesDSP.

Proof. Let 𝐺 ′′ = (𝑉 ′′, 𝐸′′) be the final resulting subgraph.

Because atLeastHEdgesDSP relaxes alhcEdgesDSP, we have

𝑑 (𝑉 ′) ≥ 𝑑∗
𝛼 using an 𝛼-approximation for the at least ℎ edges sub-

graph, and where 𝑑∗ is the optimal density of atLeastHEdgesDSP.

We add in total

ℓ =

𝜋∑︁
𝑖=1

max{0, ℎ𝑖 − 𝑓𝑖 } ≤
𝜋∑︁
𝑖=1

ℎ𝑖 ≤ |𝐸′ |

4
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edges to 𝐺 ′′ = (𝑉 ′′, 𝐸′′) to ensure feasibility for alhcEdgesDSP.

Because each edge adds at most two vertices and |𝑉 ′′ | ≤ |𝑉 ′ | +2ℓ ≤
|𝑉 ′ | + 2|𝐸′ | ≤ 𝑐 |𝑉 ′ | with 3 ≤ 𝑐 ∈ N and it follows

𝑑 (𝑉 ′′) = |𝐸
′′ |
|𝑉 ′′ | ≥

|𝐸′ |
𝑐 |𝑉 ′ | =

1

𝑐
𝑑 (𝑉 ′) ≥ 1

𝑐𝛼
𝑑∗. □

In Algorithm 4, after obtaining 𝐺 ′ from Algorithm 3 we might

need to add missing edges. Note that 𝐺 ′ is node-induced, and we

have to insert at least one new node. Of course, adding all edges of

the new node to 𝐺 ′′ = (𝑉 ′′, 𝐸′′) only improves the density. To add

the missing nodes, we store the nodes that are removed in the call of

Algorithm 3 that lead to missing edges. Therefore, we use a slightly

modified version Algorithm 3 as a subroutine to approximate the

at least ℎ edges DSP. During the iterations of the while-loop in

Algorithm 3, vertices and their incident edges are removed from the

graph. Here, if in iteration 𝑖 we have to remove an edge 𝑒 = {𝑢, 𝑣}
with 𝑐 (𝑒) = 𝑐 and the remaining edges of color 𝑐 is smaller than ℎ𝑐 ,

i.e., removing 𝑒 leads to a deficit of color 𝑐 edges, then we add

both endpoints of 𝑒 to a set 𝐵𝑖 , where 𝐵𝑖 = 𝐵𝑖−1 ∪ {𝑢, 𝑣} (and
𝐵0 = ∅). At the end of the subroutine, we return 𝐺𝑖 = (𝑉𝑖 , 𝐸𝑖 ) for
𝑖 ∈ {0, . . . , 𝑖max} with maximum density and the corresponding set

𝐵𝑖 . Note that |𝐵𝑖 | ≤ 2ℓ , i.e., for each missing colored edge, at most

two nodes are in 𝐵𝑖 . Therefore, we can just add the nodes in 𝐵𝑖 and

return as a final result of Algorithm 4 the graph𝐺 ′′ = (𝑉 ′ ∪𝐵𝑖 , 𝐸′),
which leads to a running time of O(𝑛 +𝑚) of Algorithm 4.

4.3 Graphs with Multiple Edge Colors

Up to this point, our focus was on graphs with single-colored edges.

However, in practical contexts, edges often bear multiple distinct

colors, each representing diverse aspects of node interactions. Dis-

covering the densest subgraph that illuminates these varying types

of node interactions holds intrinsic value. To accommodate this

case, we transform a simple graph with multiple edge colors into a

colored multigraph, where each edge is assigned a single color.

An undirected edge-colored multigraph𝑀 is defined as a tuple

𝑀 = (𝑉 , 𝐸𝑀 , 𝑓 , 𝑐𝑀 ) where 𝑉 is a finite set of vertices, 𝐸𝑀 is a

finite set of edges, 𝑓 : 𝐸𝑀 → {{𝑢, 𝑣} : 𝑢, 𝑣 ∈ 𝑉 } is a function

mapping edges to pairs of vertices, and 𝑐𝑀 : 𝐸𝑀 → N is a function

assigning to each edge a single color. If 𝑒1, 𝑒2 ∈ 𝐸𝑀 and 𝑓 (𝑒1) =
𝑓 (𝑒2), then we call 𝑒1 and 𝑒2 multiple or parallel edges. For a subset

𝑆 of vertices 𝑆 ⊆ 𝑉 , we define 𝐸𝑀 (𝑆) = {𝑒 ∈ 𝐸𝑀 | 𝑓 (𝑒) ⊆ 𝑆} and
𝑀 (𝑆) = (𝑆, 𝐸𝑀 (𝑆), 𝑓 , 𝑐𝑀 ) the multigraph induced by 𝑆 . The density

of𝑀 (𝑆) is defined as 𝑑 (𝑆) = |𝐸𝑀 (𝑆 ) ||𝑆 | .

Given an edge-colored simple graph 𝐺 = (𝑉 , 𝐸, 𝑐) with multiple

edge colors, we construct an associated multigraph, denoted as

𝑀 = (𝑉 , 𝐸𝑀 , 𝑓 , 𝑐𝑀 ), sharing the same set of nodes,𝑉 . For each edge

𝑒 ∈ 𝐸 and for each color 𝑖 ∈ 𝑐 (𝑒), we introduce an edge 𝑒′ into 𝐸𝑀
and assign 𝑐𝑀 (𝑒′) to be equal to 𝑖 . If𝐺 is everywhere sparse, then it

follows that𝑀 is also everywhere sparse if we consider the number

of distinct colors 𝜋 to be a small constant, which is commonly the

case for real-world networks (see, e.g., Table 1). Furthermore, note

that the density of the obtained multigraph can be larger than that

of the original graph. By counting the parallel edges separately,

we account for the fact that edges with many colors have higher

importance as they cover more of the color requirements compared

to edges with single or few colors.

