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Abstract

Equivalence checking, i.e., determining
whether two programs produce identical
outputs for all possible inputs, underpins a
broad range of applications, including software
refactoring, testing, and optimization. We
present the task of equivalence checking as
a new way to evaluate the code reasoning
abilities of large language models (LLMs).
We introduce EquiBench, a dataset of 2400
program pairs spanning four programming
languages and six equivalence categories.
These pairs are systematically generated
through program analysis, compiler schedul-
ing, and superoptimization, covering nontrivial
structural transformations that demand deep
semantic reasoning beyond simple syntactic
variations. Our evaluation of 17 state-of-the-art
LLMs shows that OpenAl 03-mini achieves the
highest overall accuracy of 78.0%. In the most
challenging categories, the best accuracies are
62.3% and 68.8%, only modestly above the
50% random baseline for binary classification,
indicating significant room for improvement in
current models’ code reasoning capabilities.

1 Introduction

Programming has emerged as a key application do-
main for large language models (LLMs), enabling
tasks such as program synthesis (Chen et al., 2021;
Austin et al., 2021; Jain et al., 2024), test genera-
tion (Yang et al., 2024a), bug detection (Yang et al.,
2023), program repair (Xia et al., 2023), and code
optimization (Shypula et al., 2023). Recently, there
has been growing interest in evaluating how well
LLMs can reason about the semantics of code (Ni
et al., 2024; Liu et al., 2023; Gu et al., 2024; Chen
et al., 2024a; Liu et al., 2024b), i.e., predicting
program properties without running the program.
This paper introduces the task of equivalence
checking as a new way to evaluate the code rea-
soning capabilities of LLMs. A classic challenge

int main() { int main() { int main() {

int a, b; int a, b; int a, b;
if(a<b) {| if (b>a){| if (b<=a){
a=1; a=1; a=1;
} } }
} } b
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Figure 1: An equivalent and an inequivalent program
pair constructed using prior techniques. Prior works
generate such pairs through basic statement-level syn-
tactic modifications with minimal semantic reasoning,
whereas our approach, presented later, relies on struc-
tural program transformations that require much deeper
semantic reasoning.

in programming languages and verification, equiv-
alence checking involves determining whether two
programs produce identical outputs for all possible
inputs. Figure 1 presents examples of equivalent
and inequivalent program pairs.

Compared to prior code reasoning tasks, eval-
vating LL.Ms using equivalence checking offers
distinct advantages. Most notably, it presents a
significantly more challenging benchmark than pre-
vious tasks, enabling a more rigorous assessment
of LLMs’ code reasoning capabilities. Equivalence
checking requires LLMs to reason over all pos-
sible inputs, while prior work often focuses on
a single input, such as output prediction, input
prediction (Gu et al., 2024), input-specific pro-
gram state prediction and execution simulation (Liu
et al., 2023; Chen et al., 2024a; Ding et al., 2024;
La Malfa et al., 2024; Ni et al., 2024).

Moveover, equivalence checking underpins a
broad range of downstream applications, including
software refactoring (Pailoor et al., 2024), software
testing (Tian et al., 2024), and program optimiza-
tion (Shypula et al., 2021), surpassing the scope
of prior reasoning tasks. By requiring a deep un-
derstanding of program semantics and reasoning
over all possible inputs, equivalence checking en-



ables the analysis of an expressive range of pro-
gram behaviors, even including many undecidable
problems. Therefore, LLMs that perform well on
equivalence checking are likely to be well-suited
for tackling more complex programming tasks.

Our proposal requires a benchmark consisting
of both equivalent and inequivalent program pairs
covering different aspects of equivalence reasoning
with varying degrees of difficulty. A large bench-
mark is essential, making it desirable to automate
the benchmark generation process. Existing meth-
ods (Badihi et al., 2021; Maveli et al., 2024) mostly
rely on local syntactic changes such as operand
swaps (e.g., changing a < btob > a for equiv-
alent pairs or b <= a for inequivalent pairs; see
Figure 1), which do not require deep semantic rea-
soning. However, these approaches are insufficient
for benchmarking the equivalence reasoning capa-
bilities of state-of-the-art LLMs. As many existing
benchmarks have become saturated (Phan et al.,
2025), a more challenging dataset is needed to rig-
orously assess LLMs’ semantic reasoning abilities.

In this work, we introduce EquiBench, a new
dataset of 2400 program pairs for equivalence rea-
soning. EquiBench spans four programming lan-
guages—Python, C, CUDA, and x86-64 assem-
bly—providing a systematic benchmark to evaluate
LLMs’ code reasoning abilities.

The key technical challenge is to automatically
generate (in)equivalent program pairs that demand
deep semantic reasoning beyond simple syntac-
tic variations. We propose several techniques to
achieve this. First, to confirm that basic syntactic
variations are well within the reasoning capabilities
of state-of-the-art LLLMs, we construct an equiva-
lence category based on variable renaming, which
barely requires semantic reasoning. Next, we gen-
erate equivalent programs by removing dead code,
leveraging program analysis to go beyond trivial
syntactic changes. By incorporating alias analysis
and path feasibility analysis, we increase the diffi-
culty of semantic reasoning in an automated man-
ner. For GPU programs written in CUDA, we gen-
erate equivalent pairs by exploring different com-
piler scheduling strategies, such as loop tiling and
shared memory caching, which involve structural
transformations that extend far beyond statement-
level modifications. We also use superoptimization
to explore optimal instruction sequences beyond
standard compiler optimizations, enabling more
aggressive code restructuring. Finally, we include
pairs with different algorithmic choices using sub-

missions from online programming platforms.
Our experiments show that EquiBench is a chal-
lenging benchmark for LLM-based equivalence
checking. Among the 17 models evaluated, Ope-
nAl o3-mini performs best overall, yet achieves
only 59.0% in the CUDA category despite achiev-
ing the highest overall accuracy of 78.0%. For
the two most difficult categories, the best accuracy
across all models is 62.3% and 68.8%, respectively.
These numbers are only modestly better than the
random baseline—i.e., 50% accuracy for binary
classification. Further analysis shows that variable
renaming, a purely syntactic modification, is the
easiest equivalence category for models, with ac-
curacy as high as 91.2%. We also find that models
are biased toward classifying programs with sig-
nificant structural, non-local transformations as in-
equivalent. Moreover, prompting strategies such as
few-shot in-context learning and Chain-of-Thought
(CoT) prompting barely enhance LLMs’ seman-
tic reasoning capabilities in equivalence checking,
underscoring the fundamental difficulty of the task.
In summary, our contributions are as follows:

* New Task and Dataset: We introduce equiva-
lence checking as a new task to assess LLMs’
code reasoning capabilities. We present
EquiBench, a benchmark for semantic equiva-
lence checking spanning four languages and
six equivalence categories.

Automated Generation: We develop a
fully automated pipeline to construct diverse
(in)equivalent program pairs, using techniques
from program analysis, compiler schedul-
ing, and superoptimization. The pipeline
covers transformations including syntactic
changes, structural modifications, and algo-
rithmic equivalence.

» Evaluation and Analysis: We evaluate 17
state-of-the-art models on EquiBench, with
the highest overall accuracy reaching 78.0%.
In the two most challenging categories, the
best accuracy across all models is 62.3% and
68.8%, indicating significant room for im-
provement. Additionally, we analyze perfor-
mance across different equivalence categories
and prompting strategies.

