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Abstract

Cross-lingual transfer learning is an invaluable
tool for overcoming data scarcity, yet select-
ing a suitable transfer language remains a chal-
lenge. The precise roles of linguistic typol-
ogy, training data, and model architecture in
transfer language choice are not fully under-
stood. We take a holistic approach, examining
how both dataset-specific and fine-grained ty-
pological features influence transfer language
selection for part-of-speech tagging, consider-
ing two different sources for morphosyntactic
features. While previous work examines these
dynamics in the context of bilingual biLSTMS,
we extend our analysis to a more modern trans-
fer learning pipeline: zero-shot prediction with
pretrained multilingual models. We train a
series of transfer language ranking systems and
examine how different feature inputs influence
ranker performance across architectures. Word
overlap, type-token ratio, and genealogical dis-
tance emerge as top features across all architec-
tures. Our findings reveal that a combination
of typological and dataset-dependent features
leads to the best rankings, and that good per-
formance can be obtained with either feature
group on its own.

1 Introduction

Despite being trained on 100+ languages, pre-
trained multilingual language models (MLMs) fail
to cover the vast majority of the world’s languages.
Finetuning MLMs for zero-shot cross-lingual trans-
fer is a useful technique to extend their reach by cir-
cumventing the lack of task-specific labeled data in
low-resource languages. Effective zero-shot trans-
fer hinges on choosing an appropriate source lan-
guage (Eronen et al., 2023, 2022; Layacan et al.,
2024), but it is still not well understood how to
make this selection. Most analyses of success-
ful source/target pairs fall into one of two cate-
gories: typological or dataset-dependent. The ty-
pological view investigates the role of linguistic

similarity, with studies showing that more "sim-
ilar" languages tend to form better source/target
pairs (Eronen et al., 2023; de Vries et al., 2022;
Lauscher et al., 2020). Much of this typological
analysis is coarse-grained, focusing on features
like language family or abstract distance measures.
The dataset-dependent view focuses on compar-
ing source and target datasets based on features
like sub-word overlap (Wu and Dredze, 2019; Pires
et al., 2019; K et al., 2020). Few papers consider
both views, and those that do focus on older meth-
ods of crosslingual transfer like bilingual LSTMS
(Lin et al., 2019). Additionally, previous analyses
shed little light on the linguistic question of which
fine-grained typological features are especially rel-
evant for the task.

This primary goal of this paper is to offer a
deeper understanding of effective transfer language
selection across architectures, comparing crosslin-
gual transfer with biLSTMs to XLM-R (Conneau
et al., 2020) and M-BERT (Devlin et al., 2019).
We aim to identify which features contribute to
selecting a successful source/target pair for part-of-
speech (POS) tagging. We focus on POS tagging
because it directly reflects typological features such
as word order. Our analysis addresses the following
key questions:

Q1. Which features are most important for cross-
lingual transfer?

Q2. Do these features differ between biLSTMs
and MLMs?

Q3. How does the granularity of typological fea-
tures—whether fine or coarse—affect transfer
language selection?

Q4. Is it necessary to consider data set features in
selecting a transfer language?

We train a series of gradient-boosted decision
tree models to rank transfer languages for POS



tagging, with separate rankers for the two architec-
tures. During training, we generate feature impor-
tance scores and identify the most salient features
for each architecture (Q1, Q2). To examine the role
of fine-grained typological features, we compare
two typological inputs: source/target distance mea-
sures, and full finegrained feature vectors (Q3). We
also evaluate how the source and quality of typolog-
ical data affects ranker performance by swapping
between URIEL (Littell et al., 2017) and Grambank
(Skirgård et al., 2023a) feature vectors. Last, we
investigate whether typological information alone
can effectively determine suitable source/target lan-
guage pairs by experimenting with the exclusion of
dataset-specific features (Q4).

We find that impressive performance can be
achieved when relying primarily on either feature
category, without the need for the other, indicating
that both "typological" and "dataset-dependent"
views of transfer language choice represent inde-
pendently viable strategies. However, peak perfor-
mance is achieved by combining dataset-dependent
and fine-grained typological features. Crucially,
our analysis reveals that key features such as word
overlap, type-token ratio, and genealogical distance
remain consistently important across architectures,
suggesting that the relevance of these features may
transcend specific model designs, offering broader
insights into cross-lingual transfer that could en-
able us to better leverage MLMs for low-resource
applications.