The insights and results derived in previous sections extend

seamlessly to this multigraph framework, resulting in Algorithm 5

and the following theorem.

Theorem 7. Algorithm 5 gives an O(1)-approximation for alhc-

EdgesDSP on graphs with multiple edge colors.

Algorithm 5: Approximation for alhcEdgesDSP on

graphs with multiple edge colors

Input: Everywhere sparse graph 𝐺 = (𝑉 , 𝐸, 𝑐) and h ∈ N𝜋
Output: Approximation of densest subgraph with at least

ℎ𝑖 edges of color 𝑖 for 𝑖 ∈ [𝜋]
1 Transform 𝐺 = (𝑉 , 𝐸, 𝑐) into multigraph𝑀 = (𝑉 , 𝐸𝑀 , 𝑓 , 𝑐𝑀 )
2 Use Line 1-3 from Algorithm 4 applied to𝑀

3 while there exists 𝑖 ∈ [𝜋] such that 𝑓𝑖 < ℎ𝑖 do

4 choose two nodes 𝑢, 𝑣 ∈ 𝑉 that are connected by an edge

of color 𝑖 and add all parallel edges between 𝑢, 𝑣 to 𝐺
′′

5 Update 𝑓𝑖 for 𝑖 ∈ [𝜋]
6 return 𝐺 ′′

5 EXPERIMENTS

In this section, we evaluate our algorithms in terms of their efficacy

and efficiency by discussing the following research questions:

Q1: How does our approximation for at least ℎ edges problem

perform in terms of approximation quality?

Q2: How does increasing ℎ affect the density and running time?

Q3: How are the colors in the data sets and the unconstrained

densest subgraphs distributed?

Q4: How does our approximation for the at least h color edges

problem perform in terms of approximation quality?

Q5: How do increasing color requirements affect the densities?

Q6: How is the efficiency of our approximation for the at least h
color edges problem in terms of running time?

Additionally, we discuss in Section 5.2, as a use case, the identifi-

cation of densest subgraphs that contain publications at popular

data mining conferences in a coauthor graph.

Algorithms: We use the following algorithms for our evaluation.

• AtLeastHApprox is the implementation of Algorithm 4 for

the at least ℎ edges DSP.

• ColApprox is the implementation of Algorithm 4 for the at

least ℎ colored edges DSP.

• AtLeastHILP and ColILP are the exact integer linear pro-

grams for finding the densest subgraph with at least ℎ edges

and the densest subgraph with at least h colored edges, re-

spectively. The ILPs are provided in Appendix B.

• Heuristic is a new baseline algorithm. As there is no baseline

available for the at least h colored edges problem (Defini-

tion 1), we introduce a heuristic, serving for comparison and

benchmarking. Given an edge colored graph𝐺 = (𝑉 , 𝐸, 𝑐), the
heuristic peels away nodes with the lowest degree as long as

all color requirements are fulfilled.

• Mlds is a state-of-the-art approximation for the multilayer

densest subgraph problem defined by Galimberti et al. [18].

The authors provided the source code.

5
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We implemented our algorithms in C++ using GNU g++ compiler

11.4.0. with the flag –O3. The ILPs were implemented in Python 3.9

and ran with Gurobi 9.1.2. The experiments ran on a single machine

with an Intel i5-1345U CPU and 32GB of main memory. The source

code is available at https://gitlab.com/webconf24/ecdsp.

Data Sets: We use twelve real-world data sets from different do-

mains and a wide range of different numbers of attributes, i.e., col-

ors. Table 1 gives an overview of the statistics. We provide detailed

descriptions in Appendix C.

Table 1: Statistics of the data sets. 𝑑 (𝑆∗) denotes the density
of the unconstrained optimal densest subgraph and 𝜓 (𝐺)
denotes the maximal number of colors per edge.

Data set |𝑉 (𝐺) | |𝐸 (𝐺) | 𝑑 (𝑆∗) #Colors 𝜓 (𝐺) Category Ref.

AUCS 61 353 6.2 5 5 Multilayer social [32]

Hospital 75 1 139 16.3 5 5 Temporal face-to-face [41]

HtmlConf 113 2 196 20.5 3 3 Temporal face-to-face [24]

Airports 417 2953 16.5 37 5 Multilayer transportation [8]

Rattus 2 634 3 677 3.7 6 4 Multilayer biological [13]

FfTwYt 6 401 60 583 39.5 3 3 Multilayer social [14]

Knowledge 14 505 210 946 34.8 30 4 Knowledge graph [39]

HomoSap 18 190 137 659 38.5 7 5 Multilayer biological [18]

Epinions 131 580 592 013 85.6 2 2 Signed (trust/no trust) [30]

DBLP 344 814 1 528 399 57.0 168 21 Multilayer collaboration [31]

Twitter 346 573 1 088 260 45.1 2 2 Signed (fact/non-fact) [37]

FriendFeed 505 104 18 319 862 500.1 3 3 Multilayer social [14]

