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Abstract

Online portfolio selection seeks to determine a sequence of allocations to maxi-
mize capital growth. Classical universal strategies asymptotically match the best
constant-rebalanced portfolio but ignore potential forecasts, whereas heuristic
methods often collapse when belief fails. We formalize this tension in a learning-
augmented setting in which an investor observes (possibly erroneous) predictions
prior to each decision moment, and we introduce the Rebalanced Arithmetic Mean
portfolio with predictions (RAM). Under arbitrary return sequences, we prove that
RAM captures at least a constant fraction of the hindsight-optimal wealth when
forecasts are perfect while still exceeding the geometric mean of the sequence
even when the predictions are adversarial. Comprehensive experiments on large-
scale equity data strengthen our theory, spanning both synthetic prediction streams
and production-grade machine-learning models. RAM advantages over universal-
portfolio variants equipped with side information across various regimes. These
results demonstrate that modest predictive power can be reliably converted into
tangible gains without sacrificing worst-case guarantees.

1 Introduction

Online portfolio selection, the sequential allocation of capital across multiple assets (e.g., stocks), sits
at the crossroads of mathematical finance, statistical learning, and online algorithmic design. In every
trading period, an investor must commit to a nonnegative, unit-sum weight vector before observing
the next price relatives1, relying on two imperfect guides: extracted patterns from historical returns
and predictive signals on future returns that may be noisy. The puzzle is therefore two-fold: (i) distill
from the past statistical regularities that remain informative, and (ii) fuse them with fallible forecasts
in a way that preserves worst-case guarantees. Resolving this tension is challenging because we can
neither guarantee the persistence of past regularities nor trust the accuracy of future forecasts blindly.

Literature review. The growth-optimal portfolio paradigm traces back to Kelly’s [1] information-
theoretic formulation of proportional betting, which showed that compounding wealth at the exponen-
tial rate is achievable when returns are i.i.d. Capital growth theory [2] later extended this principle
to multi-asset markets, providing a rigorous benchmark for long-horizon investment under more

1Throughout, “price relative” and “return” are used interchangeably.
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realistic dynamics. Contemporary research has bifurcated into two main streams. The first is to find
universal algorithms that provide provable guarantees against adversarial return sequences without
committing to a return model; the second relies on heuristic assumptions or data-driven forecasting
powered by machine-learning models, trading theoretical certainty for empirical performance. These
complementary approaches motivate our study, we therefore begin with a overview of each.

Universal algorithms, such as Universal Portfolio [3] and Exponential Gradient Update [4], make no
market assumptions about price dynamics yet remain provably competitive with the best constant-
rebalanced portfolio (BCRP) selected in hindsight. After n rounds, their cumulative wealth lags
BCRP by at most a polynomial factor, yielding sublinear regret in logarithmic growth. However, to
hedge against adversarial sequences, universal algorithms deliberately diffuse capital across assets,
forfeiting the windfalls that arise when strong predictive structure is present. A more frugal member
of the provably safe camp is the uniform buy-and-hold strategy [5]. Its final wealth is bounded
at the arithmetic mean of single-asset returns, but the absence of rebalancing makes it even more
conservative than the universal-portfolio family, and empirical evidence shows it often lags behind
whenever return dispersion is substantial. Further algorithmic families are reviewed comprehensively
in the survey by Li and Hoi [6]. However, despite theoretical guarantees against offline benchmarks,
these traditional algorithms share a cautious bias that may overlook significant predictive gains.

On the other hand, heuristic methods ranging from mean reversion [7; 8] to pattern matching
approaches [9] rely on market assumptions to inform algorithmic decisions based on signaled patterns.
Furthermore, there is growing interest in employing machine-learning (ML) models to forecast
future returns, heavily inclining the portfolio to the highest predicted asset in attempt to yield optimal
return. Morris et al. [10] introduce an ensemble framework that combines data mining techniques with
long short-term memory networks for forecasting stock and Bitcoin prices. Singh and Srivastava [11]
deploy a deep neural network for stock price forecasting, demonstrating enhanced performance over
recurrent neural networks. Zhang et al. [12] integrate a generative adversarial network with a long
short-term memory module, achieving promising results in real-world closing-price prediction. Feng
et al. [13] propose an advanced machine learning approach to stock movement prediction, employing
adversarial training to enhance the generalization capability of neural networks. These prediction-
based strategies can exploit favorable market conditions and achieve superior returns if the data
follows the underlying model. However, when the distribution of future returns deviates from the
model, these approaches may make poor predictions and suffer unbounded losses compared to more
conservative methods. In addition, ML models may suffer from overfitting if trained on insufficient
or unrepresentative features. As wealth compounds exponentially, even a brief sequence of poor
forecasts can rapidly erode capital, leading to catastrophic losses within a short time horizon.

Navigating preservation versus prediction-driven aggressiveness brings us to a fundamental question:

How to exploit forecasts yet preserve worst-case guarantees in portfolio selection?

Our answer is to weave ML forecasts into the fabric of classically robust schemes. The design is
guided by the emerging paradigm of algorithms with predictions [14], where an online procedure re-
ceives a potentially faulty glimpse of the future and must convert that hint into improved average-case
performance while keeping any inflation of worst-case regret provably minimal. In this framework,
a baseline algorithm is augmented by some predictive signals that balances follow-the-prediction
against hedge-for-adversity, yielding an error-sensitive competitive ratio that smoothly interpolates
between perfect-forecast optimality and classical worst-case guarantees under adversarial prediction.

