

000 001 002 003 004 005 EXPLORING INSTRUCTION DATA QUALITY FOR EX- 006 PLAINABLE IMAGE QUALITY ASSESSMENT 007 008 009

010 **Anonymous authors**
011

012 Paper under double-blind review
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034

ABSTRACT

035 In recent years, with the rapid development of powerful multimodal large lan-
036 guage models (MLLMs), explainable image quality assessment (IQA) has gradu-
037 ally become popular, aiming at providing quality-related descriptions and answers
038 of images. To achieve this goal, recent methods seek to construct a large-scale in-
039 struction tuning dataset to empower the MLLM with quality perception ability
040 following the well-known scaling law. However, a large amount of instruction
041 tuning data may cause substantial computational costs and redundant data, which
042 in turn will cause harm to the performance of the model. To cope with this prob-
043 lem, in this paper, we challenge the scaling law and systematically investigate the
044 role of data quality of the instruction tuning dataset for explainable IQA. Using
045 a powerful pre-trained MLLM, we first investigate the changes in model perfor-
046 mance after fine-tuning with different sizes of instruction tuning data. We find
047 that selecting a subset of the data set randomly using an appropriate ratio can
048 even lead to better results than training with the entire instruction tuning dataset,
049 demonstrating the redundancy of current explainable IQA instruction tuning data.
050 Beyond randomly sampling a subset, we propose a clustering-based data selection
051 framework with three stages: clustering feature extraction, cluster quota alloca-
052 tion, and cluster sampling strategy. Then we systematically analyze the choices
053 of each stage and propose a simple but efficient data selection method IQA-Select
054 for explainable IQA. The experimental results demonstrate that IQA-Select can
055 achieve 102.1% and 103.7% performance of full fine-tuning using only 10% se-
056 lected data in Q-Bench and AesBench respectively, significantly reducing com-
057 putational costs while achieving better performance. We hope that our paper can
058 provide a new perspective for future research on exploring the quality of instruc-
059 tion tuning data for explainable IQA.
060
061

062 1 INTRODUCTION

063 In recent years, multimodal large language models have demonstrated powerful and generalizable
064 visual understanding capabilities, and they have been widely applied to a broad range of computer
065 vision tasks. In light of these facts, the visual quality assessment community is adapting MLLMs
066 with quality-related instruction tuning data for explainable image quality assessment (explainable
067 IQA).

068 To cope with the problem, current researchers mainly follow the scaling law of data and seek to
069 a large-scale instruction tuning dataset with hundreds of thousands of samples. For example, the
070 Q-Instruct (Wu et al., 2024a) dataset constructs about 200K examples with huge quality-related
071 question-answering pairs, significantly boosting the performance of the MLLM model in visual
072 quality perception task. The Aesexpert (Huang et al., 2024) dataset contains 409K multi-typed
073 instructions to enable MLLM with better aesthetic capabilities. However, directly fine-tuning the
074 MLLM model with these large-scale dataset will introduce substantial computational costs and over-
075 fitting. Moreover, with the rapid development of the current MLLMs, the basic ability of the model
076 is becoming more and more powerful, most of the samples in instruction tuning dataset may become
077 a piece of cake for MLLM to learn. Hence it is a remaining problem that do we still need so much
078 dataset for MLLM fine-tuning?

054 In light of these facts, we explore two meaningful questions and their answers in this paper: Firstly,
 055 **Do we really need massive instruction tuning data samples for explainable IQA?** The answer is
 056 no. Utilizing comprehensive experiments, we discover that the current state-of-the-art Multimodal
 057 Large Language Model, *i.e.* InternVL3-Instruct can already achieve considerable performance on
 058 visual quality answering benchmark Q-Bench (Wu et al., 2023). Then we gradually reduce the scale
 059 of the instruction tuning dataset and find that utilizing only 5% percentage of the Q-instruct dataset
 060 can achieve performance comparable to full-scale fine-tuning. We also observe that as the ratio of
 061 randomly selected data increases, the performance curve of the fine-tuned MLLM is approximately
 062 an inverted U-shaped curve, demonstrating that the scale of the instruction tuning data should nei-
 063 ther be too large nor too small. The reason is because the current instruction-tuning data set for
 064 explainable IQA may contain low-quality or redundant examples. Fine-tuning the MLLM with a
 065 large redundant dataset will also cause the MLLM to overfit on them with abundant meaningless
 066 training data, while fine-tuning the MLLM with a too small dataset will cause the MLLM to learn
 067 nothing. Hence, a compact and informative coresset is suitable for MLLM fine-tuning.
 068

069 Based on the first question and its observation, we come up with the second question, **How can**
 070 **we effectively select useful instruction tuning data?** Under the setting of selecting 10% instruc-
 071 **IQA-Select** to select the diverse and meaningful instruction tuning samples from the full dataset.
 072 In practice, the three stages include the clustering feature extraction, cluster quota allocation, and
 073 cluster sampling strategy. We comprehensively explore the possible strategies of each stage in our
 074 framework. For cluster features, we explore the effectiveness of 9 different features from both
 075 model-related features and model-independent features. For cluster quota allocation, we explore
 076 the effectiveness of 11 allocation strategies derived from cluster density, cluster transferability, and
 077 instruction relevance score. For cluster sampling, we explore the effectiveness of using greedy mmd
 078 sampling, SVD sampling and PCA sampling. After comprehensive experiments, our final IQA-
 079 Select method utilizes the combination of MLLM features and vision text features for clustering,
 080 the combination of cluster transferability and density for quota allocation, and the SVD sampling
 081 strategy for cluster sampling. Our framework ensures both diversity and informativeness in the
 082 selected data.

083 Our proposed IQA-Select achieves excellent performance on explainable image quality assessment
 084 task and explainable image aesthetic assessment task. With 10 % selected instruction tuning data,
 085 IQA-Select can achieve 102.1% and 103.7% performance of full fine-tuning using only 10% se-
 086 lected data in Q-Bench and AesBench respectively, demonstrating the great potential of selecting
 087 meaningful coresset data in the explainable image quality assessment area.

088 In summary, the main contributions of this paper are:

- 089 • We provide the first systematic study of instruction data quality for explainable image qual-
 090 ity assessment.
- 091 • We introduce a clustering-based selection framework IQA-Select with three stages: clus-
 092 tering feature extraction, cluster quota allocation, and cluster sampling, which can select
 093 meaningful data from the whole dataset.
- 094 • We achieve a new state-of-the-art performance in Q-Bench and AesBench with only 10%
 095 selected instruction tuning data.
- 096 • We believe this work opens a new research direction for data-centric explainable IQA,
 097 where the focus shifts from constructing large instruction datasets to curating high-value
 098 and diverse data.