5.1 Results and Discussion

Q1–Approximation quality of AtLeastHApprox. To evaluate

the approximation error of AtLeastHApprox, we computed the at

leastℎ edges DSP for theAUCS,Hospital, andHtmlConf data sets us-

ing AtLeastHApprox and the exact ILP approach (AtLeastHILP)

for all values of𝑤 < ℎ ≤ |𝐸 (𝐺) | with𝑤 is the number of edges in

the optimal unconstrained DSP. Table 2 shows the percentage of

runs that were optimal, i.e., relative approximation error of zero,

the percentage of the runs with a relative approximation error of

at most one, and the statistics of the relative approximation errors

in percent (%) for the runs that were not optimal. For Hospital

and HtmlConf over 90% and 80%, respectively, of the instances are

solved perfectly by AtLeastHApprox, and all instances are solved

with a relative error of less than one. In the case of the AUCS data

set, this value is lower with 38.9%. However, here, the mean and

median relative approximation errors are also less than one percent,

and more than 93% of the instances are solved with an error of at

most one. The maximum relative error is at 1.24%.

Table 2: Results and relative approximation errors in percent

(%) for the at least ℎ edges DSP.

Relative approximation errors (%)

Data set Opt. solved (%) Within 1% err. (%) Mean Std. dev. Median Max.

AUCS 38.9 93.1 0.59 0.31 0.42 1.24

Hospital 91.7 100 0.44 0.23 0.47 0.81

HtmlConf 83.0 100 0.14 0.13 0.10 0.83

Q2–Density and running times for increasing ℎ.We computed

the at least ℎ-edges DSP where we choose ℎ = 𝑤 + 𝑖 with𝑤 being

the number of edges in the unconstrained DSP and 1 ≤ 𝑖 ≤ |𝐸 | −𝑤 .

Figure 2 shows the results for AUCS and FriendFeed, and Figure 7 in

the appendix shows results for the remaining data sets. In all data

sets, the densities of the subgraphs 𝑆𝑖 strongly decrease for larger 𝑖 .

As the size of ℎ increases, the peeling process can stop earlier,

which leads to shorter running times: Table 3 shows the running

times for the four largest data sets and increasing ratios 𝑟 such that

𝑖 = 𝑟 ( |𝐸 | −𝑤). The reported running times are in seconds, and the

mean values and standard deviations are over ten repetitions. As

expected, the running time decreases with increasing value of 𝑖 .

100 101

i

5.8

6.0

6.2

De
ns

ity
 d

(S
i)

(a) AUCS

103 104

i

10

20

30

40

De
ns

ity
 d

(S
i)

(b) FfTwYt

106 107

i

200

400

De
ns

ity
 d

(S
i)

(c) FriendFeed

Figure 2: The density computed with AtLeastHApprox for

increasing numbers of required edges.

Table 3: Mean running times and standard deviations of

AtLeastHApprox in seconds (s).

𝑖 = 𝑟 · ( |𝐸 | −𝑤)
Data set 𝑟 = 0.1 𝑟 = 0.2 𝑟 = 0.3 𝑟 = 0.4 𝑟 = 0.5 𝑟 = 0.6 𝑟 = 0.7 𝑟 = 0.8 𝑟 = 0.9

Epinions 0.31±0.0 0.28±0.0 0.25±0.0 0.22±0.0 0.19±0.0 0.16±0.0 0.14±0.0 0.10±0.0 0.07±0.0
DBLP 1.28±0.0 1.17±0.0 1.04±0.0 0.92±0.0 0.81±0.0 0.69±0.0 0.56±0.0 0.43±0.0 0.29±0.0
Twitter 0.84±0.0 0.76±0.0 0.69±0.0 0.63±0.0 0.56±0.0 0.49±0.0 0.42±0.0 0.32±0.0 0.19±0.0
FriendFeed 18.99±0.5 16.73±0.4 14.45±0.4 12.31±0.5 9.85±0.3 7.74±0.3 5.66±0.2 3.90±0.4 2.02±0.1

Q3–Distribution of Colors in Unconstrained DSP. First, we

empirically verify the necessity of diversity in edge-colored graphs

and the densest subgraphs by assessing the distribution of colors

in the graphs and densest subgraphs. The findings consistently

show that the fractions of the different colors are not equal in the

data sets. Furthermore, often, the distribution of the colors in the

unconstrained DSP differs significantly from the distribution in the

complete graph. Figure 3 shows the distributions of the Knowledge

and all data sets with two colors. For example, in Figure 3a and

Figure 3b show the color distributions in the Knowledge data set and

the (unconstrained) densest subgraph. The distribution between

the graph and the DSP differs for most colors. Similarly, we see

in the bichromatic data sets significant differences in the fractions

of colors between the complete graph and the densest subgraph.

Hence, even if there are many edges of a specific color in a graph,

this does not generally mean that the densest subgraph contains a

particular number of edges of this color. This validates the motiva-

tion for our new problems and algorithms. Furthermore, even if the

distributions of the colors in the graph and the DSP are similar, we

might want to specifically find a subgraph with specific numbers

of edges of given colors.

Q4–Approximation quality of ColApprox. To evaluate the

approximation quality of ColApprox, we first computed the at

least ℎ colored edges DSP for the AUCS, Hospital, and HtmlConf

data sets using Heuristic, ColApprox, and the exact ILP approach

(ColILP). We chose 100 random problem instances. To this end, let

6
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Figure 3: The distributions of colors in various data sets.

