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Abstract

Equivalence checking, i.e., determining001
whether two programs produce identical002
outputs for all possible inputs, underpins a003
broad range of applications, including software004
refactoring, testing, and optimization. We005
present the task of equivalence checking as006
a new way to evaluate the code reasoning007
abilities of large language models (LLMs).008
We introduce EquiBench, a dataset of 2400009
program pairs spanning four programming010
languages and six equivalence categories.011
These pairs are systematically generated012
through program analysis, compiler schedul-013
ing, and superoptimization, covering nontrivial014
structural transformations that demand deep015
semantic reasoning beyond simple syntactic016
variations. Our evaluation of 17 state-of-the-art017
LLMs shows that OpenAI o3-mini achieves the018
highest overall accuracy of 78.0%. In the most019
challenging categories, the best accuracies are020
62.3% and 68.8%, only modestly above the021
50% random baseline for binary classification,022
indicating significant room for improvement in023
current models’ code reasoning capabilities.024

1 Introduction025

Programming has emerged as a key application do-026

main for large language models (LLMs), enabling027

tasks such as program synthesis (Chen et al., 2021;028

Austin et al., 2021; Jain et al., 2024), test genera-029

tion (Yang et al., 2024a), bug detection (Yang et al.,030

2023), program repair (Xia et al., 2023), and code031

optimization (Shypula et al., 2023). Recently, there032

has been growing interest in evaluating how well033

LLMs can reason about the semantics of code (Ni034

et al., 2024; Liu et al., 2023; Gu et al., 2024; Chen035

et al., 2024a; Liu et al., 2024b), i.e., predicting036

program properties without running the program.037

This paper introduces the task of equivalence038

checking as a new way to evaluate the code rea-039

soning capabilities of LLMs. A classic challenge040

int main() {
  int a, b;
  ...
  if (b <= a) {
    a = 1;
  }
  ...
}

int main() {
  int a, b;
  ...
  if (a < b) {
    a = 1;
  }
  ...
}

int main() {
  int a, b;
  ...
  if (b > a) {
    a = 1;
  }
  ...
}

Equivalent Inequivalent 

Figure 1: An equivalent and an inequivalent program
pair constructed using prior techniques. Prior works
generate such pairs through basic statement-level syn-
tactic modifications with minimal semantic reasoning,
whereas our approach, presented later, relies on struc-
tural program transformations that require much deeper
semantic reasoning.

in programming languages and verification, equiv- 041

alence checking involves determining whether two 042

programs produce identical outputs for all possible 043

inputs. Figure 1 presents examples of equivalent 044

and inequivalent program pairs. 045

Compared to prior code reasoning tasks, eval- 046

uating LLMs using equivalence checking offers 047

distinct advantages. Most notably, it presents a 048

significantly more challenging benchmark than pre- 049

vious tasks, enabling a more rigorous assessment 050

of LLMs’ code reasoning capabilities. Equivalence 051

checking requires LLMs to reason over all pos- 052

sible inputs, while prior work often focuses on 053

a single input, such as output prediction, input 054

prediction (Gu et al., 2024), input-specific pro- 055

gram state prediction and execution simulation (Liu 056

et al., 2023; Chen et al., 2024a; Ding et al., 2024; 057

La Malfa et al., 2024; Ni et al., 2024). 058

Moveover, equivalence checking underpins a 059

broad range of downstream applications, including 060

software refactoring (Pailoor et al., 2024), software 061

testing (Tian et al., 2024), and program optimiza- 062

tion (Shypula et al., 2021), surpassing the scope 063

of prior reasoning tasks. By requiring a deep un- 064

derstanding of program semantics and reasoning 065

over all possible inputs, equivalence checking en- 066
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ables the analysis of an expressive range of pro-067

