
Published in Transactions on Machine Learning Research (MM/YYYY)

Asynchronous Training Schemes in Distributed Learning with
Time Delay

Haoxiang Wang whx22@mails.tsinghua.edu.cn
Department of Automation
Tsinghua University

Zhanhong Jiang zhjiang@iastate.edu
Translational AI Center
Iowa State University

Chao Liu cliu5@tsinghua.edu.cn
Department of Energy and Power Engineering
Tsinghua University

Soumik Sarkar soumiks@iastate.edu
Department of Mechanical Engineering
Iowa State University

Dongxiang Jiang jiangdx@tsinghua.edu.cn
Department of Energy and Power Engineering
Tsinghua University

Young M. Lee young.m.lee@jci.com
Johnson Controls

Reviewed on OpenReview: https: // openreview. net/ forum? id= zOGJxw07Z6

Abstract

In the context of distributed deep learning, the issue of stale weights or gradients could
result in poor algorithmic performance. This issue is usually tackled by delay tolerant algo-
rithms with some mild assumptions on the objective functions and step sizes. In this paper,
we propose a different approach to develop a new algorithm, called Predicting Clipping
Asynchronous Stochastic Gradient Descent (aka, PC-ASGD). Specifically, PC-ASGD has
two steps - the predicting step leverages the gradient prediction using Taylor expansion to
reduce the staleness of the outdated weights while the clipping step selectively drops the
outdated weights to alleviate their negative effects. A tradeoff parameter is introduced to
balance the effects between these two steps. Theoretically, we present the convergence rate
considering the effects of delay of the proposed algorithm with constant step size when the
smooth objective functions are weakly strongly-convex, general convex, and nonconvex. One
practical variant of PC-ASGD is also proposed by adopting a condition to help with the
determination of the tradeoff parameter. For empirical validation, we demonstrate the per-
formance of the algorithm with four deep neural network architectures on three benchmark
datasets.

1 Introduction

The availability of large datasets and powerful computing led to the emergence of deep learning that is
revolutionizing many application sectors from the internet industry and healthcare to transportation and
energy Gijzen (2013); Wiedemann et al. (2019); Gao et al. (2022); Liu & Liu (2023). As the applications are

1

https://openreview.net/forum?id=zOGJxw07Z6

Published in Transactions on Machine Learning Research (MM/YYYY)

scaling up, the learning process of large deep learning models is looking to leverage emerging resources such
as edge computing and distributed data centers privacy preserving. In this regard, distributed deep learning
algorithms are being explored by the community that leverage synchronous and asynchronous computations
with multiple computing agents that exchange information over communication networks Lian et al. (2017);
Cao et al. (2023); Qian et al. (2022). We consider an example setting involving an industrial IoT framework
where the data is geographically distributed as well as the computing resources. While the computing
resources within a local cluster can operate in a (loosely) synchronous manner, multiple (geographically
distributed) clusters may need to operate in an asynchronous manner. Furthermore, communications among
the computing resources may not be reliable and prone to delay and loss of information.

The master-slave and peer-to-peer are two categories of distributed learning architectures. On one hand,
Federated Averaging and its variants are considered to be the state-of-the-art for training deep learning
models with data distributed among the edge computing resources such as smart phones and idle computers
Hard et al. (2018); Sattler et al. (2019). PySyft Ryffel et al. (2018) and its robust version Deng et al. (2020),
the scalable distributed DNN training algorithms Strom (2015) and more recent distributed SVRG Cen et al.
(2020) and clustered FL Sattler et al. (2021) are examples of the master-slave architecture. On the other
hand, examples of the peer-to-peer architecture include the gossip algorithms Blot et al. (2016); Even et al.
(2020); Li et al. (2021); Tu et al. (2022), and the collaborative learning frameworks Jiang et al. (2017); Liu
et al. (2019).

However, as mentioned earlier, communication delay remains a critical challenge for achieving convergence
in an asynchronous learning setting Chen et al. (2016); Tsianos et al. (2012) and affects the performances
of the frameworks above. Furthermore, the amount of delay could be varying widely due to artifacts of
wireless communication and different devices. To eliminate the negative impact of varying delays on the
convergence characteristics of distributed learning algorithms, this work proposes a novel algorithm, called
Predicting Clipping Asynchronous Stochastic Gradient Descent (aka, PC-ASGD). The goal is to solve the
distributed learning problems involving multiple computing or edge devices such as GPUs and CPUs with
varying communication delays among them. Different from traditional distributed learning scenarios where
synchronous and asynchronous algorithms are considered separately, we take both into account together in
a networked setting.

Table 1: Comparisons between asynchronous algorithms

Methods f ∇f Delay Ass. Con.Rate D.C. G.C. A.S.
ASGD Dean et al. (2013) Non-convex Lip. Bou. O(1√

T
) 7 7 7

DC-ASGD Zheng et al. (2017) Str-con Lip. Bou. O(1
T

) 7 3 7

Non-convex Lip. Bou. O(1√
T

) 7 3 7

D-ASGD Lian et al. (2017) Non-convex Lip.&Bou. Bou. O(1√
T

) 3 7 7

DC-s3dg Rigazzi (2019) Non-convex Lip. Unbou. N/A 3 3 7

AGP Assran & Rabbat (2020) Str-con Lip. Bou. O(1
T

+ 1
T ζ + 1

T 1−ζ) 3 7 7

Praque Luo et al. (2020) Non-convex Lip. Bou. N/A 3 7 7

DSGD-AAU Xiong et al. (2023) Non-convex Lip. Bou. O(1√
T

) 3 7 7

DGD-ATC Wu et al. (2023) Str-con Lip. Unbou. O(ρT) 3 7 7

AD-APD Abolfazli et al. (2023) Convex Lip. Bou. O(1
T

) 3 7 7

PC-ASGD (This paper)
Weakly Str-con Lip. Bou. O(ρT + 1

T
+ 1√

T
) 3 3 3

Convex Lip. Bou. O(1√
T

+ 1
T 1.5) 3 3 3

Non-convex Lip. Bou. O(1√
T

) 3 3 3

Con.Rate: convergence rate, Str-con: strongly convex. Lip.& Bou.: Lipschitz continuous and bounded. Delay Ass.: Delay Assumption.
Unbou.: Unbounded. T : Total iterations. D.C.: decentralized computation. G.C.: Gradient Compensation. A.S.: Alternant Step,
ρ ∈ (0, 1) is a positive constant. Note that the convergence rate of PC-ASGD is obtained by using the constant step size. ζ ∈ (0, 1).

Related work. In the early works on distributed learning with master-slave architecture, Asynchronous
Stochastic Gradient Descent (ASGD) algorithm has been proposed Dean et al. (2013), where each local
worker continues its training process right after its gradient is added to the global model. The algorithm
could tolerate the delay in communication. Later works Agarwal & Duchi (2011); Feyzmahdavian et al.
(2015); Recht et al. (2011); Zhuang et al. (2021) extend ASGD to more realistic scenarios and implement the
algorithms with a central server and other parallel workers. Typically, since asynchronous algorithms suffer
from stale gradients, researchers have proposed algorithms such as DC-ASGD Zheng et al. (2017), adopting

2

Published in Transactions on Machine Learning Research (MM/YYYY)

the concept of delay compensation to reduce the impact of staleness and improve the performance of ASGD.
For the distributed learning with peer-to-peer architecture, Lian et al. (2017) proposes an algorithm termed
AD-PSGD (decentralized ASGD algorithm, aka D-ASGD) that deals with the problem of the stale parameter
exchange, as well as presents theoretical analysis for the algorithm performance under bounded delay. Liang
et al. (2020) also proposes a similar algorithm with slightly different assumptions. However, these algorithms
do not provide empirical or theoretical analysis regarding the impact of delay in detail. Additional works such
as using a central agent for control Nair & Gupta (2017), requiring prolonged communication Tsianos & Rab-
bat (2016), utilizing stochastic primal-dual method Lan et al. (2020), and adopting importance sampling Du
et al. (2020), have also been done to address the communication delay in the decentralized setting. More
recently, Rigazzi (2019) proposes the DC-s3gd algorithm to enable large-scale decentralized neural network
training with the consideration of delay. Zakharov (2020), Venigalla et al. (2020), Chen et al. (2019) and
Abbasloo & Chao (2019) also develop algorithms of asynchronous decentralized training for neural networks,
while theoretical guarantee is still missing. Asynchronous version of stochastic gradient push (AGP) Assran
& Rabbat (2020) is developed to address the asynchronous training in multi-agent framework. The authors
claim that AGP is more robust to failing or stalling agents, than the synchronous first-order methods. While
the proposed algorithm is only applicable to the strongly convex objectives. To further advance this area, the
most recent schemes such as Praque Luo et al. (2020) adopting a partial all-reduce communication primitive,
DSGD-AAU Xiong et al. (2023) utilizing an adaptive asynchronous updates, DGD-ATC Wu et al. (2023)
extending the Adapt-then-Combine technique from synchronous algorithms, and AD-APD Abolfazli et al.
(2023) leveraging accelerated primal-dual algorithm, are developed, but most of them are limited to only
(strongly) convex cases. Another line of work based on Federated Learning Dun et al. (2023); Gamboa-
Montero et al. (2023); Miao et al. (2023); Xu et al. (2023); Zhang et al. (2023) has also recently received
considerable attention, while all proposed approaches essentially rely on a center server, which may threat
the privacy of local workers. Different from the aforementioned works, in this study, we specifically present
analysis of the impact of the communication delay on convergence error bounds.

Contributions. The contributions of this work are specifically as follows:

• Algorithm Design. A novel algorithm, called PC-ASGD for distributed learning is proposed to tackle
the convergence issues due to the varying communication delays. Built upon ASGD, the PC-ASGD
algorithm consists of two steps. While the predicting step leverages the gradient prediction using
Taylor expansion to reduce the staleness of the outdated weights, the clipping step selectively drops
the outdated weights to alleviate their negative effects. To balance the effects, a tradeoff parameter
is introduced to combine these two steps.

• Convergence guarantee. We show that with a proper constant step size, PC-ASGD can converge to
the neighborhood of the optimal solution at a linear rate for weakly strongly-convex functions while
at a sublinear rate for both generally convex and nonconvex functions (specific comparisons with
other related existing approaches are listed in Table 1). We also model the delay and take it into
consideration in the convergence analysis.

• Verification studies. PC-ASGD is deployed on distributed GPUs with three datasets CIFAR-10,
CIFAR-100, and TinyImageNet by using PreResNet110, DenseNet, ResNet20, and EfficientNet ar-
chitectures. Our proposed algorithm outperforms the existing delay tolerant algorithms as well as
the variants of the proposed algorithm using only the predicting step or the clipping step.

2 Formulation and Preliminaries

Consider N agents in a networked system such that their interactions are driven by a graph G, where
G = {V, E}, where V = {1, 2, .., N} indicates the node or agent set, E ⊆ V × V is the edge set. Throughout
the paper, we assume that the graph is undirected and connected. The connection between any two agents
i and j can be determined by their physical connections, leading to the communication between them.
Traditionally, if agent j is in the neighborhood of agent i, they can communicate with each other. Thus, we
define the neighborhood for any agent i as Nb(i) := {j ∈ V|(i, j) ∈ E or j = i}. Rather than considering

3

Published in Transactions on Machine Learning Research (MM/YYYY)

synchronization and asynchronization separately, this paper considers both scenarios together by defining
the following terminologies.

Definition 1. At a time step t, an agent j is called a reliable neighbor of the agent i if agent i has the
state information of agent j up to t − 1.

Definition 2. At a time step t, an agent j is called an unreliable neighbor of the agent i if agent i has
the state information of agent j only up to t − τ , where τ is the so-called delay and 1 < τ < ∞.

Remark: Definitions 1 and 2 allow us to perceive the delay problem in the decentralized learning with a
new perspective that depends on the amount of delay. One agent can selectively make use of the outdated
information from unreliable neighbors or completely drop such information. The first scenario is related to
most previous works on asynchronous delay tolerant approaches as it involves a gradient prediction technique
to reduce the negative effects of stale parameters. The second scenario corresponds to most synchronous
schemes since the agent only collects information from the reliable neighbors. In this paper, we mainly focus
on the fixed delay with a connected graph to better characterize the influence of delay. Real cases with
complex topology and time-varying delay modeling are essential but future extensions of the work.

Thus, inside the neighborhood of an agent, there are reliable and unreliable neighbors respectively. This
work aims at studying how to effectively tackle issues such as negative impacts that delays may bring on the
performance. We define a set for reliable neighbors of agent i as: R := {j ∈ Nb(i) | Pr(xj = xj

t−1|t) = 1},
implying that agent j has the state information x up to the time t − 1, i.e., xj

t−1. We can directly have the
set for unreliable neighbors such that Rc = Nb \ R 1.

Then we can consider the decentralized empirical risk minimization problems, which can be expressed as the
summation of all local losses incurred by each agent:

min F (x) :=
N∑

i=1

∑
s∈Di

fs
i (x) (1)

where x = [x1; x2; . . . ; xN], xi is the local copy of x ∈ Rd, Di is a local data set uniquely known by agent
i, fs

i : Rd → R is the incurred local loss of agent i given a sample s. Based on the above formulation, we
then assume everywhere that our objective function is bounded from below and denote the minimum by
F ∗ := F (x∗) where x∗ := argmin F (x). Hence F ∗ > −∞. Moreover, all vector norms refer to the Euclidean
norm while matrix norms refer to the Frobenius norm. Some necessary definitions and assumptions are given
below for characterizing the main results.

Assumption 1. Each objective function fi is assumed to satisfy the following conditions: a) fi is γi−smooth;
b) fi is proper (not everywhere infinite) and coercive.

Assumption 2. A mixing matrix W ∈ RN×N satisfies a) 1⊤W = 1⊤, W1⊤ = 1⊤; b) Null{I − W} =
Span{1}; c) I ⪰ W ≻ −I.

Assumption 3. The stochastic gradient of F at any x is denoted by g(x), such that a) g(x) is the unbiased
estimate of gradient ∇F (x); b) The variance is uniformly bounded by σ2, i.e.,E[∥g(x) − ∇F (x)∥2] ≤ σ2; c)
The second moment of g(x) is bounded, i.e., E[∥g(x)∥2] ≤ G2.

Remark: Given Assumption 1, one immediate consequence is that F is γm := max{γ1, γ2, . . . , γN }-smooth
at all x ∈ RdN . The main outcome of Assumption 2 is that the mixing matrix W is doubly stochastic matrix
and that we have e1(W) = 1 > e2(W) ≥ .. ≥ eN (W) > −1, where ez(W) denotes the z-th largest eigenvalue
of W Zeng & Yin (2018). In Assumption 3, the first two are quite generic. While the third part is much
weaker than the bounded gradient that is not necessarily applicable to quadratic-like objectives.

1Note that the delay varies in the asynchronous learning scheme, and there are two types of asynchronization, (i) fixed value
of delays Zheng et al. (2017); Rigazzi (2019) and (ii) time-varying delays Dean et al. (2013); Lian et al. (2017) along the learning
process. We follow the first setting in this work to implement the experiments.