2 Related Works

2.1 Ranking Transfer Languages

Lin et al. (2019) rank transfer languages using both
dataset-dependent and linguistic features from the
URIEL knowledge base (Littell et al., 2017). We
build on their work with key adaptations: 1) In-
stead of varying dataset size, which obscures the
role of fine-grained features, we hold corpus size
constant across all language pairs. 2) In addition to
bilingual biLSTMs, we examine zero-shot transfer
with finetuned MLMs. 3) We replace typological
distance measures with element-wise comparisons
of typological feature vectors, following Dolicki
and Spanakis (2021).

Khan et al. (2025) build on the work in Littell
et al. (2017) to enhance the coverage of URIEL and
lang2vec with novel linguistic databases and cus-
tomizable distance calculations. We follow suit by
comparing the impact of incorporating URIEL syn-

tactic vectors versus Grambank syntactic vectors
on the transfer language ranking task

2.2 Transfer Language Choice for Zero-shot
Cross-lingual Transfer with MLMs

Lauscher et al. (2020) show a correlation between
linguistic proximity and successful zero-shot trans-
fer, but only test English as the source language.
We experiment with 18 source languages. de Vries
et al. (2022) find that XLM-R finetuned on a suit-
able transfer language performs almost three times
better than when using a suboptimal transfer lan-
guage. They highlight the influence of linguistic
similarity but do not consider dataset features.

3 Experiments

3.1 Languages

We experiment with a total of 20 target and 18
source languages across seven language families.
We determine our set of target and source languages
based on the availability of sufficient data in Uni-
versal Dependencies 2.0 (UD) (de Marneffe et al.,
2021). We consider target languages that have a
training corpus with at least 500 lines and source
languages with at least 2000. Justification for this
threshold is described in 3.2.1. We also eliminate
languages that are not present in URIEL and/or
Grambank. Our full set of target languages is given
in Table 1. Languages that also serve as source lan-
guages are italicized. While many of the languages
covered by our experiments are high-resource, sev-
eral others fall into a middle range and are unde-
served by the NLP research community at large.

3.2 Testbed Tasks

We generate gold ranking-data by training a
suite of biLSTMs and finetuned XLM-R and M-
BERT models for POS tagging across all possible
source/target language pairs. To remove the influ-
ence of dataset size, we cap each source language
training set at 2000 lines. Then, for each target lan-
guage, we create a ranking of all potential source
languages based on the relative performance of
each model on a held out test set. Model details are
outlined in following sections.

3.2.1 biLSTMs
We train a suite of 378 biLSTMs using Stanza (Qi
et al., 2020)– one for each target/source pair. We
train each model on 500 instances of UD data in the
target language and 2000 instances in the source



language. We choose this split to simulate a setting
where limited training data is available in the target
language but comparatively greater data is available
in the source language. We set the data thresholds
to ensure that sufficient training data is present
for model convergence, but training data in the
target language is still limited enough to make the
task non-trivial. All models are trained on default
Stanza hyperparameters without pre-trained word
embeddings for a maximum of 6000 steps. We
evaluate each model on a held out test set drawn
from the same corpus as the target training data.

3.2.2 Fine-tuned XLM-R and M-BERT
We finetune XLM-R and M-BERT equivalently on
each of our 18 source languages with a modified
implementation1 from de Vries et al. (2022). Each
model is trained on the same 2000 instance UD
dataset that we use to train our biLSTM models.
All models are trained for 1,000 batches of 10 sam-
ples with a linearly decreasing learning rate starting
at 5e-5. We use 10% dropout between transformer
layers and 10% self-attention dropout.

Language Treebank
Basque UD_Basque-BDT
Czech UD_Czech-PDT
Danish UD_Danish-DDT
Dutch UD_Dutch-LassySmall
Finnish UD_Finnish-FTB
Hindi UD_Hindi-HDTB
Hungarian UD_Hungarian-Szeged
Indonesian UD_Indonesian-GSD
Galician UD_Galician-CTG
Italian UD_Italian-PoSTWITA
Korean UD_Korean-GSD
Latin UD_Latin-ITTB
Latvian UD_Latvian-LVTB
Turkish UD_Turkish-IMST
Polish UD_Polish-LFG
Portuguese UD_Portuguese-Bosque
Russian UD_Russian-SynTagRus
Catalan UD_Catalan-AnCora
French UD_French-Sequoia
English UD_English-LinES
Ukrainian UD_Ukrainian-IU

Table 1: Full list of target languages and their corre-
sponding treebanks. Languages that also serve as source
languages are italicized.