The learning-augmented paradigm has been instantiated across a wide spectrum of classic prob-
lems. Lykouris and Vassilvitskii [15] demonstrate how a single tunable parameter yields an error
sensitive competitive ratio for the paging problem, outperforming LRU [16] whenever the predictor
is informative while retaining its worst-case bound. Kumar et al. [17] adapt the same recipe to both
the ski-rental dilemma and non-clairvoyant job scheduling. Bai and Coester [18] present a sort-
ing algorithm that harnesses potentially erroneous predictions to enhance computational efficiency.
Learning-augmented techniques have also appeared in financal settings, including Pareto-optimal
threshold-based algorithms for online conversion problems [19] and tight consistency-robustness
bounds for One-Max-Search [20]. For a more comprehensive overview, we refer to the survey
by Mitzenmacher and Vassilvitskii [21] and the online repository at [14]. Online portfolio selection
shares the same sequential-decision procedure: each round demands an irrevocable allocation before
the next return vector is revealed. By importing the learning-augmented toolkit from algorithms with
predictions into this framework, we aim to fuse the upside of ML forecasts with the downside pro-
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tection of conservative strategies, yielding wealth trajectories that improves smoothly with accurate
predication while retaining a measurable offline benchmark when predictive quality degrades.

To date, very few studies have embedded modern ML forecasts directly into the update rules
of classical online portfolio algorithms. The main precursor is the side-information variant of
Cover’s universal portfolio [22]. At every round, the investor receives a discrete signal that labels
the current market regime (i.e., bull or bear) and maintains a separate universal strategy for each
regime, with the goal of matching the state-dependent BCRP (BSCRP). Borodin et al. [7] instead
assume a mean-reversion pattern in next-period prices, but offer no error-sensitive guarantees linking
performance to the quality of its forecasts. More recent work has refined the side-information
idea: Bhatt et al. [23] extend universal portfolios to continuous side information via a probabilistic
partitioning that achieves first-order asymptotic optimality against BSCRP, while Yang et al. [24]
employ an expert-aggregation framework to construct state-dependent expert ensembles that achieve
the same asymptotic benchmark.

However, these constructions inherits several limitations. (i) Both BCRP and BSCRP are modest
benchmarks, which can lag the true offline optimum that reallocates into the single best-performing
asset each day by an exponential factor. (ii) Universal algorithms converge to BCRP and/or BSCRP
only at a polynomial rate in wealth, so the lower bound becomes practically vacuous once the
exponential gap to the global optimum is accounted for. (iii) The regret bound on growth rate with side
information grows linearly with the number of states, so a richer information alphabet paradoxically
weakens the guarantee. (iv) Focusing solely on asymptotic growth obscures performance over the
finite horizon which matters most in practice. (v) Most critically, existing results are prediction-
agnostic. They provide no quantitative characterization of how performance scales with prediction
error, leaving unanswered how the algorithm fares when the side information is perfectly informative,
entirely misleading, or somwehere in between.

These limitations motivate our approach, which fuses ML forecasts with adversarial safeguards and
provides error-sensitive guarantees that explicitly couple portfolio performance to prediction quality.
We now formalize the problem and introduce the necessary notation.

Problem statement. We study online portfolio selection over n trading periods and m2 assets. Let

xn =
(
x(1),x(2), . . . ,x(n)

)
, x(i) =

(
x1(i), x2(i), . . . , xm(i)

)
∈ Rm

+ (1)

where xj(i) is the price relative of asset j from period i− 1 to i. A portfolio strategy defines

bn =
(
b(1),b(2), . . . ,b(n)

)
, b(i) =

(
b1(i), . . . , bm(i)

)
∈ ∆m−1

with bj(i) ≥ 0 and
∑m

j=1 bj(i) = 1 (self-financed, no margin/shorting). The wealth after n periods is

Sn

(
bn,xn

)
=

n∏
i=1

(
b(i) · x(i)

)
=

n∏
i=1

m∑
j=1

bj(i)xj(i)

We set the initial capital to S0 = 1; thus, Sn equals both the terminal wealth and total growth factor.
At the start of each period i, the investor receives a ranking forecast from a black-box ML oracle.
Let [m] := {1, . . . ,m}. The oracle outputs a permutation σ(i) of [m], where σ(i)k denotes the
index of the asset ranked k-th (highest) by predicted one-step return. For analysis, we define y(i) by
reindexing the realized returns according to the predicted ranking:

y(i) :=
(
y1(i), . . . , ym(i)

)
, yk(i) := xσ(i)k(i) (2)

Thus y1(i) ≥ y2(i) ≥ · · · ≥ ym(i) reflects the oracle’s predicted order (highest to lowest). Impor-
tantly, our algorithm and guarantees depend only on the ranking σ(i); we do not assume access to,
nor require, predicted magnitudes of next-period returns. The vector y(i) is introduced solely as
analysis notation to track the realization under the predicted order.

We make no assumptions about how this vector (ranking) is generated, and it may come from any ML
model, e.g.: a neural network [10] that predicts one-step-ahead returns and then ranks them; a gradient-
boosted tree model [25] that outputs the ranking directly; or any heuristic ranking rules. For analysis,
we also define the clairvoyant order statistics x(1)(i) ≥ · · · ≥ x(m)(i) as the entries of x(i) sorted in

2We fix the number of assets m at the outset and treat it as a constant.
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non-increasing order, and write x↓(i) := (x(1)(i), . . . , x(m)(i)) and x↑(i) := (x(m)(i), . . . , x(1)(i)).
Note the distinction: xj(i) is the return of asset j (original index), whereas x(j)(i) is the j-th largest
return at time i (ranked value). Ties, when present, are broken by a fixed deterministic rule; following
analysis are invariant to this choice. We apply the same shorthand to the current weights b↓(i):

b↓(i) =
(
b(1)(i), b(2)(i), · · · , b(m)(i)

)
(3)

Our goal is to design an online portfolio algorithm with prediction that translates the oracle’s noisy
forecasts yn into higher wealth whenever they are informative, and preserves a provable worst-case
guarantee matching the best prediction-agnostic baseline when the forecasts are arbitrarily inaccurate.
We adopt the geometric mean of all returns referring the value line index, as such a baseline. Formally,

SGM
n =

 m∏
j=1

n∏
i=1

xj(i)

1/m

(4)

The best-known competitive [26] prediction-agnostic strategy is the Universal Portfolio [3], which
only guarantees wealth no less than SGM

n [3, Prop. 5]. Matching this floor therefore secures state-of-
the-art worst-case performance while leaving headroom for upside when the oracle proves informative.