4

Published in Transactions on Machine Learning Research (MM/YYYY)

3 PC-ASGD

3.1 Algorithm Design

We present the specific update law for our proposed method, PC-ASGD. In Algorithm 1, for the predicting
step (line 6), any agent k that is unreliable has a delay when communicating its weights with agent i. To
compensate for the delay, we adopt the Taylor expansion to approximate the gradient for each time step. The
predicted gradient (or delay compensated gradient) is denoted by gdc

k (xk
t−τ), which is expressed as follows

gdc
k (xk

t−τ) =
τ−1∑
r=0

gk(xk
t−τ) + λgk(xk

t−τ) ⊙ gk(xk
t−τ) ⊙ (xi

t−τ+r − xi
t−τ), (2)

where λ is a positive constant in (0, 1] and the term λgk(xk
t−τ)⊙gk(xk

t−τ) is an estimate of the Hessian matrix,
∇gk(xk

t−τ). Throughout the rest of analysis, we define gdc,r
k (xk

t−τ) := gk(xk
t−τ) + λgk(xk

t−τ) ⊙ gk(xk
t−τ) ⊙

(xi
t−τ+r − xi

t−τ). We briefly provide explanation for the ease of understanding, while referring interested
readers to Appendix A.2 for the details of the derivation of Eq. 2. For agent k, at the current time step t,
since it did not get updated over the past τ time steps, it is known that xk

t := xk
t−τ . By abuse of notation, we

use gdc
k (xk

t−τ) instead of gdc
k (xk

t) for the predicted gradient, as the former reasonably justifies Eq. 2. While
we still keep the parameter of xk

t in the predicting step since it will be convenient for us to derive the
compact step in the following. However, one can also replace xk

t with xk
t−τ if necessary. Additionally, the

communication scheme for the predicting step among agents remains similar as in Jiang et al. (2017) but our
method needs extra communication overhead in the predicting step for the gradient information of gk(xk

t−τ).
This burden can be further reduced by gradient quantization Alistarh et al. (2017) but beyond the scope of
our work.

Remark: Also, the term (xi
t−τ+r − xi

t−τ) is from agent i due to the inaccessible outdated information
of agent k, which intuitively illustrates that the compensation is driven by the agent i when agent k is
in its neighborhood and deemed an unreliable one. We remark that the replacement by using agent i is
reasonably feasible due to the following three reasons. First, the individual model difference decays along
with time for all agents in the network. Particularly, as agent k is in the neighborhood of agent i, the
decaying trend between (xi

t−τ+r − xi
t−τ) and (xk

t−τ+r − xk
t−τ) should be similar. Second, such a replacement

may cause an extra error term in the error bound if imposing an assumption to bound the difference, e.g.,
∥(xi

t−τ+r − xi
t−τ) − (xk

t−τ+r − xk
t−τ)∥ ≤ c, where c ≥ 0, but the overall convergence rate remains the same

as the step size plays a role to determine it. Finally, the empirical results show the feasibility of such a
replacement. If the replacement caused the divergence of the gradient norm, the training loss and testing
accuracy would be poor. In our practice, we carefully examine their difference to make sure the replacement
proceeds well. However, due to the replacement, the predicted gradient is approximate.

On the contrary, at the time instant t, when the clipping step is taken, intuitively, we have to clip the agents
that possess outdated information, resulting in the change of the mixing matrix W . Essentially, we can
manipulate the corresponding weight values wij , j ∈ Rc in W such that at the clipping step, wij = 0, j ∈ Rc.
For the convenience of analysis, we introduce W̃ to represent the mixing matrix at this step. This seems a
bit unnecessary in terms of formulation as the first part in the predicting step can be used for the clipping
step, while for analysis it would help clarify, particularly when we show the convex combination in line 8.
Additionally, though the first part in the predicting step is essentially the same as the clipping step, the
separation between them in Algorithm 1 would make the presentation clear about that these two steps take
place in a single update.

Different from the DC-ASGD, which significantly relies on a central server to receive information from each
agent, our work removes the dependence on the central server, and instead constructs a graph for all of
agents. The clipping step (line 7) essentially rejects information from all the unreliable neighbors in the
neighborhood of one agent. Subsequently, the equality in line 8 balances the tradeoff between the predicting
and clipping steps. In practice, the determination of θt results in some practical variants. In the empirical
study presented in Section 5, one can see that θt is either 0 or 1 by leveraging one condition, which implies
that in each epoch, only one step is adopted, yielding two other variants shown in the experiments, C-ASGD

5

Published in Transactions on Machine Learning Research (MM/YYYY)

Algorithm 1: PC-ASGD
Input: number of agents N , learning rate η > 0, agent interaction matrices W , W̃ , number of epochs T ,

the tradeoff parameter 0 ≤ θt ≤ 1, t ∈ {0, 1, . . . , T − 1}
Output: the models’ parameters in agents xi

T ,i = 1, 2, · · · N
1: Initialize all the agents’ parameters xi

0, i = 1, 2, · · · N
2: Do broadcast to identify the clusters of reliable agents and the delay τ
3: t = 0
4: while epoch t < T do
5: for each agent i do
6: Predicting Step: xi

t+1,pre =
∑

j∈R wijxj
t − ηgi(xi

t) +
∑

k∈Rc wik(xk
t − ηgdc

k (xk
t−τ))

7: Clipping Step: xi
t+1,cli =

∑
j∈Nb(i) w̃ijxj

t − ηgi(xi
t)

8: xi
t+1 = θtx

i
t+1,pre + (1 − θt)xi

t+1,cli

9: end for
10: t = t + 1
11: end while

or P-ASGD. However, for the sake of generalization, we provide the analysis for the combined steps (line 8).
In practice, we try a practical strategy for adaptive θ choices and we also show the effectiveness empirically.

Since the term
∑

k∈Rc wikgdc
k (xk

t−τ) applies to unreliable neighbors only, for the convenience of analysis, we
expand it to the whole graph. It means that we establish an expanded graph to cover all of agents by setting
some elements in the mixing matrix W ′ ∈ RN×N equal to 0, but keeping the same connections as in W .
Namely, we have w′

ik = 0, k ∈ R and w′
ik = wik, k ∈ Rc. By setting the current time as t + τ , the compact

form in line 8 can be rewritten as:

xt+τ+1 = Wt+τ xt+τ − η(g(xt+τ) + θt+τ

τ−1∑
r=0

W ′gdc,r(xt)) (3)

Wt+τ is denoted by θt+τ W + (1 − θt+τ)W̃ , where W = W ⊗ Id×d, W̃ = W̃ ⊗ Id×d, and W ′ = W ′ ⊗ Id×d.
We have deferred the derivation of Eq. 3 to the Appendix.

4 Convergence Analysis

This section presents convergence results for the PC-ASGD. We show the consensus estimate and the optimal-
ity for both weakly strongly-convex (Polyak-Łojasiewicz Condition Karimi et al. (2016)), generally convex,
and nonconvex smooth objectives. The consensus among agents (aka, disagreement estimate) can be thought
of as the norms ∥xi

t − xj
t ∥, the differences between the iterates xi

t and xj
t . Alternatively, the consensus can

be measured with respect to a reference sequence, i.e., yt = 1
N

∑N
i=1 xi

t. In particular, we discuss ∥xi
t − yt∥

for any time t as the metrics with respect to the delay τ .
Lemma 1. (Consensus) Let Assumptions 2 and 3 hold. Assume that the delay compensated gradients are
uniformly bounded, i.e., there exists a scalar B > 0, such that

∥gdc,r(xt)∥ ≤ B, ∀t ≥ 0 and 0 ≤ r ≤ τ − 1,

Then for all i ∈ V and t ≥ 0, ∃η > 0, we have

E[∥xi
t − yt∥] ≤ η

G + (τ − 1)Bθm

1 − δ2
, (4)

where θm = max{θs+1}t+τ−1
s=t , δ2 = max{θse2 + (1 − θs)ẽ2}t+τ−1

s=0 < 1, where e2 := e2(W) < 1 and ẽ2 :=
e2(W̃) < 1.

The detailed proof is shown in the Appendix. Lemma 1 states the consensus bound among agents, which
is proportional to the step size η and inversely proportional to the gap between the largest and the second-
largest magnitude eigenvalues of the equivalent graph W.

6

Published in Transactions on Machine Learning Research (MM/YYYY)

Remark: One implication that can be made from Lemma 1 is when τ = 1, the consensus bound becomes the
smallest, which can be obtained as ηG

1−δ2
. This bound is the same as obtained already by most decentralized

learning (or optimization) algorithms. This accordingly implies that the delay compensated gradient or
predicted gradient does not necessarily require many time steps. Otherwise, more compounding error could
be included. Alternatively, θm = 0 can also result in such a bound, suggesting that the clipping step
dominates in the update. On the other hand, once τ ≫ 1 and θm ̸= 0, the consensus bound becomes worse,
which will be validated by the empirical results. Additionally, if the network is sparse, which suggests e2 → 1
and ẽ2 → 1, the consensus among agents may not be achieved well and correspondingly the optimality would
be negatively affected, which has been justified in existing works Jiang et al. (2017).

Most previous works have typically explored the convergence rate on the strongly convex objectives. However,
the assumption of strong convexity can be quite strong in most models such that the results obtained may
be theoretically instructive and useful. Hence, we introduce a condition that is able to relax the strong
convexity, but still maintain the similar theoretical property, i.e., Polyak-Łojasiewicz (PL) condition Karimi
et al. (2016). The condition is expressed as follows: A differentiable function F satisfies the PL condition
such that there exists a constant µ > 0

1
2

∥∇F (x)∥2 ≥ µ(F (x) − F ∗). (5)

When F (x) is strongly convex, it also implies the PL condition. However, this is not vice versa. We now
state the first main result.
Theorem 1. Let Assumptions 1,2 and 3 hold. Assume that the delay compensated gradients are uniformly
bounded, i.e., there exists a scalar B > 0 such that

∥gdc,r(xt)∥ ≤ B, ∀t ≥ 0 and 0 ≤ r ≤ τ − 1, (6)

and that ∇F (xt) is ξm-smooth for all t ≥ 0. Then for the iterates generated by PC-ASGD, when 0 < η ≤ 1
2µτ

and the objective satisfies the PL condition, they satisfy

E[F (xt) − F ∗] ≤ (1 − 2µητ)t−1(F (x1) − F ∗ − Q

2µητ
) + Q

2µητ
, (7)

where

Q = 2(1 − 2µητ)GηC1 + η3ξmG

2

τ−1∑
r=1

Cr + 2η2GγmC1

+ Gητσ + η2G(γm + ϵD + ϵ + (1 − λ)G2)
τ−1∑
r=1

Cr + ηG2 + η2γmGτC2

(8)

and C1 = G+(τ−1)Bθm

1−δ2
, Cr = 2G+(r−1)Bθm

1−δ2
, C2 = 2G+(τ−1)Bθm

1−δ2
. ϵD > 0 and ϵ > 0 are upper bounds for the

approximation errors of the Hessian matrix that can be obtained as we describe in the Appendix2.

Remark: One implication from Theorem 1 is that PC-ASGD enables the iterates {xt} to converge to the
neighborhood of x∗, which is Q

2ηµτ , matching the results by Jiang et al. (2017); Bottou et al. (2018); Patrascu
& Necoara (2017). In addition, Theorem 1 shows that the error bound is significantly attributed to network
errors caused by the disagreement among agents with respect to the delay and the variance of stochastic
gradients. Another implication can be made from Theorem 1 is that the convergence rate is closely related
to the delay and the step size such that when the delay is large it may reduce the coefficient, 1 − 2µητ , to
speed up the convergence. However, correspondingly the upper bound of the step size is also reduced. Hence,
there is a tradeoff between the step size and the delay in PC-ASGD. Theorem 1 also suggests that when
the objective function only satisfies the PL condition and is smooth, the convergence to the neighborhood of
x∗ in a linear rate can still be achieved. The PL condition may not necessarily imply convexity and hence
the conclusion can even apply to some nonconvex functions. To further analyze the error bound, we define

2The proof for this theorem is fairly non-trivial and technical. We refer readers to the Appendix for more details. To simplify
the proof, this main result will be divided into several lemmas.

7

Published in Transactions on Machine Learning Research (MM/YYYY)

η = O(1√
t
), PC-ASGD enjoys a convergence rate of O(ρt + 1

t + 1√
t
) to the neighborhood of x∗, which becomes

G(2(1 − 2µητ)C1 + τσ + G).

Studying the convergence behavior of PC-ASGD for generally convex functions is critically vital as many
objectives in machine learning fall into this category of interest. However, the proof techniques for showing
the convergence are different from those shown for the above weakly strongly convex objectives. In the sequel,
a well-known result regarding convexity is first introduced and then the theoretical claim is presented, while
its associated proof is deferred to the Appendix.
Lemma 2. If F : Rd → R is convex and differentiable, then for all x, y ∈ Rd, the following holds:

F (x) ≥ f(y) + ⟨∇F (y), x − y⟩. (9)

Theorem 2. Let Assumptions 1, 2 and 3 hold. Assume that the delay compensated gradients are uniformly
bounded, i.e., there exists a scalar B > 0 such that for all T ≥ 1

∥gdc(xt)∥ ≤ B, ∀t ≥ 0 and 0 ≤ r ≤ τ − 1, (10)

and there exists C > 0,
E[∥xt − x∗∥] ≤ C, (11)

where x∗ ∈ argminF (x). Then for the iterations generated by PC-ASGD, there exists 0 < η < 1
20γm

, such
that

E[F (x̄T) − F ∗] ≤ ∥x1 − x∗∥2

Tη
+ A

η
, (12)

where A = 10η2σ2
∗ +10η2σ2+20η4G2C2

1 +5η2θ2
mτ2B2+2ηCθmτB+2Gη2C1(2C+1), C1 = G+(τ−1)Bθm

1−δ2
, σ2

∗ :=
E∥g(x∗) − ∇F (x∗)∥2, x̄T := 1

T

∑T
t=1 xt.

Remark: As Theorem 2 suggests, when F is generally convex, asymptotically, PC-ASGD yields the con-
vergence of the iterates {xt} to the neighborhood of x∗, which is A

η . Analogously, Theorem 2 shows that
the error bound is highly correlated with the consensus estimates among agents and the stochastic gradient
variances as well as the time delay. To further analyze the error bound, we still define the η = O(1√

T
),

PC-ASGD exhibits a convergence rate of O(1√
T

+ 1
T 1.5) to the neighborhood of x∗, which is 2C(τ − 1)θmB.

This implies that if there is no time delay, PC-ASGD converges to the optimal solution exactly. Also, the
convergence rate matches the state-of-the-art in both centralized Garrigos & Gower (2023); Khaled et al.
(2023) and distributed Nedic (2020); Sun et al. (2023); Choi & Kim (2023) settings. In Theorem 2, we also
impose a constraint for the distance between xt and x∗. Immediately, we know that the error bound in
Eq. 12 can become C2

T η + A
η , which is relatively looser. On the other hand, without such a constraint, we can

probably just use ∥xt − x∗∥ ≤ ∥x1 − x∗∥ to replace C, which enables a slightly tighter bound. This also
illustrates that Eq. 11 is not a strong constraint.

We next investigate the convergence for the non-convex objectives. For PC-ASGD, we show that it converges
to a first-order stationary point at a sublinear rate. It should be noted that such a result may not absolutely
guarantee a feasible minimizer due to the lack of some necessary second-order information. However, for most
nonconvex optimization problems, this is generic, though some existing works have discussed the second-order
stationary points Carmon et al. (2018), which is out of our investigation scope.
Theorem 3. Let Assumptions 1, 2 and 3 hold. Assume that the delay compensated gradients are uniformly
bounded, i.e., there exists a scalar B > 0 such that for all T ≥ 1

∥gdc,r(xt)∥ ≤ B, ∀t ≥ 0 and 0 ≤ r ≤ τ − 1, (13)

and there exists M > 0,
E[∥gdc(xt)∥2] ≤ M. (14)

Then for the iterations generated by PC-ASGD, there exists 0 < η < 1
γm

, such that

1
T

T∑
t=1

E[∥∇F (xt)∥2] ≤ 2(F (x1) − F ∗)
Tη

+ R

η
, (15)

8

Published in Transactions on Machine Learning Research (MM/YYYY)

where, R = 2Gη2C1 + τ2η2γmM
2 + ησ2

2 + ηστB + 2η2γm(τB + G)C1, C1 = G+(τ−1)Bθm

1−δ2
.