𝑓𝑖 and 𝑔𝑖 be the number of edges of color 𝑖 in the unconstrained

DSP and graph 𝐺 , respectively. For each color 𝑐 ∈ [𝜋], we chose
ℎ𝑐 uniformly at random from the interval [𝑓𝑐 , 𝑔𝑐 ]. Furthermore, let

_ =

∑
𝑐∈ [𝜋 ] ℎ𝑐∑

𝑐∈ [𝜋 ] (𝑔𝑐−𝑓𝑐 )
denote the fraction of edges that are required

from all possible additional edges. Figure 4 shows the densities of

the solved problem instances with respect to _. Moreover, Table 4

shows the statistics of the relative approximation errors in percent

as well as the percentage of instances solved optimally or within a

relative error of at most one. We see that ColApprox solves both

more instances optimally and in the range of an error of at most one

than Heuristic. The relative approximation errors are generally

lower for ColApprox with mean values (much) smaller than one

and maximum values of at most 1.89%.

Table 4: Results and relative approximation errors in percent

(%) for the at least h colored edges DSP.

Relative approximation errors (%)

Algorithm Data set Opt. solved (%) Within 1% err. (%) Mean Std. dev. Median Max.

AUCS 21 76 0.65 0.82 0.27 3.58

Heuristic Hospital 1 19 2.64 1.94 2.14 9.10

HtmlConf 6 62 0.99 0.87 0.79 3.69

AUCS 22 95 0.30 0.34 0.15 1.30

ColApprox Hospital 7 74 0.76 0.41 0.72 1.74

HtmlConf 9 86 0.46 0.40 0.36 1.89
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Figure 4: Comparison of the heuristic, approximation algo-

rithm, and exact ILP.

Q5–Density for increasing color requirements.We computed

the densities of the densest subgraph for increasing color require-

ments using ColApprox and Heuristic. To this end, we first com-

puted the unconstrained DSP𝐻 = (𝑆, 𝐹 ). Let 𝑓𝑐 be the number edges

of colors 𝑐 ∈ [𝜋] in 𝐹 , and 𝑡𝑐 be the total number of color 𝑐 ∈ [𝜋]
edges in𝐺 . For each color 𝑐 ∈ [𝜋], we split define 𝑟𝑐 = (𝑡𝑐 − 𝑓𝑐 )/10.
We then defined ℎ𝑖𝑐 = 𝑖 · 𝑟𝑐 for 𝑖 ∈ [10], leading to ten color re-

quirement vectors ℎ𝑖 with 𝑖 ∈ [10]. Figure 5 shows the densities
computed with ColApprox andHeuristic. For increasing numbers

of required edges, the densities decrease. Compared to the Heuris-

tic, our approximation algorithm ColApprox leads to higher or

at least as high densities for all data sets. For some data sets, e.g.,

AUCS, HtmlConf, Epinions, and FriendFeed, the Heuristic performs

similarly good as our approximation. The reason is that for these

data sets, all required colored edges are in the densest subgraphs.

As the heuristic peels away nodes while the color requirements

are not violated, the densest, or close to the densest, subgraph can

be obtained in many cases. Also see Q4 for a comparison between

Heuristic and ColApprox with the optimal solutions, showing

that for random instances ColApprox consistently outperforms

Heuristic. Furthermore, Heuristic is bound to fail if the color

requirements are violated early in the peeling process. In the follow-

ing, we additionally show how the baseline fails in this case. To this

end, we modified each data set by adding two nodes connected by a

single edge of a new additional color. The results for Heuristic are

shown in Figure 5 labeled Heuristic
∗
. Because the nodes of the ad-

ditional edge have a degree of one, the heuristic will try to remove

them early on. But because the color of the new edge is required in

the solution, the nodes cannot be removed, and Heuristic stops

processing the graph, leading to much lower densities compared to

ColApprox. For ColApprox, the density only changes minimally

by the one additional edge and two additional nodes that need to

be considered.

Q6–Running times. Table 5 shows the mean running times and

standard deviations for ten repetitions of computations of the den-

sities for 𝑖 ∈ {2, 4, 6, 8} where 𝑖 and the color requirements are

chosen as in Q5. We show the results in seconds for the four largest

data sets. The running times are only a fraction of a second for

all other data sets. For both Heuristic and ColApprox the run-

ning time decreases for increasing 𝑖 and larger requirements of the

colors. In the case of Heuristic, the reason is that the higher the

requirements, the earlier the algorithm encounters a vertex whose

removal would lead to a color deficit, and it stops. For ColApprox,

the reason is that the higher the total color requirements, the earlier

the subroutine that finds the at least ℎ edges densest subgraph can

stop the peeling process.

Table 5: Running times in seconds (s) for computing the at

least h colored edges DSP.

𝑖 = 2 𝑖 = 4 𝑖 = 6 𝑖 = 8

Data set Heuristic ColApprox Heuristic ColApprox Heuristic ColApprox Heuristic ColApprox

Epinions 0.45±0.0 0.45±0.0 0.37±0.0 0.39±0.0 0.33±0.0 0.33±0.0 0.28±0.0 0.26±0.0
DBLP 1.25±0.0 1.74±0.0 1.01±0.0 1.48±0.0 0.94±0.0 1.21±0.1 0.84±0.1 0.88±0.0
Twitter 1.00±0.0 1.21±0.0 0.86±0.0 1.07±0.0 0.74±0.0 0.91±0.0 0.61±0.0 0.69±0.0
FriendFeed 18.85±0.2 21.06±0.3 16.69±0.2 16.50±0.2 13.97±0.2 12.11±0.2 10.25±0.1 8.25±0.1

5.2 Use Case: Diverse Coauthorship

In the following, we use a subgraph of the DBLP data set in which

edges describe the coauthorship of publications published at one of

ten data mining conferences. The network contains in total 44 823

nodes and 170 659 edges, each colored with one of ten colors rep-

resenting the conference, and we are interested in finding densest

subgraphs that contain publications of all conferences. Another

view is that edges of color 𝑐 belong to layer 𝑐 of a multilayer graph

with ten layers. Hence, we want to obtain densest subgraphs of the

multilayer coauthor graph that contain at least ℎ𝑖 edges in layer 𝑖 .