Our contribution. We propose a learning-augmented portfolio with updating rules guided by ML
forecasts, the Rebalanced Arithmetic Mean (RAM). For the prediction error3 ηn ∈ (0, 1] induced by
any predictions yn = (y(1),y(2), · · · ,y(n)), the resulting wealth of RAM after n periods satisfies:

SRAM
n =

n∏
i=1

b↓(i) · y(i) ≥ max

SGM
n =

 m∏
j=1

n∏
i=1

xj(i)

1/m

, ηn

n∏
i=1

b↓(i) · x↓(i)


with weight updating rules b↓(i) followed by rank-matching strategy4 using predicted permutations:

b↓(i) =
(
b(1)(i), · · · , b(m)(i)

)
, bk(i) =

b(j)(i− 1)yj(i− 1)∑m
j=1 b(j)(i− 1)yj(i− 1)

, bk(1) =
1

m
,∀i, j, k (5)

When the predictions are maximally informative ηn = 1 and y(i) = x↓(i),∀i, RAM achieves wealth
at least a constant fraction of the hindsight-optimal "all-in-best-asset" benchmark:

SRAM ≥ 1

m
SOPT
n :=

1

m

n∏
i=1

max
j

xj(i)

Conversely, when forecasts are actively hostile (adversarial), we prove that RAM dominates the value
line SGM

n . The results are independent of market assumptions other than positive return factors.

We substantiate our theory with real-world equity experiments in progressively richer settings:

1. Prediction-free benchmark: We show that a randomized, prediction-free variant of RAM
outperforms the Universal Portfolio in expectation.

2. Controlled-noise study: Using synthesized predictions under controlled accuracy thresholds,
RAM degrades gracefully under heavy noise and raises smoothly with improved predictions.

3. Real-world deployment: We deploy RAM with real-world ML model on recent market data,
achieving significant gains over existing baselines, underscoring its practical utility.

2 Portfolio with predictions

Blindly following the forecasts. Consider two assets x1 and x2, where one either doubles or halves
while the other does the opposite. Let the forecast be wrong with independent probability ϵ ∈ (0, 1).
An investor who completely follows the forecast accumulates wealth Sn = 2(1−ϵ)n(0.5)ϵn =
2(1−2ϵ)n. When ϵ < 0.5, the investor still gains, but at an exponential gap of 22ϵn against the
optimum S∗

n = 2n. Conversely, when ϵ > 0.5, the wealth decays exponentially to zero. Therefore,
even a small error rate produces unbounded competitive loss and expose the strategy to total ruin.

3Formally defined in Section 2.1 (Eq. 6)
4Detailed in Section 2.1; see Algorithm 1 for pseudocode implementation.
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Partially trusting the forecast. A natural repair is to invest a fraction λ ∈ [0, 1] in the predicted
winner and keep the remaining in a safe baseline such as the uniform portfolio (0.5, 0.5). Lemma
A.1 (Appendix) proves that, when the forecast is wrong with independent probability ϵ ∈ (0, 1), the
expected wealth is E[Sn] = 1.25n(1 + 0.6λ(1− 2ϵ))n. Consequently, the expected per-period log-
growth is Wn(λ, ϵ) = log 1.25+ (1− ϵ) log (1 + 0.6λ)+ ϵ log (1− 0.6λ). For every fixed λ ≥ 1/3,
there always exists a ϵ∗(λ) < 0.5 forcing Wn(λ, ϵ

∗) = 0. If an adversary pushes the error rate even
slightly above this threshold, Wn(λ, ϵ) < 0 and wealth decays exponentially to zero. Meanwhile the
competitive ratio against the optimal hindsight 2n still diverges exponentially whenever λ > 0 and
ϵ > 0. Thus, fractional betting ameliorates but does not eliminate worst-case fragility.

Our intuition is to decouple magnitudes from directional signs through a two-stage architecture:

1. Base generator. At each period, a prediction-agnostic strategy updates a weight vector using
only realized return history, preserving the base algorithm’s worst-case guarantees.

2. Permutation layer. The ML predicted ranking (the ordering of upcoming returns) then
re-labels these weights, concentrating larger masses on assets it considers promising.

This design inherits the robustness of the base generator yet exploits predictive insights whenever it is
present. The crux is to pair a provably safe generator with a permutation rule that minimally degrades
its guarantee while delivering gains under accurate predictions. The remainder of the paper therefore
concentrates on this permutation-based portfolio class.

2.1 Rebalanced arithmetic mean

We propose the Rebalanced Arithmetic Mean (RAM) portfolio which overlays an oracle-supplied
ranking of next-period gross returns onto the buy-and-hold baseline. Let the baseline assign weights
{bj(i)}mj=1 at period i according to equation 5, where the pipeline follows by matching higher weights
to higher predicted returns according to their ranks. Concurrently, an oracle outputs a permutation
σ(i) intended to rank the forthcoming returns x(i); applying it produces the oracle-ordered vector
y(i) as defined in equation 2. Conceptually, RAM is still a buy-and-hold policy, yet executed in a
dynamically permuted coordinate system determined by permutations {σ(i)}ni=1.

