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Abstract

We propose a novel one-step supervised imitation learning (IL) framework called Adversarial
Density Regression (ADR). This imitation learning (IL) framework seeks to utilize a single-
step re-weighted behavioral cloning (BC) objective to rectify the policy acquired under
conditions of unknown quality by aligning it with the expert distribution using demonstrations.
Specifically, ADR is designed to address several limitations in previous IL algorithms: First,
existing off-policy IL algorithms are based on the Bellman operator, which inevitably suffers
from cumulative offsets from sub-optimal multi-step rewards. Additionally, these off-policy
frameworks suffer from out-of-distribution (OOD) state-actions. Second, the conservative
terms that help solve the OOD issue require nuanced and delicate balancing. To address these
limitations, we fully integrate a one-step density-weighted BC objective for IL with auxiliary
imperfect demonstration. Theoretically, we demonstrate that this adaptation can effectively
correct the distribution of policies trained on unknown-quality datasets to align with the
expert policy’s distribution. The difference between the empirical and the optimal value
function is proportional to the upper bound of ADR’s objective, indicating that minimizing
ADR’s objective is akin to approaching the optimal value. Empirically, we conduct extensive
evaluations and find that ADR outperforms all of the selected IL algorithms on tasks from
the Gym-Mujoco domain. Meanwhile, ADR achieves about 90% improvement over IQL
when utilizing ground truth rewards on tasks from the Adroit and Kitchen domains.

1 Introduction

Reinforcement Learning (RL) has revolutionized various fields, including robot learning (Brohan et al., 2023a;b;
Bhargava et al., 2020), language modeling (Ouyang et al., 2022; Meta, 2023), and natural science (Gómez-
Bombarelli et al., 2018). Despite its success, RL requires extensive interactions with the environment to
obtain the optimal policy, which poses challenges for sample efficiency. One way to address this limitation
is by leveraging static RL datasets in offline settings. However, this approach often faces the issue of
overestimation of out-of-distribution (OOD) states-actions (Levine et al., 2020). To mitigate this, prior
research has introduced conservative methods, such as incorporating regularization terms (Fujimoto et al.,
2019a; Wu et al., 2022) in the policy learning objective, or pessimism terms in value function learning
objective (Kumar et al., 2020a). These methods have been found to effectively alleviate OOD issues and
enable the learning of policies that outperform the behavior policy (Kostrikov et al., 2021). However, offline
RL algorithms generally assume that offline datasets contain reward labels. Moreover, striking a balance with
conservative terms in offline RL remains difficult, particularly for tasks with sparse rewards (Cen et al., 2024).

On the other hand, when the dataset does not contain rewards, we can utilize Imitation Learning (IL)
algorithms to learn near-expert policy by leveraging a large amount of unknown-quality datasets and a small
number of demonstrations (Argall et al., 2009). In particular, one of the most common methods is to train a
discriminator through generative Adversarial learning (AL) to represent the reward or value functions (Ho
and Ermon, 2016), followed by updating within RL frameworks. However, it is difficult for the discriminator
to converge to its optimal value (Kostrikov et al., 2019). Furthermore, sub-optimal reward or value functions
can lead to unstable training.
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To address these limitations, we propose ADR, an efficient, single-stage supervised learning framework that
employs a density-weighted behavioral cloning objective to optimize policy learning. The key objective of
ADR is to closely align the policy distribution with that of the demonstrations while diverging from the
distributions of datasets with unknown quality. Theoretically, this method effectively shifts the empirical
distribution toward the expert distribution in a direct and corrective manner (Proposition 5.2). Moreover, we
demonstrate in Proposition 5.3 that the value bound is proportional to the lower bound of ADR’s objective.
Thus, minimizing ADR’s objective leads to convergence towards the optimal policy. In particular, ADR is
a one-step supervised IL framework, where all training samples are in-sample, effectively eliminating the
challenges of OOD issues. Furthermore, ADR is a simple and feasible solution, as most RL studies frame
the offline RL problem within a Markov Decision Process (MDP) (Kumar et al., 2019; Kostrikov et al.,
2021; Haarnoja et al., 2018; Fujimoto et al., 2019b; van Hasselt et al., 2015). Under the MDP setting,
decision-making depends solely on the current observation and policy, independent of historical information.
Thus, if the action support is adequately relocated, the policy’s performance can be ensured. To validate
ADR’s effectiveness, we evaluated it across various tasks from the Adroit and Gym-Mujoco domains under
the Learning from Demonstration (LfD) setting, where it demonstrated competitive results. Notably, ADR
outperforms Implicit Q Learning (IQL) with rewards by 89.5% on tasks from the Adroit and Kitchen domains,
and performs better than selected diffusion policy on the Adroit domain. In summary, our main contribution
is ADR, a single-step supervised IL method, specifically:

• ADR operates as a single-step supervised learning paradigm, rendering it immune to the accumulated
offsets resulting from suboptimal rewards. Meanwhile, compared to traditional single-step IL
paradigms such as Behavioral Cloning (BC), ADR can achieve better performance with fewer demos
based on adversarial density-weighted regression.

• ADR neither requires the addition of conservative terms nor extensive hyperparameter parameter
tuning during the training process.

• Moreover, ADR poses a theoretical guarantee and empirical improvements. We prove and empirically
show that optimizing ADR’s objective is akin to approaching the demo policy. ADR also outperforms
the majority of RL-combined approaches across diverse domains.