We compare our approximation algorithm ColApprox to the al-

gorithm for the multilayer densest subgraph problem Mlds. The
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Figure 5: Densities for increasing color requirements (the common legend is shown in (a)).

multilayer densest subgraph problem is defined as finding a subset

𝑆 ⊆ 𝑉 such that

max

�̂�⊆𝐿
min

ℓ∈�̂�

|𝐸ℓ (𝑆) |
|𝑆 | · |�̂� |

𝛽 ,

is maximized, where 𝛽 ∈ R is a parameter controlling the impor-

tance of adding few or many layers and 𝐸ℓ are the edges in layer

ℓ [18]. We computed the unconstrained densest subgraph, the mul-

tilayer densest subgraph for 𝛽 ∈ {1, 2.2, 5}, where we chose the
values of 𝛽 by increasing in 0.1 steps starting from one until all lay-

ers are in the densest subgraph. Only for the values of 2.2 and five

do the results change. Furthermore, we use the at least h colored

edges densest subgraph with the following color requirements. Let

𝑡𝑐 be the total number of color 𝑐 ∈ [𝜋] edges in 𝐺 . For each color

𝑐 ∈ [10], we defineℎ𝑐 = 𝑡𝑐/𝜏 with 𝜏 ∈ {10, 100, 1000}. Table 6 shows
the results of the by 𝑆 induced subgraphs, including the density,

where we use the standard definition of density, i.e., 𝑑 (𝑆) = |𝐸 |/|𝑆 |.
For 𝛽 = 1, the result of Mlds equals the unconstrained DSP. For

𝛽 = 2.2, nine of the ten layers are included. Figure 6a shows the

distribution of the publications. There are no publications from the

KDD conference in the densest subgraph, and the density dropped

significantly to 6.1 from the initial 20. Further increasing 𝛽 to five

leads finally leads to a densest subgraph containing publications

from all conferences; however, the density further dropped to 4.5.

Moreover, the KDD conference is still underrepresented with only

one publication (see Figure 6b). For our ColApprox, we obtain the

densest subgraphs with 1/1000th, 1/100th, and 1/10th of the edges

of each color while obtaining higher density values. Figure 6c and

Figure 6d show the color distributions for 𝜏 = 1000 and 𝜏 = 100,

respectively.

Table 6: Computing densest coauthor subgraphs.

Algorithm Density Nodes Edges Layers

Unconstrained DSP 20.0 41 820 2

𝛽 = 1 20.0 41 820 2

Mlds 𝛽 = 2.2 6.1 232 1407 9

𝛽 = 5 4.5 396 1766 10

𝜏 = 1000 8.7 137 1194 10

ColApprox 𝜏 = 100 9.5 409 3890 10

𝜏 = 10 9.4 2692 25324 10
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Figure 6: Distributions of conferences in the densest coauthor

subgraphs computed withMlds and ColApprox.

6 CONCLUSION AND FUTUREWORK

We introduced new variants of diverse densest subgraph problems

in networks with single or multiple edge attributes. We established

the NP-completeness of decision versions for finding exactly, at

most, and at least h colored edges densest subgraphs, even for

just two colors. Furthermore, we presented a linear-time constant-

factor approximation algorithm for the problem of finding a densest

subgraph with at least h colored edges in sparse graphs. As an addi-

tional result, we introduced the related at least ℎ non-colored edges

densest subgraph problem and provided a linear-time constant-

factor approximation for it. Our experimental results validated the

practical efficacy and efficiency of the proposed algorithms on a

wide range of real-world graphs.

Future work directions include improving the approximation

results for non-sparse graphs and introducing algorithms for the

exact and at most h variants. Additionally, we plan to extend the

problems and algorithms to dynamic settings where the topology

and edge attributes of graphs can change over time, enabling us to

better adapt to the evolving nature of the World Wide Web.
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A OMITTED PROOFS

In this section, we provide the omitted proofs.

A.1 Proofs of Section 3

First, we provide the NP-completeness results for the decision ver-

sions of our edge-diverse densest subgraph problems.

Theorem 8. The decision version of the exactly h colored edges

version (ehcEdgesDSPdec) is NP-complete.

Proof. We show the result for the special case of two colors,

i.e., 𝜋 = 2. In this case, the decision version ehcEdgesDSP asks to

decide if there is a subset 𝑆 such that the induced subgraph has

exactly ℎ color 𝜎 ∈ [2] edges and a density of at least 𝛼 . It is clearly
inNP. We use a reduction from 𝑘-clique. Given an instance (𝐺,𝑘) of
𝑘-clique, we construct the following instance of ehcEdgesDSPdec:

• Let𝐺 ′ = (𝑉 ′, 𝐸′) with𝑉 ′ = 𝑉 ∪ {𝑡} and 𝐸′ = 𝐸 ∪ {{𝑡, 𝑣} | 𝑣 ∈
𝑉 }, and 𝑐 (𝑒) = 2 if 𝑒 ∈ 𝐸′ ∩ 𝐸, and 𝑐 (𝑒) = 1 otherwise,

• furthermore, let 𝜎 = 1, ℎ = 𝑘 , and 𝛼 =
(𝑘
2
)+𝑘

𝑘+1 = 𝑘
2
.