Remark: Theorem 3 states that with a properly chosen constant step size, PC-ASGD is able to converge
the iterates {xT } to the noisy neighborhood of a stationary point x∗ in a rate of O(1√

T
), whose radius is

determined by σ2

2 + στB, if we define η = O(1√
T

). Additionally, based on σ2

2 + στB, we can know that the
error bound is mainly caused by the variance of stochastic gradients and the time delay. As the length of
the delay can have an impact on the predicting steps used in the delay compensated gradient, a short term
prediction may help alleviate the negative effect caused by the stale agents. Otherwise, the compounding
error in the delay compensated gradient could deteriorate the performance of the algorithm.

5 Experiments

5.1 Practical Variant

So far, we have analyzed theoretically in detail how the proposed PC-ASGD converges with some mild
assumptions. In practical implementation, we need to choose a suitable θt to enable the training fast with
clipping steps and allow the unreliable neighbors to be involved in training with predicting steps. In this
context, we develop a heuristic practical variant with a criterion for determining the tradeoff parameter value.
Intuitively, if the delay messages from the unreliable neighbors do not influence the training negatively, they
should be included in the prediction. This can be determined by the comparison with the algorithm without
making use of these messages. The criterion is shown as follows:

xt+1
i =

{
xi

t+1,pre
⟨xi

t+1,pre−xi
t,gi(xi

t)⟩
∥xi

t+1,pre−xi
t∥ ≥ ⟨xi

t+1,cli−xi
t,gi(xi

t)⟩
∥xi

t+1,cli
−xi

t∥

xi
t+1,cli o.w.

(16)

where we choose the cosine distance to compare the distances for predicting and clipping steps. The prediction
step is selected if it has the larger cosine distance, which implies that the update due to the predicting
step yields the larger loss descent. Otherwise, the clipping step should be chosen by only trusting reliable
neighbors. Our practical variant with this criterion still converges since we just set θt as 0 or 1 for each
iteration and the previous analysis in our paper still holds. To facilitate the understanding of predicting and
clipping steps, in the following experiments, we also have two other variants P-ASGD and C-ASGD. While
the former corresponds to an “optimistic" scenario to only rely on the predicting step, the latter presents a
“pessimistic" scenario by dropping all outdated agents. Both of variants follow the same convergence rates
induced by PC-ASGD. The specific algorithm is shown as Algorithm 2.

5.2 Distributed Network and Learning Setting

Models and Data sets. D-ASGD is adopted as the baseline algorithm. Two deep learning structures,
PreResNet110 He et al. (2016b), DenseNet Huang et al. (2017), ResNet20 He et al. (2016a) and EfficientNet
Tan & Le (2019) (noted as model 1, model 2, model 3 and model 4), are employed. The detailed training
settings are illustrated in Appendix C. CIFAR-10, CIFAR-100 and TinyImageNet are used in the experiments
following the settings in Krizhevsky (2012). The training data is randomly assigned to each agent, and the
parameters of the deep learning structure are maintained within each agent and communicated with the
predefined delays. The testing set is utilized for each agent to verify the performance, where our metric is
the average accuracy among the agents. 6 runs are carried out for each case and the mean and variance are
obtained and listed in Table 3.

Delay setting. The delay is set as τ as discussed before, which means the parameters received from the
agents outside of the reliable cluster are the ones that were obtained τ iterations before. τ is both fixed at
20 to test the performances of different algorithms including our different variants (P-ASGD, C-ASGD, and
PC-ASGD) and baseline algorithms in Section 5.3 and 5.5. We also try to exploit its impact in Section 5.4.

Distributed network setting. A distributed network (noted as distributed network 1) with 8 agents
(nodes) in a fully connected graph is first applied with model 1-4, and 2 clusters of reliable agents are defined
within the graph consisting of 3 agents and 5 agents, respectively. Then two distributed networks (with

9

Published in Transactions on Machine Learning Research (MM/YYYY)

Algorithm 2: PC-ASGD-PV
Input: number of agents N , learning rate η > 0, agent interaction matrices W , W̃ , number of epochs T
Output: the models’ parameters in agents xi

T ,i = 1, 2, . . . , N
1: Initialize all the agents’ parameters xi

0, i = 1, 2, . . . , N
2: Do broadcast to identify the clusters of reliable agents and the delay τ
3: t = 0
4: while epoch t < T do
5: for each agent i do
6: Predicting Step: xi

t+1,pre =
∑

j∈R wijxj
t − ηgi(xi

t) +
∑

k∈Rc wik(xk
t − ηgdc

k (xk
t−τ))

7: Clipping Step: xi
t+1,cli =

∑
j∈R w̃ijxj

t − ηgi(xi
t)

8: ∆pre = xi
t+1,pre − xi

t; ∆cli = xi
t+1,cli − xi

t

9: if ⟨∆pre,gi(xi
t)⟩

∥∆pre∥ ≥ ⟨∆cli,gi(xi
t)⟩

∥∆cli∥ then
10: xi

t+1 = xi
t+1,pre

11: else
12: xi

t+1 = xi
t+1,cli

13: end if
14: end for
15: t = t + 1
16: end while

5-agent and 20-agent, respectively) are used for scalability analysis, noted as distributed network 2 and
distributed network 3, individually. For distributed network 2, we construct 2 clusters of reliable agents with
3 and 2 agents. In distributed network 3, four clusters are formed and 3 clusters consist of 6 agents while
each of the rest has 2 agents.

5.3 Performance Evaluation

The testing accuracies on the CIFAR-10 and CIFAR-100 data sets with model 1 and model 2 in distributed
network 1 are shown in Fig. 1. It shows that the proposed PC-ASGD outperforms the other single variants
and it presents an accuracy increment greater than 2.3% (nearly 4% for DenseNet with CIFAR-10) compared
to the baseline algorithm. For other variants P-ASGD or C-ASGD, the testing accuracies are also higher
than that of the baseline algorithm. Moreover, PC-ASGD shows faster convergence than P-ASGD as the
updating rule overcomes the staleness, and achieves better accuracy than the C-ASGD as it includes the
messages from the unreliable neighbors. This is consistent with the analysis in this work. We also show the
detailed results of both distributed network 1 and distributed network 3 in Table 2.

We then compare our proposed algorithm with other delay-tolerant algorithms in distributed network 1
with model 1-4, including the baseline algorithm D-ASGD, DC-s3gd Rigazzi (2019), D-ASGD with IS Du
et al. (2020), and Adaptive Braking Venigalla et al. (2020). The distributed network 1 is applied for the
comparisons. From Table 3, the proposed PC-ASGD obtains the best results in all the cases. It should
be noted that some of above-listed algorithms are not designed specifically for this kind of peer-to-peer
application (e.g., Adaptive Braking) or may not consider the modeling of severe delays in their works (e.g.,
D-ASGD with IS and DC-s3gd). In this context, they may not perform well in the test cases. The results
also demonstrate our proposed framework can be employed by differential types of models, such as simple
ResNet20 and complex EfficientNet. We also conduct numerical studies on TinyImageNet and time-series
dataset in Appendix D, the results also verify the effectiveness of our method. Before concluding this section,
we remark on the difference between PC-ASGD and DC-s3gd as the latter also leverages the predicting step
for the gradient estimates. In our PC-ASGD approach, we differentiate between reliable and unreliable agents,
allowing reliable agents to proceed with their updates. For unreliable agents, our method incorporates both
predicting and clipping steps, establishing choice criteria to enhance overall performance. In contrast, DC-
s3gd exclusively employs prediction (delay compensation) for all agents. Regarding the delay compensation
aspect, for agent i requiring an update, our approach employs delay compensation with the delayed gradient

10

Published in Transactions on Machine Learning Research (MM/YYYY)

0 25 50 75 100 125 150 175 200

epochs

40

50

60

70

80

A
cc

u
ra

cy

PC-ASGD

P-ASGD

C-ASGD

Baseline

(a) DenseNet CIFAR-10

0 25 50 75 100 125 150 175 200

epochs

50.0

52.5

55.0

57.5

60.0

62.5

65.0

67.5

A
cc

u
ra

cy

PC-ASGD

P-ASGD

C-ASGD

Baseline

(b) DenseNet CIFAR-100

0 20 40 60 80 100 120 140 160

epochs

30

40

50

60

70

80

90

A
cc

u
ra

cy

PC-ASGD

P-ASGD

C-ASGD

Baseline

(c) PreResNet110 CIFAR-10

0 25 50 75 100 125 150 175

epochs

50

52

54

56

58

60

62

64

66

68

A
cc

u
ra

cy

PC-ASGD

P-ASGD

C-ASGD

Baseline

(d) PreResNet110 CIFAR-100

Figure 1: Testing accuracy on CIFAR-10 and CIFAR-100 with distributed network 1.

Table 2: Performance evaluation of PC-ASGD on CIFAR-10 and CIFAR-100

5 agents

Model & dataset
PC-ASGD P-ASGD C-ASGD Baseline

acc. (%) o.p. (%) acc. (%) o.p. (%) acc.(%) o.p. (%) acc. (%)
Pre110, CIFAR-10 87.3 ± 1.1 3.3 ± 1.1 84.9 ± 0.9 0.9 ± 0.9 86.0 ± 1.0 2.0 ± 1.0 84.0 ± 0.3
Pre110, CIFAR-100 67.4 ± 1.4 3.1 ± 1.9 64.8 ± 1.3 1.3 ± 1.5 66.4 ± 1.2 1.9 ± 1.6 64.5 ± 1.5

Des, CIFAR-10 86.9 ± 0.9 3.6 ± 1.8 84.4 ± 0.6 1.0 ± 1.5 85.9 ± 0.9 2.7 ± 1.7 83.3 ± 0.9
Des, CIFAR-100 68.6 ± 0.6 2.3 ± 1.7 66.8 ± 1.5 1.6 ± 1.6 66.8 ± 1.6 1.8 ± 1.6 66.1 ± 1.9

20 agents

Model & dataset
PC-ASGD P-ASGD C-ASGD Baseline

acc. (%) o.p. (%) acc. (%) o.p. (%) acc.(%) o.p. (%) acc. (%)
Pre110, CIFAR-10 84.7 ± 0.9 4.2 ± 1.0 83.3 ± 0.9 2.7 ± 0.9 82.5 ± 1.0 1.9 ± 1.4 80.4 ± 0.7
Pre110, CIFAR-100 62.4 ± 0.8 3.3 ± 2.0 61.7 ± 1.0 2.0 ± 1.6 61.5 ± 1.0 2.5 ± 2.3 59.3 ± 1.7

Des, CIFAR-10 82.9 ± 0.9 2.4 ± 0.9 82.0 ± 0.7 1.4 ± 1.3 81.8 ± 0.6 1.8 ± 1.0 80.1 ± 0.9
Des, CIFAR-100 64.5 ± 0.7 3.8 ± 1.7 62.5 ± 1.3 2.9 ± 2.0 62.0 ± 1.5 1.3 ± 1.4 60.4 ± 1.7

acc.–accuracy, o.p.–outperformed comparing to baseline.

of agent k in the unreliable cluster, denoted as gdc
k , utilizing the term (xi

t − xi
t−τ). Conversely, DC-s3gd

utilizes (xi
t − xk

t−τ) without any theoretical guarantee. We hypothetically claim that though it is feasible
for us to leverage the same predicting step employed in DC-s3gd, while in practice, (xi

t − xk
t−τ) may cause

larger error bound when models between agents i and k are significantly different. We can also compare the
algorithm employing only P-step (P-ASGD), as presented in Table 2 (with 5 agents) with DC-s3gd in Table
3. The results also reveal that in certain scenarios (Pre110/Des, CIFAR100), the performance of P-step is
better than that of DC-s3gd, which supports our approximation of gdc

k as well.

11

Published in Transactions on Machine Learning Research (MM/YYYY)

Table 3: Performance comparison for different algorithms

Model & dataset Pre110
CIFAR-10

Des
CIFAR-10

ResNet20
CIFAR-10

Pre110
CIFAR-100

Des
CIFAR-100

EfficientNet
CIFAR-100

PC-ASGD (Ours) 87.3 ± 1.1 86.9 ± 0.6 84.9 ± 0.6 67.4 ± 1.4 68.6 ± 0.6 78.5 ± 1.3
D-ASGD

Lian et al. (2017) 84.0 ± 0.3 82.5 ± 0.1 83.3 ± 0.9 64.5 ± 1.5 66.1 ± 1.9 74.7 ± 0.4

DC-s3gd
Rigazzi (2019) 86.3 ± 0.8 85.7 ± 0.8 83.1 ± 0.7 63.5 ± 1.7 66.2 ± 1.3 76.0 ± 1.1

D-ASGD with IS
Du et al. (2020) 85.0 ± 0.3 84.6 ± 0.4 83.1 ± 0.5 64.6 ± 1.2 66.2 ± 0.8 75.5 ± 1.4

Adaptive Braking
Venigalla et al. (2020) 86.8 ± 0.9 85.3 ± 1.0 84.3 ± 0.4 66.5 ± 1.2 67.3 ± 1.1 77.3 ± 0.8

5.4 Impacts of Different Delay Settings

To further show our algorithm’s effectiveness, we also implement experiments with different delays. As
discussed above, a more severe delay could cause a significant drop in the accuracy. More numerical studies
with different steps of delay are presented here. The delays are set as 5, 20, 60 with our PreResNet110 (model
1) of 8 agents (synchronous network without delay is also tested). We use CIFAR-10 in the studies and the
topology is distributed network 1. The results are shown in Fig. 2.

Synchronous 5 20 60
60

65

70

75

80

85

90

A
cc

ur
ac

y

91.2
88.0 87.3

85.8
87.3 86.3

84.2

87.6 86.8
85.4

86.8
84.0

82.3

Synchronous
PC-ASGD
DCs3gd
AB
D-ASGD

Figure 2: Performance evaluation for different steps of delay.

We can find out as the delay increases, the accuracy decreases. For the synchronous setting, the testing
accuracy is close to that in the centralized scenario Yang (2019) but with a higher batch size. When the
delay is 60, the accuracy for the D-ASGD reduces significantly, and this validates that the large delay
significantly influences the performance and causes difficulties in the training process. However, the delays
are practical in real implementations such as industrial IoT platforms. Our proposed PC-ASGD outperforms
other algorithms in all cases with different delays. Moreover, the accuracy drop is relatively smaller in cases
with larger delays, which suggests that PC-ASGD is more robust to different communication delays.

5.5 Impacts of Network Size

For evaluating the performance in different structure sizes of distributed networks, distributed network 2
and distributed network 3 follow the same setting as in the distributed network 1 (delay τ = 20, model 1,
CIFAR-10). The results are shown in Fig. 3. According to both Table 2 and Fig. 3, as the number of agents
increases, the accuracy decreases. It shows that the large size of the network has a negative impact on the
training. Our proposed PC-ASGD outperforms all other approaches, which further validates the efficacy and
scalability of the proposed algorithm.

12

Published in Transactions on Machine Learning Research (MM/YYYY)

5 agents 8 agents 20 agents
60

65

70

75

80

85

90
A

cc
ur

ac
y

88.0 87.3
84.785.2 84.9

83.3
86.2 86.0

82.5

86.7 86.3

83.1

87.1 86.8

82.9
85.0 84.0

80.4

PC-ASGD
P-ASGD
C-ASGD
DCs3gd
AB
D-ASGD

Figure 3: Performance evaluation for different numbers of agents.

5.6 Numerical Studies on θ Assignments

We also conduct empirical studies about the different choices for θ. As we mentioned above, a practical variant
is applied for θ, where we intend to form a strategy to determine if the received information (parameters of
the deep learning models) is outdated or not. Here, different assignment rules for θ are tested and compared.
Model 1 is applied, by using CIFAR-10 and the 8 agents system with 3 and 5 agents (distributed network 1).