gram behaviors, even including many undecidable068

problems. Therefore, LLMs that perform well on069

equivalence checking are likely to be well-suited070

for tackling more complex programming tasks.071

Our proposal requires a benchmark consisting072

of both equivalent and inequivalent program pairs073

covering different aspects of equivalence reasoning074

with varying degrees of difficulty. A large bench-075

mark is essential, making it desirable to automate076

the benchmark generation process. Existing meth-077

ods (Badihi et al., 2021; Maveli et al., 2024) mostly078

rely on local syntactic changes such as operand079

swaps (e.g., changing a < b to b > a for equiv-080

alent pairs or b <= a for inequivalent pairs; see081

Figure 1), which do not require deep semantic rea-082

soning. However, these approaches are insufficient083

for benchmarking the equivalence reasoning capa-084

bilities of state-of-the-art LLMs. As many existing085

benchmarks have become saturated (Phan et al.,086

2025), a more challenging dataset is needed to rig-087

orously assess LLMs’ semantic reasoning abilities.088

In this work, we introduce EquiBench, a new089

dataset of 2400 program pairs for equivalence rea-090

soning. EquiBench spans four programming lan-091

guages—Python, C, CUDA, and x86-64 assem-092

bly—providing a systematic benchmark to evaluate093

LLMs’ code reasoning abilities.094

The key technical challenge is to automatically095

generate (in)equivalent program pairs that demand096

deep semantic reasoning beyond simple syntac-097

tic variations. We propose several techniques to098

achieve this. First, to confirm that basic syntactic099

variations are well within the reasoning capabilities100

of state-of-the-art LLMs, we construct an equiva-101

lence category based on variable renaming, which102

barely requires semantic reasoning. Next, we gen-103

erate equivalent programs by removing dead code,104

leveraging program analysis to go beyond trivial105

syntactic changes. By incorporating alias analysis106

and path feasibility analysis, we increase the diffi-107

culty of semantic reasoning in an automated man-108

ner. For GPU programs written in CUDA, we gen-109

erate equivalent pairs by exploring different com-110

piler scheduling strategies, such as loop tiling and111

shared memory caching, which involve structural112

transformations that extend far beyond statement-113

level modifications. We also use superoptimization114

to explore optimal instruction sequences beyond115

standard compiler optimizations, enabling more116

aggressive code restructuring. Finally, we include117

pairs with different algorithmic choices using sub-118

missions from online programming platforms. 119

Our experiments show that EquiBench is a chal- 120

lenging benchmark for LLM-based equivalence 121

checking. Among the 17 models evaluated, Ope- 122

nAI o3-mini performs best overall, yet achieves 123

only 59.0% in the CUDA category despite achiev- 124

ing the highest overall accuracy of 78.0%. For 125

the two most difficult categories, the best accuracy 126

across all models is 62.3% and 68.8%, respectively. 127

These numbers are only modestly better than the 128

random baseline—i.e., 50% accuracy for binary 129

classification. Further analysis shows that variable 130

renaming, a purely syntactic modification, is the 131

easiest equivalence category for models, with ac- 132

curacy as high as 91.2%. We also find that models 133

are biased toward classifying programs with sig- 134

nificant structural, non-local transformations as in- 135

equivalent. Moreover, prompting strategies such as 136

few-shot in-context learning and Chain-of-Thought 137

(CoT) prompting barely enhance LLMs’ seman- 138

tic reasoning capabilities in equivalence checking, 139

underscoring the fundamental difficulty of the task. 140

In summary, our contributions are as follows: 141

• New Task and Dataset: We introduce equiva- 142

lence checking as a new task to assess LLMs’ 143

code reasoning capabilities. We present 144

EquiBench, a benchmark for semantic equiva- 145

lence checking spanning four languages and 146

six equivalence categories. 147

• Automated Generation: We develop a 148

fully automated pipeline to construct diverse 149

(in)equivalent program pairs, using techniques 150

from program analysis, compiler schedul- 151

ing, and superoptimization. The pipeline 152

covers transformations including syntactic 153

changes, structural modifications, and algo- 154

rithmic equivalence. 155

• Evaluation and Analysis: We evaluate 17 156

state-of-the-art models on EquiBench, with 157

the highest overall accuracy reaching 78.0%. 158

In the two most challenging categories, the 159

best accuracy across all models is 62.3% and 160

68.8%, indicating significant room for im- 161

provement. Additionally, we analyze perfor- 162

mance across different equivalence categories 163

and prompting strategies. 164

2 Related Work 165

LLM Reasoning Extensive research has evalu- 166

ated LLMs’ reasoning capabilities across diverse 167

2



tasks (Cobbe et al., 2021; Huang and Chang, 2022;168

Bubeck et al., 2023; Mirzadeh et al., 2024; Zhou169

et al., 2022; Ho et al., 2022; Wei et al., 2022;170

Chen et al., 2024b; Clark et al., 2018; Zhang et al.,171

2024). In the context of code reasoning, i.e., pre-172

dicting a program’s execution behavior without173

running it, CRUXEval (Gu et al., 2024) focuses174

on input-output prediction, while CodeMind (Liu175

et al., 2024b) extends evaluation to natural lan-176

guage specifications. Another line of work seeks to177

improve LLMs’ code simulation abilities through178

prompting (La Malfa et al., 2024) or targeted train-179

ing (Liu et al., 2023; Ni et al., 2024; Ding et al.,180

2024). Unlike prior work that evaluates LLMs on181

predicting program behavior for a specific input,182

our new code reasoning task and benchmark for183

equivalence checking assesses LLMs’ ability to184

reason about all possible inputs.185

Equivalence Checking Equivalence checking186

underpins applications such as performance op-187

timization (Shypula et al., 2023; Cummins et al.,188

2023, 2024), code transpilation (Lu et al., 2021;189

Yang et al., 2024b; Ibrahimzada et al., 2024; Pan190

et al., 2024), refactoring (Pailoor et al., 2024), and191

testing (Felsing et al., 2014; Tian et al., 2024). Due192

to its undecidable nature, no algorithm can decide193

program equivalence for all program pairs while al-194

ways terminating. Existing techniques (Sharma195

et al., 2013; Dahiya and Bansal, 2017; Gupta196

et al., 2018; Mora et al., 2018; Churchill et al.,197

2019; Badihi et al., 2020) focus on specific do-198

mains, such as SQL query equivalence (Zhao199

et al., 2023; Ding et al., 2023; Singh and Be-200

dathur, 2024). EQBENCH (Badihi et al., 2021)201

and SeqCoBench (Maveli et al., 2024) are the main202

datasets for equivalence checking but have limi-203

tations. EQBENCH is too small (272 pairs) for204

LLM evaluation, while SeqCoBench relies only205

on statement-level syntactic changes (e.g., renam-206

ing variables). In contrast, our work introduces207

a broader set of equivalence categories and struc-208

tural transformations, creating a more systematic209

and challenging benchmark for assessing LLMs’210

semantic reasoning capabilities.211

3 Benchmark Construction212

While we have so far discussed only the standard213

notion of equivalence (that two programs produce214

the same output on any input), there are other, more215

precise definitions of equivalence used for each cat-216

egory in the benchmark. For each category, we217

char b[2];
static int c = 0;

int main() {
  char* p1 = &b[0];
  int*  p2 = &c;
  ...
  if (true) {
    c = 1; //live code
  }
  ...
  return 0;
}

char b[2];
static int c = 0;

int main() {
  char* p1 = &b[0];
  int*  p2 = &c;
  ...
  if (p1 == p2) {
    c = 1; //dead code
  }
  ...
  return 0;
}

Figure 2: An inequivalent pair from the DCE cate-
gory in EquiBench. In the left program, c = 1 is dead
code and has no effect on the program state, whereas in
the right program, it is executed and alters the program
state. Such cases are generated using the Dead Code
Elimination (DCE) pass in compilers.

provide the definition of equivalence, which is in- 218

cluded in the prompt when testing LLM reasoning 219

capabilities. We describe the process of generating 220

(in)equivalent pairs for the following six categories: 221

• DCE: C program pairs generated via the com- 222

piler’s dead code elimination (DCE) pass (Sec- 223

tion 3.1). 224

• CUDA: CUDA program pairs created by ap- 225

plying different scheduling strategies using a 226

tensor compiler (Section 3.2). 227

• x86-64: x86-64 assembly program pairs gen- 228

erated by a superoptimizer (Section 3.3). 229

• OJ_A, OJ_V, OJ_VA: Python program 230

pairs from online judge submissions, featur- 231

ing algorithmic differences (OJ_A), variable- 232

renaming transformations (OJ_V), and com- 233

binations of both (OJ_VA) (Section 3.4). 234

3.1 Pairs from Program Analysis (DCE) 235

Dead code elimination (DCE), a compiler pass, re- 236

moves useless program statements. After DCE, 237

remaining statements in the modified program nat- 238

urally correspond to those in the original program. 239

Definition of Equivalence. Two programs are 240

considered equivalent if, when executed on the 241

same input, they always have identical program 242

states at all corresponding points reachable by pro- 243

gram execution. We expect language models to 244

identify differences between the two programs, 245

align their states, and determine whether these 246

states are consistently identical. 247
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__global__ void GEMV(const float* A,
                     const float* x,
                     float* y, 
                     int R,
                     int C) {
    
    // Calculate the row index
    // assigned to the thread
    int r = blockIdx.x * blockDim.x
            + threadIdx.x;

    // Return if out of bounds
    if (r >= R) return;
    float s = 0.0f;

    for (int c = 0; c < C; c++) {
        s += A[r * C + c] * x[c];
    }

    y[r] = s;
}

__global__ void GEMV(const float* A, const float* x,
                     float* y, int R, int C) {
    __shared__ float tile[32]; // tiling with shared memory
    int r = blockIdx.x * blockDim.x + threadIdx.x;
    bool valid = (r < R);
    float s = 0.0f;
    for (int start = 0; start < C; start += 32) {
        for (int i = threadIdx.x; i < 32; i += blockDim.x) {
            int c = start + i;
            if (c < C) tile[i] = x[c]; // load x into tile
        }
        __syncthreads();
        if (valid) {
            for (int j = 0; j < min(32, C - start); j++) {
                s += A[r * C + (start + j)] * tile[j];
            }
        }
        __syncthreads();
    }
    if (valid) y[r] = s;
}

Figure 3: An equivalent pair from the CUDA category in EquiBench. Both programs perform matrix-vector
multiplication (y = Ax). The right-hand program uses shared memory tiling to improve performance. Tensor
compilers are utilized to explore different scheduling strategies, automating the generation.

Example. Figure 2 illustrates an inequivalent pair248

of C programs. In the left program, the condition249

(p1 == p2) compares the memory address of the250

first element of the array b with that of the static251

variable c. Since b and c reside in different memory252

locations, this condition can never be satisfied. As a253

result, the assignment c = 1 is never executed in the254

left program but is executed in the right program.255

This difference in program state during execution256

renders the pair inequivalent.257

Automation. This reasoning process is auto-258

mated by compilers through alias analysis, which259

statically determines whether two pointers can ref-260

erence the same memory location. Based on this261

analysis, the compiler’s Dead Code Elimination262

(DCE) pass removes code that does not affect pro-263

gram semantics to improve performance.264

Dataset Generation. We utilize CSmith (Yang265

et al., 2011) to create an initial pool of random C266

programs. Building on techniques from prior com-267

piler testing research (Theodoridis et al., 2022), we268

implement an LLVM-based tool (Lattner and Adve,269

2004) to classify code snippets as either dead or270

live. Live code is further confirmed by executing271

random inputs with observable side effects. Equiv-272

alent program pairs are generated by eliminating273

dead code, while inequivalent pairs are generated274

by removing live code.275

3.2 Pairs from Compiler Scheduling (CUDA) 276

Definition of Equivalence. Two CUDA pro- 277

grams are considered equivalent if they produce 278

the same mathematical output for any valid input, 279

disregarding floating-point rounding errors. This 280

definition differs from that in Section 3.1, as it does 281

not require the internal program states to be identi- 282

cal during execution. 283

Example. Figure 3 shows an equivalent CUDA 284

program pair. Both compute matrix-vector multi- 285

plication y = Ax, where A has dimensions (R, C) 286

and x has size C. The right-hand program applies 287

the shared memory tiling technique, loading x into 288

shared memory tile (declared with __shared__). 289

Synchronization primitives __syncthreads() are 290

properly inserted to prevent synchronization issues. 291

Automation. The program transformation can be 292

automated with tensor compilers, which provide a 293

set of schedules to optimize loop-based programs. 294

These schedules include loop tiling, loop fusion, 295

loop reordering, loop unrolling, vectorization, and 296

cache optimization. For any given schedule, the 297

compiler can generate the transformed code. While 298

different schedules can significantly impact pro- 299

gram performance on the GPU, they do not affect 300

the program’s correctness (assuming no compiler 301

bugs), providing the foundation for automation. 302
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size_t popcnt(uint64_t x) {
  int res = 0;
  for ( ; x > 0; x >>= 1 ) {
    res += x & 0x1ull;
  }
  return res;
}

.L0:
  xorl  %eax, %eax
  testq %rdi, %rdi
  je    .L2
.L1:
  movq  %rdi, %rdx
  andl  $0x1, %edx
  addq  %rdx, %rax
  shrq  $0x1, %rdi
  jne   .L1
  retq
.L2:
  retq

.L0:
  popcnt %rdi, %rax
  retq
   

Compiler Superoptimizer

Figure 4: An equivalent pair from the x86-64 cate-
gory in EquiBench. Both programs are compiled from
the same C function shown above—the left using a com-
piler and the right using a superoptimizer. The function
counts the number of set bits in the input %rdi register
and stores the result in %rax. Their equivalence has
been formally verified by the superoptimizer.