1https://github.com/wietsedv/xpos

3.3 Our Ranking System
Given a target language t and a list of n poten-
tial source languages S = [s1, s2...sn], our goal is
to rank all source languages in S based on the ex-
pected performance of POS-tagging models trained
on each source/target pair (si,t). Building on Lin
et al. (2019), we train a series of gradient boosted
decision trees using the LightGBM implementation
(MIT License) (Ke et al., 2017) of the LambdaRank
algorithm. Models are trained on gold ranking-data
described in Section 3.2.

Input to our ranking system consists of vector
representations of each source/target pair. Vectors
are defined as a set of features, categorized into
two types. We calculate dataset-dependent fea-
tures by comparing source and target corpora using
four metrics: word overlap, type-token ratio in the
source language corpus, type-token ratio in the tar-
get language corpus, and the difference between
the source and target language type-token ratios.
Dataset-independent features capture linguistic
similarity between the source and target languages
using five measures: genetic, syntactic, phonologi-
cal, (phonetic) inventory, and geographic. Syntac-
tic, phonological and inventory features are defined
using binary feature vectors sourced from typologi-
cal databases. We call these our Typology-Vector
features. By default, Typology-Vector features are
represented by distance measures computed as the
cosine difference between URIEL (Littell et al.,
2017) vectors representing source and target, but
we experiment with different representations (de-
scribed in Sections 3.3.1 and 3.3.2). All features
are briefly summarized in Table 2 and feature vec-
tor lengths are given in Table 3. For more detailed
descriptions, refer to Lin et al. (2019).

3.3.1 Distance-Measure vs. Fully Featured
By default, we express the linguistic similarity be-
tween syntactic, phonological, and inventory fea-
tures as a series of distance measures. We call
these distance Typology-Vector representations.
At predict time, the ranker receives a feature vec-
tor a representing the target and a feature vector b
representing the source and computes the cosine
distance: 1− cos(a, b) = d. We concatenate d to
the final ranking model input vector.

To analyze the impact of fine-grained features on
transfer language suitability, we experiment with
an expanded representation, using an element-wise
and operation to compare a and b: a∧b = v. We re-
fer to v as the full Typology-Vector representation.



Feature Type Description
Genetic Distance Genealogical distance derived from language descent trees described in Glot-

tolog.
Geographic Distance Defined as the orthodromic distance divided by the antipodal distance between

rough locations of source and target languages on the surface of the Earth.
Syntactic, Phonological, and Inventory
Distances (distance Typology-Vector)

Computed as the cosine difference between corresponding URIEL (Littell
et al., 2017) or Grambank (Skirgård et al., 2023a) feature vectors representing
source and target languages.

Syntactic, Phonological, and Inventory
Vectors (full Typology-Vector)

Computed as element-wise AND operation between corresponding URIEL
(Littell et al., 2017) or Grambank (Skirgård et al., 2023a) feature vectors
representing source and target languages.

Dataset-Dependent Features Word overlap, transfer type-token ration, source type-token ration, type-token
ratio distance

Table 2: All possible ranker features

Vector Type Description
URIEL Syntactic 104
Grambank Syntactic 113
Phonological 28
Inventory 158

Table 3: Typological feature vector lengths

We concatenate v to ranker input.

3.3.2 URIEL vs. Grambank
Many typological analyses of crosslingual trans-
fer rely on URIEL (CC BY-SA 4.0) feature vec-
tors, which are heavily based on the World At-
las of Language Structures (CC BY 4.0) (Dryer
and Haspelmath, 2013). WALS has incomplete
genealogical coverage and over 80% missing data
(Skirgård et al., 2023a). As such, we experiment
with switching to Grambank (CC BY 4.0) (Skirgård
et al., 2023a), which addresses some of WALS’
shortcomings. We impute all undefined features in
either database as follows.

URIEL. We use URIEL vectors that have been
pre-imputed by Littell et al. (2017) using k-nearest-
neighbors.2

Grambank. 24% of total feature values in Gram-
bank 1.0.3 (across all languages in the database)
are undefined. In order to produce fully defined fea-
ture vectors for our experiments, we first eliminate
any features that are undefined for greater than 25%
of languages and any languages that have greater
than 25% missing data. After cropping, only 4.03%
of values are missing. We impute the remaining
values with the MissForest algorithm for nonpara-
metric missing value imputation (Stekhoven and
Bühlmann, 2012). We adapt our imputation proce-
dure from Skirgård et al. (2023b).