2 Related Work

LLM Reasoning Extensive research has evalu-
ated LLMs’ reasoning capabilities across diverse



tasks (Cobbe et al., 2021; Huang and Chang, 2022;
Bubeck et al., 2023; Mirzadeh et al., 2024; Zhou
et al., 2022; Ho et al., 2022; Wei et al., 2022;
Chen et al., 2024b; Clark et al., 2018; Zhang et al.,
2024). In the context of code reasoning, i.e., pre-
dicting a program’s execution behavior without
running it, CRUXEval (Gu et al., 2024) focuses
on input-output prediction, while CodeMind (Liu
et al., 2024b) extends evaluation to natural lan-
guage specifications. Another line of work seeks to
improve LLMs’ code simulation abilities through
prompting (La Malfa et al., 2024) or targeted train-
ing (Liu et al., 2023; Ni et al., 2024; Ding et al.,
2024). Unlike prior work that evaluates LLMs on
predicting program behavior for a specific input,
our new code reasoning task and benchmark for
equivalence checking assesses LLMs’ ability to
reason about all possible inputs.

Equivalence Checking Equivalence checking
underpins applications such as performance op-
timization (Shypula et al., 2023; Cummins et al.,
2023, 2024), code transpilation (Lu et al., 2021;
Yang et al., 2024b; Ibrahimzada et al., 2024; Pan
et al., 2024), refactoring (Pailoor et al., 2024), and
testing (Felsing et al., 2014; Tian et al., 2024). Due
to its undecidable nature, no algorithm can decide
program equivalence for all program pairs while al-
ways terminating. Existing techniques (Sharma
et al.,, 2013; Dahiya and Bansal, 2017; Gupta
et al., 2018; Mora et al., 2018; Churchill et al.,
2019; Badihi et al., 2020) focus on specific do-
mains, such as SQL query equivalence (Zhao
et al., 2023; Ding et al., 2023; Singh and Be-
dathur, 2024). EQBENCH (Badihi et al., 2021)
and SeqCoBench (Maveli et al., 2024) are the main
datasets for equivalence checking but have limi-
tations. EQBENCH is too small (272 pairs) for
LLM evaluation, while SeqCoBench relies only
on statement-level syntactic changes (e.g., renam-
ing variables). In contrast, our work introduces
a broader set of equivalence categories and struc-
tural transformations, creating a more systematic
and challenging benchmark for assessing LLMs’
semantic reasoning capabilities.

3 Benchmark Construction

While we have so far discussed only the standard
notion of equivalence (that two programs produce
the same output on any input), there are other, more
precise definitions of equivalence used for each cat-
egory in the benchmark. For each category, we

char b[2]; char b[2];
static int ¢ = 0; static int ¢ = 9;
int main() { int main() {
char* pl = &b[0]; char* pl = &b[0];
int* p2 = &c; int* p2 = &c;
if (p1 == p2) { if (true) {

c = 1; //dead code
} }

c =1; //live code

return 0; return 9;

} }

Figure 2: An inequivalent pair from the DCE cate-
gory in EquiBench. In the left program, ¢ = 1 is dead
code and has no effect on the program state, whereas in
the right program, it is executed and alters the program
state. Such cases are generated using the Dead Code
Elimination (DCE) pass in compilers.

provide the definition of equivalence, which is in-
cluded in the prompt when testing LLM reasoning
capabilities. We describe the process of generating
(in)equivalent pairs for the following six categories:

* DCE: C program pairs generated via the com-
piler’s dead code elimination (DCE) pass (Sec-
tion 3.1).

* CUDA: CUDA program pairs created by ap-
plying different scheduling strategies using a
tensor compiler (Section 3.2).

* x86-64: x86-64 assembly program pairs gen-
erated by a superoptimizer (Section 3.3).

* OJ_A, OJ_V, OJ_VA: Python program
pairs from online judge submissions, featur-
ing algorithmic differences (OJ_A), variable-
renaming transformations (OJ_V), and com-
binations of both (OJ_VA) (Section 3.4).

3.1 Pairs from Program Analysis (DCE)

Dead code elimination (DCE), a compiler pass, re-
moves useless program statements. After DCE,
remaining statements in the modified program nat-
urally correspond to those in the original program.

Definition of Equivalence. Two programs are
considered equivalent if, when executed on the
same input, they always have identical program
states at all corresponding points reachable by pro-
gram execution. We expect language models to
identify differences between the two programs,
align their states, and determine whether these
states are consistently identical.



__global _ void GEMV(const float* A,
const float* x,
float* vy,
int R,
int C) {

// Calculate the row index

// assigned to the thread

int r = blockIdx.x * blockDim.x
+ threadIdx.x;

}

// Return if out of bounds

if (r >= R) return;

float s = 0.0f;

__global _ void GEMV(const float* A, const float* x,

float* y, int R, int C) {

__shared__ float tile[32]; // tiling with shared memory
int r = blockIdx.x * blockDim.x + threadIdx.x;
bool valid = (r < R);
float s = 0.0f;
for (int start = 0; start < C; start += 32) {
for (int i = threadIdx.x; i < 32; i += blockDim.x) {

int ¢ = start + i;
if (c < C) tile[i] = x[c]; // load x into tile

__syncthreads();
if (valid) {

for (int j = 0; j < min(32, C - start); j++) {
s += A[r * C + (start + j)] * tile[j];

for (int ¢ = 0; c < C; c++) { }
s += A[r * C + c] * x[c]; }
} __syncthreads();
}
ylr] = s; if (valid) y[r] = s;

} }

Figure 3: An equivalent pair from the CUDA category in EquiBench. Both programs perform matrix-vector
multiplication (y = Ax). The right-hand program uses shared memory tiling to improve performance. Tensor
compilers are utilized to explore different scheduling strategies, automating the generation.

Example. Figure 2 illustrates an inequivalent pair
of C programs. In the left program, the condition
(p1 == p2) compares the memory address of the
first element of the array b with that of the static
variable c. Since b and c reside in different memory
locations, this condition can never be satisfied. As a
result, the assignment ¢ = 1 is never executed in the
left program but is executed in the right program.
This difference in program state during execution
renders the pair inequivalent.

Automation. This reasoning process is auto-
mated by compilers through alias analysis, which
statically determines whether two pointers can ref-
erence the same memory location. Based on this
analysis, the compiler’s Dead Code Elimination
(DCE) pass removes code that does not affect pro-
gram semantics to improve performance.

Dataset Generation. We utilize CSmith (Yang
et al., 2011) to create an initial pool of random C
programs. Building on techniques from prior com-
piler testing research (Theodoridis et al., 2022), we
implement an LLVM-based tool (Lattner and Adve,
2004) to classify code snippets as either dead or
live. Live code is further confirmed by executing
random inputs with observable side effects. Equiv-
alent program pairs are generated by eliminating
dead code, while inequivalent pairs are generated
by removing live code.

3.2 Pairs from Compiler Scheduling (CUDA)

Definition of Equivalence. Two CUDA pro-
grams are considered equivalent if they produce
the same mathematical output for any valid input,
disregarding floating-point rounding errors. This
definition differs from that in Section 3.1, as it does
not require the internal program states to be identi-
cal during execution.

Example. Figure 3 shows an equivalent CUDA
program pair. Both compute matrix-vector multi-
plication y = Ax, where A has dimensions (R, C)
and z has size C. The right-hand program applies
the shared memory tiling technique, loading x into
shared memory tile (declared with __shared__).
Synchronization primitives __syncthreads() are
properly inserted to prevent synchronization issues.

Automation. The program transformation can be
automated with tensor compilers, which provide a
set of schedules to optimize loop-based programs.
These schedules include loop tiling, loop fusion,
loop reordering, loop unrolling, vectorization, and
cache optimization. For any given schedule, the
compiler can generate the transformed code. While
different schedules can significantly impact pro-
gram performance on the GPU, they do not affect
the program’s correctness (assuming no compiler
bugs), providing the foundation for automation.



size t popcnt(uintéd_t x) {
int res = 9;
for (3 x> 0; x>=1) {
res += x & Oxlull;

}
return res;
}
Compiler Superoptimizer
<</>> @
Lo
xorl J%eax, %eax .LO:
testq %rdi, %rdi popcnt %rdi, %rax
Je .L2 retq
.L1:
movq %rdi, %rdx
andl $0x1, %edx
addgq %rdx, %rax
shrq $ox1, %rdi
jne .L1
retq
.L2:
retq

Figure 4: An equivalent pair from the x86-64 cate-
gory in EquiBench. Both programs are compiled from
the same C function shown above—the left using a com-
piler and the right using a superoptimizer. The function
counts the number of set bits in the input %rdi register
and stores the result in %rax. Their equivalence has
been formally verified by the superoptimizer.