First, θ is fixed as 0.3, 0.5, 0.7 (denoted as f1, f2, f3), respectively. Then we determine the θ as 0, 1 randomly
with fixed probability in each round with 0.3, 0.5, 0.7 (denoted as p1, p2, p3). We also try the fully uniformly
random assigned θ in each round (denoted as r1). The results are listed in Table 4. The PC-ASGD-PV

Table 4: Mean Performance for Different θ assignment for Pre110, CIFAR-10

Method\Parameters f1/p1 f2/p2 f3/p3
θ Fixed 86.3 85.0 84.5
θ Bool randomly 85.6 85.0 84.1
θ randomly (r1) 85.2
PC-ASGD-PV 87.3
D-ASGD(Baseline) 84.0

obtains the best performance which implies that the trade-off between the predicting step and the clipping
step in Algorithm 2 is proper and plays an important role in the convergence process. With the fixed θ (first
row ‘θ fixed’), the experimental results show that the optimal ratio between the predicting step and clipping
step is 0.3 in this case. And this suggests that more clipping steps are better. For the p1, p2, p3 cases
(second row θ Bool randomly, i.e. either 0 or 1), the experimental results show that the optimal probability
between the predicting step and clipping step is 0.3. This is consistent with the fixed θ case. Compared with
the fix θ setting, picking 0, 1 for the θ in a predefined probability performs worse. The randomness still helps
the convergence process but is not as good as the fix θ setting. For the random θ, the randomness helps the
convergence process. However, there exists an optimal θ for every case and the randomness is not able to get
the best performance. The baseline D-ASGD gets the worst performance, which shows the predicting and
clipping steps are helpful for the scenarios with delays in the distributed network. This also provides us with
the necessity of the additional time cost for the predicting and clipping steps. Note also that optimizing the
selection of θ is beneficial and we can set θ as binary or non-binary (continuous). The binary setting with
the strategy in Algorithm 2 is straightforward and performs well in this work.

To further explore the connection between the θ selection and the binary strategy in our algorithm, the
occurrence of choosing the predicting step or clipping step in PC-ASGD-PV is collected and shown in Fig.
4. The frequencies for the clipping and predicting step choices tend to stabilize with the epochs when the
values are around 0.625 and 0.375 respectively. This is consistent with the fixed θ experiments (where the
optimal ratio between the predicting step and clipping step is 0.3, compared to 0.5 and 0.7.) The final choice
frequency appears to be empirically determined by the proportion of unreliable clusters. It indicates that
the proportion of delayed information included by these unreliable clusters will determine the likelihood of
rejecting the P-step. Additionally, we also observe θ will increase as the time delay diminishes to be smaller

13

Published in Transactions on Machine Learning Research (MM/YYYY)

empirically. However, we cannot construct a proportional relationship since we adopt some approximations
when dealing with P-step and more theoretical and empirical analysis can be an interesting future direction.

0 20 40 60 80 100 120 140 160
epochs

0.2

0.3

0.4

0.5

0.6

0.7

0.8

fr
eq

u
en

cy

C choice

P choice

Figure 4: Predicting and clipping steps choices changing with epochs.

5.7 Time Cost Comparison

The time cost for the presented algorithm is compared with the baseline algorithm (D-ASGD), P-ASGD,
and C-ASGD. The average time costs for model 1 with CIFAR-10 in distributed network 1 are collected and
shown in Fig. 5. The hardware we adopt is shown in Appendix C.

PC-ASGD P-ASGD C-ASGD D-ASGD
0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

T
im

e

1.17x

1.04x
0.99x 1.0x

Figure 5: Average time costs for different methods (per epoch).

We observe that the extra time costs for the predicting and clipping steps and additional criterion are not
large, although there are still 17% more costs compared to D-ASGD. Therefore, we need to consider the trade-
off before implementing the proposed algorithm. However, with the improvement of the local computing
resources and the architecture design, the extra time cost might be acceptable with the gains in performance.
Moreover, the extra time cost is not changed with the delay, while the boosting in the performance is more
significant in large delays (as shown in Fig. 2). It means that our algorithm could be more applicable in the
distributed network with various delays, and this is realistic in industrial IoT systems where the computing
resources vary remarkably among the agents and the data in each agent also differs significantly.

5.8 Validation for Theoretical Analysis

Finally, we present two examples to verify our constructed theoretical analysis. We establish a network
involving three agents. We also set two reliable clusters with 1 and 2 agents, respectively. We leverage
three nonconvex functions, i.e., Rastrigin, Rosenbrock Liang et al. (2006) and three three-hump camel
function Horst et al. (2000) to test the performance of our proposed framework. Though these functions
are simple nonconvex problems, they have been used widely to test the performance of many numerical
optimizers Mishra (2006). We randomly sample batches during local training in each agent. We set a fixed
step size according to our Theorem 2 as 0.008. The number of iterations is set to 500 for each case.

14

Published in Transactions on Machine Learning Research (MM/YYYY)

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
2

1

0

1

2

3

(a) Convergence trajectories for Rosen-
brock function

4 2 0 2 4

4

2

0

2

4

(b) Convergence trajectories for Rastrigin
function

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
2

1

0

1

2

3

(c) Convergence trajectories for three-
hump camel function

0 10 20 30 40 50
iteration

10

20

30

40

gr
ad

ie
nt

 n
or

m

delay = 20
bound:delay=20
delay = 125
bound:delay=125
delay = 350
bound:delay=350

(d) Average gradients bound verification
in Rosenbrock function

0 25 50 75 100 125 150 175 200
iteration

60

80

100

120

140

160

gr
ad

ie
nt

 n
or

m

delay = 20
bound:delay=20
delay = 125
bound:delay=125
delay = 350
bound:delay=350

(e) Average gradients bound verification
in Rastrigin function

0 10 20 30 40 50
iteration

10

15

20

25

30

35

40

45

gr
ad

ie
nt

 n
or

m delay = 20
bound:delay=20
delay = 125
bound:delay=125
delay = 350
bound:delay=350

(f) Average gradients bound verification in
three three-hump camel function

Figure 6: The results of simple functions.

From Fig. 6(a), 6(b) and 6(c), we can view the convergence of our proposed PC-ASGD algorithms. For
the bound verification, we take different values of the delay to observe the performances of our theoretical
framework. We first find that when the delay is large, the squared norm of the gradient is large, which is
consistent with our theoretical analysis. In all three cases, the quantitative results verify the correctness
of our proposed theoretical framework in Fig. 6(d), 6(e), and 6(f). In the Rosenbrock function case, our
established theory could describe the tendency of the average gradients square norm and the results are nearly
tight asymptotically. But in Rastrigin function and three three-hump camel function cases, we observe that
the differences between different delays are not large such that the bound is not so tight. However, when
calculating bounds, we find that the bounds for different delays differ mildly, which is consistent with all the
empirical results. It also shows the effectiveness of our proposed theoretical analysis.

6 Limitations

In practical applications, our proposed algorithm still faces challenges. In comparison with the classical
D-ASGD, our methods do not excel in communication efficiency. Notably, our methods introduce additional
computational overhead, as illustrated in Fig. 5 (approximately 0.17 times). This is attributed to increased
communication overhead (doubled for transmitting gradients to compute gdc

k) and heightened memory over-
head, necessitating agents to store xi

t−τ , . . . , xi
t−1.

These challenges become more pronounced when computational resources, communication bandwidth, and
storage capacity are limited. For the real-world implementation of our algorithm, it is necessary to ensure the
availability of adequate resources. It’s also a promising direction to alleviate these burdens by algorithmic
improvements, such as quantization and compression.

In addition to the conventional practice of tuning the learning rate, fine-tuning the parameter λ in gdc
k is

also essential for optimal results (as detailed in Appendix C). If opting to determine the P/C choice θ, it
also requires tuning in accordance with the discussions in Sec. 5.6.

15

Published in Transactions on Machine Learning Research (MM/YYYY)

7 Conclusion

This paper presents a novel learning algorithm for distributed deep learning with heterogeneous delay charac-
teristics in agent-communication-network systems. We propose PC-ASGD algorithm consisting of a predict-
ing step, a clipping step, and the corresponding update law for reducing the staleness and negative effects
caused by the outdated weights. We present theoretical analysis for the convergence rate of the proposed
algorithm with constant step size when the objective functions are weakly strongly-convex and nonconvex.
The numerical studies show the effectiveness of our proposed algorithms in different distributed systems with
delays, by comparing it to multiple baselines. In future work, the cases for distributed networks with diverse
delays and dynamic topology will be further studied and tested.

References
Soheil Abbasloo and H. Jonathan Chao. SharpEdge: An Asynchronous and Core-Agnostic Solution to

Guarantee Bounded-Delays. arXiv e-prints, art. arXiv:2001.00112, Dec 2019.

Nazanin Abolfazli, Afrooz Jalilzadeh, and Erfan Yazdandoost Hamedani. An accelerated asynchronous
distributed method for convex constrained optimization problems. In 2023 57th Annual Conference on
Information Sciences and Systems (CISS), pp. 1–6. IEEE, 2023.

Alekh Agarwal and John C Duchi. Distributed delayed stochastic optimization. arXiv: Optimization and
Control, 2011.

Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. Qsgd: Communication-efficient
sgd via gradient quantization and encoding. Advances in neural information processing systems, 30, 2017.

Mahmoud S Assran and Michael G Rabbat. Asynchronous gradient push. IEEE Transactions on Automatic
Control, 66(1):168–183, 2020.

S. Becker and Yann Lecun. Improving the convergence of back-propagation learning with second-order
methods. In D. Touretzky, G. Hinton, and T. Sejnowski (eds.), Proceedings of the 1988 Connectionist
Models Summer School, San Mateo, pp. 29–37. Morgan Kaufmann, 1989.

Michael Blot, David Picard, Matthieu Cord, and Nicolas Thome. Gossip training for deep learning. arXiv:
Computer Vision and Pattern Recognition, 2016.

Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimization methods for large-scale machine learning.
SIAM review, 60(2):223–311, 2018.

Xuanyu Cao, Tamer Başar, Suhas Diggavi, Yonina C Eldar, Khaled B Letaief, H Vincent Poor, and Junshan
Zhang. Communication-efficient distributed learning: An overview. IEEE journal on selected areas in
communications, 2023.

Yair Carmon, John C Duchi, Oliver Hinder, and Aaron Sidford. Accelerated methods for nonconvex opti-
mization. SIAM Journal on Optimization, 28(2):1751–1772, 2018.

Shicong Cen, Huishuai Zhang, Yuejie Chi, Wei Chen, and Tie-Yan Liu. Convergence of distributed stochastic
variance reduced methods without sampling extra data. IEEE Transactions on Signal Processing, 68:3976–
3989, 2020.

Jianmin Chen, Xinghao Pan, Rajat Monga, Samy Bengio, and Rafal Jozefowicz. Revisiting distributed
synchronous sgd. arXiv preprint arXiv:1604.00981, 2016.

Yang Chen, Xiaoyan Sun, and Yaochu Jin. Communication-efficient federated deep learning with layerwise
asynchronous model update and temporally weighted aggregation. IEEE transactions on neural networks
and learning systems, 31(10):4229–4238, 2019.

Woocheol Choi and Jimyeong Kim. On the convergence analysis of the decentralized projected gradient
descent. arXiv preprint arXiv:2303.08412, 2023.

16

Published in Transactions on Machine Learning Research (MM/YYYY)

Jeffrey Dean, Greg S Corrado, Rajat Monga, Kai Chen, and Andrew Y Ng. Large scale distributed deep
networks. Advances in neural information processing systems, 2013.

Yuyang Deng, Mohammad Mahdi Kamani, and Mehrdad Mahdavi. Distributionally robust federated aver-
aging. Advances in Neural Information Processing Systems, 33, 2020.

Yubo Du, Keyou You, and Yilin Mo. Asynchronous stochastic gradient descent over decentralized datasets.
In 2020 IEEE 16th International Conference on Control & Automation (ICCA), pp. 216–221. IEEE, 2020.

Chen Dun, Mirian Hipolito, Chris Jermaine, Dimitrios Dimitriadis, and Anastasios Kyrillidis. Efficient and
light-weight federated learning via asynchronous distributed dropout. In International Conference on
Artificial Intelligence and Statistics, pp. 6630–6660. PMLR, 2023.

Mathieu Even, Hadrien Hendrikx, and Laurent Massoulié. Asynchrony and acceleration in gossip algorithms.
arXiv preprint arXiv:2011.02379, 2020.

Hamid Reza Feyzmahdavian, Arda Aytekin, and Mikael Johansson. An asynchronous mini-batch algorithm
for regularized stochastic optimization. conference on decision and control, 61(12):1384–1389, 2015.

Jerome Friedman, Trevor Hastie, and Robert Tibshirani. The elements of statistical learning, volume 1.
Springer series in statistics New York, 2001.

Juan Jose Gamboa-Montero, Fernando Alonso-Martin, Sara Marques-Villarroya, Joao Sequeira, and
Miguel A Salichs. Asynchronous federated learning system for human–robot touch interaction. Expert
Systems with Applications, 211:118510, 2023.

Ning Gao, Le Liang, Donghong Cai, Xiao Li, and Shi Jin. Coverage control for uav swarm communication
networks: A distributed learning approach. IEEE Internet of Things Journal, 9(20):19854–19867, 2022.

Guillaume Garrigos and Robert M Gower. Handbook of convergence theorems for (stochastic) gradient
methods. arXiv preprint arXiv:2301.11235, 2023.

Hubert Gijzen. Big data for a sustainable future. Nature, 502(7469):38–38, 2013.

Andrew Hard, Chloe Kiddon, Daniel Ramage, Francoise Beaufays, Hubert Eichner, Kanishka Rao, Rajiv
Mathews, and Sean Augenstein. Federated learning for mobile keyboard prediction. arXiv: Computation
and Language, 2018.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778, 2016a.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual networks. In
Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11–14,
2016, Proceedings, Part IV 14, pp. 630–645. Springer, 2016b.

Reiner Horst, Panos M Pardalos, and Nguyen Van Thoai. Introduction to global optimization. Springer
Science & Business Media, 2000.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected convolu-
tional networks. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
4700–4708, 2017.

Zhanhong Jiang, Aditya Balu, Chinmay Hegde, and Soumik Sarkar. Collaborative deep learning in fixed
topology networks. In Advances in Neural Information Processing Systems, pp. 5904–5914, 2017.

Hamed Karimi, Julie Nutini, and Mark Schmidt. Linear convergence of gradient and proximal-gradient
methods under the polyak-łojasiewicz condition. In Joint European Conference on Machine Learning and
Knowledge Discovery in Databases, pp. 795–811. Springer, 2016.

17

Published in Transactions on Machine Learning Research (MM/YYYY)

Ahmed Khaled, Othmane Sebbouh, Nicolas Loizou, Robert M Gower, and Peter Richtárik. Unified analysis
of stochastic gradient methods for composite convex and smooth optimization. Journal of Optimization
Theory and Applications, 199(2):499–540, 2023.

Alex Krizhevsky. Learning multiple layers of features from tiny images. University of Toronto, 05 2012.

Guanghui Lan, Soomin Lee, and Yi Zhou. Communication-efficient algorithms for decentralized and stochas-
tic optimization. Mathematical Programming, 180(1):237–284, 2020.

Ya Le and Xuan Yang. Tiny imagenet visual recognition challenge. CS 231N, 7(7):3, 2015.

Jinhao Lei, Chao Liu, and Dongxiang Jiang. Fault diagnosis of wind turbine based on long short-term
memory networks. Renewable energy, 133:422–432, 2019.

Zhongguo Li, Bo Liu, and Zhengtao Ding. Consensus-based cooperative algorithms for training over dis-
tributed data sets using stochastic gradients. IEEE Transactions on Neural Networks and Learning Sys-
tems, 2021.

Xiangru Lian, Wei Zhang, Ce Zhang, and Ji Liu. Asynchronous decentralized parallel stochastic gradient
descent. arXiv: Optimization and Control, 2017.

Jing J Liang, A Kai Qin, Ponnuthurai N Suganthan, and S Baskar. Comprehensive learning particle swarm
optimizer for global optimization of multimodal functions. IEEE transactions on evolutionary computation,
10(3):281–295, 2006.