RAM operates by greedy matching: it pairs the largest weight b(1)(i) with the asset which the oracle
predicts to deliver the highest return, the second-largest weight with the second-highest predicted
return, and so on. The portfolio held at period i therefore earns the inner product b↓(i) · y(i).
Importantly, we highlight the key relation of bnew · x(i) = b↓(i) · y(i) as in Algorithm 1. A visual
example of RAM’s update process is shown in Figure 1.

Figure 1: RAM’s rank-matching architecture: larger weights paired with higher predicted ranks.

To quantify the oracle’s accuracy, we compare its ordering with the clairvoyant optimal ordering of
the upcoming returns x↓(i). We define the per-period error rate η(i) and total error rate5 ηn:

η(i) :=
b↓(i) · x↓(i)

b↓(i) · y(i)
=

∑m
j=1 b(j)(i)x(j)(i)∑m
j=1 b(j)(i)yj(i)

, ηn :=

n∏
i=1

1

η(i)
(6)

5The daily error rate η(i) is defined so that it decreases as predictions improve and increases as they degrade.
The aggregated quantity ηn behaves oppositely; although we phrase it as an overall error rate for brevity, it
should be interpreted as a performance metric, where larger values indicate better performance.
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Algorithm 1 RAM: rebalanced arithmetic mean with predictions

Require: return matrix {x(i)}ni=1 ⊂ Rm
+ , oracle permutation σ(i)← FORECASTPERM

(
x(i)

)
1: initialize weights b(1)← ( 1

m , . . . , 1
m ), wealth S(0)← 1

2: for i← 1 to n do
3: Receive a ranking prediction σ(i) from oracle.
4: b↓← sort↓

(
b(i)

)
5: bnew← 0
6: for j ← 1 to m do ▷ reverse pairing
7: bnew

σ(i)j
← b↓

j

8: end for
9: Receive return x(i).

10: R(i)← bnew · x(i)
11: S(i)← S(i− 1)×R(i)
12: b(i+ 1)←

(
bnew⊙ x(i)

)/
R(i)

13: end for
14: return S(n)

The cumulative penalty ηn captures the aggregate loss in wealth relative to the clairvoyant optimal
matcher. The final aggregated wealth of RAM can therefore be expressed in exchangeable forms:

SRAM
n =

n∏
i=1

b↓(i) · y(i) =
n∏

i=1

b↓(i) · x↓(i)

η(i)
= ηn

n∏
i=1

m∑
j=1

b(j)(i)x(j)(i) (7)

This multiplicative decomposition cleanly separates the contribution of the underlying buy-and-hold
strategy from the oracle-induced error factor. When the oracle’s ranking is accurate, ηn = 1 and
RAM achieves the clairvoyant optimum. Even under maximally adversarial rankings, ηn ∈ (0, 1],
RAM’s wealth cannot drop below the value line index (the lower envelope of the arithmetic mean).

The reason RAM works. RAM is built on two simple intuitions. The first design goal is the
immediate optimality under perfect forecast. Universal portfolios with side information [22; 4]
only promise to approach the optimum in the limit, which means that they can lag for thousands of
rounds and still be theoretically "optimal". RAM avoids that delay: a perfect oracle yields the exact
clairvoyant growth for each and every period. The second goal is to prove disciplined loss guarantee
under adversarial regime. As inspired by the arithmetic-geometric mean (AM-GM) inequality, we
note a key invariance: a uniform buy-and-hold portfolio is unaffected by any fixed permutation of
asset coordinates. Once the ordering is frozen, the AM-GM lower envelope applies to the entire return
sequence, independent of the chosen coordinate system. Consequently, re-indexing the next-period
returns is essentially cost-free, and the resulting wealth trajectory remains above the value line.
Theorem 2.1 formalizes our claim with tight lower bounds under different levels of prediction quality.
Theorem 2.1. For arbitrary market sequence xn as specified in equation 1 and predictions yn =
(y(1),y(2), · · · ,y(n)) where each y(i) follows by equation 2, we have claims for Algorithm 1:

1. For arbitrary predictions (worst-case guarantee):

SRAM
n ≥

 m∏
j=1

n∏
i=1

xj(i)

1/m

, ∀ηn ∈ (0, 1] (8)

2. Under perfect predictions (best-case guarantee):

SRAM
n ≥ 1

m
SOPT
n =

1

m

n∏
i=1

max
j

xj(i), for ηn = 1 (9)

Proof. We first prove 9. When predictions are perfect, y(i) = x↓(i) ∀i and ηn = 1:

SRAM
n =

n∏
i=1

b↓(i) · x↓(i) =

n∏
i=1

m∑
j=1

b(j)(i)x(j)(i)
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By the monotonicity of b↓(i) and x↓(i):

b(1)(i) ≥ · · · ≥ b(m)(i) and x(1)(i) ≥ · · · ≥ x(m)(i) =⇒ b(1)(i)x(1)(i) ≥ · · · ≥ b(m)(i)x(m)(i)

Therefore, the index carrying larger weight at period i must also carry larger wealth share after i:

bk(i+ 1) =
b(j)(i)x(j)(i)∑m
j=1 b(j)(i)x(j)(i)

=⇒ b(j)(i+ 1) =
b(j)(i)x(j)(i)∑m
j=1 b(j)(i)x(j)(i)

Apply b(j)(n+ 1) and expand the right-hand side recursively down to period 1 yields:

b(j)(n+ 1) =
1

m

∏n
i=1 x(j)(i)∏n

i=1

∑m
j=1 b(j)(i)x(j)(i)

=⇒
m∑
j=1

b(j)(n+ 1) =

1

m

∑m
j=1

∏n
i=1 x(j)(i)∏n

i=1

∑m
j=1 b(j)(i)x(j)(i)