Dataset Generation. We utilize TVM as the ten-303

sor compiler (Chen et al., 2018) and sample ten-304

sor program schedules from TenSet (Zheng et al.,305

2021) to generate equivalent CUDA program pairs.306

Inequivalent pairs are created by sampling code307

from different tensor programs.308

3.3 Pairs from a Superoptimizer (x86-64)309

Definition of Equivalence. Two x86-64 assem-310

bly programs are considered equivalent if, for any311

input provided in the specified input registers, both312

programs produce identical outputs in the specified313

output registers. Differences in other registers or314

memory are ignored for equivalence checking.315

Example. Figure 4 shows an example of an316

equivalent program pair in x86-64 assembly. Both317

programs implement the same C function, which318

counts the number of bits set to 1 in the variable x319

(mapped to the %rdi register) and stores the result320

in %rax. The left-hand program, generated by GCC321

with O3 optimization, uses a loop to count each322

bit individually, while the right-hand program, pro-323

duced by a superoptimizer, leverages the popcnt324

instruction, a hardware-supported operation for effi- 325

cient bit counting. The superoptimizer verifies that 326

both programs are semantically equivalent. Deter- 327

mining this equivalence requires a solid understand- 328

ing of x86-64 assembly semantics and the ability 329

to reason about all possible bit patterns. 330

Automation. A superoptimizer searches a space 331

of programs to find one equivalent to the target. 332

Test cases efficiently prune incorrect candidates, 333

while formal verification guarantees the correctness 334

of the optimized program. Superoptimizers apply 335

aggressive and non-local transformations, making 336

semantic equivalence reasoning more challenging. 337

For example, in Figure 4, while a traditional com- 338

piler translates the loop in the source C program 339

into a loop in assembly, a superoptimizer can find 340

a more optimal instruction sequence by leveraging 341

specialized hardware instructions. Such semantic 342

equivalence is beyond the scope of traditional com- 343

pilers. 344

Dataset Generation. We use Stoke (Schkufza 345

et al., 2013) to generate program pairs. Assembly 346

programs are sampled from prior work (Koenig 347

et al., 2021), and Stoke applies transformations to 348

produce candidate programs. If verification suc- 349

ceeds, the pair is labeled as equivalent; if the gen- 350

erated test cases fail, it is labeled as inequivalent. 351

3.4 Pairs from Programming Contests 352

Definition of Equivalence. Two programs are 353

considered equivalent if they solve the same prob- 354

lem by producing the same output for any valid 355

input, as defined by the problem description. Both 356

programs, along with the problem description, are 357

provided to determine equivalence. 358

Example. Given the problem description in Fig- 359

ure 5, all four programs are equivalent as they cor- 360

rectly compute the Fibonacci number. The OJ_A 361

pairs demonstrate algorithmic equivalence—the 362

left-hand program uses recursion, while the right- 363

hand program employs a for-loop. The OJ_V pairs 364

are generated through variable renaming, a pure 365

syntactic transformation that can obscure the pro- 366

gram’s semantics by removing meaningful variable 367

names. The OJ_VA pairs combine both algorith- 368

mic differences and variable renaming. 369

Dataset Generation. We sample Python submis- 370

sions using a publicly available dataset from Online 371

Judge (OJ) (Puri et al., 2021). For OJ_A pairs, ac- 372

cepted submissions are treated as equivalent, while 373
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def fib(n):
  a, b = 0, 1
  for _ in range(n):
    a, b = b, a + b
  return a
n = int(input())
print(fib(n))

def f(n):
  if n <= 1:
    return n
  return f(n-1)
         + f(n-2)
n = int(input())
print(f(n))

Problem Description:
Given an integer n, compute the
n-th Fibonacci number:

F(0) = 0
F(1) = 1
F(n) = F(n-1) + F(n-2) for n ≥ 2

Input:
A single integer n
(0 ≤ n ≤ 10000).

Output:
Output a number.

Algorithmic
Equivalence

def var2(q):
  if q <= 1:
    return q
  return var2(q-1)
         + var2(q-2)
var1 = int(input())
print(var2(var1))

OJ_A
Category

def func(x):
  m, n = 0, 1
  for _ in range(x):
    m, n = n, m + n
  return m
var1 = int(input())
print(func(var1))

Variable Renaming
OJ_V Category

OJ_VA
Category

Both

Figure 5: Equivalent pairs from the OJ_A, OJ_V,
OJ_VA categories in EquiBench. OJ_A pairs demon-
strate algorithmic equivalence, OJ_V pairs involve vari-
able renaming transformations, and OJ_VA pairs com-
bine both types of variations.

pairs consisting of an accepted submission and a374

wrong-answer submission are considered inequiva-375

lent. Variable renaming transformations are auto-376

mated with an open-source tool (Flook, 2025).377

4 Experimental Setup378

EquiBench. Our dataset, EquiBench, consists of379

2,400 program pairs across six equivalence cate-380

gories. Each category contains 200 equivalent and381

200 inequivalent pairs. Table 1 summarizes the382

lines of code, including the minimum, maximum,383

and average, for programs in each category, reflect-384

ing the wide variation in program lengths. As the385

dataset generation pipeline is fully automated, ad-386

ditional pairs can be generated as needed.387

Category Language # Pairs Lines of Code

Min Max Avg.

DCE C 400 98 880 541
CUDA CUDA 400 46 1733 437
x86-64 x86-64 400 8 29 14
OJ_A Python 400 3 3403 82
OJ_V Python 400 2 4087 70
OJ_VA Python 400 3 744 35

Table 1: Statistics of the EquiBench dataset.

Research Questions. We investigate: 1) how dif- 388

ferent models perform on equivalence checking 389

(Section 5.1); 2) whether prompting techniques, 390

such as few-shot learning (Brown et al., 2020) 391

and Chain-of-Thought (Wei et al., 2022), can en- 392

hance performance (Section 5.2); and 3) whether 393

model predictions exhibit bias when judging pro- 394

gram equivalence. 395

Models. We evaluate 17 large language mod- 396

els. For open-source models, including Mix- 397

tral (Jiang et al., 2024), Llama (Touvron et al., 398

2023), Qwen (Bai et al., 2023), DeepSeek (Liu 399

et al., 2024a), we use Together AI, a model serving 400

framework. For closed-source models (e.g., GPT- 401

4 (Achiam et al., 2023), Claude-3.5 (Anthropic, 402

2024)), we access them via their official APIs, us- 403

ing the default temperature setting. 404

Prompts. The 0-shot evaluation is conducted us- 405

ing the prompt “You are here to judge if two pro- 406

grams are semantically equivalent. Here equiva- 407

lence means {definition}. [Program 1]: {code1} 408

[Program 2]: {code2} Please only output the an- 409

swer of whether the two programs are equivalent 410

or not. You should only output Yes or No.” The 411

definition of equivalence and the corresponding 412

program pairs are provided for each category. Ad- 413

ditionally, for the categories of OJ_A, OJ_V and 414

OJ_VA, the prompt also includes the problem de- 415

scription. The full prompts used in our experiments 416

for each equivalence category are in Appendix A.1. 417

Error Handling. Some models occasionally fail 418

to follow the instruction to “output Yes or No”. To 419

address this issue, we use GPT-4o to parse model 420

outputs. In cases where no result can be extracted, 421

we randomly assign “Yes” or “No” as the model’s 422

output. These errors are very rare in advanced mod- 423

els but occur more frequently in smaller models. 424

5 Results 425

5.1 Model Accuracy 426

Table 2 shows the accuracy results for 17 state-of- 427

the-art large language models on EquiBench under 428

zero-shot prompting. Our findings are as follows: 429

Reasoning models achieve the highest perfor- 430

mance, demonstrating a clear advantage over 431

non-reasoning models. As shown in Table 2, rea- 432

soning models such as OpenAI o3-mini, DeepSeek 433

R1, and o1-mini significantly outperform all oth- 434

ers in our evaluation. This further underscores the 435
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Model DCE CUDA x86-64 OJ_A OJ_V OJ_VA Overall Accuracy