100 2 RELATED WORK

101 2.1 IMAGE QUALITY ASSESSMENT

102 Image Quality Assessment (IQA) is a long-standing problem, which aims to objectively evaluate
 103 the perceptual quality of images in a way that aligns with human visual perception. In recent years,
 104 IQA has achieved remarkable progress and become increasingly popular, driven by the emergence
 105 of numerous methods and datasets.

IQA methods can be broadly categorized into traditional score-based IQA methods and recent explainable IQA methods. Traditional score-based IQA methods focus on predicting a scalar quality score consistent with human subjective ratings, and are commonly classified into full-reference (FR) (Wang et al., 2004; Sheikh & Bovik, 2006; Zhang et al., 2011; 2018; Ding et al., 2020), reduced-reference (RR) (Wang & Simoncelli, 2005; Li & Wang, 2009; Rehman & Wang, 2012; Wang et al., 2016), and no-reference (NR) methods (Moorthy & Bovik, 2011; Mittal et al., 2012; Kang et al., 2014; Yang et al., 2022; Zhang et al., 2023). However, a scalar score alone merely rating the overall quality without capturing regional differences or providing further information about the underlying perceptual quality, which has motivated the emergence of explainable IQA methods that aim to identify distortion types and regions while providing explanations related to the perceptual quality. Q-Bench (Wu et al., 2023) first explores the explainable IQA problem and provides a standardized benchmark for assessing explanation quality, facilitating fair comparisons across models. Based on Q-bench, Q-Instruct (Wu et al., 2024a) leverages instruction-tuned vision–language models to simultaneously evaluate image quality and provide distortion-specific explanations in natural language, highlighting the potential of MLLMs for explainable IQA.

To equip MLLMs with quality-aware perceptual and assessment abilities, several supervised fine-tuning (SFT) datasets for quality evaluation have been proposed (Wu et al., 2024a; Huang et al., 2024; Wu et al., 2024b; Jia et al., 2024). Furthermore, to assess the quality-related abilities of MLLMs, researchers have proposed several dedicated benchmarks (Wu et al., 2023; Huang et al., 2024; Zhang et al., 2025a;b;c). Q-Instruct (Wu et al., 2024a) provides large-scale instruction–response pairs targeting low-level visual perception, such as blur, noise, and distortions, to improve the perceptual abilities of multi-modal foundation models. AesExpert (Huang et al., 2024) focuses on image aesthetics perception by aligning images with human aesthetic ratings and descriptions, thereby enabling models to better capture aesthetic preferences and produce human-aligned quality assessments. In this paper, we focus on these two datasets and explore the data quality and data selection problem for explainable IQA.

2.2 DATA SELECTION FOR INSTRUCTION TUNING

Data selection has become an increasingly hot topic in the training of large-scale models, as not all samples contribute equally to model performance. In the domain of large language models (LLMs), previous works focus on utilizing pre-defined rules (Cao et al., 2023) or gradient-based calculation (Ankner et al., 2024) to select high-value data. Inspired by these advances, recent research in vision–language models (VLMs) has placed growing emphasis on how to curate multimodal data for more effective alignment. One representative direction shows that the model itself can act as a strong filter (Chen et al., 2024), automatically screening out noisy or low-quality data to enhance instruction tuning. Another line of work considers concept-skill transferability (Lee et al., 2024), aiming to select training samples that encourage generalization across a broad range of visual-linguistic capabilities. ICONS (Wu et al., 2024c) introduces an influence-consensus mechanism that integrates multiple estimators to more reliably identify impactful samples. Collectively, these studies indicate that data selection has evolved from simple filtering to more principled and systematic strategies. However, all these studies focus on general-purpose visual question answering, while quality-related aspects remain underexplored. To address this gap, we investigate the problem of SFT data selection in the context of quality assessment.

3 CLUSTERING-BASED DATA SELECTION PIPELINE

As experiments have demonstrated the redundancy of the current IQA instruction tuning dataset Q-Instruct, hence an efficient and powerful data selection framework is significantly needed for explainable image quality assessment. Following the common cluster-based data selection pipeline pp in data selection area, we conclude and transform the data selection framework into three stages: (1) Clustering Feature Extraction, (2) Cluster Quotas Allocation, and (3) Intra-cluster Sampling. Based on this framework, we comprehensively explore the possible strategies within our framework. Concretely, we divide the cluster features into model-related features and model-independent features and evaluate 9 combinations of features. For cluster quota allocation, we evaluate 11 allocation strategies derived from 3 key cluster metrics. For the cluster sampling method, we comprehensively

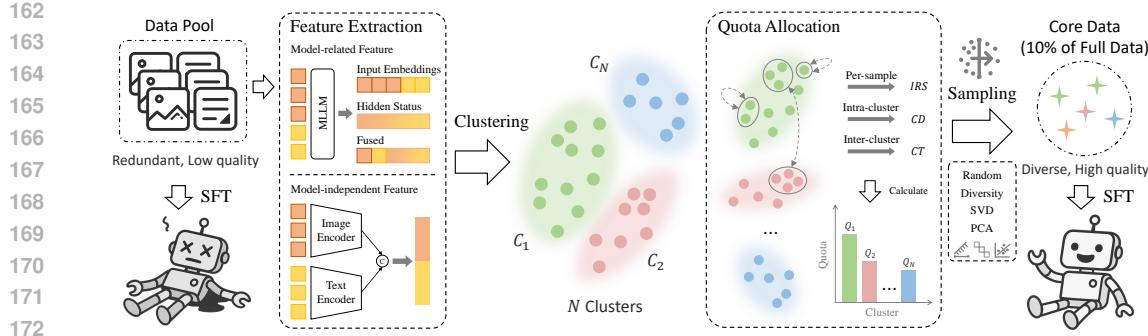


Figure 1: Overview of our proposed **IQA-Select** framework for automatically selecting high-value explainable image quality assessment question-answer samples through the efficient clustering-sampling pipeline.

evaluate the 3 sampling methods including Greedy MMD, SVD and PCA. In the rest of this section, we will introduce these stages in detail one-by-one.

3.1 PROBLEM DEFINITION

Given a pre-train MLLM model M with parameters θ and an explainable image quality assessment dataset $Q = [z_1, z_2, \dots, z_N]$ in instruction-following format, where each sample $z_i = (q_i, a_i)$ contains an input question q and the corresponding answer a . Our problem is to find the best small instruction tuning dataset, a subset of Q , which can obtain the best performance for the explainable visual quality assessment task.