= 1 =⇒ SRAM
n =

1

m

m∑
j=1

n∏
i=1

x(j)(i) ≥
1

m

n∏
i=1

x(1)(i) =
1

m
SOPT
n

proving 9. Next, we prove 8. Recall under adversarial predictions SRAM
n =

∏n
i=1 b

↓(i)x↑(i) and:

bk(i+ 1) =
b(j)(i)x(m−j+1)(i)∑m
j=1 b(j)(i)x(m−j+1)(i)

=⇒ bk(i+ 1) =
bk(i)xσ(i)k(i)∑m
j=1 bk(i)xσ(i)k(i)

where we have re-indexed the assets relative to the weight vector such that σ(i)k denotes the
adversarially permuted pairing on weight bk(i), so the algebra is carried out in a moving coordinate
system attached to the weights, not in the fixed asset labeling. The specific indices σ(i)k are irrelevant
to the wealth analysis, since the only property we need is that every return value xσ(i)k(i) is paired
with exactly one weight coordinate. Apply bk(n+ 1) and expand the right-hand side yields:

bk(n+ 1) =
1

m

∏n
i=1 xσ(i)k(i)∏n

i=1 b
↓(i)x↑(i)

=⇒ SRAM
n =

1

m

m∑
k=1

n∏
i=1

xσ(i)k(i) ≥

[
m∏

k=1

n∏
i=1

xk(i)

]1/m

where the right-hand side follows by the arithmetic-geometric mean inequality.

Relative to existing universal strategies, RAM occupies a distinctive midpoint. Under a perfect oracle,
RAM extracts a constant 1/m fraction of the hindsight optimum, whereas the side-information
universal portfolio family converges only to the modest best state-constant rebalanced portfolio and
does so asymptotically. At the opposite end of the information spectrum, both RAM and universal
portfolios enjoy the same distribution-free safe net, the value line index, ensuring no catastrophic
under-performance. The gap between these extremes is where RAM’s permutation layer becomes
pivotal. Because weights are reassigned wholesale according to the forecast ordering, RAM reacts
sharply on informative ranking, but with higher variance when the signal is noisy. Recent advances in
machine learning have begun to yield predictors with demonstrably non-trivial forecasting power.
RAM can harness these models immediately while its AM-GM floor caps downside risk. In addition,
the algorithm runs in O(m logm) per round, making it readily deployable on large-scale portfolios
where the exponential costs of richer universal mixtures are prohibitive.

Table 1: Stock combinations on NYSE.

NYSE(O) NYSE(N)

1: Iro & Kin 7: Cok & Ahp & Gm & Ge & Sc
2: Com & Kin 8: Dow & Mmm & Ame & Mer & Jnj
3: Com & Mei 9: Ame & Kim & Alc & Ahp & Mor & Cok & Pan & Gm
4: Luk & Kin & Arc 10: Mmm & Dow & Mer & Ge & Ibm & Ing & Hp & Jnj
5: Shr & Ge & Kin 11: Ge & Mer & Gm & Ahp & Jnj & Pan & Ame & Ing & For & Dup & Dow
6: Gul & Esp & Pil 12: Alc & Cok & Hp & Ibm & Kim & Mmm & Mor & Sc & Gm & Ahp & Pan
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3 Empirical study

We begin by assessing RAM on the canonical New York Stock Exchange (NYSE) benchmark, using
i.i.d. random rankings to model a fully oblivious and uninformative oracle. Our primary dataset
is the original NYSE(O) collection [27], which contains 36 stocks spanning 22 years (1962–1984)
over 5,651 trading days. To capture a broader range of market volatility and ensure more recent
coverage, we also consider the extended NYSE(N) dataset [28], encompassing 21 assets from 1962
to 2006 (11,178 trading days). To avoid duplication, we preprocess NYSE(N) by retaining only the
period from 1985 to 2006 (5,526 trading days), thus removing any overlap with NYSE(O). Each data
point represents the ratio of an asset’s price on a given trading day to its price on the previous day.
Table 1 details the various combinations of stocks: Combinations 1–3 have been widely adopted in
seminal works such as [3; 4], Combinations 4–6 follow those introduced by Yang et al. [29], and the
remaining combinations were chosen for additional diversity and expanded market dimension.

To study RAM’s behavior under controllable signal quality, we draw rank-predictions from a one-
parameter family {Dp}p∈[0,1] which interpolates linearly between adversarial and optimal orderings:

Dp =

{
(1− 2p) δσ↑ + 2pU, 0 ≤ p ≤ 1

2 ,

2(1− p)U + (2p− 1) δσ↓ , 1
2 < p ≤ 1.

(10)

where σ↑ and σ↓ are the clairvoyant ascending and descending orderings of the upcoming returns, U
is the uniform distribution over all m! permutations, and δσ denotes a Dirac mass at permutation σ.
Consequently, p = 0 produces the worst-case forecast (deterministically ascending), p = 1

2 gives
full randomness, and p = 1 provides the best-case forecast (deterministically descending). Moving
p away from the middle point linearly transfers probability mass from the uniform component to
the appropriate Dirac measure, facilitating a transparent and smoothly tunable notion of forecast
quality. For each fixed p we draw one permutation per period: with probability equal to the Dirac
weight we output the deterministic order; otherwise we apply a Fisher-Yates shuffle. The identically
sampled permutation is fed to every applicable strategy under comparison, ensuring that performance
differences arise solely from algorithmic design rather than additional stochasticity.