Xinyue Liang, Alireza M Javid, Mikael Skoglund, and Saikat Chatterjee. Asynchrounous decentralized
learning of a neural network. In ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pp. 3947–3951. IEEE, 2020.

Bo Liu, Zhengtao Ding, and Chen Lv. Distributed training for multi-layer neural networks by consensus.
IEEE transactions on neural networks and learning systems, 31(5):1771–1778, 2019.

Chao Liu, Dongxiang Jiang, and Wenguang Yang. Global geometric similarity scheme for feature selection
in fault diagnosis. Expert Systems with Applications, 41(8):3585–3595, 2014.

Xiaolan Liu and Yuanwei Liu. Distributed learning for metaverse over wireless networks. IEEE Communi-
cations Magazine, 2023.

Qinyi Luo, Jiaao He, Youwei Zhuo, and Xuehai Qian. Prague: High-performance heterogeneity-aware asyn-
chronous decentralized training. In Proceedings of the Twenty-Fifth International Conference on Architec-
tural Support for Programming Languages and Operating Systems, pp. 401–416, 2020.

Yinbin Miao, Ziteng Liu, Xinghua Li, Meng Li, Hongwei Li, Kim-Kwang Raymond Choo, and Robert H
Deng. Robust asynchronous federated learning with time-weighted and stale model aggregation. IEEE
Transactions on Dependable and Secure Computing, 2023.

Sudhanshu K Mishra. Some new test functions for global optimization and performance of repulsive particle
swarm method. Available at SSRN 926132, 2006.

Ravi Nair and S Gupta. Wildfire: approximate synchronization of parameters in distributed deep learning.
Ibm Journal of Research and Development, 61(4):7, 2017.

Angelia Nedic. Distributed gradient methods for convex machine learning problems in networks: Distributed
optimization. IEEE Signal Processing Magazine, 37(3):92–101, 2020.

Andrei Patrascu and Ion Necoara. Nonasymptotic convergence of stochastic proximal point methods for
constrained convex optimization. The Journal of Machine Learning Research, 18(1):7204–7245, 2017.

Liangxin Qian, Ping Yang, Ming Xiao, Octavia A Dobre, Marco Di Renzo, Jun Li, Zhu Han, Qin Yi, and
Jiarong Zhao. Distributed learning for wireless communications: Methods, applications and challenges.
IEEE Journal of Selected Topics in Signal Processing, 16(3):326–342, 2022.

18

Published in Transactions on Machine Learning Research (MM/YYYY)

Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu. Hogwild!: A lock-free approach to par-
allelizing stochastic gradient descent. Advances in neural information processing systems, 24:693–701,
2011.

Alessandro Rigazzi. Dc-s3gd: Delay-compensated stale-synchronous sgd for large-scale decentralized neural
network training. arXiv: Learning, 2019.

Theo Ryffel, Andrew Trask, Morten Dahl, Bobby Wagner, Jason Mancuso, Daniel Rueckert, and Jonathan
Passeratpalmbach. A generic framework for privacy preserving deep learning. arXiv: Learning, 2018.

Felix Sattler, Simon Wiedemann, Klaus-Robert Müller, and Wojciech Samek. Robust and communication-
efficient federated learning from non-iid data. IEEE transactions on neural networks and learning systems,
31(9):3400–3413, 2019.

Felix Sattler, Klaus-Robert Müller, and Wojciech Samek. Clustered federated learning: Model-agnostic
distributed multitask optimization under privacy constraints. IEEE Transactions on Neural Networks and
Learning Systems, 32(8):3710–3722, 2021. doi: 10.1109/TNNLS.2020.3015958.

Nikko Strom. Scalable distributed dnn training using commodity gpu cloud computing. In Sixteenth Annual
Conference of the International Speech Communication Association, 2015.

Tao Sun, Dongsheng Li, and Bao Wang. On the decentralized stochastic gradient descent with markov chain
sampling. IEEE Transactions on Signal Processing, 2023.

S Sundhar Ram, Angelia Nedić, and Venugopal V Veeravalli. Distributed stochastic subgradient projection
algorithms for convex optimization. Journal of optimization theory and applications, 147:516–545, 2010.

Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional neural networks. In
International conference on machine learning, pp. 6105–6114. PMLR, 2019.

Konstantinos Tsianos, Sean Lawlor, and Michael G Rabbat. Communication/computation tradeoffs in
consensus-based distributed optimization. In Advances in neural information processing systems, pp. 1943–
1951, 2012.

Konstantinos I Tsianos and Michael G Rabbat. Efficient distributed online prediction and stochastic optimiza-
tion with approximate distributed averaging. IEEE Transactions on Signal and Information Processing
over Networks, 2(4):489–506, 2016.

Jun Tu, Jia Zhou, and Donglin Ren. An asynchronous distributed training algorithm based on gossip
communication and stochastic gradient descent. Computer Communications, 195:416–423, 2022.

Abhinav Venigalla, Atli Kosson, Vitaliy Chiley, and Urs Köster. Adaptive braking for mitigating gradient
delay. arXiv preprint arXiv:2007.01397, 2020.

Simon Wiedemann, Klaus-Robert Müller, and Wojciech Samek. Compact and computationally efficient
representation of deep neural networks. IEEE transactions on neural networks and learning systems, 31
(3):772–785, 2019.

Xuyang Wu, Changxin Liu, Sindri Magnusson, and Mikael Johansson. Delay-agnostic asynchronous dis-
tributed optimization. arXiv preprint arXiv:2303.18034, 2023.

Guojun Xiong, Gang Yan, Shiqiang Wang, and Jian Li. Straggler-resilient decentralized learning via adaptive
asynchronous updates. arXiv preprint arXiv:2306.06559, 2023.

Yang Xu, Zhenguo Ma, Hongli Xu, Suo Chen, Jianchun Liu, and Yinxing Xue. Fedlc: Accelerating asyn-
chronous federated learning in edge computing. IEEE Transactions on Mobile Computing, 2023.

Wei Yang. pytorch-classification. https://github.com/bearpaw/pytorch-classification, 2019. Ac-
cessed: 2019-01-24.

Maxim Zakharov. Asynchronous Consensus Algorithm. arXiv e-prints, art. arXiv:2001.07704, Jan 2020.

19

https://github.com/bearpaw/pytorch-classification

Published in Transactions on Machine Learning Research (MM/YYYY)

Jinshan Zeng and Wotao Yin. On nonconvex decentralized gradient descent. IEEE Transactions on signal
processing, 66(11):2834–2848, 2018.

Tuo Zhang, Lei Gao, Sunwoo Lee, Mi Zhang, and Salman Avestimehr. Timelyfl: Heterogeneity-aware asyn-
chronous federated learning with adaptive partial training. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 5063–5072, 2023.

Shuxin Zheng, Qi Meng, Taifeng Wang, Wei Chen, Nenghai Yu, Zhi-Ming Ma, and Tie-Yan Liu. Asyn-
chronous stochastic gradient descent with delay compensation. In International Conference on Machine
Learning, pp. 4120–4129. PMLR, 2017.

Huiping Zhuang, Yi Wang, Qinglai Liu, and Zhiping Lin. Fully decoupled neural network learning using
delayed gradients. IEEE Transactions on Neural Networks and Learning Systems, 2021.

20

Published in Transactions on Machine Learning Research (MM/YYYY)

A Additional Analysis

Before presenting the main results, we introduce some necessary background on the delay compensated
gradients.

A.1 Connection Between PC Steps

As discussed above, PC-ASGD relies upon the two steps to determine the updates for each agent at every
time step, as displayed in Fig. 7. We first turn to the clipping step (line 7 of Algorithm 1) where all stale

Figure 7: Predicting-Clipping Steps: in the predicting step, blue lines indicate no delay transmission; green
lines represent delayed transmission that requires gradient prediction to reduce the stale effect; in the clipping
step, the agent selectively drops the delayed information while only receiving information without delay.

information is dropped, which is equivalent to ‘clipping’ the original graph to become a smaller scale graph.
Therefore, between the predicting step and the clipping step, we can observe two static graphs switching
alternatively. This also suggests that element values of the mixing matrix W̃ in the clipping step are different
from those in the predicting step. In the predicting step (line 6 of Algorithm 1), the agent still requires all the
information from its neighbors while asking for gradient prediction from the unreliable neighbors. However,
the update is determined by the combination of these two steps in Algorithm 1, which relies on the θ value
to balance the tradeoff. For simplicity, we set the initialization of each agent 0.

We now turn to the practical variant of PC-ASGD in Algorithm 2 in the Appendix. The condition (line 9)
adopted for PC-ASGD is based on the approximate cosine value of the angle between gi(xi

t) and ∆pre (or
∆clip). When the angle between gi(xi

t) and ∆pre (or ∆clip) is smaller, leading to a larger cosine value, the
corresponding step should be chosen as it enables a larger descent amount along with the direction of gi(xi

t).
Hence, with a sequence of graphs and the properly set condition, these two alternating steps are connected
to each other, allowing for convergence.

A.2 Delay compensated gradient

We detail how to arrive at Eq. 2. Specifically, given the outdated weights of agent k, xk
t−τ , due to the delay

equal to τ , by induction, we can obtain for agent k

xk
t−τ+1 =xk

t−τ − ηgk(xk
t−τ)

=xk
t−τ − η

0∑
r=0

[gk(xk
t−τ) + λgk(xk

t−τ) ⊙ gk(xk
t−τ) ⊙ (xi

t−τ+r − xi
t−τ)]

(17)

xk
t−τ+2 =xk

t−τ+1 − ηgk(xk
t−τ+1) = xk

t−τ − ηgk(xk
t−τ) − ηgk(xk

t−τ+1)

≈xk
t−τ − η

1∑
r=0

[gk(xk
t−τ) + λgk(xk

t−τ) ⊙ gk(xk
t−τ) ⊙ (xi

t−τ+r − xi
t−τ)]

· · ·

(18)

xk
t ≈ xk

t−τ − η

τ−1∑
r=0

[gk(xk
t−τ) + λgk(xk

t−τ) ⊙ gk(xk
t−τ) ⊙ (xi

t−τ+r − xi
t−τ)] (19)

21

Published in Transactions on Machine Learning Research (MM/YYYY)

As we mentioned in the main contents, the term (xi
t−τ+r − xi

t−τ) is from agent i due to the outdated
information of agent k, which intuitively illustrates that the compensation is driven by the agent i when
agent k is in its neighborhood and deemed an unreliable one.

A.3 Compact Form of PC Steps

We next briefly discuss how to arrive at the compact form of the predicting and clipping steps for the analysis.
For the convenience of analysis, we set the current time step as t + τ such that line 6 in Algorithm 1 shifts
τ time steps ahead. Let us start with the predicting step and discuss its associated term

∑
j∈R wijxj

t+τ +∑
k∈Rc wikxk

t+τ , where for the time being, it essentially holds that xk
t+τ := xk

t . Note that R includes
the agents i itself. Although unreliable neighbors are outdated, in the context, the update for agent i still
requires such outdated information, which suggests that the whole graph applies. Additionally, the consensus
is performed in parallel with the local computation, so this term boils down to a similar term in the existing
consensus-based optimization algorithms in the literature. Thus, one can convert the current consensus term
for weights to

∑
p wipxp

t+τ , p ∈ V . To show the evolution of predicting gradient over the past steps ranging
from 0 to τ − 1, we use gdc,r

k (xk
t) to represent.

Hence, the update law for the predicting step can be rewritten as:

xi
t+τ+1 =

∑
p

wipxp
t+τ − η(gk(xi

t+τ) +
∑

k∈Rc

wik

τ−1∑
r=0

gdc,r
k (xk

t)) (20)

One may argue that for those outdated agent k ∈ Rc, they have no information ahead of time t, which is
τ time steps back from the current time. As the graph is undirected and connected, the time scale will not
change the connections among agents. Also, for agent i, it receives always information from other agents,
either the current or the outdated to update its weights. Thus, we have,

xp
t+τ =

{
xj

t+τ p = j, j ∈ R
xk

t p = k, k ∈ Rc (21)

Since the term
∑

k∈Rc wik

∑τ−1
r=0 gdc,r

k (xk
t) applies to unreliable neighbors only, for the convenience of analysis,

we expand it to the whole graph. It means that we establish an expanded graph to cover all of agents by
setting some elements in the mixing matrix W ′ ∈ RN×N equal to 0, but keeping the same connections as in
W . Then Eq. 20 can be modified as

xi
t+τ+1 =

∑
p

wipxp
t+τ − η(gk(xi

t+τ) +
∑

q

w′
iq

τ−1∑
r=0

gdc,r
k (xq

t)) (22)

where
w′

iq =
{

wik if q = k, k ∈ Rc

0 if q ∈ R (23)

Thus, we know via the above setting that W ′ is at least a row stochastic matrix. We rewrite the update law
into a compact form such that

xt+τ+1 = Wxt+τ − η(g(xt+τ) +
τ−1∑
r=0

W ′gdc,r(xt)). (24)

where W = W ⊗ Id×d and W ′ = W ′ ⊗ Id×d. Similarly, we rewrite the clipping steps in a vector form as
follows:

xt+τ+1 = W̃xt+τ − ηg(xt+τ) (25)
where W̃ = W̃ ⊗ Id×d. We are now ready to give the generalized step

xt+τ+1 = Wt+τ xt+τ − η(g(xt+τ) + θt+τ

τ−1∑
r=0

W ′gdc,r(xt)), (26)

22

Published in Transactions on Machine Learning Research (MM/YYYY)

where Wt+τ is denoted as θt+τ W + (1 − θt+τ)W̃ throughout the rest of the analysis. Though the original
graphs corresponding to the predicting and clipping steps are static, the equivalent graph Wt+τ has become
time-varying due to the time-varying θ value.

A.4 Approximate Hessian Matrix

Based on the update law, we know that the key part of PC-ASGD is the delay compensated gradients using
Taylor expansion and Hessian approximation. Therefore, the Taylor expansion of the stochastic gradient
g(xt+τ) at xt can be written as follows:

g(xt+τ) = g(xt) + ∇g(xt)(xt+τ − xt) + O((xt+τ − xt)2)I, (27)

where ∇g denotes the matrix with the element ∇gij = ∂F
∂xi∂xj for all i, j ∈ V .

In most asynchronous SGD works, they used the zero-order item in Taylor expansion as its approximation
to g(xt+τ) by ignoring the higher order term. Following from Zheng et al. (2017), we have

g(xt+τ) ≈ g(xt) + ∇g(xt)(xt+τ − xt), (28)

Directly adopting the above equation would be difficult in practice since ∇g(xt) is generically computationally
intractable when the model is very large, such as deep neural networks. To make the delay compensated
gradients in PC-ASGD technically feasible, we apply approximation techniques for the Hessian matrix. We
first use O(xt) to denote the outer product matrix of the gradient at xt, i.e.,

O(xt) = (∂

∂xt
F (xt))(

∂

∂xt
F (xt))T (29)

When the objective functions take the form of the cross-entropy loss or negative log-likelihood, the outer
product of the gradient is an asymptotically unbiased estimation of the Hessian, according to the two
equivalent methods to calculate the Fisher information matrix Friedman et al. (2001). That is,

ϵt = E[∥O(xt) − H(xt)∥] → 0, t → 0 (30)

where H(xt) is the Hessian matrix of F at point xt.

The above equivalence relies on assumptions that the underlying distribution equals the model distribution
with parameter x∗ and that the training model xt asymptotically converges to the (globally or locally)
optimal model x∗. According to the universal approximation theorem for DNN and some recent results on
the optimality of the local optimal, such assumptions are technically reasonable. As the above equivalence
was only developed by the negative log-likelihood form, that may not be applicable when we use PC-ASGD
for the mean square error form, such as some time-series predictions with LSTM networks. Therefore, we
introduce one assumption on the top of such an equivalence as follows,

E[∥O(xt) − H(xt)∥] ≤ ϵ ∃ϵ > 0 (31)

which primarily eliminates the computational complexity when directly calculating H(xt). Another concern
would be the large variance probably caused by O(xt), though it is an unbiased estimation of H(xt). Similar
to Zheng et al. (2017), we introduce a new approximator λO(xt) ≜ λ(∂

∂xt
F (xt))(∂

∂xt
F (xt))T . The authors

in Zheng et al. (2017) have proved that λO(xt) is able to lead to smaller variance during training. Thus we
refer interested readers to Zheng et al. (2017) for more details.