3.2 DATA CLUSTERING FEATURE SELECTION

To select diverse and informative samples from large datasets, choosing an appropriate feature representation for clustering is very important, hence we comprehensively explore the possible choices of clustering features for explainable IQA.

We first divide the clustering features into two classes: (I) model-related features and (II) model-independent features. Model-related features are based on the assumption that we already know which model we are going to fine-tune, then we can extract features specifically from the model itself. Model-independent features are more robust because we do not need to know the model and we can directly select a coresset subset using model-independent features, however the performance is usually low than the model-related features.

The model-related features contain: (1) Last Pooling, which denotes the pooling features of the last output layer of the MLLM model. (2) Last Token, which denotes the last token from the last output layer of the MLLM model. (3) Last Pooling & Vision Text Emb, which denotes the concatenated features of both the pooling features of the last output layer of the MLLM model and the visual-textual features input to the language model in the MLLM. (4) Last Token & Vision Text Emb., which denotes the concatenated features of the last token from the last output layer of the MLLM model and the visual-textual features input to the language model in the MLLM. (5) LMM feat., which denotes the three-layer features extracted from the shallow to the deep layers in the MLLM. (6) LMM Feat. & Vision Text Emb., which denotes the concatenated features of the three-layer features extracted from the shallow to the deep layers and the visual-textual features input to the language model in the MLLM. The model-independent features contain: (7) IQA Feat., which denotes the quality-related features extracted from popular IQA model (Yang et al., 2022). (8) Dino & E5 Feat., which denotes the extracted Dino-V3 vision features (Siméoni et al., 2025) of all images and the E5 text features (Wang et al., 2024) of all the question-answer pairs. (9) Dino & E5 & IQA Feat., which denotes the concatenated features of the IQA features, the Dino-V3 features, and the E5 text features.

216 3.3 CLUSTER QUOTAS ALLOCATION STRATEGY SELECTION
217

218 Based on the calculated cluster features, we select the three-layer features extracted from the shallow
219 to the deep in the MLLM & the visual-textual features input to the language model in the MLLM
220 as our final cluster features. Then we explore more cluster quotas allocation strategy instead of
221 evenly selecting sample according to the cluster scales. We first introduce three key characteristics
222 of describing each cluster:

223 (1) Density (Den): The density D calculates the average gaussian kernel distance of all samples
224 inside a cluster, showing the diversity of the cluster. Concretely, D is computed by:

$$225 \quad D_i = \frac{1}{|C_i|(|C_i| - 1)} \sum_{m, n \in C_i, m \neq n} d(m, n), \quad (1)$$

226 where m and n denote two different data sample inside a cluster C_i , $d(m, n)$ denotes the gaussian
227 kernel distance between sample m and n . To ensure the diversity of our selected data, we allocate
228 more samples for the clusters with lower density in our experiments.

229 (2) Instruction relevance score (IRS): The IRS (Safaei et al., 2025) evaluates how much the question
230 Q contributes to synthesizing the ground-truth answer A . Concretely, assuming an instruction tuning
231 sample is denoted as a triplet (I, Q, A) , where I denotes the input image for quality assessment, Q
232 and A denote the question and answer, respectively. The IRS is computed by comparing the pre-
233 trained MLLM’s next-token cross-entropy (CE) loss with and without the question Q as part of the
234 input, which is shown as follows:

$$235 \quad \text{IRS} = \frac{\mathcal{L}_{A|Q,I}}{\mathcal{L}_{A|I}}, \quad \mathcal{L}_{A|Q,I} = -\frac{1}{|\mathbf{t}^A|} \sum_{j=1}^{|\mathbf{t}^A|} \log P_\theta(t_j^A | I, Q, \mathbf{t}_{<j}^A),$$

$$236 \quad \mathcal{L}_{A|I} = -\frac{1}{|\mathbf{t}^A|} \sum_{j=1}^{|\mathbf{t}^A|} \log P_\theta(t_j^A | I, \mathbf{t}_{<j}^A), \quad (2)$$

237 where t^A denotes the tokenized tokens for A , P_θ denotes the predicted probability distribution of
238 the pre-trained MLLM. Following this definition, a higher IRS indicates that the MLLM is more
239 difficult to answer correctly. In our experiments, we allocate more samples for the clusters with
240 averagely higher IRS.

241 (3) Transferability (Trans): Transferability measures how well the knowledge learned in this cluster
242 can be transferred to other clusters. Following (Chen et al., 2023), we can utilize the distances
243 between clusters to compute transferability:

$$244 \quad T_i = \frac{\sum_{j=1}^N M_{ij} S_{ij}}{\sum_{j=1}^N M_{ij}}, \quad S_{ij} = \frac{x_i^\top x_j}{\|x_i\| \|x_j\|}, i, j = 1, \dots, N,$$

$$245 \quad M_{ij} = \begin{cases} 1, & S_{ij} \leq \tau, \\ 0, & S_{ij} > \tau, \end{cases} \quad (3)$$

246 where x_i and x_j denote the centroid embedding of cluster i and j , S_{ij} denote the cosine similarity of
247 x_i and x_j , M_{ij} is a filtering function. In our experiments, we allocate more samples to the clusters
248 with higher transferability.

249 (4) Text transferability (Text Trans): Similarly to transferability, the text transferability utilizes only
250 the text embeddings from the MLLM for calculation. In our experiments, we allocate more samples
251 to the clusters with higher text transferability.

252 Based on the four features, we use these features individually or in combination to set quotas for
253 each cluster, and then calculate the performance after fine-tuning. Concretely, we select 11 different
254 combinations: (1) Density, (2) IRS, (3) Transferability, (4) Text Transferability, (5) Density & IRS,
255 (6) Transferability & IRS, (7) Text Transferability & IRS, (8) Transferability & Density, (9) Text
256 Transferability & Density, (10) Transferability & Density & IRS, and (11) Text Transferability &
257 Density & IRS to explore meaningful quota allocation strategies.