For each accuracy threshold p, we run 1,000 independent Monte Carlo simulations to obtain stable
performance estimates. Table 2 summarizes the mean, standard deviation, and median, thereby
reducing sensitivity to distributional skewness. For combinations 1 to 6, we ablate our method
against the Universal Portfolio (UP) [3] and its side-information variant [22], owning to their strong
theoretical guarantees. Because the exact UP incurs exponential computational cost in the number
of assets, we also benchmark the Exponential Gradient (EG) [4] universal portfolio and its side-
information extension on combination 7 to 12, which scale more favorably to large-scale portfolios.
To ensure a fair comparison with side-information portfolios, we recast each forecast as a categorical
signal: the asset assigned rank 1 defines the current state, yielding m possible states. Under perfect
forecasts, the resulting best state-constant rebalanced portfolio (BSCRP) matches the hindsight
optimum. Conversely, the ranking that is adversarial to RAM still offers SI-portfolios exploitable
structure, since every state inevitably identifies at least one low-return asset. Constructing a ranking
that is simultaneously worst-case for both methods is impractical, we therefore adopt this mapping,
recognizing that it is conservative for RAM. All experiments compute under 6h on one standard CPU.
Source code is available at https://github.com/mroymd/OPML.

Figure 2: Comb. 1: RAM vs. EGSI over
p ∈ [0.5, 0.6]. Similar trends hold for
other comb. and p ∈ (0.6, 1].
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Our controlled Monte Carlo study reveals a clear, mono-
tone relationship between forecast quality and portfolio
performance. When the oracle is completely uninfor-
mative (RAM-R), our algorithm still outperforms the
vanilla UP in expectation, albeit with higher variance;
its median wealth remains at least twice that of the
geometric-mean benchmark. On the other hand, UPSI
exhibits lower dispersion and reliably tracks UP, but
its expected return trails RAM-R. Introducing even a
modest informational edge at 53% forecast accuracy
dramatically shifts the landscape: RAM now dominates
both EGSI and standard EG in both mean and median
wealth. The advantage widens with portfolio dimension:
the regret for EGSI grows exponentially in the number
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Table 2: Synthetic-forecast ablation on the NYSE dataset. Subscripts denote the forecast-accuracy
parameter p. Reported statistics comprise the mean (µ), standard deviation (σ), and median (µ).
Results average over 1,000 Monte Carlo trials, each drawing predictions according to equation 10.

Comb. GM UP RAM-R
p = 50%

UPSI
p = 50%

µ σ µ µ σ µ

1 6.06 39.97 57.78 215.75 13.28 52.33 36.81 40.57
2 14.65 80.53 136.39 551.33 32.15 97.32 64.84 79.14
3 34.52 74.07 101.03 185.44 53.84 84.88 22.54 77.26
4 6.69 32.18 45.66 107.83 17.81 40.61 10.68 37.13
5 5.96 24.40 35.49 96.26 15.14 30.74 8.58 27.95
6 19.35 47.11 56.97 73.23 36.53 55.94 9.84 53.23

Comb. GM EG RAM
p = 53%

EGSI
p = 53%

µ σ µ µ σ µ

7 12.88 21.74 1.5E+03 1.9E+03 9.3E+02 22.94 0.43 22.89
8 22.85 33.37 1.0E+03 9.3E+02 7.2E+02 34.80 0.44 34.77
9 17.61 30.18 4.5E+03 6.3E+03 2.6E+03 31.18 0.29 31.15
10 18.43 31.50 4.6E+03 6.5E+03 2.6E+03 32.82 0.36 32.78
11 16.59 27.81 6.1E+03 8.2E+03 3.5E+03 28.61 0.17 28.60
12 14.67 27.86 1.5E+04 2.3E+04 7.3E+03 28.82 0.22 28.81

Comb. RAM
p=100%

EGSI
p=100%

RAM
p = 60%

EGSI
p = 60%

µ σ µ µ σ µ

7 1.1E+41 4.9E+07 6.3E+08 8.6E+08 3.4E+08 36.25 2.35 36.19
8 1.5E+35 6.4E+05 5.8E+07 7.0E+07 3.8E+07 47.76 2.05 47.70
9 1.3E+49 6.7E+04 2.8E+10 4.6E+10 1.3E+10 39.59 1.15 39.52
10 3.4E+48 1.4E+05 2.0E+10 3.4E+10 1.0E+10 42.47 1.43 42.34
11 2.5E+53 2.9E+03 1.5E+11 2.3E+11 7.3E+10 33.18 0.59 33.14
12 2.3E+59 1.8E+04 2.5E+12 5.0E+12 1.1E+12 35.10 0.83 35.08

of states, whereas RAM’s guarantees are dimension-independent, yielding superior performance
in high-asset markets. At 60% accuracy, the gap becomes exponential. Under perfect forecasts
where BSCRP coincides with the hindsight optimum: EGSI still converges only asymptotically,
whereas RAM immediately captures the optimal growth. These results show that RAM exploits
accurate predictive signals more effectively than universal-portfolio baselines; Figure 2 illustrates
the resulting monotone gap. We verified the sub-50% accuracy regime but omit the plots for brevity:
the trajectories closely match our theoretical bound, with RAM’s wealth smoothly converging to
the value line without ever crossing below yet retaining domination in expectation. Collectively,
these results demonstrate that RAM amplifies even modest predictive edges while provably guarding
against catastrophic drawdowns.

We further evaluate RAM on a live, production-grade setting that couples real market data with
an industrial-strength learning-to-rank engine. We use the nightly-refreshed S&P 500 historical
panel [30] available on Kaggle, containing 501 constituents from 2010 to 2024. The index is liquid,
broad-based, and widely adopted in empirical-finance research, ensuring reproducibility and practical
relevance. To stress-test robustness, we analyze two disjoint windows: (i) COVID-19 crash from
July 2019 to May 2020, capturing extreme volatility; (ii) Recent market from Dec 2022 to Dec
2024, reflecting contemporary trading conditions. We construct three baskets as in Table 3: (i) α-
Popular: High-capitalization names favored by retail brokers, mirroring real-world deployability; (ii)
β-Diversified: Two tickers from each of five GICS sectors for cross-sector hedging; (iii) γ-Large-scale:
A broad slice of the index to probe scalability. Full stock names are in Table 5.