To reduce the storage of the approximator λO(xt), one widely-used diagonalization trick is adopted Becker
& Lecun (1989). Hence, in the update law for PC-ASGD, we can see in the delay compensated gradient
involving λg(xt) ⊙ λg(xt). By denoting the diagonalized approximator as Diag(λO(xt)), the following
relationship is obtained:

Diag(λO(xt)) = λg(xt) ⊙ λg(xt) (32)

23

Published in Transactions on Machine Learning Research (MM/YYYY)

However, for analysis, when we apply diagonalization to H(xt), it could cause diagonalization error such
that we assume that the error is upper bounded by a constant ϵD > 0, i.e.,

∥Diag(H(xt)) − H(xt)∥ ≤ ϵD (33)

B Additional Proof

For completeness, when presenting proof, we re-present statements for all lemmas and theorems.

Lemma 3: The iterates generated by PC-ASGD satisfy ∀t ≥ 0, and τ ≥ 2:

xt+τ =
t+τ−1∏

v=0
Wt+τ−1−vx0 − η

t+τ−1∑
s=0

t+τ−1∏
v=s+1

Wt+τ+s−vg(xs) − η

t+τ−1∑
s=t

t+τ−1∏
v=s+1

θs+1Wt+τ+s−v

τ−2∑
r=0

W ′g(xs+1).

(34)

Proof. Based on the vector form of the update law, we obtain

xt+τ = Wt+τ−1xt+τ−1 − η(g(xt+τ−1) + θt+τ−1

τ−2∑
r=0

W ′gdc,r(xt)) (35)

With the above equation, it can be observed that xt+τ is a function with respect to xt, which contains all of
agents. This suggests that by xt, there were no delay compensated gradients, while after xt+1, the unreliable
neighbors need the delay compensated gradients due to delay. Hence, applying the above equation from 0
to t + τ − 1 yields the desired result.

Bounded (stochastic) gradient assumption: As E[∥g(x)∥2] ≤ G2 and E[g(x)] = ∇F (x), one can get
that ∥∇F (x)∥ = ∥E[g(x)]∥ ≤ E[∥g(x)∥] =

√
(E[∥g(x)∥])2 ≤

√
E[∥g(x)∥2] = G.

Lemma 1: Let Assumptions 2 and 3 hold. Assume that the delay compensated gradients are uniformly
bounded, i.e., there exists a scalar B > 0, such that

∥gdc,r(xt)∥ ≤ B, ∀t ≥ 0 and 0 ≤ r ≤ τ − 1, (36)

Then for all i ∈ V and t ≥ 0, ∃η > 0, we have

E[∥xi
t − yt∥] ≤ η

G + (τ − 1)Bθm

1 − δ2
, (37)

where θm = max{θs+1}t+τ−1
s=t , δ2 = max{θse2 + (1 − θs)ẽ2}t+τ−1

s=0 < 1, where e2 := e2(W) < 1 and ẽ2 :=
e2(W̃) < 1.

Proof. Since

∥xi
t+τ − yt+τ ∥ ≤ ∥xt+τ − yt+τ 1∥ = ∥xt+τ − 1

N
1T xt+τ 1∥

= ∥xt+τ − 1
N

11T xt+τ ∥ = ∥(I − 1
N

11T)xt+τ ∥,

(38)

24

Published in Transactions on Machine Learning Research (MM/YYYY)

where 1 is the column vector with entries all being 1. According to Assumption 2, we have 1
N 11T W = 1

N 11T .
Hence, by induction, setting x0 = 0, and Lemma 3, the following relationship can be obtained

∥xt+τ − yt+τ 1∥

=η∥
t+τ−1∑

s=0
(

t+τ−1∏
v=s+1

Wt+τ+s−v − 1
N

11T)g(xs) +
t+τ−1∑

s=t

(
t+τ−1∏
v=s+1

Wt+τ+s−v − 1
N

11T)θs+1

τ−2∑
r=0

W ′gdc,r(xt)∥

≤η

t+τ−1∑
s=0

∥
t+τ−1∏
v=s+1

Wt+τ+s−v − 1
N

11T ∥∥g(xs)∥ + η

t+τ−1∑
s=t

∥
t+τ−1∏
v=s+1

Wt+τ+s−v − 1
N

11T ∥∥θs+1

τ−2∑
r=0

W ′gdc,r(xt)∥

≤ηG

t+τ−1∑
s=0

δt+τ−1−s
2 + η

t+τ−1∑
s=t

δt+τ−1−s
2 θs+1(τ − 1)B

≤ηG
1

1 − δ2
+ η(τ − 1)Bθm

δt
2 − δt+τ−1

2
1 − δ2

≤η
G + (τ − 1)Bθm

1 − δ2
.

(39)
The second inequality follows from the Triangle inequality and Cauthy-Schwartz inequality and the third
inequality follows from Assumption 2 and that the matrix 1

N 11T is the projection of W onto the eigenspace
associated with the eigenvalue equal to 1. The last inequality follows from the property of geometric sequence.
The proof is completed by replacing t + τ with t on the left hand side.

To prove the main results, we present several auxiliary lemmas first. We define

Gh(xt) =
τ−1∑
r=0

g(xt+r) + H(xt)(vt+r − xt)

∇Fh(xt) =
τ−1∑
r=0

∇F (xt+r) + E[H(xt)(vt+r − xt)]

(40)

which are the incrementally delay compensated gradient and its expectation, respectively. It can be ob-
served that Gh(xt) is the unbiased estimator of ∇Fh(xt). It should be noted that H(xt) = ∇g(xt).
Let vt+τ = Wt+τ xt+τ . We next present a lemma to upper bound ∥∇F (vt+r) − ∇Fh,r(xt)∥, where
∇Fh,r(xt) = ∇F (xt+r) + E[H(xt)(vt+r − xt)].

Lemma 4: Let Assumptions 1,2 and 3 hold. Assume that ∇F (xt) is ξm-smooth. For t ≥ 0, the iterates
generated by PC-ASGD satisfy the following relationship, when r ≥ 1

∥∇F (vt+r) − ∇Fh,r(xt)∥ ≤ ξm

2
η2(2G + (r − 1)Bθm

1 − δ2
)2; (41)

when r = 0, we have

∥∇F (vt) − ∇F (xt)∥ ≤ 2γm
η(G + (τ − 1)Bθm)

1 − δ2
. (42)

Proof. By the smoothness condition for ∇F (x), we have

∥∇F (vt+r) − ∇Fh,r(xt)∥ ≤ ξm

2
∥vt+r − xt∥2 ≤ ξm

2
∥xt+r − xt∥2 (43)

Let ∆t+r = xt+r − xt. Thus, based on Lemma 1, we have

xt+r =
t+r−1∏

v=t

Wt+r−1−vxt −η

t+r−1∑
s=t

t+r−1∏
v=s+1

Wt+r+s−vg(xs)−η

t+r−1∑
s=t

t+r−1∏
v=s+1

Wt+s+r−v

r−2∑
z=0

θs+1W ′gdc,z(xs+1−r)

(44)

25

Published in Transactions on Machine Learning Research (MM/YYYY)

Hence, we can obtain

∥∆t+r∥2 = ∥(
t+r−1∏

v=t

Wt+r−1−v−I)xt−η

t+r−1∑
s=t

t+r−1∏
v=s+1

Wt+r+s−vg(xs)−η

t+r−1∑
s=t

t+r−1∏
v=s+1

Wt+s+r−v

r−2∑
z=0

θs+1W ′gdc,z(xs+1−r)∥2

(45)
Due to x0 = 0 and no delay compensated gradients before time step t, we can obtain

∥∆t+r∥2

=∥ − η

t+r−1∑
s=0

t+r−1∏
v=s+1

Wt+r+s−vg(xs) − η

t+r−1∑
s=t

t+r−1∏
v=s+1

Wt+s+r−v

r−2∑
z=0

θs+1W ′gdc,z(xs+1−r) + η

t∑
s=0

t∏
v=s

Wt+s−vg(xs)∥2

≤η2(∥
t+r−1∑

s=0

t+r−1∏
v=s+1

Wt+r+s−vg(xs)∥ + ∥
t+r−1∑

s=t

t+r−1∏
v=s+1

Wt+s+r−v

r−2∑
z=0

θs+1W ′gdc,z(xs+1−r)∥ + ∥
t∑

s=0

t∏
v=s

Wt+s−vg(xs)∥)2

≤η2(
t+r−1∑

s=0
∥

t+r−1∏
v=s+1

Wt+r+s−vg(xs)∥ +
t+r−1∑

s=t

∥
t+r−1∏
v=s+1

Wt+s+r−v

r−2∑
z=0

θs+1W ′gdc,z(xs+1−r)∥ +
t∑

s=0
∥

t∏
v=s

Wt+s−vg(xs)∥)2

≤η2(
t+r−1∑

s=0

t+r−1∏
v=s+1

∥Wt+r+s−v∥∥g(xs)∥ +
t+r−1∑

s=t

t+r−1∏
v=s+1

∥Wt+s+r−v∥∥
r−2∑
z=0

θs+1W ′gdc,z(xs+1−r)∥

+
t∑

s=0

t∏
v=s

∥Wt+s−v∥∥g(xs)∥)2

≤η2(2G

1 − δ2
+ 1

1 − δ2
B(r − 1)θm)2

≤η2(2G + θm(r − 1)B
1 − δ2

)2

(46)
The first inequality follows from the Triangle inequality. The second inequality follows from the Jensen
inequality. The third inequality follows from the Cauthy-Schwartz inequality and the submultiplicative
matrix norm applied to stochastic matrices. The fourth inequality follows from the Assumption 2 and
bounded gradient. We have observed that this holds when r ≥ 1. While r = 0 enables ∥∇F (vt+r)−Fh,r(xt)∥
to degenerate to ∥∇F (vt) − ∇F (xt)∥ based on the definition of Fh(xt). Using the smoothness condition of
F (x), we can immediately obtain

∥∇F (vt) − ∇F (xt)∥ ≤ 2γmη
G + (τ − 1)Bθm

1 − δ2
. (47)

The proof is completed.

Lemma 5: Let Assumptions 1, 2 and 3 hold. Assume that the delay compensated gradients are uniformly
bounded, i.e., there exists a scalar B > 0 such that

∥gdc,r(xt)∥ ≤ B, ∀t ≥ 0 and 0 ≤ r ≤ τ − 1, (48)

Then for the iterates generated by PC-ASGD, ∃η > 0, they satisfy

∥E[Gh(xt)] −
τ−1∑
r=0

W ′gdc,r(xt)∥

≤
τ−1∑
r=1

(γm + ϵD + ϵ + (1 − λ)G2)η 2G + (r − 1)Bθm

1 − δ2
+ τσ

(49)

26

Published in Transactions on Machine Learning Research (MM/YYYY)

Proof. Based on the definition of EGh(xt), we have

∥E[Gh(xt)] −
τ−1∑
r=0

W ′gdc,r(xt)∥ = ∥E[
τ−1∑
r=0

g(xt+r) +
τ−1∑
r=0

H(xt)(xt+r − xt)] −
τ−1∑
r=0

W ′gdc,r(xt)∥

=∥E[Gh,r=0(xt)] − W ′gdc,r=0(xt) + E[Gh,r=1(xt)] − W ′gdc,r=1(xt) + · · · + E[Gh,r=τ−1(xt)] − W ′gdc,r=τ−1(xt)∥
≤∥E[Gh,r=0(xt)] − W ′gdc,r=0(xt)∥ + ∥E[Gh,r=1(xt)] − W ′gdc,r=1(xt)∥ + · · · + ∥E[Gh,r=τ−1(xt)] − W ′gdc,r=τ−1(xt)∥

(50)
The last inequality follows from the Triangle inequality. Now let us discuss ∥EGh,r(xt) − W ′gdc,r(xt)∥. The
following analysis is for cases where r ≥ 1. We give a brief analysis for the case in which r = 0 subsequently.

∥E[Gh(xt)] − W ′gdc,r(xt)∥
=∥E[g(xt+r) + H(xt)(xt+r − xt)]W ′[g(xt) + λg(xt) ⊙ g(xt) ⊙ (xt+r − xt)]∥
=∥∇F (xt+r) − W ′g(xt) + [H(xt) − λW ′g(xt) ⊙ g(xt)](xt+r − xt)∥
≤∥∇F (xt+r) − W ′g(xt)∥ + ∥[H(xt) − λW ′g(xt) ⊙ g(xt)](xt+r − xt)∥
≤∥∇F (xt+r) − W ′g(xt)∥ + ∥[H(xt) − λW ′g(xt) ⊙ g(xt) + g(xt) ⊙ g(xt) − g(xt) ⊙ g(xt)

− Diag(H(xt)) + Diag(H(xt))](xt+r − xt)∥
≤∥∇F (xt+r) − W ′g(xt)∥ + ∥xt+r − xt∥∥(λW ′g(xt) ⊙ g(xt) − g(xt) ⊙ g(xt)) + (g(xt) ⊙ g(xt)

− Diag(H(xt))) + (Diag(H(xt)) − H(xt))∥
≤∥∇F (xt+r) − W ′g(xt)∥ + ∥xt+r − xt∥(∥λW ′g(xt) ⊙ g(xt) − g(xt) ⊙ g(xt)∥ + ∥g(xt) ⊙ g(xt)

− Diag(H(xt))∥ + ∥Diag(H(xt)) − H(xt)∥)

The third inequality follows from Cauthy-Schwarz inequality while the last one follows from the Triangle
inequality. It should be noted that when we combine H(xt)(xt+r − xt) and λW ′g(xt) ⊙ g(xt) ⊙ (xt+r − xt),
we follow the update law. Since in a rigorously mathematical sense, g(xt) ⊙ g(xt) should be g(xt)g(xt)T .
However, for reducing the computational complexity when implementing the algorithm, as discussed above,
we have made the approximation and diagonalization trick. Hence, we assume that H(xt)−λW ′g(xt)⊙g(xt)
can hold for simplicity and convenience.

Then we discuss E[∥∇F (xt+r) − W ′g(xt)∥].

E[∥∇F (xt+r) − W ′g(xt)∥] ≤ E[∥∇F (xt+r) − g(xt)∥]
=E[∥∇F (xt+r) − ∇F (xt) + ∇F (xt) − g(xt)∥]
≤E[∥∇F (xt+r) − ∇F (xt)∥] + E[∥∇F (xt) − g(xt)∥]

≤γm∥xt+r − xt∥ +
√

(E[∥∇F (xt) − g(xt)∥])2

≤γmη
2G + (r − 1)Bθm

1 − δ2
+

√
E[∥∇F (xt) − g(xt)∥]2

≤γmη
2G + (r − 1)Bθm

1 − δ2
+ σ

(51)

Hence, we have

∥E[Gh(xt)] −
τ−1∑
r=0

W ′gdc,r(xt)∥ ≤γmη
2G + (r − 1)Bθm

1 − δ2
+ [(1 − λ)G2 + ϵD + ϵ]η 2G + (r − 1)Bθm

1 − δ2
+ σ

=(γm + ϵD + ϵ + (1 − λ)G2)η 2G + (r − 1)Bθm

1 − δ2
+ σ

(52)

The above relationship is obtained for cases where r ≥ 1. There still is r = 0 left. For r = 0,

∥∇F (xt) − W ′g(xt)∥ ≤ σ (53)

27

Published in Transactions on Machine Learning Research (MM/YYYY)

Thus, combining each upper bound for ∥E[Gh,r(xt)] − W ′gdc,r(xt)∥, we can obtain

∥E[Gh(xt)] −
τ−1∑
r=0

W ′gdc,r(xt)∥ ≤
τ−1∑
r=1

(γm + ϵD + ϵ + (1 − λ)G2)η 2G + (r − 1)Bθm

1 − δ2
+ τσ, (54)

which completes the proof.