Random Baseline 50.0 50.0 50.0 50.0 50.0 50.0 50.0
Llama-3.2-3B-Instruct-Turbo 50.0 49.8 50.0 51.5 51.5 51.5 50.7
Llama-3.1-8B-Instruct-Turbo 41.8 49.8 50.5 57.5 75.5 56.8 55.3
Mistral-7B-Instruct-v0.3 51.0 57.2 73.8 50.7 50.5 50.2 55.6
Mixtral-8x7B-Instruct-v0.1 50.2 47.0 64.2 59.0 61.5 55.0 56.1
Mixtral-8x22B-Instruct-v0.1 46.8 49.0 62.7 63.5 76.0 62.7 60.1
Llama-3.1-70B-Instruct-Turbo 47.5 50.0 58.5 66.2 72.0 67.5 60.3
QwQ-32B-Preview 48.2 50.5 62.7 65.2 71.2 64.2 60.3
Qwen2.5-7B-Instruct-Turbo 50.5 49.2 58.0 62.0 80.8 63.0 60.6
gpt-4o-mini-2024-07-18 46.8 50.2 56.8 64.5 91.2 64.0 62.2
Qwen2.5-72B-Instruct-Turbo 42.8 56.0 64.8 72.0 76.5 70.8 63.8
Llama-3.1-405B-Instruct-Turbo 40.0 49.0 75.0 72.2 74.5 72.8 63.9
DeepSeek-V3 41.0 50.7 69.2 73.0 83.5 72.5 65.0
gpt-4o-2024-11-20 43.2 49.5 65.2 71.0 87.0 73.8 65.0
claude3.5-sonnet-2024-10-22 38.5 62.3 70.0 71.2 78.0 73.5 65.6
o1-mini-2024-09-12 55.8 50.7 74.2 80.0 89.8 78.8 71.5
DeepSeek-R1 52.2 61.0 78.2 79.8 91.5 78.0 73.5
o3-mini-2025-01-31 68.8 59.0 84.5 84.2 88.2 83.2 78.0

Mean 47.9 52.4 65.8 67.3 76.4 67.0 62.8

Table 2: Accuracy of 17 models on EquiBench under 0-shot prompting. We report accuracy for each of the six
equivalence categories along with the overall accuracy.
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Figure 6: Scaling Trend on EquiBench.

complexity of equivalence checking as a code rea-436

soning problem, where reasoning models exhibit a437

distinct advantage.438

EquiBench is a challenging benchmark.439

Among the 17 models evaluated, OpenAI o3-mini440

achieves only 59.0% in the CUDA category despite441

being the top-performing model overall, with an442

accuracy of 78.0%. For the two most difficult443

categories, the highest accuracy across all models444

is 62.3% and 68.8%, respectively, only modestly445

above the random baseline of 50% accuracy for446

binary classification, highlighting the substantial447

room for improvement.448

Pure syntactic changes (OJ_V) are the easiest449

for LLMs, while structural transformations are450

key to assessing deep semantic reasoning. As451

shown in the last row of Table 2, the OJ_V cat- 452

egory achieves the highest mean accuracy, with 453

DeepSeek-R1 leading at 91.5%. This is because 454

OJ_V pairs are generated through trivial variable 455

renaming, as seen in prior work (Badihi et al., 456

2021; Maveli et al., 2024). Additionally, combin- 457

ing variable renaming with algorithmic equivalence 458

has little impact on difficulty, as indicated by the 459

small drop in mean accuracy from OJ_A 67.3% to 460

OJ_VA 67.0%. In contrast, all other categories in- 461

volve non-local structural transformations, making 462

them more challenging and essential for evaluating 463

LLMs’ deep semantic reasoning. 464

Scaling up models improves performance. 465

Larger models generally achieve better perfor- 466

mance. Figure 6 shows scaling trends for the 467

Qwen2.5, Llama-3.1, and Mixtral families, where 468

accuracy improves with model size. The x-axis is 469

on a logarithmic scale, highlighting how models 470

exhibit consistent gains as parameters increase. 471

5.2 Prompting Strategies Analysis 472

We study few-shot in-context learning and Chain- 473

of-Thought (CoT) prompting, evaluating four 474

strategies: 0-shot, 4-shot, 0-shot with CoT, and 475

4-shot with CoT. For 4-shot, prompts include 2 476

equivalent and 2 inequivalent pairs. Appendix A.1 477

details the prompts, and Table 3 shows the results. 478

Our key finding is that prompting strategies 479

barely improve performance on EquiBench, 480

highlighting the task’s difficulty and need for 481
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Model 0S 4S 0S-CoT 4S-CoT

o1-mini 71.5 71.5 71.9 71.9
gpt-4o 65.0 66.5 62.5 62.7
DeepSeek-V3 65.0 66.9 63.3 62.5
gpt-4o-mini 62.2 63.5 60.2 61.2

Table 3: Accuracies of different prompting tech-
niques. We evaluate 0-shot and 4-shot in-context learn-
ing, both without and with Chain-of-Thought (CoT).
Prompting strategies barely improve performance, high-
lighting the task’s difficulty and the need for task-
specific approaches.

deeper reasoning. Few-shot prompting provides482

only minor improvements over 0-shot, while Chain-483

of-Thought shows slight benefits for o1-mini but484

marginally reduces performance for other models,485

underscoring the task’s complexity and the need486

for more advanced, task-specific approaches.487

5.3 Bias in Model Prediction488

We evaluate the prediction bias of the models489

and observe a pronounced tendency to misclas-490

sify equivalent programs as inequivalent in the491

CUDA and x86-64 categories. Table 4 presents492

the results for four representative models, show-493

ing high accuracy for inequivalent pairs but signif-494

icantly lower accuracy for equivalent pairs, with495

full results for all models in Appendix A.2.496

The bias in the CUDA category arises from ex-497

tensive structural transformations, such as loop498

restructuring and shared memory optimizations,499

which make paired programs appear substantially500

different. In the x86-64 category, superoptimiza-501

tion applies non-local transformations to achieve502

optimal instruction sequences, introducing aggres-503

sive code restructuring that complicates equiva-504

lence reasoning and leads models to frequently505

misclassify equivalent pairs as inequivalent.506

5.4 Case Studies507

Models lack capabilities for sound equivalence508

checking. We find that simple changes that lead509

to semantic differences can confuse the models,510

causing them to produce incorrect predictions de-511

spite their correct predictions on the original pro-512

gram pairs. For example, o3-mini, which is one513

of the top-performing models in CUDA category,514

can correctly classifies the pair shown in Figure 3515

as equivalent. Next, we introduce synchroniza-516

tion bugs into the right-hand program, creating two517

inequivalent pairs with the original left-hand pro-518

gram: (1) removing the first __syncthreads();519

Model CUDA x86-64

Eq Ineq Eq Ineq

Random Baseline 50.0 50.0 50.0 50.0
o3-mini 27.5 90.5 69.5 99.5
o1-mini 2.5 99.0 50.0 98.5
DeepSeek-R1 28.0 94.0 57.5 99.0
DeepSeek-V3 8.5 93.0 44.0 94.5

Table 4: Accuracies on equivalent and inequivalent
pairs in the CUDA and x86-64 categories under 0-shot
prompting, showing that models perform significantly
better on inequivalent pairs. Random guessing serves
as an unbiased baseline for comparison. Full results for
all models are shown in Appendix A.2.

allows reads before all writes complete, caus- 520

ing race conditions; (2) removing the second 521

__syncthreads(); lets faster threads overwrite 522

shared data while slower threads read it. Despite 523

these semantic differences, o3-mini misclassifies 524

both pairs as equivalent. 525

Proper hints enable models to correct misjudg- 526

ments. After o3-mini misclassifies the modified 527

pairs, a hint about removed synchronization primi- 528

tives allows it to correctly identify both as inequiv- 529

alent, with accurate explanations highlighting data 530

races. This suggests that training models on dedi- 531

cated program analysis datasets, beyond only raw 532

source code, may be useful for improving their 533

code reasoning capabilities. 534

6 Conclusion 535

This paper presents EquiBench, a dataset for evalu- 536

ating the code reasoning capabilities of large lan- 537

guage models via program equivalence checking. 538

Spanning four programming languages and six 539

equivalence categories, EquiBench challenges mod- 540

els with diverse (in)equivalent program pairs gen- 541

erated through automated transformations, includ- 542

ing syntactic changes, structural modifications, and 543

algorithmic equivalence. Our evaluation shows 544

that the best-performing model, OpenAI o3-mini, 545

achieves only 59.0% in the CUDA category and 546

78.0% overall, with the most challenging cate- 547

gories achieving the best accuracies of just 62.3% 548

and 68.8%, only modestly above the 50% random 549

baseline. Few-shot learning and Chain-of-Thought 550

prompting yield minimal gains, and models ex- 551

hibit bias toward classifying programs with signif- 552

icant transformations as inequivalent. EquiBench 553

provides a critical benchmark for advancing LLM- 554

based code reasoning. 555
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Limitations556

We make every effort to ensure that all pairs are557

correctly labeled, but cannot guarantee complete558

accuracy due to potential bugs in the toolchains559

or errors in the inputs (e.g., solutions from pro-560

gramming contests may be accepted based on a561

limited set of test cases that might not fully expose562

underlying bugs in the accepted solutions).563
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A Appendix880

A.1 Prompts881

A.1.1 DCE Category882

We show the prompts for 0-shot, 4-shot, 0-shot CoT, 4-shot CoT settings.883

0-Shot. You are here to judge if two C programs are semantically equivalent.884

Here equivalence means that, when run on the same input, the two programs always have the same885

program state at all corresponding points reachable by program execution.886

[Program 1]:887

888

{program_1_code}889

[Program 2]:890

891

{program_2_code}892

Please only output the answer of whether the two programs are equivalent or not. You should only893

output YES or NO.894

895

896

0-shot CoT. You are here to judge if two C programs are semantically equivalent.897

