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ABSTRACT

In recent years, with the rapid development of powerful multimodal large lan-
guage models (MLLMs), explainable image quality assessment (IQA) has gradu-
ally become popular, aiming at providing quality-related descriptions and answers
of images. To achieve this goal, recent methods seek to construct a large-scale in-
struction tuning dataset to empower the MLLM with quality perception ability
following the well-known scaling law. However, a large amount of instruction
tuning data may cause substantial computational costs and redundant data, which
in turn will cause harm to the performance of the model. To cope with this prob-
lem, in this paper, we challenge the scaling law and systematically investigate the
role of data quality of the instruction tuning dataset for explainable IQA. Using
a powerful pre-trained MLLM, we first investigate the changes in model perfor-
mance after fine-tuning with different sizes of instruction tuning data. We find
that selecting a subset of the data set randomly using an appropriate ratio can
even lead to better results than training with the entire instruction tuning dataset,
demonstrating the redundancy of current explainable IQA instruction tuning data.
Beyond randomly sampling a subset, we propose a clustering-based data selection
framework with three stages: clustering feature extraction, cluster quota alloca-
tion, and cluster sampling strategy. Then we systematically analyze the choices
of each stage and propose a simple but efficient data selection method IQA-Select
for explainable IQA. The experimental results demonstrate that IQA-Select can
achieve 102.1% and 103.7% performance of full fine-tuning using only 10% se-
lected data in Q-Bench and AesBench respectively, significantly reducing com-
putational costs while achieving better performance. We hope that our paper can
provide a new perspective for future research on exploring the quality of instruc-
tion tuning data for explainable IQA.

1 INTRODUCTION

In recent years, multimodal large language models have demonstrated powerful and generalizable
visual understanding capabilities, and they have been widely applied to a broad range of computer
vision tasks. In light of these facts, the visual quality assessment community is adapting MLLMs
with quality-related instruction tuning data for explainable image quality assessment (explainable

IQA).

To cope with the problem, current researchers mainly follow the scaling law of data and seek to
a large-scale instruction tuning dataset with hundreds of thousands of samples. For example, the
Q-Instruct Wu et al.| (2024a) dataset constructs about 200K examples with huge quality-related
question-answering pairs, significantly boosting the performance of the MLLM model in visual
quality perception task. The Aesexpert Huang et al.| (2024)) dataset contains 409K multi-typed in-
structions to enable MLLM with better aesthetic capabilities. However, directly fine-tuning the
MIIM model with these large-scale dataset will introduce substantial computational costs and over-
fitting. Moreover, with the rapid development of the current MLLMs, the basic ability of the model
is becoming more and more powerful, most of the samples in instruction tuning dataset may become
a piece of cake for MLLM to learn. Hence it is a remaining problem that do we still need so much
dataset for MLLM fine-tunine?
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In light of these facts, we explore two meaningful questions and their answers in this paper: Firstly,
Do we really need massive instruction tuning data samples for explainable IQA? The answer is
no. Utilizing comprehensive experiments, we discover that the current state-of-the-art Multimodal
Large Language Model, i.e. InternVL3-Instruct can already achieve considerable performance on
visual quality answering benchmark Q-Bench|Wu et al.|(2023)). Then we gradually reduce the scale
of the instruction tuning dataset and find that utilizing only 5% percentage of the Q-instruct dataset
can achieve performance comparable to full-scale fine-tuning. We also observe that as the ratio of
randomly selected data increases, the performance curve of the fine-tuned MLLM is approximately
an inverted U-shaped curve, demonstrating that the scale of the instruction tuning data should nei-
ther be too large nor too small. The reason is because the current instruction-tuning data set for
explainable IQA may contain low-quality or redundant examples. Fine-tuning the MLLM with a
large dataset will also cause the MLLM to forget the knowledge it has already acquired, while fine-
tuning the MLLM with a too small dataset will cause the MLLM to learn nothing. Hence, a compact
and informative coreset is suitable for MLLM fine-tuning.