2 Related Work

Behavior Policy Modeling. Previously, estimating the support of the behavior policy has been approached
using various methods, including Gaussian (Kumar et al., 2019; Wu et al., 2019) or Gaussian mixture (Kostrikov
et al., 2021) sampling approaches, Variational Auto-Encoder (VAE) based techniques (Kingma and Welling,
2022; Debbagh, 2023), or accurate sampling via auto-regressive language models (Germain et al., 2015).
Specifically, the most relevant research to our study involves utilizing VAE to estimate the density-based
definition of action support (behavior density) (Fujimoto et al., 2019b; Wu et al., 2022). On the other hand,
behavior density is utilized to regularize the offline training policy (Fujimoto and Gu, 2021), reducing the
extrapolation error of offline RL algorithms, it has also been utilized in offline-to-online setting (Wu et al.,
2022; Fujimoto and Gu, 2021; Nair et al., 2021) to ensure the stable online fine-tuning. Different from the
previous study, Our focus is on using the estimated density from the demonstrations and datasets to optimize
the policy with the ADR objective.

Imitation Learning. Modern Imitation Learning (IL) are generally RL-combined type. Primarily, RL
combined-type IL can be categorized nto Learning from Demonstration (LfD) (Argall et al., 2009; Judah
et al., 2014; Ho and Ermon, 2016; Brown et al., 2020; Ravichandar et al., 2020; Boborzi et al., 2022) and
Learning from Observation (LfO) (Ross et al., 2011a; Liu et al., 2018; Torabi et al., 2019; Boborzi et al.,
2022). Different from these approaches, our ADR does not require the estimation of reward/value functions.

3 Preliminaries

Reinforcement Learning (RL). We consider RL can be represented by a Markov Decision Process (MDP)
tuple i.e., M := (S,A, p0, r, dM, γ), where S and A separately denotes observation and action space, a ∈ A
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and s ∈ S separately denotes state (observation) and action (decision making). s0 denotes initial observation,
p0 denotes initial distribution, r(st, at) : S ×A → R denotes reward function. dM(st+1|st, at) : S ×A → ∆(S)
denotes the transition function, γ ∈ [0, 1] denotes the discounted factor. The goal of RL is to obtain the
optimal policy π∗ that can maximize the accumulated Return i.e., π∗ := arg maxπ

∑t=T
t=0 γt · r(st, at), where

τ =
{

s0, a0, r(s0, a0), · · · , sT , aT , r(sT , aT )|s0 ∼ p0, at ∼ π(·|st), st+1 ∼ dM(·|st, at)
}

, and T denotes time
horizon.

Imitation Learning (IL). In IL problem setting, r(s, a) is inaccessible, but we have access to a limited
number of demonstrations D∗ = {τ∗ = {s0, a0, s1, a1, · · · , sk, ak, · · · sT , aT |at ∼ π∗(·|s), s0 ∼ p0, st+1 ∼
dM(st+1|st, at)}}, and large amount of unknown-quality dataset D̂ = {τ̂ |τ̂ ∼ π̂}. In particular, one of the
classical IL methods is BC, where the objective is to maximize the likelihood of expert decision-making, as
follows:

πθ := arg max
πθ

E(s,a)∼D∗ [log πθ(a|s)], (1)

however, BC’s performance is brittle when D∗ is scarcity (Ross et al., 2011b). Another approach is to recover
a policy π(·|s) by matching the distribution of the expert policy. Since π∗ cannot be directly accessed,
previous studies frame IL as a distribution-matching problem. Specifically, the process initiates by estimating
a reward or Q-function c(s, a) through Adversarial learning (Kostrikov et al., 2019), as below:

c(s, a) : = arg min
c

E(s,a)∼D̂[log(σ(c(s, a)))] + E(s,a)∼D∗ [log(1 − σ(c(s, a)))], (2)

where σ denotes the Sigmoid function. The empirical policy πθ is then optimized within a RL framework.
However, most of these distribution-matching approaches rely on Adversarial learning, which often suffers
from unstable training caused by sub-optimal reward or value functions. Different from these IL methods,
our approach is purely a supervised IL framework that entirely utilizes a density-weighted BC objective to
align the empirical policy with epxert distributions. Nevertheless, our method necessitates the estimation of
behavior density as a prerequisite.

Behavior density estimation via Variational Auto-Encoder (VAE). Typically, action support
constrain i.e., DKL[πθ||πβ

]
≤ ϵ has been utilized to confine the training policy to the support set of the

behavior policy πβ (Kumar et al., 2019; Fujimoto et al., 2019b), aiming to mitigate extrapolation error.
Another efficient approach estimates behavior density via diffusion policy, however, diffusion suffers from
higher computing complexity and are not coincide with our problem setting (details see Appendix 8). In
this research, we propose leveraging existing datasets and demonstrations to separately learn the data and
demo behavior densities, which are then utilized for ADR. In particular, we follow Wu et al. to estimate the
density of action support with Linear Variational Auto-Encoder (VAE) (as demonstrated VAE-1 in Damm
et al.) by Empirical Variational Lower Bound (ELBO) :

log pΘ(a|s) ≥ EqΦ(z|a,s)[log pΘ(a, z|s)] − DKL[qΦ(a|s, a)||p(s|z)] def= −LELBO(s, a; Θ, Φ), (3)

and computing the policy likelihood through importance sampling during evaluation:

log pΘ(a|s) ≈ Ezl∼qΦ(z|s,a)

[
1
L

∑
L

pΘ(a, zl|s)
qΦ(zl|a, s)

]
def= Lπβ

(s, a; Θ, Φ, L), (4)

where zl ∼ qΦ(z|s, a) is the lth sampled VAE embedding, Θ and Φ are separately encoder’s and decoder’s
parameters, l and L respectively denote the lth sampling index and the total sampling times.