Here equivalence means that, when run on the same input, the two programs always have the same898

program state at all corresponding points reachable by program execution.899

[Program 1]:900

{program_1_code}901

[Program 2]:902

903

{program_2_code}904

Please output the answer of whether the two programs are equivalent or not. You should output YES or905

NO in the end. Let’s think step by step.906

907

908

4-shot. You are here to judge if two C programs are semantically equivalent.909

Here equivalence means that, when run on the same input, the two programs always have the same910

program state at all corresponding points reachable by program execution.911

[Example 1]:912

[Program 1]:913

914

int main() {915
int x = 0;916
if (false) {917

x = 1;918
}919
return 0;920

}921

[Program 2]:922

923

int main() {924
int x = 0;925
if (true) {926

x = 1;927
}928
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return 0; 929
} 930

[Answer]: NO 931

932

[Example 2]: 933

[Program 1]: 934

935

int main() { 936
int x = 0; 937
if (false) { 938

x = 1; 939
} 940
return 0; 941

} 942

[Program 2]: 943

944

int main() { 945
int x = 0; 946
return 0; 947

} 948

[Answer]: YES 949

950

[Example 3]: 951

[Program 1]: 952

953

char b[2]; 954
static int c = 0; 955
int main() { 956

if (&b[0] == &c) { 957
c = 1; 958

} 959
return 0; 960

} 961

[Program 2]: 962

963

char b[2]; 964
static int c = 0; 965
int main() { 966

c = 1; 967
return 0; 968

} 969

[Answer]: NO 970

971

[Example 4]: 972

[Program 1]: 973

974

char b[2]; 975
static int c = 0; 976
int main() { 977

if (&b[0] == &c) { 978
c = 1; 979

} 980
return 0; 981

} 982

[Program 2]: 983

984
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char b[2];985
static int c = 0;986
int main() {987

return 0;988
}989

[Answer]: YES990

991

[Program 1]:992

993

{program_1_code}994

[Program 2]:995

996

{program_2_code}997

Please only output the answer of whether the two programs are equivalent or not. You should only998

output YES or NO.999

1000

4-shot CoT. You are here to judge if two C programs are semantically equivalent.1001

Here equivalence means that, when run on the same input, the two programs always have the same1002

program state at all corresponding points reachable by program execution.1003

1004

[Example 1]:1005

[Program 1]:1006

1007

int main() {1008
int x = 0;1009
if (false) {1010

x = 1;1011
}1012
return 0;1013

}1014

[Program 2]:1015

1016

int main() {1017
int x = 0;1018
if (true) {1019

x = 1;1020
}1021
return 0;1022

}1023

[Answer]: x = 1 in program 1 will not be executed, but x = 1 in program 2 will be executed, leading to1024

different program states.1025

The answer is NO.1026

1027

[Example 2]:1028

[Program 1]:1029

1030

int main() {1031
int x = 0;1032
if (false) {1033

x = 1;1034
}1035
return 0;1036

}1037
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[Program 2]: 1038

1039

int main() { 1040
int x = 0; 1041
return 0; 1042

} 1043

[Answer]: x = 1 in program 1 will not be executed, and this statement does not exist in program 2. 1044

Program states are always the same. 1045

The answer is YES. 1046

[Example 3]: 1047

1048

[Program 1]: 1049

1050

char b[2]; 1051
static int c = 0; 1052
int main() { 1053

if (&b[0] == &c) { 1054
c = 1; 1055

} 1056
return 0; 1057

} 1058

[Program 2]: 1059

1060

char b[2]; 1061
static int c = 0; 1062
int main() { 1063

c = 1; 1064
return 0; 1065

} 1066

[Answer]: The if statement in program 1 checks whether the memory address of b[0] equals c’s address. 1067

c = 1 will not be executed in program 1, leading to a program state different from program 2. 1068

The answer is NO. 1069

1070

[Example 4]: 1071

[Program 1]: 1072

1073

char b[2]; 1074
static int c = 0; 1075
int main() { 1076

if (&b[0] == &c) { 1077
c = 1; 1078

} 1079
return 0; 1080

} 1081

[Program 2]: 1082

1083

char b[2]; 1084
static int c = 0; 1085
int main() { 1086

return 0; 1087
} 1088

[Answer]: The if statement in program 1 checks whether the memory address of b[0] equals c’s address. 1089

c = 1 will not be executed in program 1, so the two programs always have the same states. 1090

The answer is YES. 1091

[Program 1]: 1092

1093

15



{program_1_code}1094

[Program 2]:1095

1096

{program_2_code}1097

Please output the answer of whether the two programs are equivalent or not. You should output YES or1098

NO in the end. Let’s think step by step.1099

A.1.2 CUDA Category1100

We show the prompts for 0-shot and 4-shot CoT settings.1101

0-Shot. You are here to judge if two CUDA programs are semantically equivalent.1102

Here equivalence means that, when run on the same valid input, the two programs always compute the1103

same mathematical output (neglecting floating point rounding errors).1104

[Program 1]:1105

{program_1_code}1106

[Program 2]:1107

{program_2_code}1108

Please only output the answer of whether the two programs are equivalent or not. You should only1109

output YES or NO.1110

1111

4-shot CoT. You are here to judge if two CUDA programs are semantically equivalent.1112

Here equivalence means that, when run on the same valid input, the two programs always compute the1113

same mathematical output (neglecting floating point rounding errors).1114

1115

[Example 1]:1116

[Program 1]:1117

1118

__global__ void sgemm_naive(int M, int N, int K, float alpha ,1119
const float *A, const float *B, float beta , float *C) {1120
const uint x = blockIdx.x * blockDim.x + threadIdx.x;1121
const uint y = blockIdx.y * blockDim.y + threadIdx.y;1122

1123
if (x < M && y < N) {1124

float tmp = 0.0;1125
for (int i = 0; i < K; ++i) {1126

tmp += A[x * K + i] * B[i * N + y];1127
}1128
C[x * N + y] = alpha * tmp + beta * C[x * N + y];1129

}1130
}1131

[Program 2]:1132

1133

__global__ void sgemm_naive(int M, int N, int K, float alpha ,1134
const float *A, const float *B, float beta , float *C) {1135
const uint x = blockIdx.x * blockDim.x + threadIdx.x;1136
const uint y = blockIdx.y * blockDim.y + threadIdx.y;1137

1138
if (x < M && y < N) {1139

float tmp = 0.0;1140
for (int i = 0; i < K; ++i) {1141

tmp += A[x * K + i] * B[i * N + y];1142
}1143
C[x * N + y] = beta * tmp + alpha * C[x * N + y];1144

}1145
}1146
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[Answer]: Program 1 computes C = alpha*(A@B) + beta*C, while Program 2 computes C = beta*(A@B) 1147

+ alpha*C. 1148

The answer is NO. 1149

1150

[Example 2]: 1151

[Program 1]: 1152

1153

__global__ void sgemm_naive(int M, int N, int K, float alpha , 1154
const float *A, const float *B, float beta , float *C) { 1155
const uint x = blockIdx.x * blockDim.x + threadIdx.x; 1156
const uint y = blockIdx.y * blockDim.y + threadIdx.y; 1157

1158
if (x < M && y < N) { 1159

float tmp = 0.0; 1160
for (int i = 0; i < K; ++i) { 1161

tmp += A[x * K + i] * B[i * N + y]; 1162
} 1163
C[x * N + y] = alpha * tmp + beta * C[x * N + y]; 1164

} 1165
} 1166

[Program 2]: 1167

1168

template <const uint BLOCKSIZE > 1169
__global__ void sgemm_global_mem_coalesce(int M, int N, 1170

int K, float alpha , const float *A, const float *B, 1171
float beta , float *C) { 1172
const int cRow = blockIdx.x * BLOCKSIZE 1173

+ (threadIdx.x / BLOCKSIZE ); 1174
const int cCol = blockIdx.y * BLOCKSIZE 1175

+ (threadIdx.x % BLOCKSIZE ); 1176
1177

if (cRow < M && cCol < N) { 1178
float tmp = 0.0; 1179
for (int i = 0; i < K; ++i) { 1180

tmp += A[cRow * K + i] * B[i * N + cCol]; 1181
} 1182
C[cRow * N + cCol] = alpha * tmp 1183

+ beta * C[cRow * N + cCol]; 1184
} 1185

} 1186

[Answer]: Both programs compute C = alpha*(A@B) + beta*C. 1187

Program 2 improves performance with global memory coalescing, which does not change computation 1188

results. 1189

The answer is YES. 1190

1191

[Example 3]: 1192

[Program 1]: 1193

1194

__global__ void sgemm_naive(int M, int N, int K, float alpha , 1195
const float *A, const float *B, float beta , float *C) { 1196
const uint x = blockIdx.x * blockDim.x + threadIdx.x; 1197
const uint y = blockIdx.y * blockDim.y + threadIdx.y; 1198