Based on the first question and its observation, we come up with the second question, How can
we effectively select useful instruction tuning data? Under the setting of selecting 10% instruc-
tion tuning data, we explore the clustering-based data selection pipeline with three stages named
IQA-Select to select the diverse and meaningful instruction tuning samples from the full dataset.
In practice, the three stages include the clustering feature extraction, cluster quota allocation, and
cluster sampling strategy. We comprehensively explore the possible strategies of each stage in our
framework. For cluster features, we explore the effectiveness of 9 different features from both
model-related features and model-independent features. For cluster quota allocation, we explore
the effectiveness of 11 allocation strategies derived from cluster density, cluster transferability, and
instruction relevance score. For cluster sampling, we explore the effectiveness of using greedy mmd
sampling, SVD sampling and PCA sampling. After comprehensive experiments, our final IQA-
Select method utilizes the combination of MLLM features and vision text features for clustering,
the combination of cluster transferability and density for quota allocation, and the SVD sampling
strategy for cluster sampling. Our framework ensures both diversity and informativeness in the
selected data.

Our proposed IQA-Select achieves excellent performance on explainable image quality assessment
task and explainable image aesthetic assessment task. With 10 % selected instruction tuning data,
IQA-Select can achieve 102.1% and 103.7% performance of full fine-tuning using only 10% se-
lected data in Q-Bench and AesBench respectively, demonstrating the great potential of selecting
meaningful coreset data in the explainable image quality assessment area.

In summary, the main contributions of this paper are:

* We provide the first systematic study of instruction data quality for explainable image qual-
ity assessment.

* We introduce a clustering-based selection framework IQA-Select with three stages: clus-
tering feature extraction, cluster quota allocation, and cluster sampling, which can select
meaningful data from the whole dataset.

» We achieve a new state-of-the-art performance in Q-Bench and AesBench with only 10%
selected instruction tuning data.

* We believe this work opens a new research direction for data-centric explainable IQA,
where the focus shifts from constructing large instruction datasets to curating high-value
and diverse data.

2 RELATED WORK

2.1 IMAGE QUALITY ASSESSMENT

Image Quality Assessment (IQA) is a long-standing problem, which aims to objectively evaluate
the perceptual quality of images in a way that aligns with human visual perception. In recent years,
IQA has achieved remarkable progress and become increasingly popular, driven by the emergence
of numerous methods and datasets.



Under review as a conference paper at ICLR 2026

IQA methods can be broadly categorized into traditional score-based IQA methods and recent ex-
plainable IQA methods. Traditional score-based IQA methods focus on predicting a scalar quality
score consistent with human subjective ratings, and are commonly classified into full-reference (FR)
Wang et al.|(2004); [Sheikh & Bovik! (2006); Zhang et al.| (2011} |2018); |[Ding et al.| (2020), reduced-
reference (RR) Wang & Simoncelli| (2005); [Li & Wang| (2009); Rehman & Wang| (2012); [Wang
et al.| (2016), and no-reference (NR) methods Moorthy & Bovik|(2011); Mittal et al.[(2012)); |Kang
et al.| (2014)); Yang et al.|(2022); Zhang et al.| (2023). However, a scalar score alone merely rating
the overall quality without capturing regional differences or providing further information about the
underlying perceptual quality, which has motivated the emergence of explainable IQA methods that
aim to identify distortion types and regions while providing explanations related to the perceptual
quality. Q-Bench[Wu et al.| (2023)) first explores the explainable IQA problem and provides a stan-
dardized benchmark for assessing explanation quality, facilitating fair comparisons across models.
Based on Q-bench, Q-Instruct[Wu et al.|(2024a)) leverages instruction-tuned vision—language mod-
els to simultaneously evaluate image quality and provide distortion-specific explanations in natural
language, highlighting the potential of MLLMs for explainable IQA.