Model	Question Types			Quadrants of Low-level Concerns			Overall ↑
	Yes-or-No↑	What↑	How↑	Distortion↑	Other↑	In-context Distortion↑	
Random Guess	50.00	27.86	33.31	37.89	38.48	38.28	35.82 37.80
AesExpert (Huang et al., 2024)	73.27	64.38	53.75	70.03	73.38	73.68	77.96 64.15
Q-Instruct (Wu et al., 2024a)	76.18	66.37	57.61	65.18	67.59	73.06	71.53 67.09
PhotoEye (Qi et al., 2025)	80.01	76.10	67.02	74.32	74.59	77.30	81.22 74.50
Pretrained Model	80.34	80.68	67.79	71.67	78.59	69.90	84.91 75.59
Full Finetuning	84.21	85.43	65.66	76.69	75.22	78.72	83.11 77.73
80% SFT data	83.04	86.43	62.86	76.77	75.05	76.91	81.03 76.92
50% SFT data	84.87	85.29	66.37	77.08	75.85	77.82	84.62 78.19
30% SFT data	85.29	83.26	68.09	75.33	77.64	77.87	84.69 78.19
20% SFT data	85.08	83.29	70.49	76.95	78.06	76.87	86.60 78.93
10% SFT data	84.19	81.04	72.02	73.79	77.89	78.83	85.82 78.13
5% SFT data	84.56	82.95	68.11	77.74	75.83	76.01	84.58 78.13
3% SFT data	82.93	79.23	72.38	70.24	79.59	76.68	86.21 77.12
1% SFT data	80.76	78.65	71.10	71.21	79.64	73.21	83.28 76.25

Table 1: The impact of randomly selecting instruction tuning data with different ratios for training on the performance of the large multi-modal model. Comparing to the old mllm models, current popular mllm model, i.e. InternVL3-Instruct-8B (Zhu et al., 2025) already achieves very high performance in Q-bench.

3.4 CLUSTER SAMPLING STRATEGY SELECTION

After having determined which features to use for clustering and how to allocate quotas for each cluster, we explore the sampling strategy for clusters. The sampling strategy is also very important because it defines how we select meaningful samples within a cluster. Concretely, we explore three distinct sampling strategies:

(1) Greedy Maximin Mean Discrepancy Sampling (Greedy MMD): Given a cluster C_i and the quota N_i , we first calculate the squared maximum mean discrepancy between the cluster C_i and the sampled data set C'_i , which is defined as:

$$\text{MMD}^2 = A(C_i, C_i) + A(C'_i, C'_i) - 2A(C_i, C'_i),$$

$$A(C_i, C_j) = \frac{1}{|C_i||C_j|} \sum_{p \in C_i, q \in C_j} d(p, q), \quad (4)$$

where $d(p, q)$ denotes the gaussian kernel distance between sample p and q . Then greedy search is used to iteratively add samples from cluster C_i to C'_i .

(2) Singular Value Decomposition-Based Sampling (SVD): Given a feature matrix X_k which contains all the features within a cluster C_k and its singular value decomposition term $X_k \approx U_k S_k V_k^T$. We calculate the leverage score l_i that denotes the representativeness of sample i in all subspaces of features, then we select the k samples with the highest leverage scores as the chosen samples:

$$X_k \approx U_k S_k V_k^T, \quad l_i = \|U_k(i, :)\|_2^2, \quad S = \text{Top-K}_{\bar{i}}(l_i), \quad (5)$$

where l_i is the leverage score, S is the selected top- k subset.

(3) Principal Component Analysis-Based Sampling (PCA): Given a feature matrix X_k that contains all features within a cluster C_k , principal component analysis is used to calculate the main principal subspaces. Then we obtain representatives scores s by computing the projection energy on the top- k principal subspace.

$$X_k \approx U_k S_k V_k^T, \quad Z = X_k V_k,$$

$$s_i = \|Z_i\|_2^2, \quad S = \text{Top-K}_{\bar{i}}(s_i), \quad (6)$$

where s_i is the representatives score for sample i in cluster C_k , S is the selected top- k subset.

4 EXPERIMENTS

We first evaluate our proposed IQA-Select method on the Q-instruct (Wu et al., 2024a) dataset and evaluate the final performance on the Q-bench (Wu et al., 2023), which is a common MLLM benchmark designed for low-level image quality understanding. Then we conduct an in-depth analysis of

324	325	Model	Question Types			Quadrants of Low-level Concerns			Overall ↑		
			Yes-or-No↑	What↑	How↑	Distortion↑	Other↑	In-context Distortion↑			
326	327	InternVL3-8B-Instruct	80.34	80.68	67.79	71.67	78.59	69.90	84.91	75.59	
328	329	Full Data	84.21	85.43	65.66	76.69	75.22	78.72	83.11	77.73	
330	331	Random 10%	84.19	81.04	72.02	73.79	77.89	78.83	85.82	78.13	
332	333	Coincide Lee et al. (2024) 10%	86.10	80.29	71.67	73.63	78.98	77.81	84.97	78.14	
334	335	<i>I. Cluster Features</i>									
336	337	(1) Last Pooling	84.30	81.76	71.62	74.32	78.04	78.73	85.82	78.33	
338	339	(2) Last Token	85.68	81.71	70.37	75.43	77.73	77.49	86.36	78.46	
340	341	(3) Last Pooling & Vision Text Emb.	84.24	81.84	72.72	75.64	79.11	77.45	86.21	78.86	
341	342	(4) Last Token & Vision Text Emb.	84.12	81.34	71.23	74.90	76.82	78.02	85.84	77.99	
342	343	(5) LMM Feat.	84.50	82.01	72.08	74.64	79.54	77.25	86.69	78.66	
343	344	(6) LMM Feat. & Vision Text Emb.	85.59	82.40	71.28	75.50	78.45	79.25	85.82	78.93	
344	345	(7) IQA Feat.	84.96	81.35	71.71	73.89	80.19	76.97	86.30	78.53	
345	346	(8) Dino & E5 Feat.	84.40	81.84	71.22	76.13	78.73	75.91	85.84	78.60	
346	347	(9) Dino & E5 & IQA Feat.	84.17	82.65	71.85	75.35	77.77	79.02	86.08	78.73	
347	348	<i>II. Cluster Quota Allocation</i>									
348	349	(1) Density	84.20	81.21	72.30	74.47	<u>79.22</u>	76.06	87.19	78.33	
349	350	(2) IRS	85.01	82.10	72.42	75.99	<u>79.22</u>	78.35	85.80	79.13	
350	351	(3) Transferability	85.31	81.29	70.17	74.15	78.23	77.44	85.88	78.13	
351	352	(4) Text Transferability	84.01	81.84	70.93	73.23	77.63	77.53	84.97	77.79	
352	353	(5) Density & IRS	84.64	82.48	72.30	76.13	78.08	78.35	86.67	79.00	
353	354	(6) Transferability & IRS	84.41	82.18	70.63	<u>76.11</u>	77.31	76.97	85.90	78.33	
354	355	(7) Text Transferability & IRS	83.56	80.51	71.33	74.66	77.74	76.40	85.06	77.73	
355	356	(8) Transferability & Density	<u>85.75</u>	82.07	71.88	76.03	79.06	77.82	86.69	79.20	
356	357	(9) Text Transferability & Density	85.54	82.20	71.71	75.94	77.45	78.73	87.14	78.93	
357	358	(10) Transferability & Density & IRS	84.02	81.43	71.94	75.40	78.65	<u>77.11</u>	85.34	78.46	
358	359	(11) Text Transferability & Density & IRS	84.87	81.43	71.19	75.96	78.61	76.25	85.82	78.60	
359	360	<i>III. Cluster Sampling</i>									
360	361	(1) Greedy MMD sampling	85.11	80.68	73.73	74.03	78.71	79.64	86.97	78.93	
361	362	(2) SVD sampling	85.91	82.12	<u>72.77</u>	75.71	<u>79.17</u>	77.82	88.38	79.40	
362	363	(3) PCA sampling	84.41	81.90	72.20	75.48	77.36	77.63	<u>87.54</u>	78.53	
363	364	<i>Final Results</i>									
364	365	I-(6) + II-(8) + III-(2)	85.91	82.12	<u>72.77</u>	75.71	79.17	77.82	88.38	79.40	

