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Abstract

Thanks to their scalability, two-stage recommenders are used by many of today’s
largest online platforms, including YouTube, LinkedIn, and Pinterest. These
systems produce recommendations in two steps: (i) multiple nominators—tuned for
low prediction latency—preselect a small subset of candidates from the whole item
pool; (ii) a slower but more accurate ranker further narrows down the nominated
items, and serves to the user. Despite their popularity, the literature on two-stage
recommenders is relatively scarce, and the algorithms are often treated as mere
sums of their parts. Such treatment presupposes that the two-stage performance is
explained by the behavior of the individual components in isolation. This is not
the case: using synthetic and real-world data, we demonstrate that interactions
between the ranker and the nominators substantially affect the overall performance.
Motivated by these findings, we derive a generalization lower bound which shows
that independent nominator training can lead to performance on par with uniformly
random recommendations. We find that careful design of item pools, each assigned
to a different nominator, alleviates these issues. As manual search for a good pool
allocation is difficult, we propose to learn one instead using a Mixture-of-Experts
based approach. This significantly improves both precision and recall at K.

1 Introduction

Recommender systems play a central role in online ecosystems, affecting what media we consume,
which products we buy, or even with whom we interact. A key technical challenge is ensuring these
systems can sift through billions of items to deliver a personalized experience to millions of users
with low response latency. A widely adopted solution to this problem are two-stage recommender
systems [12, 20, 28, 98, 101] where (i) a set of computationally efficient nominators (or candidate
generators) preselects a small number of candidates, which are then (ii) further narrowed down,
reranked, and served to the user by a slower but more statistically accurate ranker.

Nominators are often heterogeneous, ranging from associative rules to recurrent neural networks [18].
A popular choice are matrix factorization [56, 72] and two-tower [98] architectures which model user
feedback by the dot product between user and item embeddings. While user embeddings often evolve
with the changing context of user interactions, item embeddings can typically be precomputed before
deployment. The cost of candidate generation is thus dominated by the (approximate) computation of
the embedding dot products. In contrast, the ranker often takes both the user and item features as
input, making the computational cost linear in the number of items even at deployment [20, 67].
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With few exceptions [44, 52, 67], two-stage specific literature is sparse compared to that on single-
stage systems (i.e., recommenders which do not construct an explicit candidate set within a separate
nominator stage [e.g., 17, 40, 46, 56, 72, 78, 84]). This is especially concerning given the considerable
ethical challenges entailed by the enormous reach of two-stage systems: according to the recent
systematic survey by Milano et al. [70], recommender systems have been (partially) responsible for
unfair treatment of disadvantaged groups, privacy leaks, political polarization, spread of misinforma-
tion, and ‘filter bubble’ or ‘echo chamber’ effects. While many of these issues are primarily within the
realm of ‘human–algorithm’ interactions, the additional layer of ‘algorithm–algorithm’ interactions
introduced by the two-stage systems poses a further challenge to understanding and alleviating them.

The main aim of our work is thus to narrow the knowledge gap between single- and two-stage systems,
particularly in the context of score-based algorithms. Our main contributions are:

1. We show two-stage recommenders are significantly affected by interactions between the
ranker and the nominators over a variety of experimental settings (Section 3.1).

2. We investigate these interactions theoretically (Section 3.2), and find that while independent
ranker training typically works well (Proposition 1), the same is not the case for the nomina-
tors where two popular training schemes can both result in performance no better than that
of a uniformly random recommender (Proposition 2).

3. Responding to the highlighted issues with independent training, we identify specialization of
nominators to smaller subsets of the item pool as a source of potentially large performance
gains. We thus propose a joint Mixture-of-Experts [47, 49] style training which treats each
nominator as the expert for its own item subset. The ability to learn the item pool division
alleviates the issues caused by the typically lower modeling capacity of the nominators, and
empirically leads to improved precision and recall at K (Section 4).

2 Two-stage recommender systems

The goal of recommender systems is to learn a policy π which maps contexts x ∈ X to distributions
π(x) over a finite set of items (or actions) a ∈ A , such that the expected reward Ex Ea∼π(x)[ra |x]
is maximized. The context x represents information about the user and items (e.g., interaction history,
demographic data), and ra is the user feedback associated with item a (e.g., rating, clickthrough,
watch-time). We assume that ra|x has a well-defined fixed mean f?(x, a) := E[ra |x] for all the
(x, a) pairs. To simplify, we further assume only one item at is to be recommended for each given
context xt, where t ∈ [T ] with [T ] := {1, . . . , T} for T ∈ N.

Two-stage systems differ from the single-stage ones by the two-step strategy of selecting at. First,
each nominator n ∈ [N ] picks a single candidate an,t from its assigned pool An ⊆ A (An 6= ∅,⋃
nAn = A). Second, the ranker chooses an item at from the candidate pool Ct := {a1,t , . . . , aN,t},

and observes the reward rt = rtat associated with at. Since the goal is expected reward maximization,
recommendation quality can be measured by instantaneous regret r?t − rt where r?t = rta?t is the
reward associated with an optimal arm a?t ∈ argmaxa∈A f

?(xt, a). This leads us to an important
identity for the (cumulative) regret in two-stage systems which is going to be used throughout:

R2s
T =

T∑
t=1

r?t − rt =

T∑
t=1

(r?t − rtãt)︸ ︷︷ ︸
=:RN

T

+

T∑
t=1

(rtãt − rt)︸ ︷︷ ︸
=:RR

T

, (1)

with ãt ∈ argmaxa∈Ct f
?(xt, a). In words, RN

T is the nominator regret, quantifying the difference
between the best action presented to the ranker ãt and the best overall action a?t , and RR

T is the ranker
regret which measures the gap between the choice of the ranker at and the best action in the candidate
set Ct. The two-stage recommendation process is summarized in Figure 2 (left).

While Equation (1) is typical for the bandit literature (data collected interactively, only rtat revealed
for each t), we also consider the supervised learning case (a dataset with all {rta}ta revealed is given).
In particular, Section 3 presents an empirical comparison of single- and two-stage systems in the
bandit setting, followed by a theoretical analysis with implications for both the learning setups.
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Figure 2: Left: The two-stage recommendation setup. Right: Amazon reward histogram. The top 5
arms are responsible for 19.22% whereas the bottom 50 only for 19.85% of the positive rewards.