To equip MLLMs with quality-aware perceptual and assessment abilities, several supervised fine-
tuning (SFT) datasets for quality evaluation have been proposed |Wu et al.| (2024a); Huang et al.
(2024); Wu et al.| (2024b); Jia et al| (2024). Furthermore, to assess the quality-related abilities
of MLLMs, researchers have proposed several dedicated benchmarks [Wu et al.| (2023); [Huang
et al.| (2024); |[Zhang et al.| (2025ajbic). Q-Instruct Wu et al.| (2024a) provides large-scale instruc-
tion—response pairs targeting low-level visual perception, such as blur, noise, and distortions, to
improve the perceptual abilities of multi-modal foundation models. AesExpert|Huang et al.| (2024
focuses on image aesthetics perception by aligning images with human aesthetic ratings and descrip-
tions, thereby enabling models to better capture aesthetic preferences and produce human-aligned
quality assessments. In this paper, we focus on these two datasets and explore the data quality and
data selection problem for explainable IQA.

2.2 DATA SELECTION FOR INSTRUCTION TUNING

Data selection has become an increasingly hot topic in the training of large-scale models, as not all
samples contribute equally to model performance. In the domain of large language models (LLMs),
previous works focus on utilizing pre-defined rules |Cao et al.| (2023)) or gradient-based calculation
Ankner et al.|(2024) to select high-value data. Inspired by these advances, recent research in vision-
language models (VLMs) has placed growing emphasis on how to curate multimodal data for more
effective alignment. One representative direction shows that the model itself can act as a strong
filter/Chen et al.| (2024)), automatically screening out noisy or low-quality data to enhance instruction
tuning. Another line of work considers concept-skill transferability |Lee et al.| (2024), aiming to select
training samples that encourage generalization across a broad range of visual-linguistic capabilities.
ICONS Wu et al.| (2024c)) introduces an influence-consensus mechanism that integrates multiple
estimators to more reliably identify impactful samples. Collectively, these studies indicate that data
selection has evolved from simple filtering to more principled and systematic strategies. However,
all these studies focus on general-purpose visual question answering, while quality-related aspects
remain underexplored. To address this gap, we investigate the problem of SFT data selection in the
context of quality assessment.

3 CLUSTERING-BASED DATA SELECTION PIPELINE

As experiments have demonstrated the redundancy of the current IQA instruction tuning dataset
Q-Instruct, hence an efficient and powerful data selection framework is significantly needed for ex-
plainable image quality assessment. Following the common cluster-based data selection pipeline in
data selection area, we conclude and transform the data selection framework into three stages: (1)
Clustering Feature Extraction, (2) Cluster Quotas Allocation, and (3) Intra-cluster Sampling. Based
on this framework, we comprehensively explore the possible strategies within our framework. Con-
cretely, we divide the cluster features into model-related features and model-independent features
and evaluate 9 combinations of features. For cluster quota allocation, we evaluate 11 allocation
strategies derived from 3 key cluster metrics. For the cluster sampling method, we comprehensively
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Figure 1: Overview of our proposed IQA-Select framework for automatically selecting high-value
explainable image quality assessment question-answer samples through the efficient clustering-
sampling pipeline.

evaluate the 3 sampling methods including Greedy MMD, SVD and PCA. In the rest of this section,
we will introduce these stages in detail one-by-one.

3.1 PROBLEM DEFINITION

Given a pre-train MLLM model M with parameters 6 and an explainable image quality assessment
dataset Q) = [z1, 22, ..., zn] in instruction-following format, where each sample z; = (g;, a;) con-
tains an input question g and the corresponding answer a. Our problem is to find the best small
instruction tuning dataset, a subset of (), which can obtain the best performance for the explainable
visual quality assessment task.

3.2 DATA CLUSTERING FEATURE SELECTION

To select diverse and informative samples from large datasets, choosing an appropriate feature rep-
resentation for clustering is very important, hence we comprehensively explore the possible choices
of clustering features for explainable IQA.

We first divide the clustering features into two classes: (I) model-related features and (II) model-
independent features. Model-related features are based on the assumption that we already know
which model we are going to fine-tune, then we can extract features specifically from the model
itself. Model-independent features are more robust because we do not need to know the model and
we can directly select a coreset subset using model-independent features, however the performance
is usually low than the model-related features.