Table 2: The impact of selecting different clustering features, cluster quota allocation strategies and cluster sampling strategies for data selection on the performance of the large multi-modal model. 10% data is selected from the original Q-Instruct instruction tuning dataset. The best and runner-up performances are bold and underlined, respectively.

our method and experimental results. Additionally, we evaluate the robustness of our IQA-Select on the Aesexpert (Huang et al., 2024) dataset and report the performance in Aesbench.

4.1 EXPERIMENTAL SETUP

Dataset and Evaluation Metric. For original instruction tuning dataset, we select Q-instruct and Aesexpert dataset as the testbeds of our IQA-Select method. The Q-instruct dataset consists of about 200K instruction tuning examples, covering quality reasoning data and low-level visual quality answering data across various distortion types. The Aesexpert dataset contains 409K instruction tuning examples covering various aesthetic problems such as composition, color, lighting, and clarity. For evaluation, we strictly follow the open-source evaluation tool VLMEvalKit and report the model performance on the public part of the Q-bench and AesBench.

Implementation Details. In our experiments, we select a cutting-edge MLLM, InternVL3-8B-Instruct, as a baseline model for training. The InternVL3 model consists of a vision encoder, a feature projector, and a large language model. Low rank adaptation (LoRA) is adopted during the training and the LoRA rank parameter is set to 16. The whole training is conducted for 1 epoch. The learning rate is set to 2×10^{-5} with a cosine decay schedule. All the experiments are conducted on a single H200 GPU.

4.2 EXPERIMENTAL RESULTS FOR IQA DATA SELECTION

4.2.1 DO WE NEED ALL INSTRUCTION TUNING DATA FOR EXPLAINABLE IQA?

In this section, we discuss the necessity of utilizing all the instruction-tuning dataset for explainable IQA. To cope with this problem, we first select the recently popular state-of-the-art MLLM, InternVL3-Instruct, and evaluate its generalization ability on the Q-Bench. The result is shown in Table 1, we can observe that as the development of MLLMs, the pre-trained InternVL3-Instruct

Method	AESA \uparrow	AESE \uparrow	AESP \uparrow	Overall \uparrow
Baseline Model	27.5	62.5	76.67	55.56
Full Data	33.33	63.33	80.00	58.89
Random 10%	30.83	<u>65.00</u>	<u>82.50</u>	<u>59.44</u>
Ours 10%	<u>31.67</u>	66.67	85.00	61.11

Table 3: Performance of coresnet selection on the AesBench VAL benchmark. We fine-tune the InternVL3-Instruct using coresets with a 10% sampling ratio. The best and runner-up performances are bold and underlined, respectively.

can already achieve very high performance (overall 75.59%) compared to the specifically fine-tuned model Q-Instruct (overall 67.09%).

Then from Table 1, we can observe that utilizing the 100% supervised fine-tuning (sft) data for training can only achieve about 2% improvements (overall 77.73% vs 75.59%), while the randomly selected 20% sft data achieve higher performance. The reason is because the base performance of InternVL3 is relatively high, making the space of improvement limited, and the Q-Instruct dataset is redundant, fine-tuning the MLLM with all dataset may inversely cause the MLLM to forget the knowledge it learned before. From the results of Table 1, as the ratio of randomly selected data increases, the performance curve of the fine-tuned model is approximately an inverted U-shaped curve, demonstrating that the scale of the instruction tuning data should neither be too large nor too small.

4.2.2 IMPACT OF DIFFERENT CLUSTERING FEATURES

The experimental results are summarized in Table 2. First, we can observe that the model-related features averagely achieve higher performance than model-independent features, which means that it is better to select a model-specific feature for optimizing the specific model. Second, we can observe that the LMM Feat. provides meaningful features for clustering and combining the LMM Feat. and Vision Text Emb. achieves the best performance (overall 78.93%) on Q-Bench, demonstrating that utilizing more layers of features leads to a better performance.

4.2.3 IMPACT OF CLUSTER QUOTAS ALLOCATION

We also report the impact of cluster quota allocation in Table 2. First, we can observe that the Transferability & Density combination achieves the best performance in Q-Bench. It is mainly because merely utilizing the transferability may allocate more quotas to representative clusters with poor inner diversity, hence with the help of density, it can reasonably allocate the quota for each cluster. Second, we find that the IRS feature itself is very meaningful; however, combining IRS with other features leads to poorer performance. Third, we can observe that the performance of using transferability is consistently better than text transferability, demonstrating that combining the vision and text features from the MLLM can better compute the generalization ability of each cluster to other clusters.

4.2.4 IMPACT OF DIFFERENT CLUSTER SAMPLING STRATEGIES

According to the summarized results in Table 2, we can find that the SVD sampling performs the best comparing to greedy mmd sampling and PCA sampling. Among the three sampling strategies, greedy mmd sampling tends to sample diverse data inside the feature space, while SVD and PCA sampling tend to find the representative data in each cluster. It can be observed that selecting representative data is more important than selecting diverse data in the explainable image quality area. This is because representative data can help the MLLM to learn the typical data sample and prevents the selection of noisy outliers or mislabeled data. We can also find that SVD sampling can select the representative data more effectively than PCA sampling.