Dataset Generation. We utilize TVM as the ten-
sor compiler (Chen et al., 2018) and sample ten-
sor program schedules from TenSet (Zheng et al.,
2021) to generate equivalent CUDA program pairs.
Inequivalent pairs are created by sampling code
from different tensor programs.

3.3 Pairs from a Superoptimizer (x86-64)

Definition of Equivalence. Two x86-64 assem-
bly programs are considered equivalent if, for any
input provided in the specified input registers, both
programs produce identical outputs in the specified
output registers. Differences in other registers or
memory are ignored for equivalence checking.

Example. Figure 4 shows an example of an
equivalent program pair in x86-64 assembly. Both
programs implement the same C function, which
counts the number of bits set to 1 in the variable x
(mapped to the %rdi register) and stores the result
in %rax. The left-hand program, generated by GCC
with O3 optimization, uses a loop to count each
bit individually, while the right-hand program, pro-
duced by a superoptimizer, leverages the popcnt

instruction, a hardware-supported operation for effi-
cient bit counting. The superoptimizer verifies that
both programs are semantically equivalent. Deter-
mining this equivalence requires a solid understand-
ing of x86-64 assembly semantics and the ability
to reason about all possible bit patterns.

Automation. A superoptimizer searches a space
of programs to find one equivalent to the target.
Test cases efficiently prune incorrect candidates,
while formal verification guarantees the correctness
of the optimized program. Superoptimizers apply
aggressive and non-local transformations, making
semantic equivalence reasoning more challenging.
For example, in Figure 4, while a traditional com-
piler translates the loop in the source C program
into a loop in assembly, a superoptimizer can find
a more optimal instruction sequence by leveraging
specialized hardware instructions. Such semantic
equivalence is beyond the scope of traditional com-
pilers.

Dataset Generation. We use Stoke (Schkufza
et al., 2013) to generate program pairs. Assembly
programs are sampled from prior work (Koenig
et al., 2021), and Stoke applies transformations to
produce candidate programs. If verification suc-
ceeds, the pair is labeled as equivalent; if the gen-
erated test cases fail, it is labeled as inequivalent.

3.4 Pairs from Programming Contests

Definition of Equivalence. Two programs are
considered equivalent if they solve the same prob-
lem by producing the same output for any valid
input, as defined by the problem description. Both
programs, along with the problem description, are
provided to determine equivalence.

Example. Given the problem description in Fig-
ure 5, all four programs are equivalent as they cor-
rectly compute the Fibonacci number. The OJ_A
pairs demonstrate algorithmic equivalence—the
left-hand program uses recursion, while the right-
hand program employs a for-loop. The OJ_V pairs
are generated through variable renaming, a pure
syntactic transformation that can obscure the pro-
gram’s semantics by removing meaningful variable
names. The OJ_VA pairs combine both algorith-
mic differences and variable renaming.

Dataset Generation. We sample Python submis-
sions using a publicly available dataset from Online
Judge (OJ) (Puri et al., 2021). For OJ_A pairs, ac-
cepted submissions are treated as equivalent, while



Problem Description:
Given an integer n, compute the
n-th Fibonacci number:

. F(0)=0

CF()=1

« F(n) = F(n-1) + F(n-2) forn>2

Input:
A single integer n
(0 < n < 10000).

Output:
Output a number.

def f(n):
if n <= 1:
return n
return f(n-1)
+ f(n-2)
n = int(input())
print(f(n))

. . def fib(n):
Algorithmic 5 , - g, 1
Equivalence for _ in range(n):

a, b=b, a+b
return a
n = int(input())
print(fib(n))

OJ_A
Category

f Variable Renaming f
* 0J_V Category ‘
def func(x):

m, n=0,1
for _ in range(x):

def var2(q):

if q <= 1: Both
return q

return var2(q-1) l I m, n=n,m+n

+ var2(g-2) 0J_VA return m
varl = int(input()) Category vari = int(input())
print(var2(varl)) print(func(varl))

Figure 5: Equivalent pairs from the OJ_A, OJ_V,
OJ_VA categories in EquiBench. OJ_A pairs demon-
strate algorithmic equivalence, OJ_V pairs involve vari-
able renaming transformations, and OJ_VA pairs com-
bine both types of variations.

pairs consisting of an accepted submission and a
wrong-answer submission are considered inequiva-
lent. Variable renaming transformations are auto-
mated with an open-source tool (Flook, 2025).

4 Experimental Setup

EquiBench. Our dataset, EquiBench, consists of
2,400 program pairs across six equivalence cate-
gories. Each category contains 200 equivalent and
200 inequivalent pairs. Table 1 summarizes the
lines of code, including the minimum, maximum,
and average, for programs in each category, reflect-
ing the wide variation in program lengths. As the
dataset generation pipeline is fully automated, ad-
ditional pairs can be generated as needed.

Category Language # Pairs Lines of Code
Min Max Avg.
DCE C 400 98 880 541
CUDA CUDA 400 46 1733 437
x86-64 x86-64 400 8 29 14
OJ_A Python 400 3 3403 82
oJ_V Python 400 2 4087 70
OJ_VA Python 400 3 744 35

Table 1: Statistics of the EquiBench dataset.

Research Questions. We investigate: 1) how dif-
ferent models perform on equivalence checking
(Section 5.1); 2) whether prompting techniques,
such as few-shot learning (Brown et al., 2020)
and Chain-of-Thought (Wei et al., 2022), can en-
hance performance (Section 5.2); and 3) whether
model predictions exhibit bias when judging pro-
gram equivalence.

Models. We evaluate 17 large language mod-
els. For open-source models, including Mix-
tral (Jiang et al., 2024), Llama (Touvron et al.,
2023), Qwen (Bai et al., 2023), DeepSeek (Liu
et al., 2024a), we use Together Al, a model serving
framework. For closed-source models (e.g., GPT-
4 (Achiam et al., 2023), Claude-3.5 (Anthropic,
2024)), we access them via their official APIs, us-
ing the default temperature setting.

Prompts. The 0-shot evaluation is conducted us-
ing the prompt “You are here to judge if two pro-
grams are semantically equivalent. Here equiva-
lence means {definition}. [Program 1]: {codel}
[Program 2]: {code2} Please only output the an-
swer of whether the two programs are equivalent
or not. You should only output Yes or No.” The
definition of equivalence and the corresponding
program pairs are provided for each category. Ad-
ditionally, for the categories of OJ_A, OJ_V and
OJ_VA, the prompt also includes the problem de-
scription. The full prompts used in our experiments
for each equivalence category are in Appendix A.1.

Error Handling. Some models occasionally fail
to follow the instruction to “output Yes or No”. To
address this issue, we use GPT-40 to parse model
outputs. In cases where no result can be extracted,
we randomly assign “Yes” or “No” as the model’s
output. These errors are very rare in advanced mod-
els but occur more frequently in smaller models.