1199
if (x < M && y < N) { 1200

float tmp = 0.0; 1201
for (int i = 0; i < K; ++i) { 1202

tmp += A[x * K + i] * B[i * N + y]; 1203
} 1204
C[x * N + y] = alpha * tmp + beta * C[x * N + y]; 1205

} 1206
} 1207
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[Program 2]:1208

1209

template <const int BLOCKSIZE >1210
__global__ void sgemm_shared_mem_block(int M, int N, int K,1211

float alpha , const float *A, const float *B, float beta ,1212
float *C) {1213
const uint cRow = blockIdx.x;1214
const uint cCol = blockIdx.y;1215

1216
__shared__ float As[BLOCKSIZE * BLOCKSIZE ];1217
__shared__ float Bs[BLOCKSIZE * BLOCKSIZE ];1218

1219
const uint threadCol = threadIdx.x % BLOCKSIZE;1220
const uint threadRow = threadIdx.x / BLOCKSIZE;1221

1222
A += cRow * BLOCKSIZE * K;1223
B += cCol * BLOCKSIZE;1224
C += cRow * BLOCKSIZE * N + cCol * BLOCKSIZE;1225

1226
float tmp = 0.0;1227
for (int bkIdx = 0; bkIdx < K; bkIdx += BLOCKSIZE) {1228

As[threadRow * BLOCKSIZE + threadCol] =1229
A[threadRow * K + threadCol ];1230

Bs[threadRow * BLOCKSIZE + threadCol] =1231
B[threadRow * N + threadCol ];1232

1233
A += BLOCKSIZE;1234
B += BLOCKSIZE * N;1235

1236
for (int dotIdx = 0; dotIdx < BLOCKSIZE; ++ dotIdx) {1237

tmp += As[threadRow * BLOCKSIZE + dotIdx] *1238
Bs[dotIdx * BLOCKSIZE + threadCol ];1239

}1240
}1241
C[threadRow * N + threadCol] = alpha * tmp1242

+ beta * C[threadRow * N + threadCol ];1243
}1244

[Answer]: Both programs aim to compute C = alpha*(A@B) + beta*C, but there are two synchronization1245

bugs in Program 2.1246

Before entering the inner loop to compute tmp, there is no guarantee that the cache (As, Bs) is fully1247

populated by all threads.1248

At the end of each iteration of bkIdx, faster threads may fetch the next block into the cache before slower1249

threads are done.1250

The answer is NO.1251

1252

[Example 4]:1253

[Program 1]:1254

1255

__global__ void sgemm_naive(int M, int N, int K, float alpha ,1256
const float *A, const float *B, float beta , float *C) {1257
const uint x = blockIdx.x * blockDim.x + threadIdx.x;1258
const uint y = blockIdx.y * blockDim.y + threadIdx.y;1259

1260
if (x < M && y < N) {1261

float tmp = 0.0;1262
for (int i = 0; i < K; ++i) {1263

tmp += A[x * K + i] * B[i * N + y];1264
}1265
C[x * N + y] = alpha * tmp + beta * C[x * N + y];1266

}1267
}1268

[Program 2]:1269

1270
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template <const int BLOCKSIZE > 1271
__global__ void sgemm_shared_mem_block(int M, int N, int K, 1272

float alpha , const float *A, const float *B, float beta , 1273
float *C) { 1274
const uint cRow = blockIdx.x; 1275
const uint cCol = blockIdx.y; 1276

1277
__shared__ float As[BLOCKSIZE * BLOCKSIZE ]; 1278
__shared__ float Bs[BLOCKSIZE * BLOCKSIZE ]; 1279

1280
const uint threadCol = threadIdx.x % BLOCKSIZE; 1281
const uint threadRow = threadIdx.x / BLOCKSIZE; 1282

1283
A += cRow * BLOCKSIZE * K; 1284
B += cCol * BLOCKSIZE; 1285
C += cRow * BLOCKSIZE * N + cCol * BLOCKSIZE; 1286

1287
float tmp = 0.0; 1288
for (int bkIdx = 0; bkIdx < K; bkIdx += BLOCKSIZE) { 1289

As[threadRow * BLOCKSIZE + threadCol] = 1290
A[threadRow * K + threadCol ]; 1291

Bs[threadRow * BLOCKSIZE + threadCol] = 1292
B[threadRow * N + threadCol ]; 1293

1294
__syncthreads (); 1295
A += BLOCKSIZE; 1296
B += BLOCKSIZE * N; 1297

1298
for (int dotIdx = 0; dotIdx < BLOCKSIZE; ++ dotIdx) { 1299

tmp += As[threadRow * BLOCKSIZE + dotIdx] * 1300
Bs[dotIdx * BLOCKSIZE + threadCol ]; 1301

} 1302
__syncthreads (); 1303

} 1304
C[threadRow * N + threadCol] = alpha * tmp 1305

+ beta * C[threadRow * N + threadCol ]; 1306
} 1307

[Answer]: Both programs aim to compute C = alpha*(A@B) + beta*C. 1308

Program 2 load a chunk of A and a chunk of B from global memory into shared memory. 1309

Such shared memory cache-blocking improves performance but does not change the correctness of the 1310

computation (no bugs found). 1311

The answer is YES. 1312

[Program 1]: 1313

1314

{program_1_code} 1315

[Program 2]: 1316

1317

{program_2_code} 1318

Please output the answer of whether the two programs are equivalent or not. You should output YES or 1319

NO in the end. Let’s think step by step. 1320

A.1.3 x86-64 Category 1321

We show the prompts for 0-shot and 4-shot CoT settings. 1322

0-shot. You are here to judge if two x86-64 programs are semantically equivalent. 1323

Here equivalence means that, given any input bits in the register {def_in}, the two programs always have 1324

the same bits in register {live_out}. Differences in other registers do not matter for equivalence checking. 1325

1326

[Program 1]: 1327

1328
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{program_1_code}1329

[Program 2]:1330

1331

{program_2_code}1332

Please only output the answer of whether the two programs are equivalent or not. You should only1333

output YES or NO.1334

1335

4-shot CoT. You are here to judge if two x86-64 programs are semantically equivalent.1336

Here equivalence means that, given any input bits in the register {def_in}, the two programs always have1337

the same bits in register {live_out}. Differences in other registers do not matter for equivalence checking.1338

1339

[Example 1]: In this example, the input register is %rdi, and output register is %rdi.1340

[Program 1]:1341

1342

movq -8(%rsp), %rdi1343
.L4:1344
sall (%rdi)1345
movq 8(%rdi), %rdi1346
.L6:1347
testq %rdi , %rdi1348
jne .L41349

[Program 2]:1350

1351

.L4:1352
movq -8(%rsp), %rdi1353
sall (%rdi)1354
movq 8(%rdi), %rdi1355
movq %rdi , -8(%rsp)1356
.L6:1357
movq -8(%rsp), %rdi1358
testq %rdi , %rdi1359
jne .L41360

[Answer]: The additional instructions in Program 2 are: movq %rdi, -8(%rsp) and movq -8(%rsp),1361

%rdi.1362

Program 2 stores the updated %rdi value back into -8(%rsp) after each iteration and reloads it before the1363

next iteration. But this does not affect the value of %rdi.1364

The answer is YES.1365

1366

[Example 2]: In this example, the input register is %rdi, and output register is %rdi.1367

[Program 1]:1368

1369

movq -8(%rsp), %rdi1370
.L4:1371
sall (%rdi)1372
movq 8(%rdi), %rdi1373
.L6:1374
testq %rdi , %rdi1375
jne .L41376

[Program 2]:1377

1378

.L4:1379
movq -8(%rsp), %rdi1380
sall (%rdi)1381
movq 8(%rdi), %rdi1382
movq %rdi , -8(%rsp)1383
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.L6: 1384
movq -8(%rsp), %rdi 1385
addq $1, %rdi 1386
testq %rdi , %rdi 1387
jne .L4 1388

[Answer]: The additional instruction from Program 2 includes addq $1, %rdi, which increments %rdi 1389

by 1 before the test condition. 1390

The two programs do not produce the same result for %rdi. 1391

The answer is NO. 1392

1393

[Example 3]: In this example, the input register is %rdi, and output register is %rax. 1394

[Program 1]: 1395

1396

.text 1397

.globl _Z6popcntm 1398

.type _Z6popcntm , @function 1399
_Z6popcntm: 1400
xorl %eax ,%eax 1401
testq %rdi ,%rdi 1402
je .L_4005b0 1403
nop 1404
.L_4005a0: 1405
movq %rdi ,%rdx 1406
andl $0x1 ,%edx 1407
addq %rdx ,%rax 1408
shrq $0x1 ,%rdi 1409
jne .L_4005a0 1410
retq 1411
.L_4005b0: 1412
retq 1413
nop 1414
nop 1415
.size _Z6popcntm , .-_Z6popcntm 1416