4 Problem Formulation

Previous IL algorithms have several limitations: 1) Utilizing multi-step sub-optimal reward or value functions
will cause accumulated offsets. Additionally, off-policy frameworks are suffered from OOD state actions.
2) Some off-policy offline frameworks necessitate tuning of hyperparameters to strike a balance between
conservatism, and overly conservatism constrains the exploratory capacity of policies, limiting their ability to
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adapt and improve beyond the demonstrations provided. To overcome these issues, we completely adapt a
supervised learning objective ADR to correct the policy distribution on unknown-quality datasets using a
small number of demonstrations. Meanwhile, the policy we employ is a Gaussian policy, which adheres to a
Gaussian distribution i.e. π ∼ N (µ, σ). Our theoretical proofs are also grounded on the assumption that the
policy used is a Gaussian one.

Notations. Before formulating our objective, we first define P ∗(a|s) as the expert behavior density1, and
define the sub-optimal behavior density as P̂ (a|s). Meanwhile, we define the training policy as πθ(·|s) : S → A.
Additionally, we denote the stationary distributions of the empirical policy, datasets, and expert policy by dπ,
dD and dπ∗ , respectively. And, we denote Kullback-Leibler (KL) divergence as DKL.
Definition 1. (Stationary Distribution) We separately define the γ discounted stationary distribution (state-
action occupancy) of expert and non-expert behavior as dπ∗(s, a) and dπ(s, a). In particular, dπ(s, a) can be
formulated as:

dπ(s, a) := (1− γ)
∞∑

t=0
γt · Pr(s = st, a = at|s0 ∼ µ0, at ∼ π(·|st), st+1 ∼ dM(·|st, at)),

and, dπ∗(s, a) can be formulated by replacing π with π∗

Remark 4.1. dπ(s) > 0 whenever dD(s) > 0 is a guarantee that the on-policy samples D has coverage over
the expert state-marginal, and is necessary for IL to succeed. (This remark has been extensively deliberated
by Ma et al.)

Policy Distillation via KL Divergence. Rusu et al. demonstrates the effectiveness of policy distillation
by minimizing the KL divergence between the training policy πθ and the likelihood of teacher policy set
πi ∈ Π, i.e., π := arg minπθ

DKL[πθ||πi]
∣∣
πi∈Π. Meanwhile, if the condition mentioned in Remark 4.1 is held,

we can directly achieve expert behavior through distillation, i.e.,

π := arg min
πθ

DKL[πθ||P ∗]. (5)
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however, it’s insufficient to mimic the expert behavior by minimizing the KL
divergence between πθ(a|s) and P ∗(a|s), since the limited demonstrations
aren’t sufficient to help to estimate a good P ∗(·|s). To address this
limitation, we propose Adversarial Density Regression (ADR), a supervised
learning algorithm that utilizes a limited number of demonstrations to
correct the distribution learned by the policy on datasets of unknown
quality, thereby bringing it closer to the expert distribution.

Adversarial Density Regression (ADR). In particular, beyond align-
ing πθ with the expert distribution P ∗, we also push πθ away from the
empirical distribution P̂ , as formulated in Equation 6. This approach
is formalized as Adversarial Density Regression (ADR) in Definition 2.
The primary advantage of ADR lies in its independence from the Bellman
Operator, and ADR is one-step supervised learning paradigm. Therefore,
ADR isn’t impacted by the cumulative offsets that are introduced during
multi-step updates (demonstrated in Figure 1), ensuring a more stable and
reliable learning process.
Definition 2 (Adversarial Density Regression (ADR)). Given expert behavior density P ∗(a|s) and sub-optimal
behavior density P̂ (a|s), we formulate the objective of ADR, where πθ approaches the expert behavior while
diverging from the sub-optimal behavior, as follows:

πθ := arg min
πθ

ED[DKL

[
πθ||P ∗]−DKL[πθ||P̂ ]

]
, (6)

1The conception of behavior density is proposed by Wu et al., representing the density probability of the given action a
within the action support
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Density Weighted Regression (DWR). However, it’s computing in-efficient to directly compute the
objective formulated in Definition 2. But, according to Theorem 4.2, we can instead computing:

πθ := arg min
πθ

E(s,a)∼D
[
W(P̂ , P ∗) · ||πθ(·|s)− a||2

]
. (7)

to replace Equation 6, where W(P̂ , P ∗) = log P ∗(a|s)
P̂ (a|s) termed density weight.

Theorem 4.2 (ADR can be solved by linear weighted regression form). Given expert log behavior density
log P ∗(a|s) : S ×A → R, sub-optimal log behavior density log P̂ (a|s) : S ×A → R, and the empirical policy
πθ : S → A, offline dataset D. Minimizing Equation 6. is equivalent to:

min J(πθ) ≡ minE(s,a)∼D
[
W(P̂ , P ∗) · ||πθ(·|s)− a||2

]
. (8)

Proof. of Theorem 4.2, see Appendix F.1.

Furthermore, to address the limitations of BC’s tendency to overestimate given state-action pairs, we propose
alternately minimizing the upper bound of Equation 7, mitigating the overestimation issues:

J(πθ) ≤ EβD∼DE(s,a)∼βD

[
W(P̂ , P ∗)] · E(s,a)∼βD [||πθ(·|s)− a||2]. (9)

Proof. of Equation 9, see Appendix F.1.