2vectors available at https://github.com/antonisa/lang2vec

3.3.3 Dataset Features
We experiment with the inclusion and exclusion
of dataset dependent features to assess the impact
the training corpus might have on successful cross-
lingual transfer. We control for training corpus
size in our gold rankings, but we do not control for
any other corpus features across source languages.
Therefore, it is necessary to evaluate the relevance
of features like type-token ratio and word overlap.

3.3.4 Evaluation
As in Lin et al. (2019), we evaluate our ranking
models with leave-one-out cross-validation. For
each cross-validation fold, we exclude one target
language from our test set of n languages, and
train our ranking model using gold transfer lan-
guage rankings for each n−1 remaining languages.
We then evaluate the model’s performance on the
held-out language. We evaluate our ranking mod-
els using Normalized Distributed Cumulative Gain
(NCDG)(Järvelin and Kekäläinen, 2002).

Specifically, we use NCDG@p, a metric that
considers the top-p elements, which is defined by:

NDCG@p =
DCG@p

IDCG@p
,

where the Discounted Cumulative Gain (DCG) at
position p is defined as

DCG@p =
p∑

i=1

2γi − 1

log2(i+ 1)
.

γi is a relevance score corresponding to the lan-
guage at position i of the predicted ranking that we
are evaluating. For all i ≤ p, γi = p− i, where p
represents the number of ranked items we wish to
assign relevance. We set p = 5, meaning that the
true best transfer language has a relevance score of
γ = 5. All languages below the top-5 are assigned



Syntactic Dataset Typology-Vector NDCG@5
Feature-Src Features Representation biLSTMs XLM-R M-BERT

URIEL

a distance 0.799 0.755 0.654
b - distance 0.385 0.643 0.625
c full 0.776 0.782 0.680
d - full 0.721 0.670 0.689
Avg 0.670 0.713 0.662

Grambank

a distance 0.768 0.826 0.653
b - distance 0.447 0.574 0.638
c full 0.788 0.827 0.665
d - full 0.721 0.707 0.692
Avg 0.681 0.734 0.662

Avg (std) 0.676 0.723 0.662
(0.153) (0.085) (0.023)

Table 4: Average NDCG@5 for all model configurations trained on gold rankings. Every model configuration
includes genetic and geographic features.

γ = 0. The Ideal Discounted Cumulative Gain
(IDCG) is calculated the same as DCG except it
is calculated over the gold-standard ranking. An
NCDG@p of 1 indicates that the top-p predicted el-
ements match the top-p gold elements exactly. We
report the average NDCG@5 across all N leave-
one-out models.

3.4 Analyzing Feature Importance
To compare the most relevant features for transfer
in POS tagging across architectures, we use our
most full featured ranking model, incorporating
dataset-dependent features, syntactic features from
Grambank, and full Typology-Vectors. We train
three rankers, one for each architecture. During
training, each feature is assigned an importance
score based on the gain resulting from splits made
on that feature. For a given split, we calculate gain
as the reduction in squared error from the parent
node to the child nodes, summed across all trees in
the ranking model. We report average gain over all
cross-validation folds and identify the top-5 most
important features for each model.

4 Results

4.1 Dataset vs. Typological Features
In Table 4, we observe that regardless of syn-
tactic vector source, models trained with dis-
tance Typology-Vector representations and with-
out dataset features (setting b) perform relatively
poorly. This suggests that coarse grained infor-
mation from distance Typology-Vector representa-
tions may not be sufficient for choosing a trans-
fer language. However, when we replace dis-
tance Typology-Vector representations with full,
performance increases substantially. On average,

NDCG@5 jumps by 0.148 between settings b
and d over all 6 architecture/feature-source pair-
ings. The performance gains from including dataset
features are even more significant. On average,
NDCG@5 jumps by 0.19 between settings b and
a.

These findings suggest that both fine-grained
typological features and dataset-dependent features
support more accurate transfer language ranking.
Both feature sources provide meaningful signals to
the ranker, but setting c results in the best average
ranker performance, suggesting that an integrated
view of transfer language choice is most effective.

M-BERT stands out as a notable outlier, as set-
ting d produces the highest-performing M-BERT
rankers. It is unclear why excluding dataset fea-
tures benefits transfer language ranking for M-
BERT. However, it is noteworthy that M-BERT
exhibits by far the lowest standard deviation in per-
formance, suggesting its rankers are less sensitive
to variations in feature configuration. We leave fur-
ther analysis of this phenomenon to future work.