The model-related features contain: (1) Last Pooling, which denotes the pooling features of the last
output layer of the MLLM model. (2) Last Token, which denotes the last token from the last output
layer of the MLLM model. (3) Last Pooling & Vision Text Emb, which denotes the concatenated
features of both the pooling features of the last output layer of the MLLM model and the visual-
textual features input to the language model in the MLLM. (4) Last Token & Vision Text Emb.,
which denotes the concatenated features of the last token from the last output layer of the MLLM
model and the visual-textual features input to the language model in the MLLM. (5) LMM feat.,
which denotes the three-layer features extracted from the shallow to the deep layers in the MLLM.
(6) LMM Feat. & Vision Text Emb., which denotes the concatenated features of the three-layer
features extracted from the shallow to the deep layers and the visual-textual features input to the lan-
guage model in the MLLM. The model-independent features contain: (7) IQA Feat., which denotes
the quality-related features extracted from popular IQA model [Yang et al|(2022). (8) Dino & ES
Feat., which denotes the extracted Dino-V3 vision features |Siméoni et al.| (2025) of all images and
the ES text featuresWang et al.|(2024)) of all the question-answer pairs. (9) Dino & ES & IQA Feat.,
which denotes the concatenated features of the IQA features, the Dino-V3 features, and the E5 text
features.
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3.3 CLUSTER QUOTAS ALLOCATION STRATEGY SELECTION

Based on the calculated cluster features, we select the three-layer features extracted from the shallow
to the deep in the MLLM & the visual-textual features input to the language model in the MLLM
as our final cluster features. Then we explore more cluster quotas allocation strategy instead of
evenly selecting sample according to the cluster scales. We first introduce three key characteristics
of describing each cluster:

(1) Density (Den): The density D calculates the average gaussian kernel distance of all samples
inside a cluster, showing the diversity of the cluster. Concretely, D is computed by:

1
Dj=— = d(m,n), 1
cicr=n 2. dmm W

m,ne€C;,m#n

where m and n denote two different data sample inside a cluster C;, d(m, n) denotes the gaussian
kernel distance between sample m and n. To ensure the diversity of our selected data, we allocate
more samples for the clusters with lower density in our experiments.

(2) Instruction relevance score (IRS): The IRS [Safaei et al.| (2025]) evaluates how much the question
@ contributes to synthesizing the ground-truth answer A. Concretely, assuming an instruction tuning
sample is denoted as a triplet (I, @), A), where I denotes the input image for quality assessment, Q)
and A denote the question and answer, respectively. The IRS is computed by comparing the pre-
trained MLLM’s next-token cross-entropy (CE) loss with and without the question () as part of the
input, which is shown as follows:

[t
Laq.1 1
IRS = 20, Lajgr =~ O log P (151 1,Qu¢2,)
Lar It |j=1

A
[t7]

1 A A
Lair = ~1ea > log Py (1 | 1,t2;) )
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where ¢4 denotes the tokenized tokens for A, Py denotes the predicted probability distribution of
the pre-trained MLLM. Following this definition, a higher IRS indicates that the MLLM is more
difficult to answer correctly. In our experiments, we allocate more samples for the clusters with
averagely higher IRS.

(3) Transferability (Trans): Transferability measures how well the knowledge learned in this cluster
can be transferred to other clusters. Following |Chen et al| (2023), we can utilize the distances
between clusters to compute transferability:

N
2= My Sy wley
[ N ) S’Lj_ u7'7]_17"'7N7
S My [EANES
1, S;; <7
M;; = y ig T, 3
J {07 S¢j>7', )

where x; and z; denote the centroid embedding of cluster 7 and j, S;; denote the cosine similarity of
x; and x;, M;; is a filtering function. In our experiments, we allocate more samples to the clusters
with higher transferability.

(4) Text transferability (Text Trans): Similarly to transferability, the text transferability utilizes only
the text embeddings from the MLLM for calculation. In our experiments, we allocate more samples
to the clusters with higher text transferability.