Where βD ∈ D denotes a batch of samples drawn from the offline dataset during the offline training process.

5 Theoretical Analysis of Adversarial Density Regression

In this section, we further conduct a theoretical analysis to demonstrate the convergence and advantage of
ADR.
Assumption 5.1. Suppose the policy extracted from Equation 9 is π, we separately define the state marginal
of the dataset, empirical policy, and expert policy as dD, dπ and dπ∗ , they satisfy this relationship:

DKL[dπ||dπ∗
] ≤ DKL[dD||dπ∗

]. (10)

Proposition 5.2 (Policy Convergence of ADR). Assuming Equation 6 can finally converge to ϵ via minimizing
Equation 8, meanwhile, assuming Assumption F.2 is held. Then E(s,a)∼D̂[DKL(π||π∗)]→ M

2n ·
√

log 2
δ +∆C +ϵ.

Proposition 5.3. (Value Bound of ADR) Given the empirical policy π and the optimal policy π∗, let V π(ρ0)
and V π∗(ρ0) separately denote the value network of π and π∗, and given the discount factor γ. Meanwhile, let
Rmax as the upper bound of the reward function i.e., Rmax = max ||r(s, a)||. Based on the Assumption 5.1,
Assumption F.2, Lemma F.8, and Proposition 5.2, we can obtain:

|V π(ρ0) − V π∗
(ρ0)| ≤ Rmax

1 − γ
DT V [d∗(s)||dD(s)]︸ ︷︷ ︸

w.l.o.g

+2 · Rmax

1 − γ
·

√
2 · ( M

2n
·
√

log 2
δ

+ ∆C + ϵ), (11)

where, ∆C = C1 − C2 is a constant term, dependent on the state distribution. δ originates from Assump-
tion F.2, n = |D∗|, M := arg maxXi

{Xi = π∗(at|st) log π∗(at|st)
π̂(at|st) |(st, at) ∼ D∗}.

Proof. of Proposition 5.2 and Proposition 5.3, see Appendix F.4 and Appendix F.9.

From Proposition 5.2, we can infer that if Equation 6 converges to a small threshold ϵ, the KL divergence
between the likelihood of π and π∗ on unknown-quality data will converge to the same order of magnitude
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i.e., O(ϵ). This implies that the action distribution learned by the π will become closer to the π∗, as long as
the states in the unknown-quality data sufficiently cover the states of the π∗, π will learn as many expert
decisions as possible. At the same time, in Proposition 5.3, we further prove that the regret of policy π
is proportional to the convergence upper bound of Equation 6. Therefore, minimizing Equation 6 implies
that V π(ρ0) will converge to the V π∗(ρ0) considering the current dataset. Specifically, the first term on the
left-hand side of Equation 11 is determined by the quality of the dataset, which is generally applicable to all
algorithms (w.l.o.g). However, the second term is unique to ADR, as the supervised optimization objective
of ADR aligns with maximizing V π(ρ0). Therefore, minimizing ADR’s objective can bring π closer to π∗.

Further analysis regard the multiplicative terms. In our Proposition 5.3, there are some multiplicative
terms such as ∆C and M . Intuitively, the presence of these multiplicative terms makes it that the bound
of Proposition 5.3 does not converge to zero. However, these terms are correlated with the quality of the
dataset. When the dataset’s quality approaches that of the demonstration, these multiplicative terms will
converge to zero. We have provided the corresponding analysis in Appendix F.

The superiority of density weighted form compared to KL form. The KL divergence is not
symmetric, so only convergence to a very small threshold during the training process can prove that the
policy has fully converged to the target domain. Equation 9 is in the form of weighted MSE, thus it is
symmetrical. During the training process, as long as the value of Equation 9 is sufficiently small, it can
indicate that the policy is close to the target domain. Furthermore, Equation 9 has lower computational
complexity (Apendix D), requiring less time during the training process.

Policy Distribution Analysis. To validate the near-optimal policy convergence, we visualize the policy
distribution of both the behavior learned by ADR and expert behavior (sampled from dataset) in Figure 2.
Remarkably, utilizing solely the medium-replay dataset, ADR is able to comprehensively cover the expert
behavior, demonstrating its efficacy in mimicking the expert policy, thus validating our claim in Proposition 5.2.
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Figure 2: Policy Distribution. We sequentially sampled 500 samples τsampled = {(st, at)|(st, at) ∼ Dexp}t=500
t=0

from the expert dataset Dexp. At the same time, we generated 500 actions based on the policy learned from
ADR i.e., τgenerate = {at := πθ(·|st)|st ∈ τsampled}. Then, we reduced the dimensions of actions from all
τsampled and τgenerate using t-SNE and plot the KDE curve.

6 Methods

To alleviate the impact from the scarcity of demonstrations, we introduce Adversarial Density Estimation
(ADE).