S Results
5.1 Model Accuracy

Table 2 shows the accuracy results for 17 state-of-
the-art large language models on EquiBench under
zero-shot prompting. Our findings are as follows:

Reasoning models achieve the highest perfor-
mance, demonstrating a clear advantage over
non-reasoning models. As shown in Table 2, rea-
soning models such as OpenAl 03-mini, DeepSeek
R1, and ol-mini significantly outperform all oth-
ers in our evaluation. This further underscores the



Model DCE CUDA x86-64 OJ_A OJ_V OJ_VA Opverall Accuracy
Random Baseline 50.0 50.0 50.0 50.0 50.0 50.0 50.0
Llama-3.2-3B-Instruct-Turbo 50.0 49.8 50.0 51.5 51.5 51.5 50.7
Llama-3.1-8B-Instruct-Turbo 41.8 49.8 50.5 57.5 75.5 56.8 55.3
Mistral-7B-Instruct-v0.3 51.0 57.2 73.8 50.7 50.5 50.2 55.6
Mixtral-8x7B-Instruct-v0.1 50.2 47.0 64.2 59.0 61.5 55.0 56.1
Mixtral-8x22B-Instruct-vO0.1 46.8 49.0 62.7 63.5 76.0 62.7 60.1
Llama-3.1-70B-Instruct-Turbo 47.5 50.0 58.5 66.2 72.0 67.5 60.3
QwQ-32B-Preview 48.2 50.5 62.7 65.2 71.2 64.2 60.3
Qwen2.5-7B-Instruct-Turbo 50.5 49.2 58.0 62.0 80.8 63.0 60.6
gpt-40-mini-2024-07-18 46.8 50.2 56.8 64.5 91.2 64.0 62.2
Qwen2.5-72B-Instruct-Turbo 42.8 56.0 64.8 72.0 76.5 70.8 63.8
Llama-3.1-405B-Instruct-Turbo ~ 40.0 49.0 75.0 72.2 74.5 72.8 63.9
DeepSeek-V3 41.0 50.7 69.2 73.0 83.5 72.5 65.0
gpt-40-2024-11-20 432 49.5 65.2 71.0 87.0 73.8 65.0
claude3.5-sonnet-2024-10-22 38.5 62.3 70.0 71.2 78.0 73.5 65.6
01-mini-2024-09-12 55.8 50.7 74.2 80.0 89.8 78.8 71.5
DeepSeek-R1 52.2 61.0 78.2 79.8 91.5 78.0 73.5
03-mini-2025-01-31 68.8 59.0 84.5 84.2 88.2 83.2 78.0
Mean 47.9 52.4 65.8 67.3 76.4 67.0 62.8

Table 2: Accuracy of 17 models on EquiBench under 0-shot prompting. We report accuracy for each of the six

equivalence categories along with the overall accuracy.
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Figure 6: Scaling Trend on EquiBench.

complexity of equivalence checking as a code rea-
soning problem, where reasoning models exhibit a
distinct advantage.

EquiBench is a challenging benchmark.
Among the 17 models evaluated, OpenAl 03-mini
achieves only 59.0% in the CUDA category despite
being the top-performing model overall, with an
accuracy of 78.0%. For the two most difficult
categories, the highest accuracy across all models
is 62.3% and 68.8%, respectively, only modestly
above the random baseline of 50% accuracy for
binary classification, highlighting the substantial
room for improvement.

Pure syntactic changes (OJ_V) are the easiest
for LLMs, while structural transformations are
key to assessing deep semantic reasoning. As

shown in the last row of Table 2, the OJ_V cat-
egory achieves the highest mean accuracy, with
DeepSeek-R1 leading at 91.5%. This is because
OJ_V pairs are generated through trivial variable
renaming, as seen in prior work (Badihi et al.,
2021; Maveli et al., 2024). Additionally, combin-
ing variable renaming with algorithmic equivalence
has little impact on difficulty, as indicated by the
small drop in mean accuracy from OJ_A 67.3% to
OJ_VA 67.0%. In contrast, all other categories in-
volve non-local structural transformations, making
them more challenging and essential for evaluating
LLMs’ deep semantic reasoning.

Scaling up models improves performance.
Larger models generally achieve better perfor-
mance. Figure 6 shows scaling trends for the
Qwen2.5, Llama-3.1, and Mixtral families, where
accuracy improves with model size. The x-axis is
on a logarithmic scale, highlighting how models
exhibit consistent gains as parameters increase.

5.2 Prompting Strategies Analysis

We study few-shot in-context learning and Chain-
of-Thought (CoT) prompting, evaluating four
strategies: 0-shot, 4-shot, 0-shot with CoT, and
4-shot with CoT. For 4-shot, prompts include 2
equivalent and 2 inequivalent pairs. Appendix A.1
details the prompts, and Table 3 shows the results.

Our key finding is that prompting strategies
barely improve performance on EquiBench,
highlighting the task’s difficulty and need for



Model 0S 4S  0S-CoT 4S-CoT

ol-mini 715 715 71.9 71.9
gpt-4o0 65.0 66.5 62.5 62.7
DeepSeek-V3  65.0 66.9 63.3 62.5
gpt-4o-mini 622 635 60.2 61.2

Table 3: Accuracies of different prompting tech-
niques. We evaluate 0-shot and 4-shot in-context learn-
ing, both without and with Chain-of-Thought (CoT).
Prompting strategies barely improve performance, high-
lighting the task’s difficulty and the need for task-
specific approaches.

deeper reasoning. Few-shot prompting provides
only minor improvements over 0-shot, while Chain-
of-Thought shows slight benefits for o1-mini but
marginally reduces performance for other models,
underscoring the task’s complexity and the need
for more advanced, task-specific approaches.

5.3 Bias in Model Prediction

We evaluate the prediction bias of the models
and observe a pronounced tendency to misclas-
sify equivalent programs as inequivalent in the
CUDA and x86-64 categories. Table 4 presents
the results for four representative models, show-
ing high accuracy for inequivalent pairs but signif-
icantly lower accuracy for equivalent pairs, with
full results for all models in Appendix A.2.

The bias in the CUDA category arises from ex-
tensive structural transformations, such as loop
restructuring and shared memory optimizations,
which make paired programs appear substantially
different. In the x86-64 category, superoptimiza-
tion applies non-local transformations to achieve
optimal instruction sequences, introducing aggres-
sive code restructuring that complicates equiva-
lence reasoning and leads models to frequently
misclassify equivalent pairs as inequivalent.

5.4 Case Studies

Models lack capabilities for sound equivalence
checking. We find that simple changes that lead
to semantic differences can confuse the models,
causing them to produce incorrect predictions de-
spite their correct predictions on the original pro-
gram pairs. For example, 03-mini, which is one
of the top-performing models in CUDA category,
can correctly classifies the pair shown in Figure 3
as equivalent. Next, we introduce synchroniza-
tion bugs into the right-hand program, creating two
inequivalent pairs with the original left-hand pro-
gram: (1) removing the first __syncthreads();

Model CUDA x86-64
Eq 1Ineq Eq Ineq
Random Baseline  50.0 50.0 50.0 50.0
03-mini 275 905 695 995
ol-mini 25 990 500 985
DeepSeek-R1 28.0 94.0 575 99.0
DeepSeek-V3 85 93.0 440 945

Table 4: Accuracies on equivalent and inequivalent
pairs in the CUDA and x86-64 categories under 0-shot
prompting, showing that models perform significantly
better on inequivalent pairs. Random guessing serves
as an unbiased baseline for comparison. Full results for
all models are shown in Appendix A.2.

allows reads before all writes complete, caus-
ing race conditions; (2) removing the second
__syncthreads(); lets faster threads overwrite
shared data while slower threads read it. Despite
these semantic differences, 03-mini misclassifies
both pairs as equivalent.

Proper hints enable models to correct misjudg-
ments. After 03-mini misclassifies the modified
pairs, a hint about removed synchronization primi-
tives allows it to correctly identify both as inequiv-
alent, with accurate explanations highlighting data
races. This suggests that training models on dedi-
cated program analysis datasets, beyond only raw
source code, may be useful for improving their
code reasoning capabilities.