3 Comparing single- and two-stage systems

Since the ranker and nominators could each be deployed independently, one may wonder whether the
performance of a two-stage system is significantly affected by factors beyond the hypothetical single-
stage performance of its components. This question is both theoretically (new developments needed?)
and practically interesting (e.g., training components independently, as common, assumes targeting
single-stage behavior is optimal). In Section 3.1, we empirically show that while factors known from
the single-stage literature also affect two-stage systems, there are two-stage specific properties which
can be even more important. Section 3.2 then investigates these properties theoretically, revealing a
non-trivial interaction between the nominator training objective and the item pool allocations {An}n.

3.1 Empirical observations

Setup

We study the effects of item pool size, dimensionality, misspecification, nominator count, and the
choice of ranker and nominator algorithms in the bandit setting. We compare single- and two-stage
systems where each (component) models the expected reward as a linear function ft(x, a) = 〈θ̂t, xa〉
(xa differs for each a). Abbreviating xt = xtat , the estimates are converted into a policy via either:

1. UCB (U) [6, 64] which computes the ridge-regression estimate with regularizer λ > 0

θ̂t := Σt

t−1∑
i=1

xiri , Σt :=

(
λI +

t−1∑
i=1

xix
>
i

)−1

, (2)

and selects actions with exploration bonus α > 0: at ∈ argmaxa 〈θ̂t, xta〉+ α
√
x>taΣtxta .

2. Greedy (G) [8, 53] which can be viewed as a special case of UCB with α = 0.

The argmax is restricted toAn (resp. Ct) in two-stage systems, with pool allocation {An}n designed
to minimize overlaps and approximately equalize the number of items in each pool (see Appendix B).

We chose to make the above restrictions of our experimental setup to limit the large number of design
choices two-stage recommenders entail (architecture and hyperparameters of each nominator and
the ranker, item pool allocation, number of nominators, etc.), and with that isolate the variation in
performance to only a few factors of immediate interest.

We use one synthetic and one real-world dataset. The synthetic dataset is generated using a linear
model rta = 〈θ?, xta〉 + εta for each time step t ∈ [T ] and action a ∈ A. The vector θ? is drawn
uniformly from the d-dimensional unit sphere at the beginning and then kept fixed, the contexts xta
are sampled independently from N (0, I), and εta ∼ N (0, 0.01) is independent observation noise.
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Figure 3: Synthetic data results. The x-axis is the ratio between the true feature dimension d and the
size of the subset available to the nominators and the single-stage systems s. The y-axis shows the
expected regret at T = 1000. In plot (a), N = 5 nominators are used, and columns represent the
total number of features d. In plot (b), d = 40 features are used, and columns show the number of
nominators N . The legend describes model architectures, where two-stage systems are labeled by
‘[ranker]+[nominator]’ (e.g., ‘U+G’ is a UCB ranker with Greedy nominators).

The real-world dataset ‘AmazonCat–13K’ contains Amazon reviews and the associated product
category labels [10, 69].1 Since ‘AmazonCat–13K’ is a multi-label classification dataset, we convert
it into a bandit one by assigning a reward of one for correctly predicting any one of the categories
to which the product belongs, and zero otherwise. An |A|–armed linear bandit is then created by
sampling |A| reviews uniformly from the whole dataset, and treating the associated features as the
contexts {xta}a∈A. This method of conversion is standard in the literature [27, 35, 66, 67].

We use only the raw text features, and convert them to 768-dimensional embeddings using the
HuggingFace pretrained model ‘bert-base-uncased’ [24, 97];2 we further subset to the first
d = 400 dimensions of the embeddings, which does not substantially affect the results. Because we
are running thousands of different experiment configurations (counting the varying seeds), we further
reduce the computational complexity by subsetting from the overall 13K to only 100 categories.
Since most of the products belong to 1–3 categories, we take the categories with 3rd to 102nd highest
occurrence frequency. This ensures less than 5% of the data points belong to none of the preserved
categories, and overall 10.73% reward positivity rate with strong power law decay (Figure 2, right).

While the ranker can always access all d features, the usual lower flexibility of the nominators
(misspecification) is modelled by restricting each to a different random subset of s out of the total d
features on both datasets. This is equivalent to forcing the corresponding regression parameters to
be zero. Both UCB and Greedy are then run with xt replaced by the s-dimensional xn,t = xn,tat
everywhere. The same restriction is applied to the single-stage systems for comparison. In all
rounds, each nominator is updated with (xn,t, at, rt), regardless of whether at ∈ An (this assumption
is revisited in Section 3.2). Thirty independent random seeds were used to produce the (often
barely visible) two-sigma standard error regions in Figures 3 and 4. More details—including the
hyperparameter tuning protocol and additional results—can be found in Appendices B and C.

Results

Starting with the synthetic results in Figure 3, we see that the number of arms and the feature
dimension d are both correlated with increased regret in single- and two-stage systems. Another
similarity between all the algorithms is that misspecification—as measured by d/s—also has a
significant effect on performance.3 This is also the case for the Amazon dataset in Figure 4.

1We did not use ‘MovieLens’ [38] since it contains little useful contextual information as evidenced by
its absence even from the state-of-the-art models [79]. Two-stage recommenders are only used when context
matters as otherwise all recommendations could be precomputed and retrieved from a database at deployment.

2Encoded dataset: https://twostage.s3-us-west-2.amazonaws.com/amazoncat-13k-bert.zip.
3Misspecification error typically translates into a linear regret term εT [21, 25, 31, 32, 36, 58, 61]. We can thus

gain some intuition for the concavity of d/s 7→ RT from the L2 error ε = minθn(E[(ra − 〈θn, xn,a〉)2])1/2
where a ∼ Unif(A) [58]. Using xta ∼ N (0, I), the minimum is achieved by (E[xn,ax>n,a])−1 E[xn,ara] = θ?n,
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Figure 4: Amazon data results. The axes are the same as in Figure 3, except the y-axis is plotted at
T = 5000 with the regret divided by that of a uniformly random agent. The feature dimension is
fixed to d = 400, and the number of arms to 100 in plot (a), and to 1000 in plot (b). The columns
represent varying number of nominators N . The legend is shared, where the one in (a) corresponds
to the top row plots and has the same interpretation as in Figure 3, and the one in (b) belongs to the
bottom row plots which show the proportion of ranker and nominator regret (see Equation (1)) for the
‘U+U’ two-stage system as a representative example (all two-stage systems perform similarly here).