Based on the four features, we use these features individually or in combination to set quotas for
each cluster, and then calculate the performance after fine-tuning. Concretely, we select 11 different
combinations: (1) Density, (2) IRS, (3) Transferability, (4) Text Transferability, (5) Density & IRS,
(6) Transferability & IRS, (7) Text Transferability & IRS, (8) Transferability & Density, (9) Text
Transferability & Density, (10) Transferability & Density & IRS, and (11) Text Transferability &
Density & IRS to explore meaningful quota allocation strategies.
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Model Question Types Quadrants of Low-level Concerns Overall
Yes-or-NoT  Whatt How? Distortionf Othert In-context DistortionT  In-context Other? T
Random Guess 50.00 27.86 3331 37.89 38.48 38.28 35.82 37.80
AesExpert|Huang et al.|(2024) 73.27 64.38 5375 70.03 73.38 73.68 77.96 64.15
Q-Instruct|Wu et al.|(2024a) 76.18 66.37  57.61 65.18 67.59 73.06 71.53 67.09
PhotoEye Q1 et al.|[(2025) 80.01 76.10  67.02 74.32 74.59 77.30 81.22 74.50
Pretrained Model 80.34 80.68  67.79 71.67 78.59 69.90 84.91 75.59
Full Finetuning 84.21 8543  65.66 76.69 75.22 78.72 83.11 77.73
80% SFT data 83.04 8643  62.86 76.77 75.05 76.91 81.03 76.92
50% SFT data 84.87 85.29  66.37 77.08 75.85 77.82 84.62 78.19
30% SFT data 85.29 83.26  68.09 75.33 77.64 77.87 84.69 78.19
20% SFT data 85.08 83.29 7049 76.95 78.06 76.87 86.60 78.93
10% SFT data 84.19 81.04 72.02 73.79 77.89 78.83 85.82 78.13
5% SFT data 84.56 8295  68.11 77.74 75.83 76.01 84.58 78.13
3% SFT data 82.93 79.23 7238 70.24 79.59 76.68 86.21 77.12
1% SFT data 80.76 78.65  71.10 71.21 79.64 73.21 83.28 76.25

Table 1: The impact of randomly selecting instruction tuning data with different ratios for training on
the performance of the large multi-modal model. Comparing to the old mllm models, current popular
mllm model, i.e. InternVL3-Instruct-8B [Zhu et al.| (2025)) already achieves very high performance
in Q-bench.

3.4 CLUSTER SAMPLING STRATEGY SELECTION

After having determined which features to use for clustering and how to allocate quotas for each
cluster, we explore the sampling strategy for clusters. The sampling strategy is also very important
because it defines how we select meaningful samples within a cluster. Concretely, we explore three
distinct sampling strategies:

(1) Greedy Maximin Mean Discrepancy Sampling (Greedy MMD): Given a cluster C; and the quota
N;, we first calculate the squared maximum mean discrepancy between the cluster C; and the sam-
pled data set Cl{ , which is defined as:

MMD? =A(C;, Ci)+A(C}, C)) —2A(C5, C)),

3

1
j ci|cj|p€%:€cj( )

where d(p, q) denotes the gaussian kernel distance between sample p and g. Then greedy search is
used to iteratively add samples from cluster C; to C.

(2) Singular Value Decomposition-Based Sampling (SVD): Given a feature matrix X which con-
tains all the features within a cluster C', and its singular value decomposition term Xy ~ Uy.S VkT.
We calculate the leverage score [; that denotes the representativeness of sample ¢ in all subspaces of
features, then we select the k samples with the highest leverage scores as the chosen samples:

Xk ~ UkSkaT7 lt = ||Uk(Z, )”ga S= TOp_K(ZL) ) (5)

where [; is the leverage score, S is the selected top-k subset.

(3) Principal Component Analysis-Based Sampling (PCA): Given a feature matrix X, that contains
all features within a cluster C', principal component analysis is used to calculate the main principal
subspaces. Then we obtain representatives scores s by computing the projection energy on the top-k
principal subspace.