6 Conclusion

This paper presents EquiBench, a dataset for evalu-
ating the code reasoning capabilities of large lan-
guage models via program equivalence checking.
Spanning four programming languages and six
equivalence categories, EquiBench challenges mod-
els with diverse (in)equivalent program pairs gen-
erated through automated transformations, includ-
ing syntactic changes, structural modifications, and
algorithmic equivalence. Our evaluation shows
that the best-performing model, OpenAl 03-mini,
achieves only 59.0% in the CUDA category and
78.0% overall, with the most challenging cate-
gories achieving the best accuracies of just 62.3%
and 68.8%, only modestly above the 50% random
baseline. Few-shot learning and Chain-of-Thought
prompting yield minimal gains, and models ex-
hibit bias toward classifying programs with signif-
icant transformations as inequivalent. EquiBench
provides a critical benchmark for advancing LLM-
based code reasoning.



Limitations

We make every effort to ensure that all pairs are
correctly labeled, but cannot guarantee complete
accuracy due to potential bugs in the toolchains
or errors in the inputs (e.g., solutions from pro-
gramming contests may be accepted based on a
limited set of test cases that might not fully expose
underlying bugs in the accepted solutions).
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A Appendix

A.1 Prompts

A.1.1 DCE Category
We show the prompts for 0-shot, 4-shot, 0-shot CoT, 4-shot CoT settings.

0-Shot. You are here to judge if two C programs are semantically equivalent.

Here equivalence means that, when run on the same input, the two programs always have the same
program state at all corresponding points reachable by program execution.

[Program 1]:

{program_1_code}

[Program 2]:

{program_2_code}

Please only output the answer of whether the two programs are equivalent or not. You should only
output YES or NO.

0-shot CoT. You are here to judge if two C programs are semantically equivalent.

Here equivalence means that, when run on the same input, the two programs always have the same
program state at all corresponding points reachable by program execution.

[Program 1]:

{program_1_code}

[Program 2]:

{program_2_code}

Please output the answer of whether the two programs are equivalent or not. You should output YES or
NO in the end. Let’s think step by step.

4-shot. You are here to judge if two C programs are semantically equivalent.

Here equivalence means that, when run on the same input, the two programs always have the same
program state at all corresponding points reachable by program execution.

[Example 1]:

[Program 1]:

int main() {
int x = 0;
if (false) {
x = 1;
}

return 0;

}
[Program 2]:

int main() {
int x = 0;
if (true) {
x = 1;

}
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return 0;

3
[Answer]: NO

[Example 2]:
[Program 1]:

int main() {
int x = 0;
if (false) {
x = 1;
}

return 0,

}
[Program 2]:

int main() {
int x = 9;
return 0;

3
[Answer]: YES

[Example 3]:
[Program 1]:

char b[2];
static int c =
int main() {
if (&b[0] =
c =1;

}

return 0,

}
[Program 2]:

char b[2];
static int c =
int main() {
c = 1;
return 0,

}
[Answer]: NO

[Example 4]:
[Program 1]:

char b[2];
static int c =
int main() {
if (&b[0] ==
c =1;
}
return 0;

3
[Program 2]:

&e) {

0;

&e) {
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char b[2];

static int ¢ = 0;

int main() {
return 0,

3
[Answer]: YES

[Program 1]:

{program_1_code}

[Program 2]:

{program_2_code}

Please only output the answer of whether the two programs are equivalent or not. You should only
output YES or NO.

4-shot CoT. You are here to judge if two C programs are semantically equivalent.
Here equivalence means that, when run on the same input, the two programs always have the same
program state at all corresponding points reachable by program execution.

[Example 1]:
[Program 1]:

int main() {
int x = 0;
if (false) {
x = 1;
}
return 0;
3

[Program 2]:

int main() {
int x = 0;
if (true) {
x = 1;
}

return 0;

}

[Answer]: x =1 in program 1 will not be executed, but x = 1 in program 2 will be executed, leading to

different program states.
The answer is NO.

[Example 2]:
[Program 1]:

int main() {
int x = 0;
if (false) {
x = 1;
}

return 0;

}

14



[Program 2]:

int main() {
int x = 0;
return 0;

}
[Answer]: x = 1 in program 1 will not be executed, and this statement does not exist in program 2.
Program states are always the same.
The answer is YES.
[Example 3]:

[Program 1]:

char b[2];
static int c
int main() {
if (&b[0] =
c = 1;

1
[S)

&c) {
3

return 0,

)
[Program 2]:

char b[2];
static int c
int main() {
c = 1;
return 0;
3

[Answer]: The if statement in program 1 checks whether the memory address of b[0] equals c’s address.
¢ = 1 will not be executed in program 1, leading to a program state different from program 2.
The answer is NO.

1
[S)

[Example 4]:
[Program 1]:

char b[2];
static int c
int main() {
if (&b[0] =
c = 1;

1]
(S

&c) {

}

return 0;

}
[Program 2]:

char b[2];

static int c = 0;

int main() {
return 0,

}
[Answer]: The if statement in program 1 checks whether the memory address of b[0] equals c’s address.
¢ =1 will not be executed in program 1, so the two programs always have the same states.

The answer is YES.
[Program 1]:
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{program_1_code}

[Program 2]:

{program_2_code}

Please output the answer of whether the two programs are equivalent or not. You should output YES or
NO in the end. Let’s think step by step.

A.1.2 CUDA Category
We show the prompts for 0-shot and 4-shot CoT settings.

0-Shot. You are here to judge if two CUDA programs are semantically equivalent.
Here equivalence means that, when run on the same valid input, the two programs always compute the
same mathematical output (neglecting floating point rounding errors).

[Program 1]:

{program_1_code}

[Program 2]:
{program_2_code}

Please only output the answer of whether the two programs are equivalent or not. You should only
output YES or NO.

4-shot CoT. You are here to judge if two CUDA programs are semantically equivalent.
Here equivalence means that, when run on the same valid input, the two programs always compute the
same mathematical output (neglecting floating point rounding errors).

[Example 1]:
[Program 1]:

__global__ void sgemm_naive(int M, int N, int K, float alpha,
const float *A, const float *B, float beta, float *C) {
const uint x = blockIdx.x * blockDim.x + threadIdx.x;
const uint y = blockIdx.y * blockDim.y + threadIdx.y;

if (x <M & y < N) {
float tmp = 0.0;
for (int i = 0; i < K; ++i) {
tmp += A[x * K + i] = B[i * N + y];

}
C[x * N + y] = alpha * tmp + beta * C[x * N + y];
}
}
[Program 2]:
__global__ void sgemm_naive(int M, int N, int K, float alpha,

const float *A, const float *B, float beta, float *C) {
const uint x = blockIdx.x * blockDim.x + threadIdx.x;
const uint y = blockIdx.y * blockDim.y + threadIdx.y;
if (x <M & y < N) {

float tmp = 0.0;

for (int i = 0; i < K; ++i) {

tmp += A[x x K + i] * B[i * N + y];
}
C[x * N + y] = beta * tmp + alpha *x C[x * N + y];
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[Answer]: Program 1 computes C = alpha*(A@B) + beta*C, while Program 2 computes C = beta*(A@B)
+ alpha*C.
The answer is NO.