Adversarial Density Estimation (ADE). Specifically, during the training stage, we utilize the ELBO of
VAE to estimate the density probability of state-action pair in action support i.e., Equation 4. Additionally, to
alleviate the limitation of demonstrations’ scarcity, we utilize adversarial learning (AL) in density estimation.
This involves maximizing the density probability of expert offline samples while minimizing the density
probability of sub-optimal offline samples to improve the estimation of expert behavior density. (Θ∗ doesn’t
mean the optimal parameter, instead, it means the parameters of VAE model utilized to estimate on expert
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samples):

JADE(Θ∗) = E(s,a)∼π∗
[
σ(PΘ∗ (a|s))

]
− E(s,a)∼π̂

[
σ(PΘ∗ (a|s))

]
, (12)

Therefore, the expert density’s objective can be formulated as :

J (Θ∗) = E(s,a)∼π∗
[
LELBO(s, a; Θ∗, Φ∗)

]
+ λ · JADE(Θ∗). (13)

Accordingly, the objective for non-expert density can be formulated by substituting Θ∗ and Φ∗ in Equation 13
with Θ̂ and Φ̂. However, in practical implementations, we find that setting λ = 0 is sufficient to achieve good
performance for sub-optimal behavior density.

Density Weighted Regression (DWR). After using ADE and obtaining the converged VAE estimators
PΘ∗(a|s) and PΘ̂(a|s). We freeze the parameter of these estimators, then approximate the density weight
W (P̂ , P ∗) = log P̂ (a|s)

P ∗(a|s) using importance sampling:

log P̂ (a|s)
P ∗(a|s) ≈ log pΘ̂(a|s)− log pΘ∗(a|s) ≈ Lπβ

(s, a; Θ̂, Φ̂, L)− Lπβ
(s, a; Θ∗, Φ∗, L), (14)

and then bring density weight into Equation 8 or 9, optimizing policy via gradient decent i.e., θ ← θ − η ·
∇θJ (πθ), where η denotes learning rate (lr).

Practical Implementation. ADR comprises VAE Pre-training (Algorithm 1) and policy training (Algo-
rithm 2) stages. During the VAE pre-training stage, we utilize VQ-VAE to separately estimate the target
density P ∗(a|s) and the suboptimal density P̂ (a|s) by minimizing Equation 9 (or Equation 13) and the
VQ loss (van den Oord et al., 2018). During the policy training stage, we optimize the Multiple Layer
Perception (MLP) policy πθ by using Equation 7. For more details about our model architecture and more
hyper-parameter settings, please refer to the Appendix. In terms of evaluation. We compute the normalized
D4RL (normalized) score with the same method as Fu et al., and our experimental result is obtained by
averaging the highest score in multiple runs.

Algorithm 1 VAE Pretraining
Require: VAE (density estimator) parameterized by (Θ∗, Φ∗) for ex-

pert dataset, VAE parameterized by (Θ̂, Φ̂) for unknown-quality dataset.
Empirical policy πθ(·|s), unknown-quality offline datasets D̂, demonstra-
tions D∗; VAE training epochs NVAE train and policy training epochs
Npolicy train.

1: while t1 ≤ NVAE train do
2: Sample batch sub-optimal trajectory τ̂ from D̂, and sampling batch expert

trajectory τ∗ from D∗.
3: update (Θ∗, Φ∗) by Equation 13. Replace (Θ∗, Φ∗) in Equation 13 with

(Θ̂, Φ̂), and update (Θ̂, Φ̂).
4: end while

Algorithm 2 Training Policy
Require: pre-trained

density estimators P̂ ,
P ∗, and datasets D =
D̂∪D∗

1: while t2 ≤ Npolicy train do
2: Computing W(P̂ , P ∗) =

log PΦ̂(a|s)
PΦ∗ (a|s) .

3: Bring W(P̂ , P ∗) to Equa-
tion 9 or 7 and updating
πθ.

4: end while

7 Evaluation

Our experiments are designed to answer: 1) Does ADR outperform previous IL approaches? We additionally
encompass 2) Is it necessary to use an adversarial approach to assist in estimating the target behavior density?
3) Is it necessary to use the density-weighted form to optimize the policy? 4) Performance Comparison
between ADR and a Highly Effective Diffusion Policy.

Datasets. The majority of our experimental setups are centered around Learning from Demonstration
(LfD). For convenience, we denote using n demonstrations to conduct experiments under the LfD setting as
LfD (n). We test our method on various domains, including Gym-Mujoco, Androit, and Kitchen domains (Fu
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et al., 2021). Specifically, the datasets from the Gym-Mujoco domain include medium (m), medium-replay
(mr), and medium-expert (me) collected from environments including Ant, Hopper(hop), Walker2d(wal),
and HalfCheetah(che), and the demonstrations are 5 expert trails from the respective environments. For
the kitchen and Adroit domains, we rank and sort all trials by their return, and sample the trial with the
highest return as demonstration. The content inside the parentheses () represents an abbreviation.

Table 1: Previous IL approaches. We summarize the majority of previous IL/DICE approaches here.
Specifically, most of these methods involve estimating the reward or value function and are followed by
optimizing with the weighted BC objective.