We employ LightGBM LambdaMART [25] to forecast the ranks of next-day returns. The model is
retrained each trading day using a 250-day sliding window, featuring contemporaneous and three
lagged returns per asset. A decaying factor with θ = 0.995age prioritizes recent observations while
discarding stale information. A 60-day hold-out slice inside the same window provides early-stopping
signals, eliminating look-ahead bias. This protocol guarantees strict online deployment where only
data available at decision time enter either training or validation. Hyper-parameters and code are
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Table 3: Basket specifications for the S&P 500 experiments. Regime A spans July 2019 to May 2020;
regime B covers December 2022 to December 2024.

Market Regime Comb. α Comb. β Comb. γ

A: High volatility Popularity-weighted Diversified sector Random draw
B: Recent window 5 stocks 10 stocks 30 stocks

supplied in the supplementary material while we keep the exposition concise to focus on RAM’s
prediction-integrated yet risk-free contribution.
Table 4: Empirical results on S&P 500 with production-grade machine-learning forecasts. Best
denotes the clairvoyant benchmark of the single top-performing stock. ML allocates all capital each
round to the asset with the highest predicted return (rank-1) from the model.

Market Regime Comp. Best GM RAM EGSI ML

A (Covid-crash)
α 1.733 1.206 1.239 1.230 1.305
β 1.358 0.953 1.003 0.982 1.678
γ 1.733 0.885 0.915 0.924 0.532

B (Recent-window)
α 8.293 2.470 2.512 2.629 1.676
β 3.153 1.300 1.377 1.373 0.572
γ 8.293 1.401 1.493 1.501 1.391

Across both market regimes, RAM consistently outperforms EGSI whenever the forecast surpass
the value-line benchmark and remains resilient even when prediction collapses. In the turbulent
COVID-19 window (regime A): RAM systematically exploits informative forecasts, capturing an
additional 10.9% and 2.6% of excessive predictive edge over EGSI in baskets α and β respectively;
when forecasts turn catastrophic in basket γ, RAM stays within 1% of EGSI while still eclipsing
the value line by 3.3%. In the recency-focused window (regime B), the gap widens: although every
forecast underperforms the value line, RAM trails EGSI by only 4.5% in basket α and 0.6% in basket
γ. Strikingly, under the worst-case basket β where the machine-learning signal lags the value line
by 56%, RAM nevertheless beats EGSI by 2.9% and outstrips the value line by 5.9%. In aggregate,
these findings provide compelling empirical evidence that RAM converts even modest predictive
cues into tangible gains while preserving a universal-style safety net when those cues deteriorate.
Notably, this robustness is achieved with an off-the-shelf rank predictor trained solely on historical
returns within a narrow asset universe, which suggests that more sophisticated, finance-driven models
would amplify RAM’s advantage even further, as corroborated by our synthetic simulations.

4 Conclusion

This work advances learning-augmented portfolio selection by introducing the Rebalanced Arithmetic
Mean portfolio with predictions (RAM), a principled framework that overlays machine-learning
forecasts on a classical rebalancing rule. We prove that RAM captures a constant fraction of the
hindsight-optimal wealth when forecasts are perfect and dominates the market’s geometric mean
baseline even under maximally adversarial signals. Extensive experiments on real-world equity
data complements the theory, spanning both synthetic forecast simulations and real-world ML
models: RAM harnesses informative predictive signs more effectively than side-information universal
portfolios, delivering superior risk-adjusted returns across turbulent and benign regimes. These
findings evidence the practical use of forecast without sacrificing worst-case safety

An important practical dimension left unexplored is transaction cost. Because RAM rebalances
every round through a permutation layer, it incurs trading frictions analogous to those faced by
universal portfolios. The attendant drag on portfolio wealth merits systematic investigation, for
instance, through transaction-cost frameworks exemplified by the model in [31]. Future work is
also encouraged to establish the Pareto-optimal consistency–robustness trade-off in online portfolio
selection. This work represents one operating point via RAM; whether the frontier can be improved
(and whether RAM is Pareto-optimal) remains open.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The claims are rigorously grounded: Theorem 2.1 formalizes the complete
theoretical guarantee, and the experiments empirically corroborate these claims.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The major limitation of this study is its omission of transaction-cost analysis.
This choice aligns with much of the online-portfolio literature [3; 22] where the core
algorithmic framework is first developed and subsequent work addresses trading frictions
separately. We therefore treat transaction-cost modeling as a distinct research track and
confine our discussion of it to the future-work (Conclusion) section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Our theoretical claim does not rely on ANY market assumptions beyond the
mild requirement that each return factor is strictly positive (i.e., $1 stake cannot generate a
loss greater than $1).

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All sources of randomness are explicitly documented, and the experiments can
be reproduced by fixing the global random seed to 42. The paper (and codes) provides every
implementation detail required to replicate the primary results in full.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Both the NYSE and S&P 500 datasets are publicly available; moreover, we
supply a one-click Colab notebook that fully replicates all reported experiments.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The experimentation section covers every key setup detail. Any peripheral
settings omitted for space are documented in the code.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: For every metric we report the mean, standard deviation, and median derived
from 1,000 Monte Carlo trials, thereby conveying the same dispersion information that
conventional error bars provide.
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Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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8. Experiments compute resources
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puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: All experiments compute under 6h on one standard CPU.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
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experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute
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9. Code of ethics
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Answer: [Yes]

Justification:

Guidelines:
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deviation from the Code of Ethics.
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Answer: [NA]
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Justification: This paper presents work whose goal is to advance the field of Machine
Learning. There are many potential societal consequences of our work, none which we feel
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Answer: [NA]