4.2.5 OVERALL DISCUSSION OF IQA-SELECT

Performance on explainable image quality assessment. After comprehensively exploring the three stages of clustering-based explainable IQA data selection pipeline, our final method uses LMM

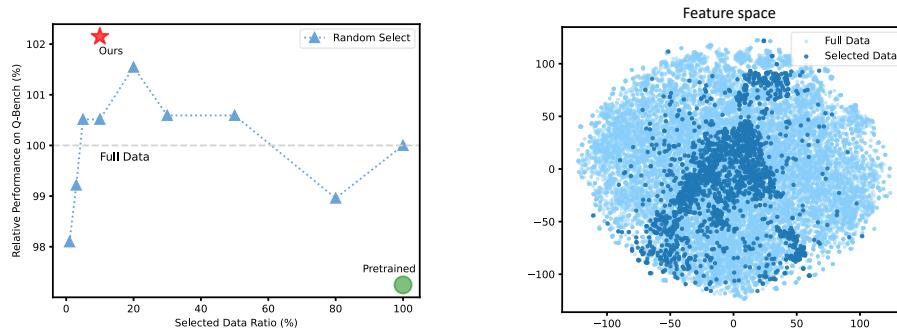


Figure 2: Left: The performance of our **IQA-Select** compared with randomly selecting baselines and pre-trained MLLM baseline. Right: the visualization of selected data and full data in feature space.

features and Vision Text embeddings for clustering, using the combination of transferability and density for cluster quota allocation, and SVD sampling for cluster sampling. The final method achieves considerably higher performance (overall 79.40%) than randomly selecting 10% instruction tuning data (overall 78.13%).

Performance on explainable image aesthetic assessment. In addition, we also evaluate the effectiveness of our IQA-Select method in the AesBench and select 10% instruction tuning data from the AesExpert dataset. The results are summarized in Table 3. First, we can observe that the data redundancy problem also happened in the explainable image aesthetic assessment area, randomly selecting 10% data for fine-tuning achieves better performance than using 100% instruction tuning data (overall 59.44% vs 58.89%). Second, our IQA-Select method performs better than randomly selecting 10% data (overall 61.11% vs 59.44%), demonstrating the generalization and effectiveness of our IQA-Select framework.

Visualization of the selected samples in the feature space. To demonstrate the effectiveness of our IQA-Select method, we use T-SNE to visualize the selected samples of IQA-Select and the full samples in the MLLM’s feature space. The result is visualized in Figure 2, we can see that our IQA-Select method focuses mainly on selecting the representative features which are in the center of the feature space, but it can also sample several unique samples at the edge of the circle to ensure the diversity of final sample set.

Limitations. Our paper also has its limitation, the performance of current MLLM on Q-Bench is already high, making the improvement of full fine-tuning limited (overall 77.73% vs 75.59%). Future work includes extending the data quality assessment problem to more difficult explainable quality assessment area, such as explainable video quality assessment.

5 CONCLUSION

In this paper, we systematically investigate the role of data quality for explainable IQA. Using a powerful pre-trained MLLM, we first investigate the changes in model performance after fine-tuning with different sizes of instruction tuning data. We find that selecting a subset of the data set randomly using an appropriate ratio can even lead to better results than training with the entire instruction tuning dataset. Beyond randomly sampling a subset, we propose a clustering-based data selection framework with three stages: clustering feature extraction, cluster quota allocation, and cluster sampling strategy. Then we systematically analyze the choices of each stage and propose a simple but efficient data selection method IQA-Select for explainable IQA. The experimental results demonstrate that IQA-Select can achieve 102.1% and 103.7% performance of full fine-tuning using only 10% selected data in Q-Bench and AesBench respectively, significantly reducing computational costs while achieving better performance. We hope that our paper can provide a new perspective for future research on exploring the quality of instruction tuning data for explainable IQA.

486
487
ETHICS STATEMENT488
489
490
Our work adheres to the ICLR Code of Ethics. This work explore the data quality and data selection
for explainable image quality assessment. All data used in this paper are publicly available datasets,
which contains no sensitive, personal content.491
492
REPRODUCIBILITY STATEMENT493
494
495
496
497
498
We have taken considerable measures to ensure the reproducibility of our work. The main paper
discusses challenges of data quality and quantity in explainable image quality assessment, introduces
a data selection pipeline, and reports exploratory experiments on two explainable image quality
assessment datasets. We plan to release the final data selection method and the selected SFT data
from two datasets upon publication to facilitate replication and follow-up research.499
500
LLM USAGE STATEMENT501
502
503
Large language models (LLMs) were only used for information retrieval and minor sentence polishing-
ing, and were not involved in writing the paper.504
505
REFERENCES506
507
508
509
510
Zachary Ankner, Cody Blakeney, Kartik Sreenivasan, Max Marion, Matthew L Leavitt, and Man-
sheej Paul. Perplexed by perplexity: Perplexity-based data pruning with small reference models.
arXiv preprint arXiv:2405.20541, 2024.511
512
Yihan Cao, Yanbin Kang, and Lichao Sun. Instruction mining: High-quality instruction data selec-
tion for large language models. *arXiv preprint arXiv:2307.06290*, 1(3):6, 2023.513
514
515
516
Mayee Chen, Nicholas Roberts, Kush Bhatia, Jue Wang, Ce Zhang, Frederic Sala, and Christopher
Ré. Skill-it! a data-driven skills framework for understanding and training language models.
Advances in Neural Information Processing Systems, 36:36000–36040, 2023.517
518
519
Ruibo Chen, Yihan Wu, Lichang Chen, Guodong Liu, Qi He, Tianyi Xiong, Chenxi Liu, Junfeng
Guo, and Heng Huang. Your vision-language model itself is a strong filter: Towards high-quality
instruction tuning with data selection. *arXiv preprint arXiv:2402.12501*, 2024.520
521
522
Keyan Ding, Kede Ma, Shiqi Wang, and Eero P Simoncelli. Image quality assessment: Unifying
structure and texture similarity. *IEEE transactions on pattern analysis and machine intelligence*,
44(5):2567–2581, 2020.523
524
525
526
527
Yipo Huang, Xiangfei Sheng, Zhichao Yang, Quan Yuan, Zhichao Duan, Pengfei Chen, Leida Li,
Weisi Lin, and Guangming Shi. Aesexpert: Towards multi-modality foundation model for image
aesthetics perception. In *Proceedings of the 32nd ACM International Conference on Multimedia*,
pp. 5911–5920, 2024.528
529
530
Ziheng Jia, Zicheng Zhang, Jiaying Qian, Haoning Wu, Wei Sun, Chunyi Li, Xiaohong Liu, Weisi
Lin, Guangtao Zhai, and Xiongkuo Min. Vqa 2: Visual question answering for video quality
assessment. *arXiv preprint arXiv:2411.03795*, 2024.531
532
533
Le Kang, Peng Ye, Yi Li, and David Doermann. Convolutional neural networks for no-reference
image quality assessment. In *Proceedings of the IEEE conference on computer vision and pattern
recognition*, pp. 1733–1740, 2014.534
535
536
Jaewoo Lee, Boyang Li, and Sung Ju Hwang. Concept-skill transferability-based data selection for
large vision-language models. *arXiv preprint arXiv:2406.10995*, 2024.537
538
539
Qiang Li and Zhou Wang. Reduced-reference image quality assessment using divisive
normalization-based image representation. *IEEE journal of selected topics in signal processing*,
3(2):202–211, 2009.