The influence of the number of arms, dimensionality, and misspecification on single-stage systems is
well known [60]. Figures 3 and 4 suggest similar effects also exist for two-stage systems. On the other
hand, while the directions of change in regret agree, the magnitudes do not. In particular, two-stage
systems perform significantly better than their single-stage counterparts. This is possible because the
ranker can exploit its access to all d features to improve upon even the best of the nominators (recall
that nominators and single-stage systems share the same model architecture). In other words, the
single-stage performance of individual components does not fully explain the two-stage behavior.

To develop further intuition about the differences between single- and two-stage systems, we turn our
attention to the Amazon experiments in Figure 4. The top row suggests the performance of two-stage
systems improves as the number of nominators grows. Strikingly, the accompanying UCB ranker
+ nominator plots in the bottom row show the nominator regret RN

T dominates when there are few
nominators, but gives way to the ranker regret RR

T as their number increases.

To explain why, first note that the single-stage performance of the ranker can be read off from the
bottom left corner of each plot where d = s (because all the components are identical at initialization,
and then updated with the same data). Since the size of the candidate set Ct increases with the
number of nominators, the two-stage performance in the d > s case eventually approaches that of
the single-stage UCB ranker as well, even if the nominators are no better than random guessing. In
fact, because ≈ 10% of the items yield optimal reward, the probability that a set of ten uniformly
random nominators with non-overlapping item pools nominates at least one optimal arm is on average
1− ( 9

10 )10 ≈ 0.65, i.e., the instantaneous nominator regret would be zero 65% of the time.

To summarize, we have seen evidence that properties known to affect single-stage performance—
number of arms, feature dimensionality, misspecification—have similar qualitative effects on two-
stage systems. However, two-stage recommenders perform significantly better than any of the
nominators alone, especially as the nominator count and the size of the candidate pool increase.
Complementary to the evidence from offline learning [67], and the effect of ranker pretraining [44],
these observations add to the case that two-stage systems should not be treated as just the sum of
their parts. We add theoretical support to this argument in the next section.

3.2 Theoretical observations

The focus of Section 3.1 was on linear models in the bandit setting. We lift the bandit assumption
later in this section, and relax the class of studied models to least-squares regression oracle (LSO)
based algorithms, which estimate the expected reward by minimizing the sum of squared errors and a

with θ?n the s entries of θ? corresponding to the dimensions available to n. The L2 error is thus a concave
function of d/s by symmetry: ε =

√
E[E[(rta − 〈θ?n, xn,ta〉)2 | θ?]] =

√
E[‖θ?‖22 − ‖θ?n‖22] =

√
1− s/d.
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regularizer ‖ · ‖F over a given model class F

ft ∈ argminf∈F

{
‖f‖F +

t−1∑
i=1

(ri − f(xi, ai))
2

}
. (3)

These estimates are then converted into a policy either greedily, πt(x) = Unif(argmaxa ft(x, a)),
or by incorporating an exploration bonus as in LinUCB [6, 19, 22, 64, 82], or the more recent class
of black-box reductions from bandit to online or offline regression [30–32, 58, 86]. The resulting
algorithms are often minimax optimal, and (some) also perform well on real-world data [11].

We choose LSO based algorithms because they (i) include the Greedy and (Lin)UCB models studied
in the previous section, and (ii) allow for an easier exposition than the similarly popular cost-sensitive
classification approaches [e.g., 2, 18, 20, 26, 59]. The following proposition is an application of the
fact that algorithms like LinUCB or SquareCB [1, 30, 32] provide regret guarantees robust to contexts
chosen by an adaptive adversary, and thus also to those chosen by the nominators.

Proposition 1 Assume the ranker achieves a single-stage regret guarantee RT ≤ BR
T for some

constant BR
T ∈ R (either in expectation or with high probability), even if the contexts {xt}Tt=1 are

chosen by an adaptive adversary. The ranker regret then satisfies

RR
T =

T∑
t=1

rtãt − rt ≤ BR
T ,

in the sense of the original bound (i.e., in expectation, or with high probability).

While proving Proposition 1 is straightforward, its consequences are not. First, if BR
T is in some

sense optimal, then Equation (1) implies the two-stage regret R2s
T will be dominated by the nominator

regret RN
T (unless it satisfies a similar guarantee). Second, RR

T ≤ BR
T holds exactly when the ranker

is trained in the ‘single-stage mode’, i.e., the tuples (xt, at, rt) are fed to the algorithm without any
adjustment for the fact Ct is selected by a set of adaptive nominators from the whole item pool A.

The above however does not mean that the ranker has no substantial effect on the overall behavior of
the two-stage system. In particular, the feedback observed by the ranker also becomes the feedback
observed by the nominators, which has the primary effect of influencing the nominator regret RN

T , and
the secondary effect of influencing the candidate pools Ct (which creates a feedback loop). The rest
of this section focuses on the primary effect, and in particular its dependence on how the nominators
are trained and the item pools {An}n allocated.

Pitfalls in designing the nominator training objective

The primary effect above stems from a key property of two-stage systems: unlike the ranker, nomina-
tors do not observe feedback for all items they choose. While importance weighting can be used to
adjust the nominator training objective [67], it does not tell us what adjustment would be optimal.

We thus study two major types of updating strategies: (i) ‘training-on-all,’ and (ii) ‘training-on-own.’
Both can be characterized in terms of the following weighted oracle objective for the nth nominator

fn,t ∈ argminfn∈Fn

{
‖fn‖Fn +

t−1∑
i=1

wn,i(ri − fn(xn,i , ai))
2

}
, (4)

where Fn is the class of functions the nominator can fit, ‖ ·‖Fn
the regularizer, and wn,t = wn,at ≥ 0

the weight. ‘Training-on-all’—used in Section 3.1—takes wn,a = 1 for all (n, a), which means
all data points are valued equally regardless of whether a particular at belongs to the nominator’s
pool An. ‘Training-on-all’ may potentially waste the already limited modelling capacity of the
nominators if the pools An are not identical. The ‘training-on-own’ alternative therefore uses
wn,a = 1{a ∈ An} so that only the data points for which at ∈ An influence the objective.4

While ‘training-on-all’ and ‘training-on-own’ are not the only options we could consider, they are
representative of two very common strategies. In particular, ‘training-on-all’ is the default easy-to-
implement option which sometimes performs surprisingly well [11, 81]. In contrast, ‘training-on-own’

4There are two possible definitions of ‘training-on-own’: (i)wn,t = 1{at ∈ An}; (ii)wn,t = 1{at = an,t}.
While the main text considers the former, Proposition 2 can be extended to the latter with minor modifications.