Justification: All data and model used are publicly available.
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• The authors should state which version of the asset is used and, if possible, include a
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Answer: [NA]

Justification:
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• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification:
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification:
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
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A Technical Appendices and Supplementary Material

Lemma A.1 (Fractional betting). Let the forecast be wrong with independent probability ϵ ∈ (0, 1).
For two assets whose return factors in period i satisfy:

(x1(i), x2(i)) =

{
(2, 1

2 ), forecast is correct
( 12 , 2), forecast is wrong

For any constant λ ∈ [0, 1], let the portfolio be b(i) = λeσ(i) + (1 − λ)( 12 ,
1
2 ) where eσ(i) puts

weight 1 on the predicted winner and 0 on the other. The following holds:

1. Expected wealth.

E(Sn) =

(
5

4

)n (
1 +

3

5
λ(1− 2ϵ)

)n

2. Expected per-period log-growth.

Wn(λ, ϵ) :=
1

n
E [logSn] = log

5

4
+ (1− ϵ) log

(
1 +

3

5
λ

)
+ ϵ log

(
1− 3

5
λ

)
3. Zero-growth error rate. For every fixed λ ≥ 1

3 , there exists a unique

ϵ∗(λ) =
log 5

4 + log
(
1 + 3

5λ
)

log
(
1 + 3

5λ
)
− log

(
1− 3

5λ
) ∈ (

0,
1

2

)
such that Wn = 0. For ϵ > ϵ∗(λ), Wn < 0.

4. Exponential competitive gap. Let S∗
n = 2n be the hindsight-optimum. Then

S∗
n

E[Sn]
=

(
8

5

)n (
1 +

3

5
λ(1− 2ϵ)

)−n

which grows like eΩ(n) whenever λ > 0 and ϵ > 0.

Proof. (1) The per-period growth is R(i) := b(i) · x(i) = 5
4 ±

3
4λ. When predictions are correct

R+(i) = 5
4 + 3

4λ, when predictions are wrong R−(i) = 5
4 −

3
4λ. Since R(i) are i.i.d,

E[Sn] = E

[
n∏

i=1

R(i)

]
=

n∏
i=1

E [R(i)] = (E[R(1)])
n

=

[
(1− ϵ)

(
5

4
+

3

4
λ

)
+ ϵ

(
5

4
− 3

4
λ

)]n
=

[
5

4
+

3

4
λ− 3

2
λϵ

]n
=

[
5

4
+

3

4
λ(1− 2ϵ)

]n
=

(
5

4

)n (
1 +

3

5
λ(1− 2ϵ)

)n

(2) Because R(i) are i.i.d.,

Wn(λ, ϵ) =
1

n
E[logSn] =

1

n

n∑
i=1

E[logR(i)] =
1

n

n∑
i=1

E[logR(1)] = E[logR(1)]

= (1−ϵ) log 5

4

(
1 +

3

5
λ

)
+ϵ log

5

4

(
1− 3

5
λ

)
= log

5

4
+(1−ϵ) log

(
1 +

3

5
λ

)
+ϵ log

(
1− 3

5
λ

)
(3) Observing Wn(λ, ϵ) is strictly decreasing on ϵ, ∀λ ∈ [0, 1]:

dWn(λ, ϵ)

dϵ
= log

(
1− 3

5
λ

)
− log

(
1 +

3

5
λ

)
< 0

At ϵ = 0, Wn(λ, 0) = log 5
4 +log

(
1 + 3

5λ
)
> 0; At ϵ = 1

2 , Wn(λ,
1
2 ) = log 5

4 +
1
2 log

(
1− ( 35λ)

2
)
,

which is negative if and only if 1− ( 35λ)
2 < ( 45 )

2 ⇔ λ > 1
3 . If λ > 1

3 , Wn(λ, ϵ) is positive at ϵ = 0,
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negative at ϵ = 1
2 and strictly decreasing on ϵ. With the intermediate value theorem, there exists

exactly one root ϵ∗ ∈ (0, 1
2 ) such that Wn(λ, ϵ

∗) = 0. Solving this yields:

log
5

4
+ log

(
1 +

3

5
λ

)
− ϵ∗

[
log

(
1 +

3

5
λ

)
− log

(
1− 3

5
λ

)]
= 0

ϵ∗(λ) =
log 5

4 + log
(
1 + 3

5λ
)

log
(
1 + 3

5λ
)
− log

(
1− 3

5λ
) ∈ (

0,
1

2

)
, λ ≥ 1

3

Because Wn(λ, ϵ) is strictly decreasing in ϵ and satisfies Wn(λ, ϵ
∗(λ)) = 0, it immediately follows

that Wn(λ, ϵ) < 0, ∀ϵ > ϵ∗(λ).

(4)
S∗
n

E[Sn]
=

(
2

5
4 + 3

4λ(1− 2ϵ)

)n

=

(
8

5

)n (
1 +

3

5
λ(1− 2ϵ)

)−n

Since 1 + 3
5λ(1− 2ϵ) < 8

5 whenever λ > 0, ϵ > 0, the ratio grows exponentially in n.

Table 5: Ticker compositions of three baskets on S&P 500.

Basket Constituent tickers

α T, MSFT, NVDA, AMZN, V
β CSCO, MSFT, WRB, RF, T, NFLX, SBUX, BBY, ABT, BAX
γ CMCSA, AMP, HSIC, FSLR, FCX, DE, CE, VLO, BWA, PH, ANSS, AMZN, C, EXPE,

FDX, TJX, WST, EMN, PGR, FAST, PODD, HST, ADM, NVDA, PAYX, BRO, MO,
ESS, DTE, WEC
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