540 Anish Mittal, Anush Krishna Moorthy, and Alan Conrad Bovik. No-reference image quality assess-
 541 ment in the spatial domain. *IEEE Transactions on image processing*, 21(12):4695–4708, 2012.
 542

543 Anush Krishna Moorthy and Alan Conrad Bovik. Blind image quality assessment: From natural
 544 scene statistics to perceptual quality. *IEEE transactions on Image Processing*, 20(12):3350–3364,
 545 2011.

546 Daiqing Qi, Handong Zhao, Jing Shi, Simon Jenni, Yifei Fan, Franck Dernoncourt, Scott Cohen,
 547 and Sheng Li. The photographer’s eye: Teaching multimodal large language models to see, and
 548 critique like photographers. In *Proceedings of the Computer Vision and Pattern Recognition
 549 Conference*, pp. 24807–24816, 2025.

550 Abdul Rehman and Zhou Wang. Reduced-reference image quality assessment by structural similar-
 551 ity estimation. *IEEE transactions on image processing*, 21(8):3378–3389, 2012.
 552

553 Bardia Safaei, Faizan Siddiqui, Jiacong Xu, Vishal M Patel, and Shao-Yuan Lo. Filter images first,
 554 generate instructions later: Pre-instruction data selection for visual instruction tuning. In *Pro-
 555 ceedings of the Computer Vision and Pattern Recognition Conference*, pp. 14247–14256, 2025.

556 Hamid R Sheikh and Alan C Bovik. Image information and visual quality. *IEEE Transactions on
 557 image processing*, 15(2):430–444, 2006.
 558

559 Oriane Siméoni, Huy V Vo, Maximilian Seitzer, Federico Baldassarre, Maxime Oquab, Cijo Jose,
 560 Vasil Khalidov, Marc Szafraniec, Seungeun Yi, Michaël Ramamonjisoa, et al. Dinov3. *arXiv
 561 preprint arXiv:2508.10104*, 2025.

562 Liang Wang, Nan Yang, Xiaolong Huang, Linjun Yang, Rangan Majumder, and Furu Wei. Multi-
 563 lingual e5 text embeddings: A technical report. *arXiv preprint arXiv:2402.05672*, 2024.
 564

565 Shiqi Wang, Ke Gu, Xinfeng Zhang, Weisi Lin, Siwei Ma, and Wen Gao. Reduced-reference qual-
 566 ity assessment of screen content images. *IEEE Transactions on Circuits and Systems for Video
 567 Technology*, 28(1):1–14, 2016.

568 Zhou Wang and Eero P Simoncelli. Reduced-reference image quality assessment using a wavelet-
 569 domain natural image statistic model. In *Human vision and electronic imaging X*, volume 5666,
 570 pp. 149–159. SPIE, 2005.

571 Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment:
 572 from error visibility to structural similarity. *IEEE transactions on image processing*, 13(4):600–
 573 612, 2004.
 574

575 Haoning Wu, Zicheng Zhang, Erli Zhang, Chaofeng Chen, Liang Liao, Annan Wang, Chunyi Li,
 576 Wenxiu Sun, Qiong Yan, Guangtao Zhai, et al. Q-bench: A benchmark for general-purpose
 577 foundation models on low-level vision. *arXiv preprint arXiv:2309.14181*, 2023.

578 Haoning Wu, Zicheng Zhang, Erli Zhang, Chaofeng Chen, Liang Liao, Annan Wang, Kaixin Xu,
 579 Chunyi Li, Jingwen Hou, Guangtao Zhai, et al. Q-instruct: Improving low-level visual abilities
 580 for multi-modality foundation models. In *Proceedings of the IEEE/CVF conference on computer
 581 vision and pattern recognition*, pp. 25490–25500, 2024a.

582 Haoning Wu, Hanwei Zhu, Zicheng Zhang, Erli Zhang, Chaofeng Chen, Liang Liao, Chunyi Li,
 583 Annan Wang, Wenxiu Sun, Qiong Yan, et al. Towards open-ended visual quality comparison. In
 584 *European Conference on Computer Vision*, pp. 360–377. Springer, 2024b.
 585

586 Xindi Wu, Mengzhou Xia, Rulin Shao, Zhiwei Deng, Pang Wei Koh, and Olga Russakovsky. Icons:
 587 Influence consensus for vision-language data selection. *arXiv preprint arXiv:2501.00654*, 2024c.

588 Sidi Yang, Tianhe Wu, Shuwei Shi, Shanshan Lao, Yuan Gong, Mingdeng Cao, Jiahao Wang, and
 589 Yujiu Yang. Maniqa: Multi-dimension attention network for no-reference image quality assess-
 590 ment. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*,
 591 pp. 1191–1200, 2022.
 592

593 Lin Zhang, Lei Zhang, Xuanqin Mou, and David Zhang. Fsim: A feature similarity index for image
 594 quality assessment. *IEEE transactions on Image Processing*, 20(8):2378–2386, 2011.

594 Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
 595 effectiveness of deep features as a perceptual metric. In *Proceedings of the IEEE conference on*
 596 *computer vision and pattern recognition*, pp. 586–595, 2018.

597 Weixia Zhang, Guangtao Zhai, Ying Wei, Xiaokang Yang, and Kede Ma. Blind image quality
 598 assessment via vision-language correspondence: A multitask learning perspective. In *Proceedings*
 599 *of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 14071–14081, 2023.