6



approximates the (on-policy) ‘single-stage mode’ where the nominator observes feedback only for
the items it selects (in particular, at ∈ An only if at = an,t when the pools are non-overlapping).

Proposition 2 below shows that neither ‘training-on-all’ nor ‘training-on-all’ is guaranteed to perform
better than random guessing in the infinite data limit (T → ∞). We consider the linear setting
f?(xt, a) = 〈θ?, xta〉 for all (xt, a), θ? fixed, with nominators using ridge regression oracles
fn,t(xn,t, a) = 〈θ̂n,t, xn,ta〉 as defined in Equation (2), λ ≥ 0 fixed, and xn,ta again a subset of
the full feature vector xta. We also assume the nominators take the predicted best action with
non-vanishing probability (Assumption 1), which holds for all the cited LSO based algorithms.

Assumption 1 Let fn,t be as in Equation (4), and denote AG
n,t := argmaxa∈An

fn,t(xn,t, a).
We assume there is a universal constant δ > 0 such that for all n ∈ [N ] and a ∈ An with
lim supT−1

∑
1≤t≤T P(a?t = a) > 0, we have lim supT−1

∑
1≤1≤T P(an,t ∈ AG

n,t | a?t = a) ≥ δ.

Proposition 2 In both the supervised and the bandit learning setup, there exist two distinct context
distributions with pool allocations {An}n, and ra ∈ [0, 1] almost surely (a.s.) for all a ∈ A, such
that ‘training-on-own’ (resp. ‘training-on-all’) leads to asymptotically linear two-stage regret

lim sup
T→∞

E[R2s
T ]

T
> 0 .

Moreover, the asymptotic regret of ‘training-on-all’ is sublinear under the context distribution and
pool allocation where ‘training-on-own’ suffers linear regret, and vice versa.

Proof 1 Throughout, we use θ̂n,t → (E[xn,ax
>
n,a])−1 E[xn,ara] =: θ?n (a.s.) by Lemma 1 (Ap-

pendix A), assuming invertibility and that at is i.i.d.; note θ?n = argminθn E[(ra − 〈θn, xn,a〉)2]. We
allow any zero mean reward noise which satisfies ra ∈ [0, 1] (a.s.) for all a ∈ A.

(I) Supervised setup. Take two nominators, A1 = {a(1)}, A2 = {a(2), a(3)}, a single context

X :=

 xa(1)
xa(2)
xa(3)

 =

[
1 0 −1
0 1 0
0 0 1

]
, (5)

and restrict the nominators to the last two columns of X . As |A1| = 1, the first nominator always
proposes a(1), disregards of its fitted model. Since all rewards are revealed and used to update the
model in the supervised setting, ‘training-on-all’ t→∞ limit for the second nominator’s θ̂2,t is

θ?2 = argminβ∈R2 Ea∼Unif(A)[(ra − 〈β, x2,a〉)2]

= argminβ∈R2

{
(r̄1 + β2)2 + (r̄2 − β1)2 + (r̄3 − β2)2

}
= [r̄2,

r̄3−r̄1
2 ]> ,

where r̄ is the mean reward vector for the single context (θ? is then X−1r̄). If we take, e.g.,
r̄ = [ 1

4 ,
1
2 , 1]>, then a(3) 6= argmaxa∈A2

〈θ?2 , x2,a〉 = a(2). On the other hand, ‘training-on-own’
would yield θ?2 = [r̄2, r̄3]>, and thus correctly identify a(3) via argmaxa∈A2

〈θ?2 , x2,a〉.

In contrast, consider the modified setup A1 = {a(1)}, A2 = {a(2), a(3), a(4)}

X :=


xa(1)
xa(2)
xa(3)
xa(4)

 =

1 0 0 −1
0 1 0 −1
0 0 1 0
0 0 0 1

 . (6)

Restricting nominators to the last two columns ofX , ‘training-on-own’ would yield θ?2 = [r̄3,
r̄4−r̄2

2 ]>

under full feedback access, whereas ‘training-on-all’ would converge to θ?2 = [r̄3,
r̄4−r̄2−r̄1

3 ]>.
Hence with, e.g., r̄ = [ 3

4 , 1,
1
6 ,

7
8 ]>, ‘training-on-own’ would make the second nominator pick a(3)

via argmax, but ‘training-on-all’ would successfully identify the optimal a(2).

(II) Bandit setup. Take X from Equation (6), but use r̄ = [ 3
4 ,

7
8 ,

1
6 , 1]> and the associated θ? =

X−1r̄. For each j ∈ [4], let X(j) be a deterministic context matrix which is the same as X except all
but the jth row are replaced by zeros. Observe that for each j, the mean reward vector X(j)θ

? has
exactly one strictly positive component, and thus a?t = a(j) when X(j) is drawn.
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Let Unif({X(j)}j) be the context distribution, A1 = {a(1)}, A2 = {a(2), a(3), a(4)}, and restrict
nominators to the last two columns of each sampledX(j). We employ a proof by contradiction. Assume
lim supT−1 E[R2s

T ]→ 0. Then θ̂2,t → θ?2 in probability by Lemma 2 (Appendix A), with θ?2 as stated
right after Equation (6) for both the update rules. Since θ?2,2 = 1

16 > 0 under ‘training-on-own’,
resp. θ?2,2 = − 5

24 < 0 under ‘training-on-all’, argmaxa∈A2
〈θ?2 , x2,ta〉 would fail to select a?t when

X(2), resp. X(4), is sampled (see Equation (6)). This would translate into an expected instantaneous
regret of at least ∆ := mini r̄i = 1

6 > 0. Hence by Equation (1) and P(a?t = a) = |A|−1

E[R2s
T ] ≥ E[RN

T ] ≥ ∆

|A|
∑
a∈A2

P(a2,t 6= a | a2,t ∈ AG
2,t, a

?
t = a)P(a2,t ∈ AG

2,t | a?t = a) . (7)

For ‘training-on-own’, P(a2,t 6= a(2) | a2,t ∈ AG
2,t, a

?
t = a(2)) = P(θ̂2,t2 · (−1) < 0) → 1 by the

above established θ̂2,t → θ?2 in probability, and the continuous mapping theorem. Analogously for
‘training-on-all’. Hence lim supT−1 E[R2s

T ] ≥ |A|−1∆δ > 0 by Assumption 1, a contradiction,
meaning both modes of training fail, but for a different item (a(3) is picked out correctly by both
again by the convergence in probability). To make lim supT−1 E[RN

T ] → 0 for exactly one of the
two setups, add a third nominator with A3 = {a(2)}, resp. A3 = {a(4)}, so that P(a?t ∈ Ct)→ 1.