X~ UpSiVy|, Z=X Vi, si=Zil3, 8 =Top-K(s;), (6)

where s, is the representatives score for sample 7 in cluster C, S is the selected top-k subset.

4 EXPERIMENTS

We first evaluate our proposed IQA-Select method on the Q-instruct[Wu et al.| (2024a)) dataset and
evaluate the final performance on the Q-bench|Wu et al.|(2023)), which is a common MLLM bench-
mark designed for low-level image quality understanding. Then we conduct an in-depth analysis of
our method and experimental results. Additionally, we evaluate the robustness of our IQA-Select on
the Aesexpert/Huang et al.| (2024)) dataset and report the performance in Aesbench.
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Model Question Types Quadrants of Low-level Concerns Overall
Yes-or-NoT  WhatT How? DistortionT  Other? In-context DistortionT In-context Othert 1T
InternVL3-8B-Instruct 80.34 80.68  67.79 71.67 78.59 69.90 84.91 75.59
Full Data 84.21 8543  65.66 76.69 75.22 78.72 83.11 71.73
Random 10% 84.19 81.04  72.02 73.79 77.89 78.83 85.82 78.13
L Cluster Features
(1) Last Pooling 84.30 81.76  71.62 74.32 78.04 78.73 85.82 78.33
(2) Last Token 85.68 81.71 7037 75.43 71.73 77.49 86.36 78.46
(3) Last Pooling & Vision Text Emb. 84.24 81.84 7272 75.64 79.11 7745 86.21 78.86
(4) Last Token & Vision Text Emb. 84.12 8134 71.23 74.90 76.82 78.02 85.84 77.99
(5) LMM Feat. 84.50 82.01  72.08 74.64 79.54 77.25 86.69 78.66
(6) LMM Feat. & Vision Text Emb. 85.59 8240 7128 75.50 78.45 79.25 85.82 78.93
(7) IQA Feat. 84.96 81.35 71.71 73.89 80.19 76.97 86.30 78.53
(8) Dino & ES Feat. 84.40 81.84 71.22 76.13 78.73 75.91 85.84 78.60
(9) Dino & ES5 & IQA Feat. 84.17 82,65 71.85 75.35 71.77 79.02 86.08 78.73
1. Cluster Quota Allocation
(1) Density 84.20 81.21  72.30 74.47 79.22 76.06 87.19 78.33
(2) IRS 85.01 82.10 7242 75.99 79.22 78.35 85.80 79.13
(3) Transferability 85.31 8129  70.17 74.15 78.23 77.44 85.88 78.13
(4) Text Transferability 84.01 81.84 7093 73.23 77.63 77.53 84.97 71.79
(5) Density & IRS 84.64 8248  72.30 76.13 78.08 78.35 86.67 79.00
(6) Transferability & IRS 84.41 82.18  70.63 76.11 77.31 76.97 85.90 78.33
(7) Text Transferability & IRS 83.56 80.51  71.33 74.66 77.74 76.40 85.06 71.73
(8) Transferability & Density 85.75 82.07 71.88 76.03 79.06 77.82 86.69 79.20
(9) Text Transferability & Density 85.54 82.20  71.71 75.94 77.45 78.73 87.14 78.93
(10) Transferability & Density & IRS 84.02 8143  71.94 75.40 78.65 77.11 85.34 78.46
(11) Text Transferability & Density & IRS 84.87 8143  71.19 75.96 78.61 76.25 85.82 78.60
111. Cluster Sampling
(1) Greedy MMD sampling 85.11 80.68  73.73 74.03 78.71 79.64 86.97 78.93
(2) SVD sampling 8591 8212 7277 75.71 79.17 77.82 88.38 79.40
(3) PCA sampling 84.41 81.90  72.20 75.48 77.36 77.63 87.54 78.53
Final Results
1-(6) + 11-(8) + III-(2) 85.91 82,12  72.77 75.71 79.17 77.82 88.38 79.40

Table 2: The impact of selecting different clustering features, cluster quota allocation strategies and
cluster sampling strategies for data selection on the performance of the large multi-modal model.
10% data is selected from the original Q-Instruct instruction tuning dataset. The best and runner-up
performances are bold and underlined, respectively.