4.2 Grambank vs. URIEL

Rankers leveraging Grambank syntactic features
outperform those trained with URIEL syntactic
features in ranking biLSTMs and XLM-R on av-
erage, suggesting that the typological information
captured by Grambank may be more informative
for selecting a transfer language. However, M-
BERT is yet again an outlier– on average, M-BERT
rankers perform equivalently regardless of syntac-
tic feature-source.



XLM-R M-BERT BiLISTM

Feature Gain Feature Gain Feature Gain

genetic 272.95 genetic 283.41 word_overlap 264.24
word_overlap 102.82 word_overlap 130.90 transfer_ttr 118.17
transfer_ttr 67.60 transfer_ttr 42.49 genetic 100.78
distance_ttr 25.74 distance_ttr 24.67 distance_ttr 12.66
GB093 11.96 task_ttr 10.06 INV_VOW_10_MORE 7.90
Standard Deviation 17.08 17.96 17.42

Table 5: Feature importance for top-5 features by model for ranker trained with dataset features and full Grambank
vectors.

4.3 Feature Importance

We investigate feature importance within our most
fully-featured ranking model, which incorporates
dataset-dependent features, syntactic features from
Grambank, and full Typology-Vectors. Though
this is not always the highest performing setting, it
enables us to elucidate the interplay between the
dataset-dependent and typological features most
clearly. We identify the top-5 most important fea-
tures for each of our models in Table 5. Four out
of five features are shared across architectures: ge-
netic, word_overlap, transfer_ttr, and distance_ttr.
Notably, these are primarily dataset-dependent fea-
tures. This consistency in relative feature impor-
tance across models suggests that the features that
determine a suitable transfer language choice may
not be architecture-dependent. On the other hand,
it is interesting that genetic is most important for
XLM-R and M-BERT but not for biLSTMs. It is
possible that the shared representation space built
during multilingual pretraining already contains
features like word-overlap making them less rele-
vant for selecting a finetuning dataset.

5 Supplementary Analyses

5.1 Excluding Dataset Features

For the sake of comparison, we also analyze the
top-5 features for a ranking model trained with syn-
tactic features from Grambank and full Typology-
Vectors without dataset-dependent features. These
rankers do not consistently underperform their
dataset-dependent counterparts, raising the ques-
tion of which dataset-independent features carry
the most weight.

Looking at Table 6, we find that the genetic fea-
ture yields substantially more gain than any other
feature. It is possible that genetic scores so highly
because it serves as a proxy for many of the other

Feature Gain

XLM-R
genetic 362.93
GB020 11.62
GB080 8.90
GB093 7.68
INV_OPEN_FRONT_UNROUNDED_VOWEL 7.48
Standard Deviation 20.93

M-BERT
genetic 407.08
GB022 8.44
GB093 7.07
INV_PALATAL_LATERAL_APPROXIMANT 6.42
GB020 6.39
GB114 5.32
Standard Deviation 23.46

biLSTM
genetic 342.61
INV_OPEN_MID_CENTRAL_UNROUNDED_VOWEL 21.75
GB172 19.12
INV_MID_CENTRAL_UNROUNDED_VOWEL 17.66
INV_LABIODENTAL_NASAL 12.22
Standard Deviation 19.83

Table 6: Feature importance for rankers Trained with
full Grambank vectors and without dataset features

features. This intuition is supported by Skirgård
et al. (2023a), who show that phylogenetic relation-
ships explain a majority of the variance in all but a
few Grambank features.

Other than genetic, M-BERT and XLM-R seem
to share more top features with each other than
with biLSTMs– GB093 and GB020 both ranking
highly. However, this does not necessarily indi-
cate a meaningful difference between the architec-
tures. Excluding genetic, gain is relatively low and
consistent across features. This finding suggests
that it may not be possible to identify especially
salient fine-grained features, because relevance is
distributed over the full feature set. In a sense, the



Src/Tgt XLM-R Rank BiLSTM Rank Diff. Src/Tgt XLM-R Rank BiLSTM Rank Diff.

eus/cat 354 22 332 ukr/pol 10 339 329
kor/cat 360 29 331 ces/pol 8 302 294
kor/glg 339 13 326 rus/pol 32 324 292
kor/fra 359 54 305 dan/fin 66 345 279
pol/cat 323 24 299 rus/lav 26 304 278
eus/glg 301 12 289 lav/pol 86 337 251
eus/fra 334 46 288 eng/fin 96 347 251
pol/fra 331 49 282 ces/rus 15 258 243
tur/cat 305 27 278 ukr/lav 56 297 241
pol/glg 282 7 275 fra/fin 108 348 240

Table 7: Greatest difference in relative performance differences between XLM-R and biLSTM. Better biLSTM
performance (left) vs. better XLM-R performance (right).