[Example 2]:
[Program 1]:

__global__ void sgemm_naive(int M, int N, int K, float alpha,
const float *A, const float *B, float beta, float *C) {
const uint x blockIdx.x * blockDim.x + threadIdx.x;
const uint vy blockIdx.y * blockDim.y + threadIdx.y;

if (x <M & y < N) {
float tmp = 0.0;
for (int i = 0; i < K; ++i) {
tmp += A[lx * K + i] = B[i * N + y];
}
C[lx * N + y] = alpha * tmp + beta * C[x * N + y];
}
3

[Program 2]:

template <const uint BLOCKSIZE>

__global__ void sgemm_global_mem_coalesce(int M, int N,
int K, float alpha, const float %A, const float xB,
float beta, float *C) {
const int cRow = blockIdx.x * BLOCKSIZE

(threadIdx.x / BLOCKSIZE);

blockIdx.y * BLOCKSIZE

(threadIdx.x % BLOCKSIZE);

const int cCol

+ 1o+ 1

if (cRow < M && cCol < N) {

float tmp = 0.0;

for (int i = 0; i < K; ++i) {

tmp += A[cRow * K + i] * B[i * N + cCol];
}
CLcRow * N + cCol] = alpha * tmp
+ beta * C[cRow * N + cColl];
3
}

[Answer]: Both programs compute C = alpha*(A @B) + beta*C.
Program 2 improves performance with global memory coalescing, which does not change computation

results.
The answer is YES.

[Example 3]:
[Program 1]:

__global__ void sgemm_naive(int M, int N, int K, float alpha,
const float *A, const float *B, float beta, float *C) {
const uint x blockIdx.x * blockDim.x + threadIdx.x;
const uint y blockIdx.y * blockDim.y + threadIdx.y;

if (x <M & y < N) {
float tmp = 0.0;
for (int i = 0; i < K; ++i) {
tmp += A[x x K + i] * B[i » N + y];
}
C[x * N + y] = alpha * tmp + beta * C[x * N + y];
}
}
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[Program 2]:

template <const int BLOCKSIZE>

__global__ void sgemm_shared_mem_block(int M, int N, int K,
float alpha, const float *A, const float *B, float beta,
float *C) {
const uint cRow
const uint cCol

blockIdx.x;
blockIdx.y;

__shared__ float As[BLOCKSIZE * BLOCKSIZE];
__shared__ float Bs[BLOCKSIZE * BLOCKSIZE];

const uint threadCol
const uint threadRow

threadIdx.x % BLOCKSIZE;
threadIdx.x / BLOCKSIZE;

A+
B +
C +

cRow * BLOCKSIZE =x K;
cCol * BLOCKSIZE;
cRow * BLOCKSIZE * N + cCol * BLOCKSIZE;

float tmp = 0.0;
for (int bkIdx = @; bkIdx < K; bkIdx += BLOCKSIZE) {
As[threadRow * BLOCKSIZE + threadCol] =
A[lthreadRow * K + threadCol];
Bs[threadRow * BLOCKSIZE + threadCol] =
BLthreadRow *x N + threadCol];

A += BLOCKSIZE;
B += BLOCKSIZE * N;

for (int dotIdx = ©; dotIdx < BLOCKSIZE; ++dotIdx) {
tmp += As[threadRow * BLOCKSIZE + dotIdx] *
Bs[dotIdx * BLOCKSIZE + threadCol];
}
}
CLthreadRow x N + threadCol] = alpha x tmp
+ beta * C[threadRow * N + threadColl];

}

[Answer]: Both programs aim to compute C = alpha*(A@B) + beta*C, but there are two synchronization
bugs in Program 2.

Before entering the inner loop to compute tmp, there is no guarantee that the cache (As, Bs) is fully
populated by all threads.

At the end of each iteration of bkldx, faster threads may fetch the next block into the cache before slower
threads are done.

The answer is NO.

[Example 4]:
[Program 1]:

__global__ void sgemm_naive(int M, int N, int K, float alpha,
const float *A, const float *B, float beta, float *C) {
const uint x = blockIdx.x * blockDim.x + threadIdx.x;
const uint y = blockIdx.y * blockDim.y + threadIdx.y;
if (x <M & y < N) {
float tmp = 0.0;
for (int i = 0; i < K; ++i) {
tmp += A[x x K + i] * B[i * N + y];
}
C[x * N + y] = alpha * tmp + beta * C[x * N + y];
}
}

[Program 2]:
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template <const int BLOCKSIZE>

__global__ void sgemm_shared_mem_block(int M, int N, int K,
float alpha, const float *A, const float *B, float beta,
float *C) {
const uint cRow
const uint cCol

blockIdx.x;
blockIdx.y;

__shared__ float As[BLOCKSIZE * BLOCKSIZE];
__shared__ float Bs[BLOCKSIZE * BLOCKSIZE];

threadIdx.x % BLOCKSIZE;
threadIdx.x / BLOCKSIZE;

const uint threadCol =
const uint threadRow =
A +
B +
C +

cRow * BLOCKSIZE =x K;
cCol * BLOCKSIZE;
cRow * BLOCKSIZE * N + cCol * BLOCKSIZE;

float tmp = 0.0;
for (int bkIdx = @; bkIdx < K; bkIdx += BLOCKSIZE) {
As[threadRow * BLOCKSIZE + threadCol] =
A[lthreadRow * K + threadColl];
Bs[threadRow * BLOCKSIZE + threadCol] =
BLthreadRow * N + threadCol];

__syncthreads ();
A += BLOCKSIZE;
B += BLOCKSIZE =* N;

for (int dotIdx = @; dotIdx < BLOCKSIZE; ++dotIdx) {
tmp += As[threadRow x BLOCKSIZE + dotIdx] =
Bs[dotIdx * BLOCKSIZE + threadCol];

}
__syncthreads ();

}
CLthreadRow x N + threadCol] = alpha x tmp
+ beta * C[threadRow * N + threadColl];

}

[Answer]: Both programs aim to compute C = alpha*(A@B) + beta*C.
Program 2 load a chunk of A and a chunk of B from global memory into shared memory.
Such shared memory cache-blocking improves performance but does not change the correctness of the
computation (no bugs found).
The answer is YES.
[Program 1]:

{program_1_code?}

[Program 2]:

{program_2_code}

Please output the answer of whether the two programs are equivalent or not. You should output YES or
NO in the end. Let’s think step by step.

A.1.3 x86-64 Category
We show the prompts for 0-shot and 4-shot CoT settings.

0-shot. You are here to judge if two x86-64 programs are semantically equivalent.
Here equivalence means that, given any input bits in the register {def_in}, the two programs always have
the same bits in register { 1ive_out}. Differences in other registers do not matter for equivalence checking.

[Program 1]:
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{program_1_code}

[Program 2]:

{program_2_code}

Please only output the answer of whether the two programs are equivalent or not. You should only
output YES or NO.

4-shot CoT. You are here to judge if two x86-64 programs are semantically equivalent.
Here equivalence means that, given any input bits in the register {def_in}, the two programs always have
the same bits in register { 1ive_out}. Differences in other registers do not matter for equivalence checking.

[Example 1]: In this example, the input register is %rdi, and output register is %rdi.
[Program 1]:

movg -8(%rsp), %rdi
.L4:

sall (%rdi)

movqg 8(%rdi), %rdi
.L6:

testq %rdi, %rdi
jne .L4

[Program 2]:

.L4:

movg -8(%rsp), %rdi
sall (%rdi)

movg 8(%rdi), %rdi
movq %rdi, -8(%rsp)
.L6:

movq -8(%rsp), %rdi
testq %rdi, %rdi
jne .L4

[Answer]: The additional instructions in Program 2 are: movq %rdi, -8(%rsp) and movq -8(%rsp),
%rdi.

Program 2 stores the updated %rdi value back into -8 (%rsp) after each iteration and reloads it before the
next iteration. But this does not affect the value of %rdi.

The answer is YES.