600 Zicheng Zhang, Ziheng Jia, Haoning Wu, Chunyi Li, Zijian Chen, Yingjie Zhou, Wei Sun, Xiaohong
 601 Liu, Xiongkuo Min, Weisi Lin, et al. Q-bench-video: Benchmark the video quality understanding
 602 of lmms. In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 3229–
 603 3239, 2025a.

604 Zicheng Zhang et al. Aibench: Towards trustworthy evaluation under the 45° law. <https://aiben.ch/>, 2025b.

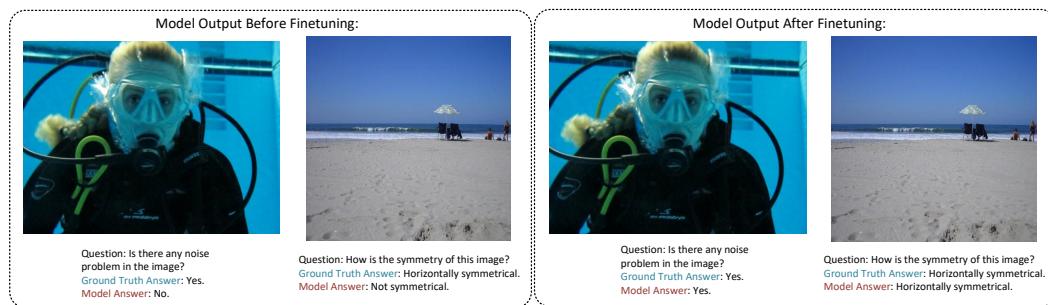
605 Zicheng Zhang et al. Large multimodal models evaluation: A survey. <https://github.com/aiben-ch/LMM-Evaluation-Survey>, 2025c. Project Page: AIBench, available online.

606 Jinguo Zhu, Weiyun Wang, Zhe Chen, Zhaoyang Liu, Shenglong Ye, Lixin Gu, Hao Tian, Yuchen
 607 Duan, Weijie Su, Jie Shao, et al. Internvl3: Exploring advanced training and test-time recipes for
 608 open-source multimodal models. *arXiv preprint arXiv:2504.10479*, 2025.

614 A APPENDIX

615 A.1 QUALITATIVE RESULTS

616 To demonstrate the effectiveness of our IQA-Select framework, we visualize the model outputs
 617 before and after the finetuning process in Figure 3. From the results, we can observe that the large
 618 multi-modal model is able to identify more distortion and image composition problems, showing
 619 the limitations of current general large multi-modal models.



620
 621
 622
 623
 624 Figure 3: Visualization of the model predictions before and after finetuning on Q-Bench. After
 625 finetuning with our instruction data selected by our IQA-Select framework, the InternVL3-8B model
 626 is able to perceive more quality problems.

627 A.2 VISUALIZATION OF SELECTED DATA

628 To validate the effectiveness and redundancy of the current explainable image quality assessment
 629 instruction tuning data Q-Instruct, we concretely visualize the selected samples and filtered samples
 630 by our IQA-Select method. The whole examples are shown in Figure 4. From the figure, we can ob-
 631 serve that IQA-Select can effectively filter out similar question-answer pairs (i.e. image sharpness)
 632 and easy question-answer pairs (i.e. determining whether the image is distorted). Meanwhile, IQA-
 633 Select can precisely select the unique samples in the Q-Instruct dataset. For example, IQA-Select
 634 localizes that the number of image with good quality is limited and can precisely select it.

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

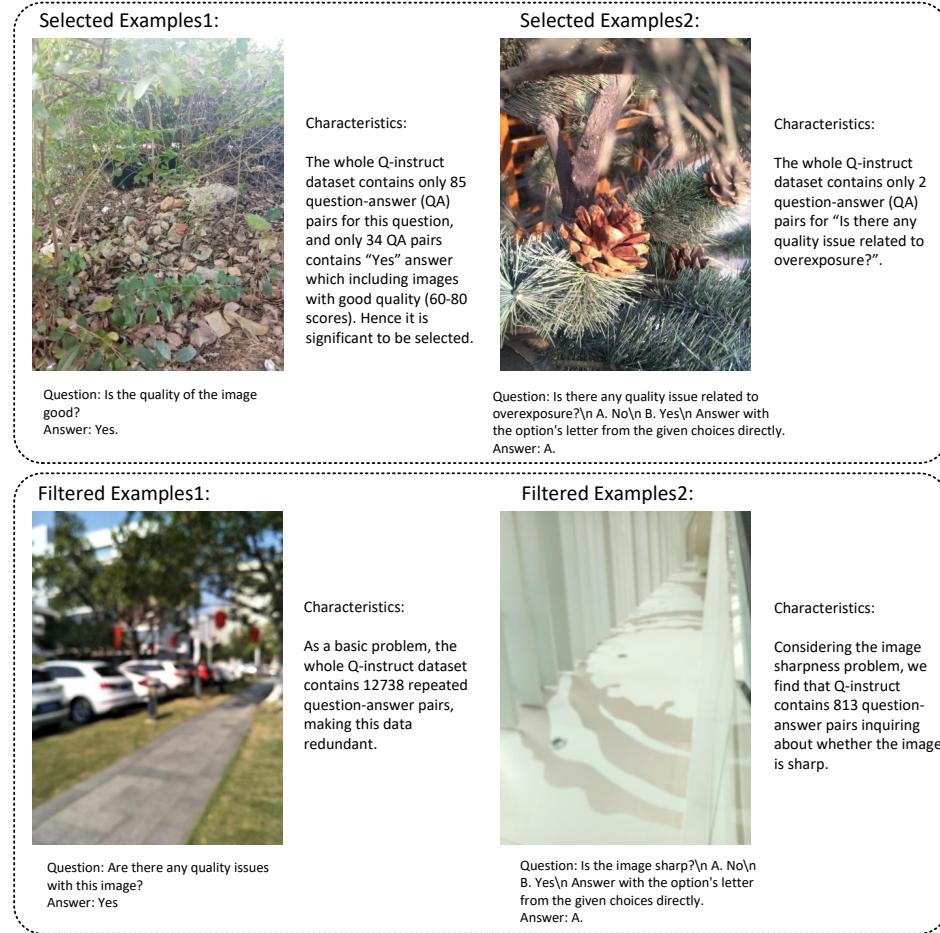


Figure 4: Visualization of the filtered samples and selected samples of our IQA-Select framework. We concretely display the characteristics for each question-answer sample.