Proposition 2 shows that the nominator training objective can be all the difference between poor and
optimal two-stage recommender.5 Moreover, neither ‘training-on-own’ nor ‘training-on-all’ guaran-
tees sublinear regret, and one can fail exactly when the other works. The main culprit is the difference
between context distribution in and outside of each pool: combined with the misspecification, either
one can result in more favorable optima from the overall two-stage performance perspective. This is
the case both in the supervised and the bandit setting.

Proposition 2 can be trivially extended to higher number of arms and nominators (add embedding
dimensions, let the new arms have non-zero embedding entries only in the new dimensions, and the
expected rewards to be lower than the ones we used above). We think that the difference between
the in- and out-pool distributions could be exploited to derive analogous results to Proposition 2 for
non-linear (e.g., factorization based) models, although the proof complexity may increase.

To summarize, beyond the actual number of nominators identified in the previous section, we have
found that the combination of training objective and pool allocation can heavily influence the overall
performance. We use these insights to improve two-stage systems in the next section.

4 Learning pool allocations with Mixture-of-Experts

Revisiting the proof of Proposition 2, we see the employed pool allocations are essentially adversarial
with respect to the context distributions. However, we are typically free to design the pools ourselves,
with the only constraints imposed by computational and statistical performance requirements. Propo-
sition 2 thus hints at a positive result: a good pool allocation can help us achieve an (asymptotically)
optimal performance even in cases where this is not possible using any one of the nominators alone.

Crafting a good pool allocation manually may be difficult, and could lead to very bad performance if
not done carefully (Proposition 2). We thus propose to learn the pool allocation using a Mixtures-of-
Experts (MoE) [47, 49, 50, 99] based approach instead. A MoE computes predictions by weighting
the individual expert (nominator) outputs using a trainable gating mechanism. The weights can be
thought of as a soft pool allocation which allows each expert to specialize on a different subset of
the input space. This makes the MoE more flexible than any one of the experts alone, alleviating the
lower modeling flexibility of the nominators due to the latency constraints.

We focus on the Gaussian MoE [47], trained by likelihood maximization (Equation (8)). We employ
gradient ascent which—despite its occasional failure to find a good local optimum [68]—is easy to
scale to large datasets using a stochastic approximation of gradients

1

T

T∑
t=1

log

N∑
n=1

pn,t exp

{
− (rt − r̂n,t)2

2σ2

}
≈ 1

B

B∑
t=1

log

N∑
n=1

pn,t exp

{
− (rt − r̂n,t)2

2σ2

}
, (8)

5Covington et al. [20] reported empirically observing that the the training objective choice has an outsized
influence on the performance of two-stage recommender systems. Proposition 2 can be seen as a theoretical
complement which shows that the range of important choices goes beyond the selection of the objective.
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Figure 5: Mixture-of-Experts results on the 100-item Amazon dataset. The x-axis is the size of the
BERT embedding dimension subset. The y-axis shows the average precision@5 (top row) and
recall@5 (bottom row) over 50,000 entries from an independent test set (both set to zero for entries
with no positive labels—about 5.5% of the test set). The columns in both plots (a) and (b) correspond
to the number of examples per arm c in the training set. Ten (resp. twenty) nominators were used in
(a) (resp. (b)). The legend shows whether pool allocations were learned (MoE) or randomly assigned
(random), and the dimension of item embeddings de employed by both model types.

with pn,t ≥ 0 (
∑
n pn,t = 1) the gating weight assigned to expert n on example t, r̂n,t the matching

expert prediction, σ > 0 a hyperparameter approximating reward variance, and B ∈ N the batch size.

MoE provides a compelling alternative to a policy gradient style approach applied to the joint two-
stage policy π2s(a |x) =

∑
a1,...,aN

πR(a |x, C)
∏N
n=1 π

N
n(an |x) as done in [67]. In particular, a

significant advantage of the MoE approach is that the sum over the exponentially many candidate sets
C = {a1, . . . , aN} is replaced by a sum over only N experts, which can be either computed exactly
or estimated with dramatically smaller variance than in the candidate set case.

There are (at least) two ways of incorporating MoE into existing two-stage recommender deployments:

1. Use a provisional gating mechanism, and then distill the pool allocations from the learned
weights, e.g., by thresholding the per arm average weight assigned to each nominator, or by
restricting the gating network only to the item features. Once pools are divided, nominators
and the ranker may be finetuned and deployed using any existing infrastructure.

2. Make the gating mechanism permanent, either as (i) a replacement for the ranker, or (ii) part
of the nominator stage, reweighting the predictions before the candidate pool is generated.
This necessitates change of the existing infrastructure but can yield better recommendations.

Unusually for MoEs, we may want to use a different input subset for the gating mechanism and each
expert depending on which of the above options is selected. We would like to emphasize that the
MoE approach can be used with any score-based nominator architecture including but not limited to
the linear models of the previous section. If some of the nominators are not trainable by gradient
descent but are score-based, they can be pretrained and then plugged in during the MoE optimization,
allowing the other experts to specialize on different items.

We use the ‘AmazonCat-13K’ dataset [10, 69] to investigate the setup with a logistic gating mechanism
as a part of the nominator stage. We employ the same preprocessing as in Section 3.1. Due to the
success of greedy methods in Section 3.1, and the existence of black-box reductions from bandit to
offline learning [31, 86], we simplify by focusing only on offline evaluation. We compare the MoE
against the same model except with the gating replaced by a random pool allocation fixed at the start.

The experts in both models use a simple two-tower architecture, where de-dimensional dense embed-
dings are learned for each item, the s-dimensional subset of the BERT embeddings is mapped to Rde
by another trained matrix, and the final prediction is computed as the dot product on Rde . To enable
low latency computation of recommendations, the gating mechanism models the logits {log pn}n as
a sum of learned user and item embeddings. Further details are described in Appendix B.
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Figure 5 shows that MoEs are able to outperform random pool allocation for most combinations of
model architecture and training set size. The improved results in recall suggest that the specialization
allows nominators to produce a more diverse candidate set. Since the gating mechanism can learn to
exactly recover any fixed pool allocation, the MoE can perform worse only when the optimizer fails
or the model overfits. This seems to be happening for the smallest training set size (c = 100 samples
per arm), and also when the item embedding dimension de is high. In practice, these effects can be
counteracted by tuning hyperparameters for the specific setting, regularization, or alternative training
approaches based on expectation–maximization or tensor decomposition [50, 68, 99].