Now, if 𝐺 contains a 𝑘-clique, then ehcEdgesDSPdec has a yes

answer. Because 𝑡 is connected to all 𝑣 ∈ 𝑉 in 𝐺 ′, i.e., also to a set

9
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𝐶 containing 𝑘 nodes of a 𝑘-clique, we find a subgraph 𝑆 = 𝐶 ∪ {𝑡}
containing a (𝑘 +1)-clique. Because𝐺 (𝑆) is complete, 𝑑 (𝑆) = (

𝑘
2
)+𝑘

𝑘+1 .

For the other direction, assume ehcEdgesDSPdec has a yes an-

swer. This means that |𝑆 | = 𝑘 + 1 because otherwise, the induced
subgraph would contain more thanℎ color 𝜎 edges as 𝑡 is connected

to all other vertices. Furthermore, in order to achieve the density

of 𝛼 ≥ (
𝑘
2
)+𝑘

𝑘+1 , there have to be

(𝑘
2

)
edges between the nodes 𝑆 \ {𝑡}

and 𝑘 edges from 𝑡 to the nodes 𝑆 \ {𝑡}. Because the graph 𝐺 ′ is
simple, the by 𝑆 induced subgraph is a (𝑘 + 1)-clique. And due to

the construction, 𝑆 \ {𝑡} is a 𝑘-clique in 𝐺 . □

Similarly, the decision version of the at-mostℎ colored edges DSP

(mhcEdgesDSPdec) is NP-complete. We now show the hardness

for the at-least ℎ colored edges variant.

Theorem 9. The decision version of the at least h colored edges

version (alhcEdgesDSPdec) is NP-complete.

Proof. We show the result for the special case 𝜋 = 2. The

decision version of alhcEdgesDSPdec asks to decide if there is

a subset 𝑆 such that the induced subgraph has at least ℎ color 𝜎

edges and a density of at least 𝛼 . It is clearly in NP. We use again a

reduction from 𝑘-clique.

Given an instance (𝐺,𝑘) of 𝑘-clique, we construct the following
instance of alhcEdgesDSPdec:

• Let 𝑛 = |𝑉 (𝐺) | and let 𝐾 ′ be the complete graph 𝐾𝑛4 in which

all edges are colored 1. Furthermore, we construct𝐺 ′ as in the

proof of Theorem 8. The graph 𝐻 is the union of 𝐾 ′ and 𝐺 ′.

• Moreover, we set 𝜎 = 1, ℎ =
(𝑛4

2

)
+ 𝑘 , and 𝛼 =

(𝑛4
2
)+(𝑘

2
)+𝑘

𝑛4+𝑘+1 .

Let 𝑆 ⊆ 𝑉 (𝐻 ) be a witness of alhcEdgesDSPdec. (i) First note
that 𝐾 ′ is completely in 𝐺 (𝑆). Assume that 𝐾 ′ is not completely in

𝐺 (𝑆) and let 𝑇 be the nodes from 𝐾 ′ that are in 𝑆 , then 𝑇 provides( |𝑇 |
2

)
color 1 edges. Thus we need to choose ℎ −

( |𝑇 |
2

)
color 1 edges

from 𝐺 ′, which is impossible because ℎ −
(𝑇
2

)
> 𝑛 when |𝑇 | < 𝑛4.

(ii) Next, we show that |𝑆∩𝑉 (𝐺 ′) | = 𝑘+1. Because |𝑆 | ≥ 𝑛4+𝑘+1
and 𝑛4 nodes belong to𝐾 ′, the number of nodes in 𝑆 ′ = 𝑆∩𝑉 (𝐺 ′) is
at least 𝑘+1. Now, we show that |𝑆 ′ | ≤ 𝑘+1, by showing that adding
additional edges beside the necessary 𝑘 edges would decrease the

density𝑑 (𝑆). Let 𝛽 = 𝑑 (𝑆 ′), 𝑠 = |𝑆 ′ |, 𝑒𝑘 = |𝐸 (𝐾 ′) |, and 𝑣𝑘 = |𝑉 (𝐾 ′) |.
We can express the density 𝑑 (𝑆) as follows

𝑑 (𝑆) = 𝛽 · 𝑠 + 𝑒𝑘
𝑠 + 𝑣𝑘

.

If we add another node 𝑢 ∈ 𝑉 (𝐺) to 𝑆 ′, we also add new edges

into the induced subgraph𝐺 (𝑆 ′). Let 𝑝 be the number of additional

edges. Then the density changes to

𝑑 (𝑆 ∪ {𝑢}) = 𝛽 · 𝑠 + 𝑒𝑘 + 𝑝
𝑠 + 𝑣𝑘 + 1

.

Note that by adding vertex 𝑢, we also add a new edge of color 1

between𝑢 and 𝑡 . We show that 𝑑 (𝑆) −𝑑 (𝑆 ∪{𝑢}) > 0, hence adding

additional nodes and, therefore, additional edges of color 1 leads to

decreased density.