[Example 2]: In this example, the input register is %rdi, and output register is %rdi.
[Program 1]:

movg -8(%rsp), %rdi
.L4:

sall (%rdi)

movq 8(%rdi), %rdi
.L6:

testq %rdi, %rdi
jne .L4

[Program 2]:

.L4:

movg -8(%rsp), %rdi
sall (%rdi)

movg 8(%rdi), %rdi

movq %rdi, -8(%rsp)
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.L6:

movg -8(%rsp), %rdi

addq $1, %rdi

testq %rdi, %rdi

jne .L4

[Answer]: The additional instruction from Program 2 includes addq $1, %rdi, which increments %rdi
by 1 before the test condition.

The two programs do not produce the same result for %rdi.

The answer is NO.

[Example 3]: In this example, the input register is %rdi, and output register is %rax.
[Program 1]:

. text
.globl _Z6popcntm
.type _Z6popcntm, @function

_Z6popcntm:

xorl %eax ,%heax
testq %rdi,%rdi
je .L_4005b0
nop

.L_4005a0:

movq %rdi,%rdx
andl $0x1 ,%edx
addq %rdx ,%rax
shrq $0x1,%rdi
jne .L_4005a0
retq

.L_4005b0:

retq

nop

nop

.size _Z6popcntm, .-_Z6popcntm

[Program 2]:
. text

.globl _Z6popcntm
.type _Z6popcntm @function

_Z6popcntm:

popcnt %rdi, %rax

retq

.size _Z6popcntm, .-_Z6popcntm

[Answer]: Both programs compute the population count (the number of 1s in a number’s binary
representation) of %rdi and store the result in %rax.
The answer is YES.

[Example 4]: In this example, the input register is %rdi, and output register is %rax.
[Program 1]:

. text

.globl _Z6popcntm

.type _Z6popcntm, @function
_Z6popcntm:

xorl %eax, %eax

testq %rdi, %rdi

je .L_4005b0
nop

.L_4005a20:

movq %rdi, %rdx

andl $0x1, %edx
addq %rdx , %rax
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addqg $1, %rax

shrq $0x1, %rdi

jne .L_4005a0

retq

.L_4005b0:

retq

nop

nop

.size _Z6popcntm, .-_Z6popcntm

[Program 2]:
. text

.globl _Z6popcntm
.type _Z6popcntm @function

_Z6popcntm:

popcnt %rdi, %rax

retq

.size _Z6popcntm, .-_Z6popcntm

[Answer]: The instruction addq $1, %rax in Program 1 introduces a discrepancy by adding the number
of loop iterations to the output register.

Program 2 simply computes the population count, but Program 1 adds an extra increment for each bit in
%rdi.

The answer is NO.

The input register is {def_in}, and the output register is {1ive_out}.
[Program 1]:

{program_1_code}

[Program 2]:

{program_2_code}

Please output the answer of whether the two programs are equivalent or not. You should output YES or
NO in the end. Let’s think step by step.

A.14 OJ_A Category
We show the prompts for both 0-shot and 4-shot CoT settings.

0-shot. You are here to judge if two Python programs are semantically equivalent.

You will be given [Problem Description], [Program 1] and [Program 2].

Here equivalence means that, given any valid input under the problem description, the two programs will
always give the same output.

[Problem Description]:

{problem_html}

[Program 1]:

{program_1_code}

[Program 2]:

{program_2_code}

Please only output the answer of whether the two programs are equivalent or not. You should only
output YES or NO.
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4-shot CoT. You are here to judge if two Python programs are semantically equivalent.
You will be given [Problem Description], [Program 1], and [Program 2].
Here equivalence means that, given any valid input under the problem description, the two programs will

always give the same output.

[Example 1]:
[Problem Description]:

Given a single line of input containing integers separated by spaces, sort the integers in ascending order

and print them in a single line separated by spaces.

Input: A single line containing integers A[i] (—10° < A[i] < 10°%, 1 < n < 10).

Output: A single line of integers sorted in ascending order.
Example Input: 42513
Example Output: 12345

[Program 1]:

def bubble_sort(arr):
n = len(arr)
for i in range(n - 1):
for j in range(n - 1 - 1i):
if arr[j] > arr[j + 11:
arr[j], arr[j + 11 =
return arr

arr[j + 11,

nums = list(map(int, input().split()))
sorted_nums = bubble_sort (nums)
print(".".join(map(str, sorted_nums)))

[Program 2]:

def insertion_sort(arr):
for i in range(1, len(arr)):
key = arr[i]
j=1i-1
while j >= @ and arr[j] > key:
arr[j + 1] = arr[j]
j -=1
arr[j + 1] =
return arr

key

nums = list(map(int,
sorted_nums =

non

print("._

input ().split()))
insertion_sort (nums)
.join(map(str, sorted_nums)))

arr[jl]

[Answer]: Program 1 is bubble sort, and Program 2 is insertion sort.

The answer is YES.

[Example 2]:

[Problem Description]: Same as Example 1.
[Program 1]: Same as Program 1 from Example 1.
[Program 2]:

def insertion_sort(arr):
for i in range(1, len(arr)):
key = arr[i]
j=1i-1
while j >= 0 and arr[j] < key:
arr[j + 1] = arr[j]
j o-=1

arr[j + 1] = key

23



return arr

nums = list(map(int, input().split()))
sorted_nums = insertion_sort(nums)
print("_.".join(map(str, sorted_nums)))
[Answer]: Program 1 is bubble sort, and Program 2 has a bug (the loop condition incorrectly uses arr[j]
< key instead of arr[j] > key).
The answer is NO.

[Example 3]:
[Problem Description]: Same as Example 1.

[Program 1]:

def bubble_sort(arr):

n = len(arr)
for i in range(n - 1):
for j in range(n - 1 - i):

if arr[j] < arr[j + 11:
arr[jl, arr[j + 1] = arr[j + 11, arr[j]
return arr

nums = list(map(int, input().split()))
sorted_nums = bubble_sort (nums)
print("_.".join(map(str, sorted_nums)))

[Program 2]: Same as Program 2 from Example 1.

[Answer]: Program 1 has a bug for bubble sort (the comparison is reversed, causing incorrect swaps).
The answer is NO.

[Example 4]:

[Problem Description]: Same as Example 1.
[Program 1]: Same as Program 1 from Example 1.
[Program 2]:

nums = list(map(int, input().split()))
sorted_nums = sorted(nums)

non

print("_.".join(map(str, sorted_nums)))
[Answer]: Program 1 is bubble sort, and Program 2 uses Python’s built-in sorting implementation.
The answer is YES.

[Problem Description]:

{problem_html}

[Program 1]:

{program_1_code}

[Program 2]:

{program_2_code}

Please output the answer of whether the two programs are equivalent or not. You should output YES or
NO in the end. Let’s think step by step.

A.1.5 OJ_V Category
We show the prompt for 4-shot CoT settings.
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4-shot CoT. You are here to judge if two Python programs are semantically equivalent.

You will be given [Problem Description], [Program 1] and [Program 2].

Here equivalence means that, given any valid input under the problem description, the two programs will
always give the same output.

[Example 1]:
[Problem Description]:
Given a single line of input containing integers separated by spaces, sort the integers in ascending order
and print them in a single line separated by spaces.
Input: A single line containing integers A[i] (—10° <= A[i] <= 105,1 <= n <= 10°).
Output: A single line of integers sorted in ascending order.
Example Input:
42513
Example Output:
12345
[Program 1]:

nums = list(map(int, input().split()))

sorted_nums = sorted(nums)
print("_".join(map(str, sorted_nums)))
[Program 2]:

random_varl = list(map(int, input().split()))
random_var2 = sorted(random_var1)
print(".".join(map(str, random_var2)))

[Answer]: The only difference is in variable names, which do not affect the logic or output of the program.
The answer is YES.

[Example 2]:
[Problem Description]:

Same as Example 1.