5 Other related work

Scalable recommender systems. Interest in scalable recommenders has been driven by the continual
growth of available datasets [37, 63, 83, 91]. The two-stage architectures examined in this paper
have seen widespread adoption in recommendation [12, 20, 28, 101, 102], and beyond [5, 100]. Our
paper is specifically focused on recommender systems which means our insights may not transfer to
application areas like information retrieval without adaptation.

Off-policy learning and evaluation. Updating the recommendation policy online, without human
oversight, runs the risk of compromising the service quality, and introducing unwanted behavior.
Offline learning from logged data [27, 73, 89, 92] is an increasingly popular alternative [18, 48, 67, 90].
It has also found applications in search engines, advertising, robotics, and more [4, 48, 62, 88].

Ensembling and expert advice. The goal of ‘learning with expert advice’ [3, 7, 65, 87] is to achieve
performance comparable with the best expert if deployed on its own. This is not a good alternative to
our MoE approach since two-stage systems typically outperform any one of the nominators alone
(Section 3). A better alternative may possibly be found in the literature on ‘aggregation of weak
learners’ [14, 15, 33, 34, 43], or recommender ensembling (see [16] for a recent survey).

6 Discussion

We used a combination of empirical and theoretical tools to investigate the differences between single-
and two-stage recommenders. Our first major contribution is demonstrating that besides common
factors like item pool size and model misspecification, the nominator count and training objective can
have even larger impact on performance in the two-stage setup. As a consequence, two-stage systems
cannot be fully understood by studying their components in isolation, and we have shown that the
common practice of training each component independently may lead to suboptimal results. The
importance of the nominator training inspired our second major contribution: identification of a
link between two-stage recommenders and Mixture-of-Experts models. Allowing each nominator to
specialize on a different subset of the item pool, we were able to significantly improve the two-stage
performance. Consequently, splitting items into pools within the nominator stage is not just a way of
lowering latency, but can also be used to improve recommendation quality.

Due to the the lack of access, a major limitation of our work is not evaluating on a production
system. This may be problematic due to the notorious difficulty of offline evaluation [9, 57, 80].
We further assumed that recommendation performance is captured by a few measurements like
regret or precision/recall at K, even though design of meaningful evaluation criteria remains a
challenge [23, 41, 51, 71]; we caution against deployment without careful analysis of downstream
effects and broader impact assessment. Several topics were left to future work: (i) extension of
the linear regret proof to non-linear models such as those used in the MoE experiments; (ii) slate
(multi-item) recommendation; (iii) theoretical understanding of how much can the ranker reduce
the regret compared to the best of the (misspecified) nominators; (iv) alternative ways of integrating
MoEs, including explicit distillation of pool allocations from the learned gating weights, learning the
optimal number of nominators [77], using categorical likelihood [99], and sparse gating [29, 85].

Overall, we believe better understanding how two-stage recommenders work matters due to the
enormous reach of the platforms which employ them. We hope our work inspires further inquiry into
two-stage systems in particular, and the increasingly more common ‘algorithm-algorithm’ interactions
between independently trained and deployed learning algorithms more broadly.

10



Acknowledgments and Disclosure of Funding

The authors thank Matej Balog, Mateo Rojas-Carulla, and Richard Turner for their useful feedback
on early versions of this manuscript. Jiri Hron is supported by an EPSRC and Nokia PhD fellowship.

References
[1] Naoki Abe and Philip M Long. Associative reinforcement learning using linear probabilistic concepts. In

ICML, 1999.

[2] Alekh Agarwal, Daniel Hsu, Satyen Kale, John Langford, Lihong Li, and Robert Schapire. Taming the
monster: A fast and simple algorithm for contextual bandits. In ICML, 2014.

[3] Alekh Agarwal, Haipeng Luo, Behnam Neyshabur, and Robert E Schapire. Corralling a band of bandit
algorithms. In COLT, 2017.

[4] Aman Agarwal, Ivan Zaitsev, Xuanhui Wang, Cheng Li, Marc Najork, and Thorsten Joachims. Estimating
position bias without intrusive interventions. In ACM WSDM, 2019.

[5] Nima Asadi and Jimmy Lin. Fast candidate generation for two-phase document ranking: Postings list
intersection with bloom filters. In ACM CIKM, 2012.

[6] Peter Auer. Using confidence bounds for exploitation-exploration trade-offs. JMLR, 2002.

[7] Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and Robert E Schapire. The nonstochastic multiarmed
bandit problem. SICOMP, 2002.

[8] Hamsa Bastani, Mohsen Bayati, and Khashayar Khosravi. Mostly exploration-free algorithms for
contextual bandits. Management Science, 2021.

[9] Joeran Beel and Stefan Langer. A comparison of offline evaluations, online evaluations, and user studies
in the context of research-paper recommender systems. In TPDL, 2015.

[10] Kush Bhatia, Kunal Dahiya, Himanshu Jain, Purushottam Kar, Anshul Mittal, Yashoteja Prabhu, and
Manik Varma. The extreme classification repository: Multi-label datasets and code, 2016.

[11] Alberto Bietti, Alekh Agarwal, and John Langford. A contextual bandit bake-off. arXiv preprint, 2018.

[12] Fedor Borisyuk, Krishnaram Kenthapadi, David Stein, and Bo Zhao. Casmos: A framework for learning
candidate selection models over structured queries and documents. In ACM SIGKDD, 2016.

[13] James Bradbury, Roy Frostig, Peter Hawkins, Matthew J Johnson, Chris Leary, Dougal Maclaurin, George
Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao Zhang. JAX: Composable
transformations of Python+NumPy programs, 2018.

[14] Leo Breiman. Bagging predictors. Machine Learning, 1996.

[15] Leo Breiman. Arcing classifiers. Annals of Statistics, 1998.

[16] Erion Çano and Maurizio Morisio. Hybrid recommender systems: A systematic literature review.
Intelligent Data Analysis, 2017.

[17] Jingyuan Chen, Hanwang Zhang, Xiangnan He, Liqiang Nie, Wei Liu, and Tat-Seng Chua. Attentive
collaborative filtering: Multimedia recommendation with item-and component-level attention. In ACM
SIGIR, 2017.

[18] Minmin Chen, Alex Beutel, Paul Covington, Sagar Jain, Francois Belletti, and Ed H Chi. Top-K off-policy
correction for a REINFORCE recommender system. In ACM WSDM, 2019.