𝑑 (𝑆) − 𝑑 (𝑆 ∪ {𝑢}) = 𝛽 · 𝑠 + 𝑒𝑘
𝑠 + 𝑣𝑘

− 𝛽 · 𝑠 + 𝑒𝑘 + 𝑝
𝑠 + 𝑣𝑘 + 1

> 0 (1)

⇔ 𝛽𝑠2 + 𝛽𝑠𝑣𝑘 + 𝛽𝑠 + 𝑒𝑘𝑠 + 𝑒𝑘𝑣𝑘 + 𝑒𝑘 (2)

− (𝛽𝑠2 + 𝛽𝑠𝑣𝑘 + 𝑒𝑘𝑠 + 𝑒𝑘𝑣𝑘 + 𝑝𝑠 + 𝑝𝑣𝑘 ) > 0 (3)

⇔ 𝛽𝑠 + 𝑒𝑘 − 𝑝 (𝑠 + 𝑣𝑘 ) > 𝑒𝑘 − 𝑝 (𝑠 + 𝑣𝑘 ) > 0

(4)

To see why the last inequality holds we upper bound 𝑝 with 𝑛2 and

𝑠 with 𝑛 such that we have(
𝑛4

2

)
− 𝑛2 (𝑛 + 𝑛4) > 0

which holds for 𝑛 ≥ 2.

Now let 𝐺 contain a 𝑘-clique 𝐶 . Hence, by setting 𝑆 = 𝐶 ∪ {𝑠},
we have at least ℎ edges with color 𝜎 = 1, and we obtain a total

density of 𝛼 .

If alhcEdgesDSPdec has a yes answer, then it holds that 𝛼 =

(𝑛4
2
)+(𝑘

2
)+𝑘

𝑛4+𝑘+1 due to the previous observations (i) and (ii). Specifically,

|𝑆 | = 𝑛4 + 𝑘 + 1 because otherwise, the induced subgraph would

contain more than ℎ color 𝜎 edges, which would reduce the density.

In order to achieve the density of 𝛼 , there need to be

(𝑘
2

)
+ 𝑘 edges

in 𝐺 ′, which means that the nodes in 𝐺 ′ are completely connected.

Hence, there is a 𝑘-clique in 𝐺 . □

Proof of Theorem 2. Given a graph 𝐺 = (𝑉 , 𝐸), ℎ ∈ N, and
𝛼 ∈ R, the decision version asks if there there exists a densest

subgraph with at least ℎ edges and density at least 𝛼 . It is clearly in

NP. We use a reduction from the decision version of the at least 𝑘

nodes DSP, which asks for a densest subgraph with at least 𝑘 ∈ N
nodes and density of at least 𝛽 ∈ R. For our reduction, we construct
a family of at most |𝑉 |2 instances of the at least ℎ𝑖 edges densest
subgraph problem with ℎ𝑖 = 𝑖 for 𝑖 ∈ [|𝑉 |2] and 𝛼 = 𝛽 . We show

that the at least 𝑘 nodes instance has a yes answer iff. one of the

at least ℎ𝑖 edges instances has at least 𝑘 nodes and a density of at

least 𝛽 .

First we show that if the at least 𝑘 nodes instance has a yes

answer, one of the at least ℎ𝑖 edges instances has at least 𝑘 nodes

and a density of at least 𝛽 . Let 𝜙 be the minimum number of edges

over all graphs that are densest subgraphs of𝐺 with at least 𝑘 nodes.

Because 1 ≤ 𝜙 ≤ |𝑉 |2 there is a at least 𝜙 edges densest subgraph

instance. Let 𝑆 be an optimal solution for the at least 𝜙 edges DSP

and assume it would not be optimal for the at least 𝑘 nodes DSP.

Let 𝑆 ′ be optimal for the latter with the density of 𝑑∗ ≥ 𝛽 . Note
that |𝐸 (𝑆 ′) | ≥ 𝜙 which leads to a contradiction to the optimality of

𝑆 . Hence, 𝑑 (𝑆) ≥ 𝑑∗ ≥ 𝛽 .
For the other direction, it is clear that if there is a solution 𝑆 to

one of the at least ℎ𝑖 edges instances that has at least 𝑘 nodes and a

density of at least 𝛽 then 𝑆 is also a solution to the at least 𝑘 nodes

instance. □

A.2 Proofs of Section 4

Proof of Lemma 2. Assume 𝑆 is optimal for the at least 𝑘-nodes

DSP but not optimal for the at least ℎ-edges DSP. Let 𝑆 ′ be optimal

for the latter. Now because |𝑆 ′ | ≥ 𝑘 and 𝑑 (𝑆 ′) > 𝑑 (𝑆), we have a
contradiction to the optimality of 𝑆 . □
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Before we prove Theorem 7, we introduce two lemmas.

Lemma 3. Algorithm 1 and Algorithm 2 can be adapted to every-

where sparse multigraph input𝑀 .

Proof. To adapt Algorithm 1 and Algorithm 2 for use with

the multigraph𝑀 , we need to make the following adjustments: In

Algorithm 1 and Algorithm 2, we use the general lower bound of

nodes ℓ (ℎ, 𝜋) instead of ℓ (ℎ). Furthermore, in Algorithm 2, when

adding an edge to𝑀 (𝑆𝑖 ), ensure that all parallel edges between a

pair of nodes are added. It is noteworthy that Lemma 2 remains

applicable to the multigraph 𝑀 . This follows directly from the

subgraph definition and density. Consequently, we can conclude

that the adapted Algorithm 1 is optimal for the multigraph𝑀 .

To demonstrate that Algorithm 2 provides a O(1)-approximation

for the multigraph𝑀 we need to establish the following:

(1) If 𝑀 (𝑆𝑖 ) does not contain at least ℎ edges, the addition of

parallel edges introduces fewer new nodes compared to the addition

of simple edges. Therefore, it can only enhance the density of the

resultant subgraph.