[Program 2]: 1417

1418

.text 1419

.globl _Z6popcntm 1420

.type _Z6popcntm @function 1421
_Z6popcntm: 1422
popcnt %rdi , %rax 1423
retq 1424
.size _Z6popcntm , .-_Z6popcntm 1425

[Answer]: Both programs compute the population count (the number of 1s in a number’s binary 1426

representation) of %rdi and store the result in %rax. 1427

The answer is YES. 1428

1429

[Example 4]: In this example, the input register is %rdi, and output register is %rax. 1430

[Program 1]: 1431

1432

.text 1433

.globl _Z6popcntm 1434

.type _Z6popcntm , @function 1435
_Z6popcntm: 1436
xorl %eax , %eax 1437
testq %rdi , %rdi 1438
je .L_4005b0 1439
nop 1440
.L_4005a0: 1441
movq %rdi , %rdx 1442
andl $0x1 , %edx 1443
addq %rdx , %rax 1444
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addq $1, %rax1445
shrq $0x1 , %rdi1446
jne .L_4005a01447
retq1448
.L_4005b0:1449
retq1450
nop1451
nop1452
.size _Z6popcntm , .-_Z6popcntm1453

[Program 2]:1454

1455

.text1456

.globl _Z6popcntm1457

.type _Z6popcntm @function1458
_Z6popcntm:1459
popcnt %rdi , %rax1460
retq1461
.size _Z6popcntm , .-_Z6popcntm1462

[Answer]: The instruction addq $1, %rax in Program 1 introduces a discrepancy by adding the number1463

of loop iterations to the output register.1464

Program 2 simply computes the population count, but Program 1 adds an extra increment for each bit in1465

%rdi.1466

The answer is NO.1467

1468

The input register is {def_in}, and the output register is {live_out}.1469

[Program 1]:1470

1471

{program_1_code}1472

[Program 2]:1473

1474

{program_2_code}1475

Please output the answer of whether the two programs are equivalent or not. You should output YES or1476

NO in the end. Let’s think step by step.1477

A.1.4 OJ_A Category1478

We show the prompts for both 0-shot and 4-shot CoT settings.1479

0-shot. You are here to judge if two Python programs are semantically equivalent.1480

You will be given [Problem Description], [Program 1] and [Program 2].1481

Here equivalence means that, given any valid input under the problem description, the two programs will1482

always give the same output.1483

1484

[Problem Description]:1485

1486

{problem_html}1487

[Program 1]:1488

1489

{program_1_code}1490

[Program 2]:1491

1492

{program_2_code}1493

Please only output the answer of whether the two programs are equivalent or not. You should only1494

output YES or NO.1495

22



4-shot CoT. You are here to judge if two Python programs are semantically equivalent. 1496

You will be given [Problem Description], [Program 1], and [Program 2]. 1497

Here equivalence means that, given any valid input under the problem description, the two programs will 1498

always give the same output. 1499

1500

[Example 1]: 1501

[Problem Description]: 1502

Given a single line of input containing integers separated by spaces, sort the integers in ascending order 1503

and print them in a single line separated by spaces. 1504

Input: A single line containing integers A[i] (−106 ≤ A[i] ≤ 106, 1 ≤ n ≤ 106). 1505

Output: A single line of integers sorted in ascending order. 1506

Example Input: 4 2 5 1 3 1507

Example Output: 1 2 3 4 5 1508

1509

[Program 1]: 1510

1511

def bubble_sort(arr): 1512
n = len(arr) 1513
for i in range(n - 1): 1514

for j in range(n - 1 - i): 1515
if arr[j] > arr[j + 1]: 1516

arr[j], arr[j + 1] = arr[j + 1], arr[j] 1517
return arr 1518

1519
nums = list(map(int , input (). split ())) 1520
sorted_nums = bubble_sort(nums) 1521
print("␣".join(map(str , sorted_nums ))) 1522

[Program 2]: 1523

1524

def insertion_sort(arr): 1525
for i in range(1, len(arr)): 1526

key = arr[i] 1527
j = i - 1 1528
while j >= 0 and arr[j] > key: 1529

arr[j + 1] = arr[j] 1530
j -= 1 1531

arr[j + 1] = key 1532
return arr 1533

1534
nums = list(map(int , input (). split ())) 1535
sorted_nums = insertion_sort(nums) 1536
print("␣".join(map(str , sorted_nums ))) 1537

[Answer]: Program 1 is bubble sort, and Program 2 is insertion sort. 1538

The answer is YES. 1539

1540

[Example 2]: 1541

[Problem Description]: Same as Example 1. 1542

[Program 1]: Same as Program 1 from Example 1. 1543

[Program 2]: 1544

1545

def insertion_sort(arr): 1546
for i in range(1, len(arr)): 1547

key = arr[i] 1548
j = i - 1 1549
while j >= 0 and arr[j] < key: 1550

arr[j + 1] = arr[j] 1551
j -= 1 1552

arr[j + 1] = key 1553
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return arr1554
1555

nums = list(map(int , input (). split ()))1556
sorted_nums = insertion_sort(nums)1557
print("␣".join(map(str , sorted_nums )))1558

[Answer]: Program 1 is bubble sort, and Program 2 has a bug (the loop condition incorrectly uses arr[j]1559

< key instead of arr[j] > key).1560

The answer is NO.1561

1562

[Example 3]:1563

[Problem Description]: Same as Example 1.1564

[Program 1]:1565

1566

def bubble_sort(arr):1567
n = len(arr)1568
for i in range(n - 1):1569

for j in range(n - 1 - i):1570
if arr[j] < arr[j + 1]:1571

arr[j], arr[j + 1] = arr[j + 1], arr[j]1572
return arr1573

1574
nums = list(map(int , input (). split ()))1575
sorted_nums = bubble_sort(nums)1576
print("␣".join(map(str , sorted_nums )))1577

[Program 2]: Same as Program 2 from Example 1.1578

1579

[Answer]: Program 1 has a bug for bubble sort (the comparison is reversed, causing incorrect swaps).1580

The answer is NO.1581

1582

[Example 4]:1583

[Problem Description]: Same as Example 1.1584

[Program 1]: Same as Program 1 from Example 1.1585

[Program 2]:1586

1587

nums = list(map(int , input (). split ()))1588
sorted_nums = sorted(nums)1589
print("␣".join(map(str , sorted_nums )))1590

[Answer]: Program 1 is bubble sort, and Program 2 uses Python’s built-in sorting implementation.1591

The answer is YES.1592

1593

[Problem Description]:1594

1595

{problem_html}1596

[Program 1]:1597

1598

{program_1_code}1599

[Program 2]:1600

1601

{program_2_code}1602

Please output the answer of whether the two programs are equivalent or not. You should output YES or1603

NO in the end. Let’s think step by step.1604

A.1.5 OJ_V Category1605

We show the prompt for 4-shot CoT settings.1606
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4-shot CoT. You are here to judge if two Python programs are semantically equivalent. 1607

You will be given [Problem Description], [Program 1] and [Program 2]. 1608

Here equivalence means that, given any valid input under the problem description, the two programs will 1609

always give the same output. 1610

1611

[Example 1]: 1612

[Problem Description]: 1613

Given a single line of input containing integers separated by spaces, sort the integers in ascending order 1614

and print them in a single line separated by spaces. 1615

Input: A single line containing integers A[i] (−106 <= A[i] <= 106, 1 <= n <= 106). 1616

Output: A single line of integers sorted in ascending order. 1617

Example Input: 1618

4 2 5 1 3 1619

Example Output: 1620

1 2 3 4 5 1621

[Program 1]: 1622

1623

nums = list(map(int , input (). split ())) 1624
sorted_nums = sorted(nums) 1625
print("␣".join(map(str , sorted_nums ))) 1626

[Program 2]: 1627

1628

random_var1 = list(map(int , input (). split ())) 1629
random_var2 = sorted(random_var1) 1630
print("␣".join(map(str , random_var2 ))) 1631

[Answer]: The only difference is in variable names, which do not affect the logic or output of the program. 1632

The answer is YES. 1633

1634

[Example 2]: 1635

[Problem Description]: 1636

1637

Same as Example 1. 1638

[Program 1]: 1639

1640

nums = list(map(int , input (). split ())) 1641
sorted_nums = sorted(nums) 1642
print("␣".join(map(str , sorted_nums ))) 1643

[Program 2]: 1644

1645

nums = list(map(int , input (). split ())) 1646
sorted_nums = nums.sort() 1647
print("␣".join(map(str , sorted_nums ))) 1648