Algorithm Optimizing framework estimating Target Weighted BC

OTR (Luo et al., 2023) IQL r(s, a) "

SQIL (Reddy et al., 2019) IQL r(s, a) "

CLUE (Liu et al., 2023a) IQL r(s, a) "

IQ-Learn (Garg et al., 2022) Inverse SAC r(s, a) %

OIRL (Zolna et al., 2020) Q-weighted BC r(s, a) "

ValueDice (Kostrikov et al., 2019) DICE - "

Demodice (Kim et al., 2022) DICE - "

SMODICE (Ma et al., 2022a) DICE - "

ABC (Sasaki and Yamashina, 2021) AL - %

Noisy BC (Sasaki and Yamashina, 2021) BC - %

CEIL (Liu et al., 2023b) HIM z∗ %

ADR (ours) Density Weighted BC P̂ (a|s) and P ∗(a|s) "

Baselines. The majority of selected baselines are shown in Table 1. Specifically, when assessing the
Gym-Mujoco domain, the baselines encompass ORIL, SQIL, IQ-Learn, ValueDICE, DemoDICE, SMODICE
utilized RL-based weighted BC approaches to update. Additionally, we also compare ADR with previous
competitive contextualized BC framework CEIL. In particular, we selected DICE as one of our baselines due
to its similar data setting to ADE and its high data efficiency.. When testing on kitchen or Adroit domains, we
compare our methods with IL algorithms including OTR and CLUE that utilize reward relabeling approach,
and policy optimization via Implicit Q Learning (IQL) (Kostrikov et al., 2021), besides, we also compare
ADR with Conservative Q Learning (CQL) (Kumar et al., 2020b) and IQL utilizing ground truth reward
separately denoted CQL (oracle) and IQL (oracle), where oracle denotes ground truth reward. However, we
do not compare ADR with ABC and Noisy BC because our ablations (Max ADE, Noisy Test) have included
settings with similar objectives. Furthermore, diffusion policy demonstrates strong performance in behavioral
cloning. Therefore, we simultaneously chose recent latent-guided (Li, 2023) and return-guided (Ajay et al.,
2023) diffusion policies for comparison on the Andriot task.

7.1 Majority experimental results

LfD on Adroit and kitchen domains. We test ADR on tasks sourced from Adroit and Kitchen
domains. In particular, during the training process, we utilize single trajectory with the highest Return
as a demonstration. The experimental results are summarized in Table 8, ADR achieves an impressive
summed score of 526.6 points, representing an improvement of 89.5% compared to IQL (oracle), 121.1%
compared to CQL (oracle), and surpassing all IL baselines, thus showcasing its competitive performance in
long-horizon IL tasks. Meanwhile, these competitive experimental results also validate our claim that ADR,
which optimizes policy in a single-step manner, can avoid the cumulative bias associated with multi-step
updates using biased reward/Q functions within the RL framework. Moreover, this experiment also indicates
the feasibility of utilizing ADR to conduct LfD without introducing extra datasets as demonstrations.

LfD on Gym-Mujoco domain. The majority of the experimental results on the tasks sourced from
the Gym-Mujoco domain are displayed in Table 3. We utilized 5 expert trajectories as demonstrations and
conduct ILD on all selected tasks. ADR achieves a total of 1008.7 points, surpassing most reward estimating
and Q function estimating approaches. Therefore, the performance of our approach to continuous control has
been validated. In particular, 1) ADR performs better than ORIL, IQL-Learn demonstrating the advantage
of ADR over reward estimating+RL approaches. 2) The superior performance of ADR compared to SQIL,
DemoDice, SMODICE, and ValueDice highlights the density weights over other regressive forms.
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Table 2: Experimental results of Kitchen and Adroit domains. We test ADR on Adroit and kitchen
domains and average the normalized D4RL score across 4 seeds. In particular, the experimental results of
BC, CQL (oracle), and IQL (oracle) are directly quoted from Kostrikov et al. (2021), and results of IQL
(OTR) on adroit domain are directly quoted from Luo et al., where oracle denotes ground truth reward.

LfD (1) BC CQL (oracle) IQL (oracle) IQL (OTR) IQL (CLUE) ADR

door-cloned 0.0 0.4 1.6 0.01 0.02 4.8±1.1
door-human 2 9.9 4.3 5.92 7.7 12.6±3.9
hammer-cloned 0.6 2.1 2.1 0.88 1.4 17.6±3.3
hammer-human 1.2 4.4 1.4 1.79 1.9 21.7±11.8
pen-cloned 37 39.2 37.3 46.87 59.4 84.4±19.2
pen-human 63.9 37.5 71.5 66.82 82.9 120.6±10.3
relocate-cloned -0.3 -0.1 -0.2 -0.24 -0.23 -0.2±0.0
relocate-human 0.1 0.2 0.1 0.11 0.2 2.0±1.4

Total (Androit) 104.5 93.6 118.1 122.2 153.3 263.5

kitchen-mixed 51.5 51.0 51.0 50.0 - 87.5±1.8
kitchen-partial 38.0 49.8 46.3 50.0 - 80.6±2.7
kitchen-completed 65.0 43.8 62.5 50.0 - 95.0±0.0

Total (Kitchen) 104.5 144.6 159.8 150.0 - 263.1

Total (Kitchen&Androit) 259 238.2 277.9 272.2 - 526.6

Table 3: Experimental results of Gym-Mujoco domain. We utilize 5 expert trajectories as a demon-
stration to conduct LfD setting IL experiment, our experimental results are averaged multiple times of runs.
In particular, m denotes medium, mr denotes medium-replay, me denotes medium-expert.