Lemma 6: Let Assumptions 1, 2 and 3 hold. Assume that the delay compensated gradients are uniformly
bounded, i.e., there exists a scalar B > 0 such that

∥gdc,r(xt)∥ ≤ B, ∀t ≥ 0 and 0 ≤ r ≤ τ − 1, (55)

Then for the iterates generated by PC-ASGD, ∃η > 0, they satisfy

F (xt+τ) ≥ F (vt+τ) − 2Gη
G + (τ − 1)Bθm

1 − δ2
(56)

Proof. Due to the convexity, we have

F (xt+τ) ≥ F (vt+τ) + ∇F (vt+τ)(xt+τ − vt+τ)
≥ F (vt+τ) − ∥∇F (vt+τ)∥∥vt+τ − xt+τ ∥
≥ F (vt+τ) − G∥vt+τ − xt+τ ∥
≥ F (vt+τ) − G∥vt+τ − yt+τ 1 + yt+τ 1 − xt+τ ∥
≥ F (vt+τ) − G(∥vt+τ − yt+τ 1∥ + ∥yt+τ 1 − xt+τ ∥)

≥ F (vt+τ) − 2Gη
G + (τ − 1)Bθm

1 − δ2

(57)

The second inequality follows from the Cauthy-Schwarz inequality. The proof is completed.

Theorem 1: Let Assumptions 1,2 and 3 hold. Assume that the delay compensated gradients are uniformly
bounded, i.e., there exists a scalar B > 0 such that

∥gdc,r(xt)∥ ≤ B, ∀t ≥ 0 and 0 ≤ r ≤ τ − 1, (58)

and that ∇F (xt) is ξm-smooth for all t ≥ 0. Then for the iterates generated by PC-ASGD, when 0 < η ≤ 1
2µτ

and the objective satisfies the PL condition, they satisfy

E[F (xt) − F ∗] ≤ (1 − 2µητ)t−1(F (x1) − F ∗ − Q

2µητ
) + Q

2µητ
, (59)

Q = 2(1 − 2µητ)GηC1 + η3ξmG

2

τ−1∑
r=1

Cr + 2η2GγmC1

+ Gητσ + η2G(γm + ϵD + ϵ + (1 − λ)G2)
τ−1∑
r=1

Cr + ηG2 + η2γmGτC2

(60)

and,

C1 = G + (τ − 1)Bθm

1 − δ2

Cr = 2G + (r − 1)Bθm

1 − δ2

C2 = 2G + (τ − 1)Bθm

1 − δ2
,

(61)

ϵD > 0 and ϵ > 0 are upper bounds for the approximation errors of the Hessian matrix.

28

Published in Transactions on Machine Learning Research (MM/YYYY)

Proof. According to the smoothness condition of F (x). We have

E[F (xt+τ+1) − F (x∗)] ≤ E[F (vt+τ) − F (x∗)] + E[⟨∇F (vt+τ), (xt+τ+1 − vt+τ)⟩] + γm

2
E[∥xt+τ+1 − vt+τ ∥2]

(62)

Based on the update law, we can obtain

E[F (xt+τ+1) − F (x∗)]

≤E[F (vt+τ) − F ∗] − ηE[⟨∇F (vt+τ), g(xt+τ)⟩] − ηE[⟨∇F (vt+τ),
τ−1∑
r=0

W ′gdc,r(xt)⟩]

+ γmη2

2
E[∥g(xt+τ) +

τ−1∑
r=0

W ′gdc,r(xt)∥2]

≤E[F (vt+τ) − F ∗] − ηE[⟨∇F (vt+τ), g(xt+τ)⟩] − ηE[⟨∇F (vt+τ), τ∇F (vt+τ)⟩]

+ ηE[⟨∇F (vt+τ), τ∇F (vt+τ) −
τ−1∑
r=0

∇F (vt+r)⟩] + ηE[⟨∇F (vt+τ),
τ−1∑
r=0

∇F (vt+r) − Fh(xt)⟩]

+ ηE[⟨∇F (vt+τ),E[Gh] −
τ−1∑
r=0

W ′gdc,r(xt)⟩] + γmη2

2
E[∥g(xt+τ) +

τ−1∑
r=0

W ′gdc,r(xt)∥2]

(63)

We next investigate each term on the right hand side. Based on Lemma 6, we can obtain

F (xt+τ) ≥ F (vt+τ) − 2Gη
G + (τ − 1)Bθm

1 − δ2
(64)

such that
F (xt+τ) − F ∗ ≥ F (vt+τ) − F ∗ − 2Gη

G + (τ − 1)Bθm

1 − δ2
(65)

For the term −ηE[⟨∇F (vt+τ), g(xt+τ)⟩], we can quickly get that is is bounded above by ηG2 due to the
Cauthy-Schwarz inequality. Then for term −ηE[⟨∇F (vt+τ), τ∇F (vt+τ)⟩], one can get the following relation-
ship due to the PL condition.

−ηE[⟨∇F (vt+τ), τ∇F (vt+τ)⟩] ≤ −2ητµ(F (vt+τ) − F ∗) (66)

Combining F (vt+τ) − F ∗, we have

(1 − 2ητµ)(F (vt+τ) − F ∗)

≤ (1 − 2ητµ)[(F (xt+τ) − F ∗) + 2Gη
G + (τ − 1)Bθm

1 − δ2
]

(67)

Based on Lemma 4, we have known that

∥∇F (vt+r) − ∇Fh,r(xt)∥ ≤ ξm

2
η2[2G + (r − 1)Bθm

1 − δ2
]2; (68)

for r ≥ 1, while for r = 0, it can be obtained that

∥∇F (vt) − ∇F (xt)∥ ≤ 2γmη
G + (τ − 1)Bθm

1 − δ2
. (69)

Since

ηE[⟨∇F (vt+τ),
τ−1∑
r=0

∇F (vt+r) − Fh(xt)⟩] ≤ ηE[∥∇F (vt+τ)∥∥
τ−1∑
r=0

∇F (vt+r) − Fh(xt)∥]

≤ E[∥∇F (vt+τ)∥
τ−1∑
r=0

∥∇F (vt+r) − Fh(xt)∥]

(70)

29

Published in Transactions on Machine Learning Research (MM/YYYY)

The first inequality follows from Cauthy-Schwarz inequality and the second one follows from Triangle in-
equality. Hence, we can have

ηE[⟨∇F (vt+τ),
τ−1∑
r=0

∇F (vt+r) − Fh(xt)⟩] ≤ η3ξmG

2(1 − δ2)

τ−1∑
r=1

[2G + B(r − 1)θm] + 2η2Gγm
G + (τ − 1)Bθm

1 − δ2

(71)

According to Lemma 4, the following relationship can be obtained,

E[⟨∇F (vt+τ),E[Gh(xt)] −
τ−1∑
r=0

W ′gdc,r(xt)⟩] ≤ η2G

1 − δ2
(γm + ϵD + ϵ + (1 − λ)G2)

τ−1∑
r=1

[2G + (r − 1)Bθm] + Gητσ

(72)

The last term is ηE[⟨∇F (vt+τ), τ∇F (vt+τ) −
∑τ−1

r=0 ∇F (vt+r)⟩], which can be rewritten such that

ηE[⟨∇F (vt+τ), τ∇F (vt+τ) −
τ−1∑
r=0

∇F (vt+r)⟩]

≤ηE[∥∇F (vt+τ)∥∥∇F (vt+τ) − ∇F (vt) + · · · + ∇F (vt+τ) − ∇F (vt+τ−1)∥]
≤ηE[∥∇F (vt+τ)∥∥∇F (vt+τ) − ∇F (vt)∥ + · · · + ∥∇F (vt+τ) − ∇F (xt+τ−1)∥]

(73)

Using the smoothness condition, we then can bound the term by deriving the following relationship with
Lemma 1 and Lemma 3,

ηE[⟨∇F (vt+τ), τ∇F (vt+τ) −
τ−1∑
r=0

∇F (vt+r)⟩] ≤ η2γmGτ
2G + (τ − 1)Bθm

1 − δ2
(74)

We combine the upper bounds of each term on the right hand side to produce the following relationship.

E[F (xt+τ+1) − F (x∗)] ≤ (1 − 2ηµτ)(F (xt+τ) − F ∗) + 2(1 − 2ηµτ)Gη
G + (τ − 1)Bθm

1 − δ2

+ η3ξmG

2(1 − δ2)

τ−1∑
r=1

[2G + (r − 1)Bθm] + 2η2Gγm
G + (τ − 1)Bθm

1 − δ2
+ Gητσ + ηG2

+ η2G

1 − δ2
(γm + ϵD + ϵ + (1 − λ)G2)

τ−1∑
r=1

[2G + (r − 1)Bθm] + η2γmGτ
2G + (τ − 1)Bθm

1 − δ2
.

(75)

We now know that
E[F (xt+1) − F ∗] ≤ (1 − 2ητµ)E[F (xt) − F ∗] + Q, (76)

subtracting the constant Q
2µτη from both sides, one obtains

E[F (xt+1) − F ∗] − Q

2µτη
≤ (1 − 2ηµτ)E[F (xt) − F ∗] + Q − Q

2µτη

= (1 − 2ηµτ)(E[F (xt) − F ∗] − Q

2µτη
)

(77)

Observe that the above inequality is a contraction inequality since 0 < 2ηµτ ≤ 1 due to 0 < η ≤ 1
2µτ . The

result thus follows by applying the inequality repeatedly through iteration t ∈ N.

Another scenario that could be of interest is the strongly convex objective. As Theorem 1 has shown with a
properly set constant step size, PC-ASGD is able to converge to the neighborhood of the optimal solution

30

Published in Transactions on Machine Learning Research (MM/YYYY)

with a linear rate. This also applies to the strongly convex objective in which the strong convexity implies
the PL condition, while the constants are subject to changes. We now proceed to give the proof for the
generally convex case.

Theorem 2: Let Assumptions 1, 2 and 3 hold. Assume that the delay compensated gradients are uniformly
bounded, i.e., there exists a scalar B > 0 such that for all T ≥ 1

∥gdc,r(xt)∥ ≤ B, ∀t ≥ 0 and 0 ≤ r ≤ τ − 1, (78)

and there exists C > 0,
E[∥xt − x∗∥] ≤ C, (79)

where x∗ ∈ argminF (x). Then for the iterations generated by PC-ASGD, there exists 0 < η < 1
20γm

, such
that

E[F (x̄T) − F ∗] ≤ ∥x1 − x∗∥2

Tη
+ A

η
, (80)

where A = 10η2σ2
∗ +10η2σ2+20η4G2C2

1 +5η2θ2
mτ2B2+2ηCθmτB+2Gη2C1(2C+1), C1 = G+(τ−1)Bθm

1−δ2
, σ2

∗ :=
E∥g(x∗) − ∇F (x∗)∥2, x̄T := 1

T

∑T
t=1 xt.

Proof. According to the compact update law, we have

∥xt+τ+1 − x∗∥2 = ∥Wt+τ xt+τ − η(g(xt+τ) + θt+τ

τ−1∑
r=0

W ′gdc,r(xt)) − x∗∥2. (81)

As vt+τ = Wt+τ xt+τ , we can obtain

∥xt+τ+1 − x∗∥2 = ∥vt+τ − x∗∥2 − 2η⟨vt+τ − x∗, g(xt+τ) + θt+τ

τ−1∑
r=0

W ′gdc,r(xt)⟩

+ η2∥g(xt+τ) + θt+τ

τ−1∑
r=0

W ′gdc,r(xt)∥2.

(82)

For convenience, we define that Γt+τ = g(xt+τ) + θt+τ

∑τ−1
r=0 W ′gdc,r(xt). Hence, the above equation can be

rewritten as

∥xt+τ+1 − x∗∥2 = ∥vt+τ − x∗∥2 + η2∥Γt+τ ∥2

+ 2η⟨x∗ − vt+τ , g(vt+τ)⟩ + 2η⟨x∗ − vt+τ , g(xt+τ) − g(vt+τ)⟩

+ 2η⟨x∗ − vt+τ , θt+τ

τ−1∑
r=0

W ′gdc,r(xt)⟩.
(83)

Taking expectation on both sides leads to the following relationship:

E[∥xt+τ+1 − x∗∥2] ≤ E[∥xt+τ − x∗∥2] + η2E[∥Γt+τ ∥2]
+ 2ηE[⟨x∗ − vt+τ , ∇F (vt+τ)⟩] + 2ηE[⟨x∗ − vt+τ , ∇F (xt+τ) − ∇F (vt+τ)⟩]

+ 2ηE[⟨x∗ − vt+τ , θt+τ

τ−1∑
r=0

W ′gdc,r(xt)⟩].
(84)

The inequality holds due to the basic property for the projection Sundhar Ram et al. (2010). For the last two
terms on the right hand side of the above inequality, we can leverage Cauchy-Schwartz inequality to obtain
the upper bounds. For 2ηE[⟨x∗ −vt+τ , ∇F (vt+τ)⟩], we will use Lemma 2 to reformulate. We next investigate
η2E[∥Γt+τ ∥2]. Before that, we introduce a theoretical fact for the generally convex smooth functions.

Variance transfer: gradient noise (Lemma 4.20) in Garrigos & Gower (2023). If F is smooth and convex,
then for all x we have that

E[∥g(x)∥2] ≤ 4γm(F (x) − F ∗) + 2σ2
∗, (85)

31

Published in Transactions on Machine Learning Research (MM/YYYY)

where g(x) is the stochastic gradient, σ2
∗ is the variance of stochastic gradient at x∗. Rewrite ∥Γt+τ ∥2 =

∥g(xt+τ) + ∇F (xt+τ) − ∇F (xt+τ) + g(vt+τ) − g(vt+τ) + ∇F (vt+τ) − ∇F (vt+τ) + θt+τ

∑τ−1
r=0 W ′gdc,r(xt)∥2.

We then have the following relationship:
E[∥xt+τ+1 − x∗∥2] ≤ E[∥xt+τ − x∗∥2] + 5η2E[∥g(vt+τ)∥2] + 5η2E[∥g(xt+τ) − ∇F (xt+τ)∥2]

+ 5η2E[∥g(vt+τ) − ∇F (vt+τ)∥2] + 5η2E[∥∇F (xt+τ) − ∇F (vt+τ)∥2]

+ 5η2E[∥θt+τ

τ−1∑
r=0

W ′gdc,r(xt)∥2] + 2ηE[F ∗ − F (vt+τ)]

+ 2ηE[∥x∗ − vt+τ ∥∥∇F (xt+τ) − ∇F (vt+τ)∥] + 2ηE[∥x∗ − vt+τ ∥∥θt+τ

τ−1∑
r=0

W ′gdc,r(xt)∥].