[Program 1]:

nums = list(map(int, input().split()))

sorted_nums = sorted(nums)
print("_.".join(map(str, sorted_nums)))
[Program 2]:

nums = list(map(int, input().split()))
sorted_nums = nums.sort()
print("_.".join(map(str, sorted_nums)))

[Answer]: Program 1 sorts the integers in the correct way. In Program 2, nums.sort() modifies the list in

place and returns None. Program 2 will trigger a TypeError.
The answer is NO.

[Example 3]:
[Problem Description]:
Given a list of integers, remove all duplicate values while maintaining the order of their first appearance
and print the resulting list in a single line, separated by spaces.
Input: A single line containing integers A[i] (—10° <= A[i] <= 10%1 <= n <= 10).
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Output: A single line containing the integers from the input with duplicates removed, in the order of their
first appearance.
Example Input:
4542513
Example Output:
45213
[Program 1]:

nums = list(map(int, input().split()))
unique_nums = []
for num in nums:
if num not in unique_nums:
unique_nums.append(num)
print(".".join(map(str, unique_nums)))

[Program 2]:

random_varl = list(map(int, input().split()))
random_var2 = []
for random_var3 in random_varil:
if random_var3 not in random_var2:
random_var2.append(random_var3)
print(".".join(map(str, random_var2)))

[Answer]: The only difference is in variable names, which do not affect the logic or output of the program.
The answer is YES.

[Example 4]:
[Problem Description]:

Same as Example 3.

[Program 1]:

nums = list(map(int, input().split()))
unique_nums = []
for num in nums:
if num not in unique_nums:
unique_nums. append(num)
print("_".join(map(str, unique_nums)))

[Program 2]:

nums = list(map(int, input().split()))
unique_nums = []
for num in nums:

if num in unique_nums:

unique_nums. append(num)

print("_".join(map(str, unique_nums)))
[Answer]: Program 1 correctly appends unique values to unique_nums by checking if num not in
unique_nums.
Program 2 is incorrect because it uses if num in unique_nums, causing only duplicates to be appended to
the list.

The answer is NO.

[Problem Description]:
{problem_html}
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[Program 1]:

{program_1_code}

[Program 2]:

{program_2_code}

Please output the answer of whether the two programs are equivalent or not. You should output YES or
NO in the end. Let’s think step by step.

A.1.6 OJ_VA Category
We show the prompt for 4-shot CoT settings.

4-shot CoT. You are here to judge if two Python programs are semantically equivalent.

You will be given [Problem Description], [Program 1] and [Program 2].

Here equivalence means that, given any valid input under the problem description, the two programs will
always give the same output.

[Example 1]:
[Problem Description]:
Given a single line of input containing integers separated by spaces, sort the integers in ascending order
and print them in a single line separated by spaces.
Input: A single line containing integers Al[i] (-10% <= A[i] <= 10%, 1 <= n <= 105).
Output: A single line of integers sorted in ascending order.
Example Input:
42513
Example Output:
12345
[Program 1]:

def bubble_sort(arr):

n = len(arr)
for i in range(n - 1):
for j in range(n - 1 - i):

if arr[j]l > arr[j + 1]:
arr[j], arr[j + 1] = arr[j + 11, arr[j]
return arr

nums = list(map(int, input().split()))

sorted_nums = bubble_sort(nums)
print("_".join(map(str, sorted_nums)))
[Program 2]:

def random_sort(rand_varl):
for rand_var2 in range(1, len(rand_varl)):

rand_var3 = rand_varl[rand_var2]

rand_var4 = rand_var2 - 1

while rand_var4 >= 0 and rand_varil[rand_var4] > rand_var3:
rand_varl[rand_var4 + 1] = rand_varl1[rand_var4]
rand_var4 -= 1

rand_varil[rand_var4 + 1] = rand_var3

return rand_varl
rand_input = list(map(int, input().split()))

rand_output = random_sort(rand_input)
print("_.".join(map(str, rand_output)))
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[Answer]: Program 1 is bubble sort, and Program 2 is insertion sort (though the variable names are
randomized).
The answer is YES.

[Example 2]:
[Problem Description]:
Same as Example 1.
[Program 1]:
Same as Program 1 from Example 1.
[Program 2]:

def insertion_sort(rand_varl):
for i in range(1, len(rand_varl)):

key = rand_vari1[i]

j=i-

while j >= 0 and rand_vari1[j] < key:
rand_var1[j + 1] = rand_vari1[j]
j-=1

rand_var1[j + 1] = key
return rand_varil

nums = list(map(int, input().split()))
sorted_nums = insertion_sort(nums)

non

print(".".join(map(str, sorted_nums)))

[Answer]: Program 1 is bubble sort, and Program 2 has a bug (the loop condition incorrectly uses
rand_varl[j] < key instead of rand_varl[j] > key).
The answer is NO.

[Example 3]:

[Problem Description]:
Same as Example 1.
[Program 1]:

def rand_alg(rand_var):

n = len(rand_var)
for i in range(n - 1):
for j in range(n - 1 - i):
if rand_var[j] < rand_var[j + 11]:
rand_var[j], rand_var[j + 1] = rand_var[j + 1], rand_var[j]

return rand_var

nums = list(map(int, input().split()))

sorted_nums = rand_alg(nums)
print(".".join(map(str, sorted_nums)))
[Program 2]:

Same as Program 2 from Example 1.
[Answer]: Program 1 has a bug for bubble sort (the comparison is reversed, causing incorrect swaps).
The answer is NO.

[Example 4]:

[Problem Description]:

Same as Example 1.

[Program 1]:

Same as Program 1 from Example 1.
[Program 2]:
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nums = list(map(int, input().split()))
sorted_nums = sorted(nums)
print("_.".join(map(str, sorted_nums)))

[Answer]: Program 1 is bubble sort, and Program 2 uses Python’s built-in sorting implementation.
The answer is YES.

[Problem Description]:

{problem_html}

[Program 1]:

{program_1_code}

[Program 2]:

{program_2_code}

Please output the answer of whether the two programs are equivalent or not. You should output YES or
NO in the end. Let’s think step by step.
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A.2 Model Prediction Bias

We evaluate the prediction bias of the models and observe a pronounced tendency to misclassify equivalent
programs as inequivalent in the CUDA and x86-64 categories. The table here shows the full results on all
models under 0-shot prompting.

Model CUDA x86-64
Eq Ineq Eq Ineq
Random Baseline 50.0 50.0 50.0 50.0
deepseek-ai/DeepSeek-V3 85 93.0 440 945
deepseek-ai/DeepSeek-R1 2800 94.0 575 99.0

meta-llama/Llama-3.1-405B-Instruct-Turbo 6.0  92.0 68.5 81.5
meta-llama/Llama-3.1-8B-Instruct-Turbo 20 975 1.0 100.0
meta-llama/Llama-3.1-70B-Instruct-Turbo 7.0 93.0 275 895
meta-llama/Llama-3.2-3B-Instruct-Turbo 0.0 995 0.0 100.0

anthropic/claude-3-5-sonnet-20241022 62.5 62.0 495 905
Qwen/Qwen2.5-7B-Instruct-Turbo 185 80.0 17.5 985
Qwen/Qwen?2.5-72B-Instruct-Turbo 145 97.5 36.0 935
Qwen/QwQ-32B-Preview 350 66.0 39.0 86.5
mistralai/Mixtral-8x7B-Instruct-v0.1 180 76.0 50.5 78.0
mistralai/Mixtral-8x22B-Instruct-v0. 1 10.5 87.5 325 93.0
mistralai/Mistral-7B-Instruct-v0.3 52,5 62.0 87.0 60.5
openai/gpt-40-mini-2024-07-18 0.5 100.0 165 97.0
openai/gpt-40-2024-11-20 0.0 99.0 685 62.0
openai/o3-mini-2025-01-31 275 90,5 695 995
openai/ol-mini-2024-09-12 25 99.0 500 98.5
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