LfD (5) ORIL (TD3+BC) SQIL (TD3+BC) IQ-Learn ValueDICE DemoDICE SMODICE CEIL ADR

hopper-me 51.2 5.9 21.7 72.6 63.7 64.7 80.8 109.1±3.2
halfcheetah-me 79.6 11.8 6.2 1.2 59.5 63.8 33.9 74.3±2.1
walker2d-me 38.3 13.6 5.2 7.4 101.6 55.4 99.4 110.1±0.2
Ant-me 6.0 -5.7 18.7 30.2 112.4 112.4 85.0 132.7±0.3
hopper-m 42.1 45.2 17.2 59.8 50.2 54.1 94.5 69.0±1.1
halfcheetah-m 45.1 14.5 6.4 2 41.9 42.6 45.1 44.0±0.1
walker2d-m 44.1 12.2 13.1 2.8 66.3 62.2 103.1 86.3±1.7
Ant-m 25.6 20.6 22.8 27.3 82.8 86.0 99.8 106.6±0.5
hopper-mr 26.7 27.4 15.4 80.1 26.5 34.9 45.1 74.7±1.7
halfcheetah-mr 2.7 15.7 4.8 0.9 38.7 38.4 43.3 39.2±0.1
walker2d-mr 22.9 7.2 10.6 0 38.8 40.6 81.1 67.3±4.7
Ant-mr 24.5 23.6 27.2 32.7 68.8 69.7 101.4 95.4±1.1

Total (Gym-Mujoco) 408.8 192 169.2 316.9 751.2 724.7 912.5 1008.7
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Figure 3: Total test scores on the An-
droit domain.

Performance comparison with diffusion policy. The condi-
tioned diffusion policy is also an exceptionally powerful trajectory
generation paradigm based on supervised learning. Therefore, we
compare the effectiveness of ADR with Latent Diffuser (LD) (Li, 2023)
that use latent space representation and Decision Diffuser (DD) (Ajay
et al., 2023) that use Return as the conditioning factor to guided
trajectory generation (Our dataset originates from the robotic arm
domain and includes cloned and human datasets for four tasks: door,
hammer, pen, and relocate.). The experimental results of ADR are
better than those of DD and PD.

7.2 Ablations

Ablation of ADE and DWR. To demonstrate the effectiveness of ADE, we excluded ADE i.e., JADE(Θ∗)
from ADR during the VAE training process. Subsequently, we optimize policy by maximizing the target
behavior density and minimizing the sub-optimal behavior density, and we named this experimental setting
ADR (wo ADE). As shown in Figure 4 (a). ADR (wo ADE) performs better than ADR with over 50%
confidence, validating the improvement brought by ADE. Meanwhile, in order to demonstrate the necessity
of DWR, we 1) conduct an ablation by removing DWR, denoted as ADR (wo DWR), and find that ADR
performs better than ADR (wo DWR) over 95% confidence. This indicates that DWR is necessary for ADR.
2) Optimizing the policy by solely maximizing the expression Lπβ

(s, πθ(·|s); Θ∗, Φ∗, L)|s∼D, which is termed
as max ADE, as shown in Figure 4 (a). According to the results, ADR performs better than max ADE with over
90% confidence. Therefore, we can’t optimize the policy solely by utilizing ADE and maximizing likelihood.
Besides, we observe that it won’t bring an overwhelming decrease by removing ADE, therefore, we further

9



Under review as submission to TMLR

Figure 4: Ablation Results. We utilized the reliable library proposed by Agarwal et al. to conduct our
experiments. The results show that the experimental setting on the left side performed better with a higher
probability. Specifically, in (a) we removed part of modules i.e., ADE or DWR from ADR and observed a
reduction in performance. In (b), we further conduct comparisons among all tasks. Regarding (c), we carried
out a fine-grained comparison of the upper and lower bounds of Equation 8 among all tasks. Note, (a) The
left and right y-axes represent the selected algorithms A and B, respectively, while the x-axis represents the
confidence in A>B. (b, c) involve comparisons between two algorithms, and left y-axis are selected tasks.

conduct fine-grand comparison across all tasks from Gym-mujoco domain, and we observe that ADR performs
better than ADR (wo ADE) across all selected mr tasks, but lower than 50% confidence across several m or me
tasks. Therefore, ADE is essential for training with lower-quality D̂, and won’t bring too much improvement
for training with higher-quality D̂.
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Figure 5: ADR’s performance changes as the
noise in the demonstrations increases.

Robustness to demo’ noisy. In order to validate that ADR
is robust to the demonstrations’ noise, we choose hop-m, wal-m,
ant-m, and che-m, then add Gaussian noisy ∆(a) ∼ N (0, 1)
to demonstrations with weight w ∈ {0.1, 0.3, 0.6, 0.9} i.e., â ←
a +w ·∆(a), and utilize the Gaussian noised action to train our
policy, further observing the performance decreasing. As shown
in Figure 5. ADR can be well adapted to the demonstrations’
noise. As the noise ratio increases, our method shows only a
slight decline in performance on ant-m. However, there is no
significant drop in performance on other tasks such as wal-m,
hop-m, and che-m. Therefore, ADR has a certain level of noise
resistance and can still maintain relatively good performance
even in the presence of noise within demonstrations. (Extended discussion in Appendix 8)

Ablation of the upper bound of ADR. As shown in Figure 4 (c), optimizing the upper bound achieved
better performance across 11 out of 12 tasks (except for che-mr) from the Gym-mujoco domain with over
50% confidence. Therefore, it is much more effective to optimize Equation 9 rather than Equation 7.

ADR-demo (hopper)

1.0

0.5

0.0

0.5

1.0

1.5

No
rm

al
ize

d 
Va

lu
e

CQL-demo (hopper)

1

0

1

2

No
rm

al
ize

d 
Va

lu
e

IQL-demo (hopper)

2

1

0

1

2

No
rm

al
ize

d 
Va

lu
e

ADR-demo (walker2d)

4

2

0

2

4

No
rm

al
ize

d 
Va

lu
e

CQL-demo (walker2d)

4

2

0

2

4

No
rm

al
ize

d 
Va

lu
e

IQL-demo (walker2d)

0.5

0.0

0.5

1.0

1.5

No
rm

al
ize

d 
Va

lu
e

Figure 6: Heatmap of policy distributions. We stack the model’s predictions alongside the samples in the
dataset (details see Appendix G).