4.1 EXPERIMENTAL SETUP

Dataset and Evaluation Metric. For original instruction tuning dataset, we select Q-instruct and
Aesexpert dataset as the testbeds of our IQA-Select method. The Q-instruct dataset consists of about
200K instruction tuning examples, covering quality reasoning data and low-level visual quality an-
swering data across various distortion types. The Aesexpert dataset contains 409K instruction tuning
examples covering various aesthetic problems such as composition, color, lighting, and clarity. For
evaluation, we strictly follow the open-source evaluation tool VLMEvalKit and report the model
performance on the public part of the Q-bench and AesBench.

Implementation Details. In our experiments, we select a cutting-edge MLLM, InternVL3-8B-
Instruct, as a baseline model for training. The InternVL3 model consists of a vision encoder, a
feature projector, and a large language model. Low rank adaptation (LoRA) is adopted during the
training and the LoRA rank parameter is set to 16. The whole training is conducted for 1 epoch. The
learning rate is set to 2 x 10~° with a cosine decay schedule. All the experiments are conducted on
a single H200 GPU.

4.2 EXPERIMENTAL RESULTS FOR IQA DATA SELECTION
4.2.1 DO WE NEED ALL INSTRUCTION TUNING DATA FOR EXPLAINABLE IQA?

In this section, we discuss the necessity of utilizing all the instruction-tuning dataset for explain-
able IQA. To cope with this problem, we first select the recently popular state-of-the-art MLLM,
InternVL3-Instruct, and evaluate its generalization ability on the Q-Bench. The result is shown in
Table [T} we can observe that as the development of MLLMs, the pre-trained InternVL3-Instruct
can already achieve very high performance (overall 75.59%) compared to the specifically fine-tuned
model Q-Instruct (overall 67.09%).

Then from Table [I} we can observe that utilizing the 100% supervised fine-tuning (sft) data for
training can only achieve about 2% improvements (overall 77.73% vs 75.59%), while the randomly
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Method AESA1 AESE1 AESP?T Overallt
Baseline Model 27.5 62.5 76.67 55.56
Full Data 33.33 63.33 80.00 58.89
Random 10% 30.83 65.00 82.50 59.44
Ours 10% 31.67 66.67 85.00 61.11

Table 3: Performance of coreset selection on the AesBench VAL benchmark. We fine-tune the
InternVL3-Instruct using coresets with a 10% sampling ratio. The best and runner-up performances
are bold and underlined, respectively.

selected 20% sft data achieve higher performance. The reason is because the base performance of
InternVL3 is relatively high, making the space of improvement limited, and the Q-Instruct dataset
is redundant, fine-tuning the MLLM with all dataset may inversely cause the MLLM to forget the
knowledge it learned before. From the results of Table [} as the ratio of randomly selected data
increases, the performance curve of the fine-tuned model is approximately an inverted U-shaped
curve, demonstrating that the scale of the instruction tuning data should neither be too large nor too
small.

4.2.2 IMPACT OF DIFFERENT CLUSTERING FEATURES

The experimental results are summarized in Table E} First, we can observe that the model-related
features averagely achieve higher performance than model-independent features, which means that it
is better to select a model-specific feature for optimizing the specific model. Second, we can observe
that the LMM Feat. provides meaningful features for clustering and combining the LMM Feat. and
Vision Text Emb. achieves the best performance (oervall 78.93%) on Q-Bench, demonstrating that
utilizing more layers of features leads to a better performance.