[19] Wei Chu, Lihong Li, Lev Reyzin, and Robert Schapire. Contextual bandits with linear payoff functions.
In AISTATS, 2011.

[20] Paul Covington, Jay Adams, and Emre Sargin. Deep neural networks for YouTube recommendations. In
ACM RecSys, 2016.

[21] Koby Crammer and Claudio Gentile. Multiclass classification with bandit feedback using adaptive
regularization. Machine Learning, 2013.

[22] Varsha Dani, Thomas P Hayes, and Sham M Kakade. Stochastic linear optimization under bandit feedback.
In COLT, 2008.

[23] Sarah Dean, Sarah Rich, and Benjamin Recht. Recommendations and user agency: the reachability of
collaboratively-filtered information. In ACM FAccT, 2020.

[24] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. In NAACL-HLT, 2019.

[25] Simon S Du, Sham M Kakade, Ruosong Wang, and Lin F Yang. Is a good representation sufficient for
sample efficient reinforcement learning? In ICLR, 2020.

11



[26] Miroslav Dudík, Daniel Hsu, Satyen Kale, Nikos Karampatziakis, John Langford, Lev Reyzin, and Tong
Zhang. Efficient optimal learning for contextual bandits. In UAI, 2011.

[27] Miroslav Dudík, John Langford, and Lihong Li. Doubly robust policy evaluation and learning. In ICML,
2011.

[28] Chantat Eksombatchai, Pranav Jindal, Jerry Zitao Liu, Yuchen Liu, Rahul Sharma, Charles Sugnet, Mark
Ulrich, and Jure Leskovec. Pixie: A system for recommending 3+ billion items to 200+ million users in
real-time. In ACM WWW, 2018.

[29] William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. arXiv preprint, 2021.

[30] Dylan Foster and Alexander Rakhlin. Beyond UCB: Optimal and efficient contextual bandits with
regression oracles. In ICML, 2020.

[31] Dylan Foster, Alekh Agarwal, Miroslav Dudik, Haipeng Luo, and Robert Schapire. Practical contextual
bandits with regression oracles. In ICML, 2018.

[32] Dylan Foster, Claudio Gentile, Mehryar Mohri, and Julian Zimmert. Adapting to misspecification in
contextual bandits. In NeurIPS, 2020.

[33] Jerome H Friedman. Greedy function approximation: A gradient boosting machine. Annals of Statistics,
2001.

[34] Jerome H Friedman. Stochastic gradient boosting. Computational Statistics and Data Analysis, 2002.

[35] Claudio Gentile and Francesco Orabona. On multilabel classification and ranking with bandit feedback.
JMLR, 2014.

[36] Avishek Ghosh, Sayak Ray Chowdhury, and Aditya Gopalan. Misspecified linear bandits. In AAAI, 2017.

[37] Prem Gopalan, Jake M Hofman, and David M Blei. Scalable recommendation with hierarchical poisson
factorization. In UAI, 2015.

[38] F Maxwell Harper and Joseph A Konstan. The Movielens datasets: History and context. ACM TiiS, 2015.

[39] Charles R Harris, K Jarrod Millman, Stéfan J van der Walt, Ralf Gommers, Pauli Virtanen, David
Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J Smith, Robert Kern, Matti Picus,
Stephan Hoyer, Marten H van Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fernández del Río,
Mark Wiebe, Pearu Peterson, Pierre Gérard-Marchant, Kevin Sheppard, Tyler Reddy, Warren Weckesser,
Hameer Abbasi, Christoph Gohlke, and Travis E Oliphant. Array programming with NumPy. Nature,
2020.

[40] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng Chua. Neural collaborative
filtering. In ACM WWW, 2017.

[41] Jonathan L Herlocker, Joseph A Konstan, Loren G Terveen, and John T Riedl. Evaluating collaborative
filtering recommender systems. TOIS, 2004.

[42] Geoffrey Hinton, Nitish Srivastava, and Kevin Swersky. Neural networks for machine learning, (lecture
6): Overview of mini-batch gradient descent, 2012.

[43] Tin Kam Ho. Random decision forests. In ICDAR, 1995.

[44] Jiri Hron, Karl Krauth, Michael I Jordan, and Niki Kilbertus. Exploration in two-stage recommender
systems. REVEAL (ACM RecSys workshop), 2020.

[45] John D Hunter. Matplotlib: A 2D graphics environment. Computing in Science & Engineering, 2007.

[46] Eugene Ie, Vihan Jain, Jing Wang, Sanmit Narvekar, Ritesh Agarwal, Rui Wu, Heng-Tze Cheng, Tushar
Chandra, and Craig Boutilier. SlateQ: A tractable decomposition for reinforcement learning with
recommendation sets. In IJCAI, 2019.

[47] Robert A Jacobs, Michael I Jordan, Steven J Nowlan, and Geoffrey E Hinton. Adaptive mixtures of local
experts. Neural Computation, 1991.

[48] Thorsten Joachims, Adith Swaminathan, and Tobias Schnabel. Unbiased learning-to-rank with biased
feedback. In ACM WSDM, 2017.

[49] Michael I Jordan and Robert A Jacobs. Hierarchies of adaptive experts. In NeurIPS, 1992.

[50] Michael I Jordan and Robert A Jacobs. Hierarchical mixtures of experts and the EM algorithm. In IEEE
IJCNN, 1993.

[51] Marius Kaminskas and Derek Bridge. Diversity, serendipity, novelty, and coverage: a survey and empirical
analysis of beyond-accuracy objectives in recommender systems. TiiS, 2016.

[52] Wang-Cheng Kang and Julian McAuley. Candidate generation with binary codes for large-scale top-N
recommendation. In ACM CIKM, 2019.

12



[53] Sampath Kannan, Jamie H Morgenstern, Aaron Roth, Bo Waggoner, and Zhiwei Steven Wu. A smoothed
analysis of the greedy algorithm for the linear contextual bandit problem. In NeurIPS, 2018.

[54] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR, 2015.

[55] Thomas Kluyver, Benjamin Ragan-Kelley, Fernando Pérez, Brian Granger, Matthias Bussonnier, Jonathan
Frederic, Kyle Kelley, Jessica Hamrick, Jason Grout, Sylvain Corlay, Paul Ivanov, Damián Avila, Safia
Abdalla, Carol Willing, and Jupyter development team. Jupyter notebooks - a publishing format for
reproducible computational workflows. In Positioning and Power in Academic Publishing: Players,
Agents and Agendas, 2016.