(2) Regardless of edge colors, a multigraph can be treated as a

weighted graph where edge weights correspond to the number

of parallel edges between a pair of nodes (𝑢, 𝑣). As a result, the

3-approximation algorithm introduced by [2] is applicable to multi-

graphs. This implies that the assumption 𝑐1 |𝐸 (𝑆) | ≥ |𝐸 (𝑆∗) | ≥ ℎ
used in the proof of Theorem 4 is valid.

The combination of points (1) and (2) concludes the proof. □

Lemma 4. Algorithm 3 gives an O(1)-approximation for atLeastH-

EdgesDSP on everywhere sparse multigraph input𝑀 .

Proof. To adapt Algorithm 3 for use with a multigraph input,

we should modify the peeling procedure in line 6 as follows: when

we remove edges during the peeling procedure, we should remove

all parallel edges that are incident to node 𝑣𝑖 .

With arguments analogous to those presented in points (1) and (2)

of the proof for Lemma 3, we can conclude that the theorem remains

valid when applied to multigraphs. Furthermore, the running time

complexity of Algorithm 3 remains unchanged. □

Proof of Theorem 7. Together with Lemma 4, the proof can

be adapted from the proof of Algorithm 4, following the same line

of reasoning that adding all parallel edges can only enhance the

density of the resulting subgraph. The running time increases to

O(𝑛+𝑚 ·𝜋) due to the transformation of the graph to themultigraph.

Note that 𝜋 is often a small constant. □

B ILP FORMULATIONS

For the exact solution of atLeastHEdgesDSP, we solve the fol-

lowing ILP where guess the number of nodes ℓ (ℎ) ≤ 𝑘 ≤ 𝑛 and

return the solution with the maximum density. We use 𝑦𝑢 ∈ {0, 1}
to denote if vertex 𝑢 ∈ 𝑉 belongs to the solution 𝑆 ⊆ 𝑉 . Moreover,

we use 𝑥𝑢𝑣 ∈ {0, 1} for each edge 𝑒 = {𝑢, 𝑣} ∈ 𝐸 to encode if 𝑒 is

in the densest subgraph (𝑥𝑢𝑣 = 1) or not (𝑥𝑢𝑣 = 0). We can relax

𝑥𝑢𝑣 ∈ {0, 1} to 𝑥𝑢𝑣 ∈ [0, 1] because we maximize over 𝑥 and due to

Equation (7).
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Figure 7: The density computed with AtLeastHApprox for

increasing numbers of required edges.

max

∑︁
{𝑢,𝑣}∈𝐸

𝑥𝑢𝑣

𝑘
(5)

s.t.

∑︁
{𝑢,𝑣}∈𝐸

𝑥𝑢𝑣 ≥ ℎ and

∑︁
𝑢∈𝑉

= 𝑘 (6)

𝑥𝑢𝑣 ≤ 𝑦𝑢 and 𝑥𝑢𝑣 ≤ 𝑦𝑣 for all {𝑢, 𝑣} ∈ 𝐸 (7)

𝑥𝑢𝑣 ∈ [0, 1] for all {𝑢, 𝑣} ∈ 𝐸 (8)

𝑦𝑢 ∈ {0, 1} for all 𝑢 ∈ 𝑉 (9)

We can solve the at least ℎ colored edges DSP (alhcEdgesDSP)

by adding the following additional constraint:∑︁
{𝑢,𝑣}∈𝐸𝑐

𝑥𝑢𝑣 ≥ ℎ𝑐 for all 𝑐 ∈ [𝜋], (10)

where 𝐸𝑐 ⊆ 𝐸 is the subset of edges with color 𝑐 ∈ [𝜋].

C DATA SET DETAILS

• AUCS contains relations among the faculty and staffwithin the

Computer Science department at Aarhus University [32]. The

five layers correspond to the following relationship types: cur-

rent working relationship, repeated leisure activities, regular

lunch, co-authorship of publication, and facebook friendship.

• Hospital and HtmlConf are face-to-face contact networks be-

tween hospital patients and health care workers [41], and

between visitors of a conference [24]. The networks spans

five and three days, respectively, represented by the colors.

• Airports is an aviation transport network containing flight con-

nections between European airports [8]. The layers represent

different airline companies.

• Rattus contains different types of genetic interactions of Rat-

tus Norvegicus [13]. The six layers are physical association,

11
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direct interaction, colocalization, association, additive genetic

interaction defined by inequality, and suppressive genetic in-

teraction defined by inequality.

• Knowledge is based on the FB15K-237 Knowledge Base data

set [39]. The FB15K-237 data set contains knowledge base re-

lation triples and textual mentions of the Freebase knowledge

graph entity pairs. We represent the entities as nodes and

different relations colored edges.

• HomoSap is a network representing different types of genetic

interactions between genes in Homo Sapiens [18].

• Epinions is an online social network and general consumer

review site. Members on the platform have the option to de-

termine whether or not they trust one another [30].

• DBLP is a subgraph of the DBLP graph [31] containing only

publications from 𝐴 and 𝐴∗ ranked conferences (according

to the Core ranking). The edges describe collaborations be-

tween authors, and the edge colors represent the different

conferences.

• Twitter is a subgraph of the Twitter graph representing users

and retweets in the period of six months before the 2016 US

Presidential Elections [37]. Each edge represents a retweet

and is labeled as factual or misinformation.

• FriendFeed and FfTwYt are based on the former FriendFeed

social media aggregation service that allowed users to con-

solidate and view updates from various social networking

platforms and websites [14]. The FriendFeed dataset contains

interactions among users collected over twomonths. The three

layers represent commenting, liking and following. FfTwYt is

a network in which users registered a Twitter and a Youtube

account associated to their Friendfeed account.
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