(86)

The last inequality holds due to the basic inequality ∥
∑N

i=1 ai∥2 ≤ N
∑N

i=1 ∥ai∥2, the convexity property,
and Cauchy-Schwartz inequality. By substituting Eq. 85 into Eq. 86, the following relationship can be
obtained
E[∥xt+τ+1 − x∗∥2] ≤ E[∥xt+τ − x∗∥2] + 20η2γmE[F (vt+τ) − F ∗] + 10η2σ2

∗

+ 5η2E[∥g(xt+τ) − ∇F (xt+τ)∥2]
+ 5η2E[∥g(vt+τ) − ∇F (vt+τ)∥2] + 5η2E[∥∇F (xt+τ) − ∇F (vt+τ)∥2]

+ 5η2E[∥θt+τ

τ−1∑
r=0

W ′gdc,r(xt)∥2] + 2ηE[F ∗ − F (vt+τ)]

+ 2ηE[∥x∗ − vt+τ ∥∥∇F (xt+τ) − ∇F (vt+τ)∥] + 2ηE[∥x∗ − vt+τ ∥∥θt+τ

τ−1∑
r=0

W ′gdc,r(xt)∥]

≤ E[∥xt+τ − x∗∥2] + 2η(10γmη − 1)E[F (xt+τ) − F ∗] + 10η2σ2
∗

+ 10η2σ2 + 20η4G2C2
1 + 5η2θ2

mτ2B2 + 2ηC(2GηC1 + θmτB).
(87)

The second inequality follows from Assumption 3, Eq. 47 and bounds for the predicted gradients. With
mathematical manipulation, the above inequality can be written as

2η(1 − 10γmη)E[F (vt+τ) − F ∗] ≤ E[∥xt+τ − x∗∥2] − E[∥xt+τ+1 − x∗∥2]
+ 10η2σ2

∗ + 10η2σ2 + 20η4G2C2
1 + 5η2θ2

mτ2B2 + 2ηC(2GηC1 + θmτB)
(88)

Due to η ≤ 1
20γm

, 1 − 10γmη ≥ 1
2 such that ηE[F (vt+τ) − F ∗] ≤ 2η(1 − 10γmη)E[F (vt+τ) − F ∗]. Dividing

both sides of Eq. 88 by η yields the following

E[F (vt+τ) − F ∗] ≤ 1
η

(E[∥xt+τ − x∗∥2] − E[∥xt+τ+1 − x∗∥2])

+ 1
η

(10η2σ2
∗ + 10η2σ2 + 20η4G2C2

1 + 5η2θ2
mτ2B2 + 2ηC(2GηC1 + θmτB)).

(89)

Similar to Lemma 6, we can obtain that F (vt+τ) ≥ F (xt+τ) − 2Gη G+(τ−1)Bθm

1−δ2
. Then it is immediately

obtained that F (vt+τ) − F ∗ ≥ F (xt+τ) − F ∗ − 2Gη G+(τ−1)Bθm

1−δ2
. With this, the following relationship can

be obtained

E[F (xt+τ) − F ∗] ≤ 1
η

(E[∥xt+τ − x∗∥2] − E[∥xt+τ+1 − x∗∥2]) + A

η
, (90)

where A = 10η2σ2
∗ +10η2σ2 +20η4G2C2

1 +5η2θ2
mτ2B2 +2ηCθmτB +2Gη2C1(2C +1). Recursively summing

over t from 1 to T and replacing t + τ with t grants us the following relationship
T∑

t=1
E[F (xt) − F ∗] ≤ ∥x1 − x∗∥2

η
+ AT

η
. (91)

32

Published in Transactions on Machine Learning Research (MM/YYYY)

Dividing both sides by T in the last relationship attains the following

1
T

T∑
t=1

E[F (xt) − F ∗] ≤ ∥x1 − x∗∥2

Tη
+ A

η
. (92)

Using that F is convex with Jensen inequality gives the desirable result.

In the sequel, we provide the details for the smooth nonconvex functions.

Theorem 3: Let Assumptions 1,2 and 3 hold. Assume that the delay compensated gradients are uniformly
bounded, i.e., there exists a scalar B > 0 such that

∥gdc,r(xt)∥ ≤ B, ∀t ≥ 0 and 0 ≤ r ≤ τ − 1, (93)

and that
E[∥gdc(xt)∥2] ≤ M. (94)

Then for the iterates generated by PC-ASGD, there exists 0 < η < 1
γm

, such that for all T ≥ 1,

1
T

T∑
t=1

E[∥∇F (xt)∥2] ≤ 2(F (x1) − F ∗)
Tη

+ R

η
, (95)

where

R = 2Gη2C1 + τη2γmM

2
+ ησ2

2
+ ηστB + 2η2γm(τB + G)C1.

Proof. According to the smoothness condition of F (x), we have

F (xt+τ+1) − F (vt+τ)

≤⟨∇F (vt+τ), xt+τ+1 − vt+τ ⟩ + γm

2
+ ∥xt+τ+1 − vt+τ ∥2

=⟨∇F (vt+τ), −η(
τ−1∑
r=0

W ′gdc,r(xt) + g(xt+τ))⟩ + η2γm

2
∥

τ−1∑
r=0

W ′gdc,r + g(xt+τ)∥2

=⟨∇F (vt+τ) − ∇F (xt+τ) + ∇F (xt+τ), η(
τ−1∑
r=0

W ′gdc,r(xt) + g(xt+τ))⟩ + η2γm

2
∥

τ−1∑
r=0

W ′gdc,r + g(xt+τ)∥2

= − η⟨∇F (xt+τ),
τ−1∑
r=0

W ′gdc,r(xt) + g(xt+τ)⟩ + η⟨(∇F (vt+τ) − ∇F (xt+τ),
τ−1∑
r=0

W ′gdc,r(xt) + g(xt+τ))⟩

+ η2γm

2
∥

τ−1∑
r=0

W ′gdc,r + g(xt+τ)∥2

= − η

2
[∥∇F (xt+τ)∥2 + ∥

τ−1∑
r=0

W ′gdc,r(xt) + g(xt+τ)∥2 − ∥∇F (xt+τ) − (
τ−1∑
r=0

W ′gdc,r(xt) + g(xt+τ))∥2]

+ η⟨∇F (xt+τ) − ∇F (vt+τ),
τ−1∑
r=0

W ′gdc,r(xt) + g(xt+τ)⟩ + η2γm

2
∥

τ−1∑
r=0

W ′gdc,r + g(xt+τ)∥2

= − η

2
∥∇F (xt+τ)∥2 − η

2
∥

τ−1∑
r=0

W ′gdc,r(xt) + g(xt+τ)∥2 + η

2
(∥∇F (xt+τ) − g(xt+τ)∥2 + ∥

τ−1∑
r=0

W ′gdc,r(xt)∥2

− 2⟨∇F (xt+τ) − g(xt+τ),
τ−1∑
r=0

W ′gdc,r(xt)⟩) + η⟨∇F (xt+τ) − ∇F (vt+τ),
τ−1∑
r=0

W ′gdc,r(xt) + g(xt+τ)⟩

33

Published in Transactions on Machine Learning Research (MM/YYYY)

+ η2γm

2
∥

τ−1∑
r=0

W ′gdc,r + g(xt+τ)∥2

= − η

2
∥∇F (xt+τ)∥2 − (η

2
− η2γm

2
)∥

τ−1∑
r=0

W ′gdc,r(xt) + g(xt+τ)∥2 + η

2
∥∇F (xt+τ) − g(xt+τ)∥2 + η

2
∥

τ−1∑
r=1

W ′gdc,r(xt)∥2

− η⟨∇F (xt+τ) − g(xt+τ),
τ−1∑
r=1

W ′gdc,r(xt)⟩ + η⟨∇F (xt+τ) − ∇F (vt+τ),
τ−1∑
r=0

W ′gdc,r(xt) + g(xt+τ)⟩

= − η

2
∥∇F (xt+τ)∥2 + (η2γm

2
− η

2
)∥

τ−1∑
r=0

W ′gdc,r(xt)∥2 + (η2γm

2
− η

2
)∥g(xt+τ)∥2

+ (η2γm

2
− η

2
)⟨g(xt+τ),

τ−1∑
r=0

W ′gdc,r(xt)⟩ + η

2
∥∇F (xt+τ) − g(xt+τ)∥2 + η

2
∥

τ−1∑
r=1

W ′gdc,r(xt)∥2

− η⟨∇F (xt+τ) − g(xt+τ),
τ−1∑
r=1

W ′gdc,r(xt)⟩ + η⟨∇F (xt+τ) − ∇F (vt+τ),
τ−1∑
r=0

W ′gdc,r(xt) + g(xt+τ)⟩

≤ − η

2
∥∇F (xt+τ)∥2 + (η2γm

2
− η

2
)∥

τ−1∑
r=0

W ′gdc,r(xt)∥2 + (η2γm

2
− η

2
)∥g(xt+τ)∥2

+ (η2γm

2
− η

2
)∥g(xt+τ)∥∥

τ−1∑
r=0

W ′gdc,r(xt)∥ + η

2
∥∇F (xt+τ) − g(xt+τ)∥2 + η

2
∥

τ−1∑
r=1

W ′gdc,r(xt)∥2

+ η∥∇F (xt+τ) − g(xt+τ)∥∥
τ−1∑
r=1

W ′gdc,r(xt)∥ + η∥∇F (xt+τ) − ∇F (vt+τ)∥∥
τ−1∑
r=0

W ′gdc,r(xt) + g(xt+τ)∥.

The first inequality follows from the smooth property of the objective. The last inequality follows from
Cauthy-Schwarz inequality. The left hand side of the above inequality can be rewritten:

F (xt+τ+1) − F (xt+τ) + F (xt+τ) − F (vt+τ)

Taking expectations for both sides, with the last inequality, we have

E[F (xt+τ+1) − F (xt+τ)]

≤E[F (vt+τ) − F (xt+τ)] − η

2
E[∥∇F (xt+τ)∥2] + η2γm − η

2
E[∥

τ−1∑
r=0

W ′gdc,r(xt)∥2] + η2γm − η

2
E[∥g(xt+τ)∥2]

+ η2γm − η

2
E[∥g(xt+τ)∥∥

τ−1∑
r=0

W ′gdc,r(xt)∥] + η

2
E[∥∇F (xt+τ) − g(xt+τ)∥2] + η

2
E[∥

τ−1∑
r=1

W ′gdc,r(xt)∥2]

+ ηE[∥∇F (xt+τ) − g(xt+τ)∥∥
τ−1∑
r=1

W ′gdc,r(xt)∥] + ηE[∥∇F (xt+τ) − ∇F (vt+τ)∥∥
τ−1∑
r=0

W ′gdc,r(xt) + g(xt+τ)∥]

≤GE[∥vt+τ − xt+τ ∥] − η

2
E[∥∇F (xt+τ)∥2] + η2γm − η

2
τ

τ−1∑
r=0

E[∥W ′gdc,r(xt)∥2] + η2γm − η

2
E[∥g(xt+τ)∥2]

+ η2γm − η

2
E[∥g(xt+τ)∥∥

τ−1∑
r=0

W ′gdc,r(xt)∥] + η

2
E[∥∇F (xt+τ) − g(xt+τ)∥2] + η

2
E[∥

τ−1∑
r=1

W ′gdc,r(xt)∥2]

+ ηE[∥∇F (xt+τ) − g(xt+τ)∥∥
τ−1∑
r=1

W ′gdc,r(xt)∥] + ηE[∥∇F (xt+τ) − ∇F (vt+τ)∥∥
τ−1∑
r=0

W ′gdc,r(xt) + g(xt+τ)∥]

≤ − η

2
E[∥∇F (xt+τ)∥2] + τ2η2γmM

2
+ ησ2

2
+ ηστB + 2η2γm(τB + G + G

ηγm
)G + (τ − 1)Bθm

1 − δ2
(96)

34

Published in Transactions on Machine Learning Research (MM/YYYY)

The last inequality follows from the smoothness condition of F (x) and the bounded gradient, respectively,
as well as η < 1

γm
. Hence, by replacing t + τ with t, one can obtain

E[F (xt+1) − F (xt)] ≤ −η

2
E[∥∇F (xt)∥2] + R (97)

where R indicates the constant term on the right hand side of the inequality. As we assume that F (x) is
bounded from below, applying the last inequality from 1 to T , one can get

F ∗ − F (x1) ≤ E[F (xt+1)] − F (x1) ≤ −η

2

T∑
t=1

E[∥∇F (xt)∥2] + TR (98)

which results in
T∑

t=1
E[∥∇F (xt)∥2] ≤ 2[(F (x1) − F ∗) + TR]

η
(99)

Dividing both sides by T , the desirable results are obtained.

C Detailed Settings of Deep Learning Models

Model Settings For the PreResNet110 (model 1), DenseNet (model 2), ResNet20 (model 3) and Efficient-
Net (model 4), models’ architectures are shown in He et al. (2016b), Huang et al. (2017), He et al. (2016a)
and Tan & Le (2019) respectively. The batch size is selected as 128. After hyperparameter searching in
(0.1, 0.01, 0.001), the learning rate is set as 0.01 for the first 160 epochs and changed to 0.001. The decays
are applied in epochs (80, 120, 160, 200). The approximation coefficient λ is set as 1. λ = 0.001 is first tried
as suggested by DC-ASGD Zheng et al. (2017) and the results show that the predicting step doesn’t affect
the training process. By considering the upper bound of 1, a set of values (0.001, 0.1, 1) are tried, and λ = 1
is applied according to the performance.

Hardware environment. Our experiments are implemented and evaluated at GTX-1080 ti with Intel
Xenon 2.55GHz processor with 32GB RAM.

Table 5: Performance comparison in TinyImageNet and Time Series dataset

Model & dataset Pre110
TinyImageNet

DesNet
TinyImageNet

EfficientNet
TinyImageNet

LSTM
Wind Turbine Data

PC-ASGD (Ours) 58.0 ± 1.4 61.4 ± 0.7 74.8 ± 0.9 71.2 ± 0.5
D-ASGD

Lian et al. (2017) 52.1 ± 0.3 57.5 ± 0.2 70.4 ± 0.5 66.2 ± 0.1

DC-s3gd
Rigazzi (2019) 55.1 ± 0.8 58.5 ± 1.4 73.2 ± 1.2 61.4 ± 1.1

D-ASGD with IS
Du et al. (2020) 53.2 ± 0.9 58.1 ± 1.2 73.4 ± 0.7 69.2 ± 0.2

Adaptive Braking
Venigalla et al. (2020) 55.2 ± 1.2 60.2 ± 1.1 67.3 ± 1.5 66.5 ± 1.2

Table 6: Performance evaluation of ResNet20 on CIFAR-10

20 agents

Model & dataset
PC-ASGD P-ASGD C-ASGD Baseline

acc. (%) o.p. (%) acc. (%) o.p. (%) acc.(%) o.p. (%) acc. (%)
ResNet 20, CIFAR-10 84.9 ± 0.6 2.4 ± 0.7 82.9 ± 0.7 0.4 ± 0.8 83.8 ± 0.8 1.3 ± 0.9 82.5 ± 0.1

acc.–accuracy, o.p.–outperformed comparing to baseline.

35

Published in Transactions on Machine Learning Research (MM/YYYY)

D More Empirical Results with different datasets

We also adopt our numerical studies on TinyImageNet Le & Yang (2015) and Wind turbine data set Liu
et al. (2014). For TinyImageNet, we adopt PreResNet110 He et al. (2016b), DenseNet Huang et al. (2017),
and EfficientNet Tan & Le (2019). For the wind turbine data set, we use LSTM3 in Lei et al. (2019) to
classify the fault in the wind turbine.

Results in Tab. 5 shows the effectiveness of our proposed methods in different models, datasets, and even
different tasks (time series classification). It further demonstrates the generality of our proposed framework.

We also supplement the experiment with ResNet20 on CIFAR-10 to ablate the functions of the P-step and
C-step in Tab. 6. The quantitative results are consistent with Tab. 2, showing the benefits of our PC steps
design.

3Actually, we use SGD-based optimizer for better analysis instead of Adam in Lei et al. (2019), hence we do not achieve the
best results in Lei et al. (2019). But our framework shows the best performances among other framework handling delay.

36

	Introduction
	Formulation and Preliminaries
	PC-ASGD
	Algorithm Design

	Convergence Analysis
	Experiments
	Practical Variant
	Distributed Network and Learning Setting
	Performance Evaluation
	Impacts of Different Delay Settings
	Impacts of Network Size
	Numerical Studies on theta Assignments
	Time Cost Comparison
	Validation for Theoretical Analysis

	Limitations
	Conclusion
	Additional Analysis
	Connection Between PC Steps
	Delay compensated gradient
	Compact Form of PC Steps
	Approximate Hessian Matrix

	Additional Proof
	Detailed Settings of Deep Learning Models
	More Empirical Results with different datasets