XLM-R biLSTM

Language Family Pair Count Language Family Pair Count

Indo-European/Indo-European 125 Basque/Indo-European 13
Indo-European/Uralic 14 Koreanic/Indo-European 14
Austronesian/Indo-European 5 Indo-European/Indo-European 71
Basque/Uralic 1 Turkic/Indo-European 12
Turkic/Uralic 1 Koreanic/Uralic 1
Austronesian/Uralic 1 Koreanic/Austronesian 1
Indo-European/Turkic 14 Indo-European/Uralic 14
Indo-European/Basque 6 Basque/Uralic 1
Turkic/Indo-European 3 Indo-European/Koreanic 14
Basque/Indo-European 2 Indo-European/Austronesian 14
Koreanic/Uralic 1 Turkic/Austronesian 1
Austronesian/Turkic 1 Turkic/Koreanic 1
Basque/Turkic 1 Basque/Austronesian 1
Koreanic/Indo-European 1 Austronesian/Uralic 1
Koreanic/Turkic 1 Austronesian/Indo-European 10

Austronesian/Koreanic 1
Basque/Koreanic 1
Koreanic/Basque 1
Turkic/Basque 1
Indo-European/Basque 8
Austronesian/Basque 1
Turkic/Uralic 1

Table 8: Distribution of language family pairs that ranked relatively higher in XLM-R performance rankings (left)
vs. those that ranked relatively higher in biLSTM performance rankings (right)

whole may be greater than the sum of its parts.

5.2 Ranking Analysis: BiLSTMs vs. XLM-R

To contextualize our findings, we conducted a com-
parative analysis of gold transfer language rankings
for biLSTMs and XLM-R. For each architecture,
we generated an ordered list of source-target pairs
based on performance. We then compared rank dif-
ferences across architectures for each pair. Table 7
highlights the top-10 language pairs with the most

divergent rankings.

XLM-R performs best on language pairs within
the same family or subfamily, such as Slavic pairs,
likely due to better typological alignment. Mean-
while, biLSTMs excel on pairs with weaker genetic
ties. To further explore these trends, we counted
occurrences of language family pairs where either
XLM-R or biLSTM had a relative ranking advan-
tage in Table 8.

We see that XLM-R comparatively excels on



Indo-European/Indo-European pairs, while biL-
STMs perform relatively better on unrelated or
weakly related pairs. These results align with ex-
pectations: XLM-R’s zero-shot approach benefits
from well-matched transfer pairs, whereas biL-
STMs can make effective use of small amounts
of target language training data.

6 Conclusion

We find that features such as word overlap, type-
token ratio, and genealogical distance are consis-
tently influential in transfer language selection re-
gardless of model architecture; their importance
may be somewhat model-agnostic.

Our findings also highlight the crucial role of
dataset-dependent features in ranking transfer lan-
guages for cross-lingual transfer. Rankers trained
with these features outperform those relying solely
on coarse-grained typological features.

At the same time, while coarse-grained typologi-
cal features alone are insufficient, rankers trained
with fine-grained typological features achieve im-
pressive results even without dataset-dependent fea-
tures. The most successful ranking performance
comes from combining both dataset-dependent and
fine-grained typological features, underscoring the
value of a comprehensive approach to transfer lan-
guage selection.

Crucially, these insights enable us to better sup-
port languages that are not well-represented in
MLM pretraining. By identifying effective trans-
fer languages with interpretable features, we can
improve cross-lingual transfer for lower-resource
languages, expanding the reach of NLP beyond
those languages that benefit from large-scale pre-
training.

Limitations

Since the scope of this paper is limited to crosslin-
gual transfer for POS tagging, it would be interest-
ing to explore whether our results are extensible
to other tasks. We are also limited in that we con-
sider a set of just 20 target languages, 13 of which
are Indo-European. This paper represents a step
forward in explaining the dynamics at play in suc-
cessful crosslingual transfer, but more work is nec-
essary to determine whether our findings generalize
across diverse linguistic contexts.
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