[56] Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization techniques for recommender systems.
Computer, 2009.

[57] Karl Krauth, Sarah Dean, Alex Zhao, Wenshuo Guo, Mihaela Curmei, Benjamin Recht, and Michael I
Jordan. Do offline metrics predict online performance in recommender systems? arXiv preprint, 2020.

[58] Sanath K Krishnamurthy, Vitor Hadad, and Susan Athey. Tractable contextual bandits beyond realizability.
In AISTATS, 2021.

[59] John Langford and Tong Zhang. The epoch-greedy algorithm for multi-armed bandits with side informa-
tion. In NeurIPS, 2008.

[60] Tor Lattimore and Csaba Szepesvári. Bandit algorithms. Cambridge University Press, 2020.

[61] Tor Lattimore, Csaba Szepesvári, and Gellert Weisz. Learning with good feature representations in
bandits and in RL with a generative model. In ICML, 2020.

[62] Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tutorial,
review, and perspectives on open problems. arXiv preprint, 2020.

[63] Chao Li, Zhiyuan Liu, Mengmeng Wu, Yuchi Xu, Huan Zhao, Pipei Huang, Guoliang Kang, Qiwei Chen,
Wei Li, and Dik Lun Lee. Multi-interest network with dynamic routing for recommendation at Tmall. In
ACM CIKM, 2019.

[64] Lihong Li, Wei Chu, John Langford, and Robert E Schapire. A contextual-bandit approach to personalized
news article recommendation. In ACM WWW, 2010.

[65] Nick Littlestone and Manfred K Warmuth. The weighted majority algorithm. UC Santa Cruz, Computer
Research Laboratory, 1989.

[66] Romain Lopez, Inderjit Dhillon, and Michael I Jordan. Learning from extreme bandit feedback. In AAAI,
2021.

[67] Jiaqi Ma, Zhe Zhao, Xinyang Yi, Ji Yang, Minmin Chen, Jiaxi Tang, Lichan Hong, and Ed H Chi.
Off-policy learning in two-stage recommender systems. In ACM WWW, 2020.

[68] Ashok Makkuva, Pramod Viswanath, Sreeram Kannan, and Sewoong Oh. Breaking the gridlock in
Mixture-of-Experts: Consistent and efficient algorithms. In ICML, 2019.

[69] Julian McAuley and Jure Leskovec. Hidden factors and hidden topics: Understanding rating dimensions
with review text. In ACM RecSys, 2013.

[70] Silvia Milano, Mariarosaria Taddeo, and Luciano Floridi. Recommender systems and their ethical
challenges. AI & Society, 2020.

[71] Smitha Milli, Luca Belli, and Moritz Hardt. From optimizing engagement to measuring value. In ACM
FAccT, 2021.

[72] Andriy Mnih and Ruslan Salakhutdinov. Probabilistic matrix factorization. NeurIPS, 2007.

[73] Remi Munos, Tom Stepleton, Anna Harutyunyan, and Marc Bellemare. Safe and efficient off-policy
reinforcement learning. In NeurIPS, 2016.

[74] The pandas development team. pandas-dev/pandas: Pandas, 2020.

[75] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang,
Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie
Bai, and Soumith Chintala. PyTorch: An imperative style, high-performance deep learning library. In
NeurIPS, 2019.

[76] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, Jak Vanderplas, Alexandre
Passos, David Cournapeau, Matthieu Brucher, Matthieu Perrot, and Édouard Duchesnay. Scikit-learn:
Machine learning in Python. JMLR, 2011.

[77] Carl Edward Rasmussen and Zoubin Ghahramani. Infinite mixtures of Gaussian process experts. In
NeurIPS, 2001.

13



[78] Steffen Rendle. Factorization machines. In IEEE ICDM, 2010.

[79] Steffen Rendle, Li Zhang, and Yehuda Koren. On the difficulty of evaluating baselines: A study on
recommender systems. arXiv preprint, 2019.

[80] Marco Rossetti, Fabio Stella, and Markus Zanker. Contrasting offline and online results when evaluating
recommendation algorithms. In ACM RecSys, 2016.

[81] Mark Rowland, Will Dabney, and Remi Munos. Adaptive trade-offs in off-policy learning. In AISTATS,
2020.

[82] Paat Rusmevichientong and John N Tsitsiklis. Linearly parameterized bandits. Mathematics of Operations
Research, 2010.

[83] Badrul M Sarwar, George Karypis, Joseph Konstan, and John Riedl. Recommender systems for large-scale
e-commerce: Scalable neighborhood formation using clustering. In IEEE ICCIT, 2002.

[84] Tobias Schnabel, Adith Swaminathan, Ashudeep Singh, Navin Chandak, and Thorsten Joachims. Recom-
mendations as treatments: Debiasing learning and evaluation. In ICML, 2016.

[85] Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton, and Jeff
Dean. Outrageously large neural networks: The sparsely-gated Mixture-of-Experts layer. In ICLR, 2017.

[86] David Simchi-Levi and Yunzong Xu. Bypassing the monster: A faster and simpler optimal algorithm for
contextual bandits under realizability. SSRN, 2020.

[87] Adish Singla, Hamed Hassani, and Andreas Krause. Learning to interact with learning agents. In AAAI,
2018.

[88] Alexander L Strehl, John Langford, Lihong Li, and Sham M Kakade. Learning from logged implicit
exploration data. In NeurIPS, 2010.

[89] Adith Swaminathan and Thorsten Joachims. Batch learning from logged bandit feedback through
counterfactual risk minimization. JMLR, 2015.

[90] Adith Swaminathan, Akshay Krishnamurthy, Alekh Agarwal, Miroslav Dudík, John Langford, Damien
Jose, and Imed Zitouni. Off-policy evaluation for slate recommendation. In NeurIPS, 2017.

[91] Gábor Takács, István Pilászy, Bottyán Németh, and Domonkos Tikk. Scalable collaborative filtering
approaches for large recommender systems. JMLR, 2009.

[92] Philip Thomas and Emma Brunskill. Data-efficient off-policy policy evaluation for reinforcement learning.
In ICML, 2016.

[93] Guido van Rossum and Fred L Drake. Python 3 Reference Manual. CreateSpace, 2009.

[94] Pauli Virtanen, Ralf Gommers, Travis E Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau,
Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J van der Walt, Matthew
Brett, Joshua Wilson, K Jarrod Millman, Nikolay Mayorov, Andrew R J Nelson, Eric Jones, Robert Kern,
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