4.2.3 IMPACT OF CLUSTER QUOTAS ALLOCATION

We also report the impact of cluster quota allocation in Table First, we can observe that the
Transferability & Density combination achieves the best performance in Q-Bench. It is mainly
because merely utilizing the transferability may allocate more quotas to representative clusters with
poor inner diversity, hence with the help of density, it can reasonably allocate the quota for each
cluster. Second, we find that the IRS feature itself is very meaningful; however, combining IRS
with other features leads to poorer performance. Third, we can observe that the performance of
using transferability is consistently better than text transferability, demonstrating that combining the
vision and text features from the MLLM can better compute the generalization ability of each cluster
to other clusters.

4.2.4 IMPACT OF DIFFERENT CLUSTER SAMPLING STRATEGIES

According to the summarized results in Table 2] we can find that the SVD sampling performs the
best comparing to greedy mmd sampling and PCA sampling. Among the three sampling strategies,
greedy mmd sampling tends to sample diverse data inside the feature space, while SVD and PCA
sampling tend to find the representative data in each cluster. It can be observed that selecting rep-
resentative data is more important than selecting diverse data in the explainable image quality area.
This is because representative data can help the MLLM to learn the typical data sample and prevents
the selection of noisy outliers or mislabeled data. We can also find that SVD sampling can select the
representative data more effectively than PCA sampling.

4.2.5 OVERALL DISCUSSION OF IQA-SELECT

Performance on explainable image quality assessment. After comprehensively exploring the
three stages of clustering-based explainable IQA data selection pipeline, our final method is using
LMM features and Vision Text embeddings for clustering, using the combination of transferability
and instruction relevance score for cluster quota allocation, and SVD sampling for cluster sampling.
The final method achieves considerably higher performance (overall 79.40%) than randomly select-
ing 10% instruction tuning data (overall 78.13%).
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Figure 2: Left: The performance of our IQA-Select compared with randomly selecting baselines
and pre-trained MLLM baseline. Right: the visualization of selected data and full data in feature
space.

Performance on explainable image aesthetic assessment. In addition, we also evaluate the effec-
tiveness of our IQA-Select method in the AesBench and select 10% instruction tuning data from the
AesExpert dataset. The results are summarized in Table #.2.4] First, we can observe that the data
redundancy problem also happened in the explainable image aesthetic assessment area, randomly
selecting 10% data for fine-tuning achieves better performance than using 100% instruction tuning
data (overall 59.44% vs 58.89%). Second, our IQA-Select method performs better than randomly
selecting 10% data (overall 61.11% vs 59.44%), demonstrating the generalization and effectiveness
of our IQA-Select framework.

Visualization of the selected samples in the feature space. To demonstrate the effectiveness of
our IQA-Select method, we use T-SNE to visualize the selected samples of IQA-Select and the full
samples in the MLLM’s feature space. The result is visualized in Figure [2] we can see that our
IQA-Select method focuses mainly on selecting the representative features which are in the center
of the feature space, but it can also sample several unique samples at the edge of the circle to ensure
the diversity of final sample set.

Limitations. Our paper also has its limitation, the performance of current MLLM on Q-Bench
is already high, making the improvement of full fine-tuning limited (overall 77.73% vs 75.59%).
Future work includes extending the data quality assessment problem to more difficult explainable
quality assessment area, such as explainable video quality assessment.

5 CONCLUSION

In this paper, we systematically investigate the role of data quality for explainable IQA. Using
a powerful pre-trained MLLM, we first investigate the changes in model performance after fine-
tuning with different sizes of instruction tuning data. We find that selecting a subset of the data
set randomly using an appropriate ratio can even lead to better results than training with the entire
instruction tuning dataset. Beyond randomly sampling a subset, we propose a clustering-based data
selection framework with three stages: clustering feature extraction, cluster quota allocation, and
cluster sampling strategy. Then we systematically analyze the choices of each stage and propose a
simple but efficient data selection method IQA-Select for explainable IQA. The experimental results
demonstrate that IQA-Select can achieve 102.1% and 103.7% performance of full fine-tuning using
only 10% selected data in Q-Bench and AesBench respectively, significantly reducing computational
costs while achieving better performance. We hope that our paper can provide a new perspective for
future research on exploring the quality of instruction tuning data for explainable IQA.
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