[Answer]: Program 1 sorts the integers in the correct way. In Program 2, nums.sort() modifies the list in 1649

place and returns None. Program 2 will trigger a TypeError. 1650

The answer is NO. 1651

1652

[Example 3]: 1653

[Problem Description]: 1654

Given a list of integers, remove all duplicate values while maintaining the order of their first appearance 1655

and print the resulting list in a single line, separated by spaces. 1656

Input: A single line containing integers A[i] (−106 <= A[i] <= 106, 1 <= n <= 105). 1657
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Output: A single line containing the integers from the input with duplicates removed, in the order of their1658

first appearance.1659

Example Input:1660

4 5 4 2 5 1 31661

Example Output:1662

4 5 2 1 31663

[Program 1]:1664

1665

nums = list(map(int , input (). split ()))1666
unique_nums = []1667
for num in nums:1668

if num not in unique_nums:1669
unique_nums.append(num)1670

print("␣".join(map(str , unique_nums )))1671

[Program 2]:1672

1673

random_var1 = list(map(int , input (). split ()))1674
random_var2 = []1675
for random_var3 in random_var1:1676

if random_var3 not in random_var2:1677
random_var2.append(random_var3)1678

print("␣".join(map(str , random_var2 )))1679

[Answer]: The only difference is in variable names, which do not affect the logic or output of the program.1680

The answer is YES.1681

1682

[Example 4]:1683

[Problem Description]:1684

1685

Same as Example 3.1686

[Program 1]:1687

1688

nums = list(map(int , input (). split ()))1689
unique_nums = []1690
for num in nums:1691

if num not in unique_nums:1692
unique_nums.append(num)1693

print("␣".join(map(str , unique_nums )))1694

[Program 2]:1695

1696

nums = list(map(int , input (). split ()))1697
unique_nums = []1698
for num in nums:1699

if num in unique_nums:1700
unique_nums.append(num)1701

print("␣".join(map(str , unique_nums )))1702

[Answer]: Program 1 correctly appends unique values to unique_nums by checking if num not in1703

unique_nums.1704

Program 2 is incorrect because it uses if num in unique_nums, causing only duplicates to be appended to1705

the list.1706

The answer is NO.1707

1708

[Problem Description]:1709

1710

{problem_html}1711
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[Program 1]: 1712

1713

{program_1_code} 1714

[Program 2]: 1715

1716

{program_2_code} 1717

Please output the answer of whether the two programs are equivalent or not. You should output YES or 1718

NO in the end. Let’s think step by step. 1719

A.1.6 OJ_VA Category 1720

We show the prompt for 4-shot CoT settings. 1721

4-shot CoT. You are here to judge if two Python programs are semantically equivalent. 1722

You will be given [Problem Description], [Program 1] and [Program 2]. 1723

Here equivalence means that, given any valid input under the problem description, the two programs will 1724

always give the same output. 1725

1726

[Example 1]: 1727

[Problem Description]: 1728

Given a single line of input containing integers separated by spaces, sort the integers in ascending order 1729

and print them in a single line separated by spaces. 1730

Input: A single line containing integers A[i] (-106 <= A[i] <= 106, 1 <= n <= 106). 1731

Output: A single line of integers sorted in ascending order. 1732

Example Input: 1733

4 2 5 1 3 1734

Example Output: 1735

1 2 3 4 5 1736

[Program 1]: 1737

1738

def bubble_sort(arr): 1739
n = len(arr) 1740
for i in range(n - 1): 1741

for j in range(n - 1 - i): 1742
if arr[j] > arr[j + 1]: 1743

arr[j], arr[j + 1] = arr[j + 1], arr[j] 1744
return arr 1745

1746
nums = list(map(int , input (). split ())) 1747
sorted_nums = bubble_sort(nums) 1748
print("␣".join(map(str , sorted_nums ))) 1749

[Program 2]: 1750

1751

def random_sort(rand_var1 ): 1752
for rand_var2 in range(1, len(rand_var1 )): 1753

rand_var3 = rand_var1[rand_var2] 1754
rand_var4 = rand_var2 - 1 1755
while rand_var4 >= 0 and rand_var1[rand_var4] > rand_var3: 1756

rand_var1[rand_var4 + 1] = rand_var1[rand_var4] 1757
rand_var4 -= 1 1758

rand_var1[rand_var4 + 1] = rand_var3 1759
return rand_var1 1760

1761
rand_input = list(map(int , input (). split ())) 1762
rand_output = random_sort(rand_input) 1763
print("␣".join(map(str , rand_output ))) 1764

27



[Answer]: Program 1 is bubble sort, and Program 2 is insertion sort (though the variable names are1765

randomized).1766

The answer is YES.1767

1768

[Example 2]:1769

[Problem Description]:1770

Same as Example 1.1771

[Program 1]:1772

Same as Program 1 from Example 1.1773

[Program 2]:1774

1775

def insertion_sort(rand_var1 ):1776
for i in range(1, len(rand_var1 )):1777

key = rand_var1[i]1778
j = i - 11779
while j >= 0 and rand_var1[j] < key:1780

rand_var1[j + 1] = rand_var1[j]1781
j -= 11782

rand_var1[j + 1] = key1783
return rand_var11784

1785
nums = list(map(int , input (). split ()))1786
sorted_nums = insertion_sort(nums)1787
print("␣".join(map(str , sorted_nums )))1788

[Answer]: Program 1 is bubble sort, and Program 2 has a bug (the loop condition incorrectly uses1789

rand_var1[j] < key instead of rand_var1[j] > key).1790

The answer is NO.1791

1792

[Example 3]:1793

[Problem Description]:1794

Same as Example 1.1795

[Program 1]:1796

1797

def rand_alg(rand_var ):1798
n = len(rand_var)1799
for i in range(n - 1):1800

for j in range(n - 1 - i):1801
if rand_var[j] < rand_var[j + 1]:1802

rand_var[j], rand_var[j + 1] = rand_var[j + 1], rand_var[j]1803
return rand_var1804

1805
nums = list(map(int , input (). split ()))1806
sorted_nums = rand_alg(nums)1807
print("␣".join(map(str , sorted_nums )))1808

[Program 2]:1809

Same as Program 2 from Example 1.1810

[Answer]: Program 1 has a bug for bubble sort (the comparison is reversed, causing incorrect swaps).1811

The answer is NO.1812

1813

[Example 4]:1814

[Problem Description]:1815

Same as Example 1.1816

[Program 1]:1817

Same as Program 1 from Example 1.1818

[Program 2]:1819

1820
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nums = list(map(int , input (). split ())) 1821
sorted_nums = sorted(nums) 1822
print("␣".join(map(str , sorted_nums ))) 1823

[Answer]: Program 1 is bubble sort, and Program 2 uses Python’s built-in sorting implementation. 1824

The answer is YES. 1825

1826

[Problem Description]: 1827

1828

{problem_html} 1829

[Program 1]: 1830

1831

{program_1_code} 1832

[Program 2]: 1833

1834

{program_2_code} 1835

Please output the answer of whether the two programs are equivalent or not. You should output YES or 1836

NO in the end. Let’s think step by step. 1837

29



A.2 Model Prediction Bias1838

We evaluate the prediction bias of the models and observe a pronounced tendency to misclassify equivalent1839

programs as inequivalent in the CUDA and x86-64 categories. The table here shows the full results on all1840

models under 0-shot prompting.1841

Model CUDA x86-64

Eq Ineq Eq Ineq

Random Baseline 50.0 50.0 50.0 50.0
deepseek-ai/DeepSeek-V3 8.5 93.0 44.0 94.5
deepseek-ai/DeepSeek-R1 28.0 94.0 57.5 99.0
meta-llama/Llama-3.1-405B-Instruct-Turbo 6.0 92.0 68.5 81.5
meta-llama/Llama-3.1-8B-Instruct-Turbo 2.0 97.5 1.0 100.0
meta-llama/Llama-3.1-70B-Instruct-Turbo 7.0 93.0 27.5 89.5
meta-llama/Llama-3.2-3B-Instruct-Turbo 0.0 99.5 0.0 100.0
anthropic/claude-3-5-sonnet-20241022 62.5 62.0 49.5 90.5
Qwen/Qwen2.5-7B-Instruct-Turbo 18.5 80.0 17.5 98.5
Qwen/Qwen2.5-72B-Instruct-Turbo 14.5 97.5 36.0 93.5
Qwen/QwQ-32B-Preview 35.0 66.0 39.0 86.5
mistralai/Mixtral-8x7B-Instruct-v0.1 18.0 76.0 50.5 78.0
mistralai/Mixtral-8x22B-Instruct-v0.1 10.5 87.5 32.5 93.0
mistralai/Mistral-7B-Instruct-v0.3 52.5 62.0 87.0 60.5
openai/gpt-4o-mini-2024-07-18 0.5 100.0 16.5 97.0
openai/gpt-4o-2024-11-20 0.0 99.0 68.5 62.0
openai/o3-mini-2025-01-31 27.5 90.5 69.5 99.5
openai/o1-mini-2024-09-12 2.5 99.0 50.0 98.5
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