Comparison of different methods’ OOD risky. To validate our claim that ADR is a supervised
in-sample IL approach and therefore ADR does not suffer from OOD samples, we compare three different
offline algorithms, including CQL (oracle), IQL (oracle), all using the same offline datasets. Specifically, we
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first train policies using three different algorithms: ADR, CQL (oracle), IQL (oracle), each with the same
datasets. For example, when training ADR with D∗ and D̂, we simultaneously train CQL (oracle), IQL
(oracle) using D∗ ∪ D̂. After obtaining the pre-trained models, we sample states from the expert dataset and
input them into these pre-trained models. We then plot heatmaps comparing the logits obtained from these
models with the expert policy. As shown in Figure 6. ADR maintains its decision mode as a demonstration
while being less susceptible to OOD scenarios (Note: the more similar the top-left and bottom-right corners
of the heatmap are, the closer the algorithm is to the demo).

8 Extended Discussion

Intuition behind ADR’s robustness to noise. As illustrated in Figure 4, we evaluated the robustness
of ADR to noise across various Gaussian noise weights. The experimental results demonstrate that ADR
maintains its performance across tasks, with the exception of the ant task. This stability can be attributed to
ADR’s density-weighted BC objective, which benefits from a substantial amount of suboptimal data during
training. Consequently, ADR exhibits relative stability in the presence of noise. Then, we further analyze the
noise robustness of ADR and propose solutions to enhance its noise robustness. We conduct training sessions
using different weights under LfD (20) and LfD (5). Our findings reveals that LfD (20) is more susceptible to
noise than LfD (5), particularly in the ant task. Conversely, LfD (5) exhibits relatively stable results, with
no notable decline in performance. It is worth noting that the noise weight assigned to LfD (5) is actually
higher than that of LfD (20). Based on above analysis, we will consider appropriately reducing the number of
demos as one of the methods to enhance the effectiveness of ADR.

Table 4: Test with 20 demos.
LfD (20) w = 0 w = 0.3 w = 0.9

hopper-m 69.0±1.1 68.5±0.6 68.9±2.0
walker2d-m 87.9±0.7 82.3±0.2 82.0±0.7
Ant-m 106.6±0.5 103.d5±0.5 103.5±1.0
halfcheetah-m 44.0±0.1 43.8±0.2 43.5±0.2

Table 5: Test with 5 demos.
LfD (5) w = 0 w = 0.5 w = 1.5

hopper-m 69.0±1.1 65.9±0.2 68.5±2.4
walker2d-m 86.3±1.7 82.9±1.2 81.7±0.2
Ant-m 106.6±0.5 104.6±0.1 104.1±0.8
halfcheetah-m 44.0±0.1 43.6±0.1 43.2±0.1

Why do we choose VAE as the density estimator? Common density estimators encompass Gaussian
models, Variational Autoencoders (VAEs), transformers, and diffusion-based models. Among these, diffusion
models stand out for their superior representation capabilities. However, they entail a multi-step sampling
process, which makes them computationally more demanding compared to VAEs and Gaussian models. When
considering the application of these estimators in reinforcement learning (RL), although Gaussian models may
offer simplicity in terms of fewer parameters, VAEs prove to be more suitable as density estimators in RL
contexts. Our method, leveraging VAEs, demonstrates robust performance and offers reduced computational
complexity compared to diffusion models. Notably, our research is situated within the MDP setting. In
contrast, diffusion models and transformers are predominantly sequence models utilized in non-MDP settings,
which can pose implementation challenges within the constraints of MDPs. For instance, given a current
state-action pair {s0, a0}, it is impractical to construct a sequence {s0−k, a0−k, · · · s0, a0} for sequence models
within an MDP context. However, to access performance difference between ADR and diffusers, we conduct
comparison in Figure 3 of the main text. Our experimental results demonstrate that ADR performs better
than the selected diffusion polices (results shown in Figure 3.). Additionally, there is currently another type
of model called Flow(Lipman et al., 2023) that has been garnering increasing attention. Although the Flow
model exhibits lower computational complexity during inference compared to diffusion models, estimating
density with Flow requires tailored label design for the samples. In contrast, VAE doesn’t necessitate
task-specific label design.

9 Conclusion

We propose ADR, a density-weighted BC objective that utilizes a single-step update paradigm to align
the empirical policy with the expert distribution. Benefits from ADR’s single-step updates, ADR is not
affected by the accumulated offset caused by multi-step rewards. And, ADR outperforms selected IL/DICE
algorithms, diffusion policies.
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Impact Statement

This paper presents work whose goal is to advance the field of Machine Learning. There are many potential
societal consequences of our work, none which we feel must be specifically highlighted here.

Our exploration of this topic is not aimed at entirely replacing the RL-combined IL (Reinforcement Learning-
combined Imitation Learning) paradigm. RL has evolved to possess unique strengths; for instance, it enables
end-to-end integration from dataset collection to model training. Consequently, when an accessible environment
is available, RL allows for the gradual improvement of policies—a advantage that is hard to substitute. Our
research is merely an attempt to find an alternative solution for scenarios where reward functions are
challenging to estimate. However, our approach still has certain limitations. For example, implementing our
solution in online environments may not be particularly straightforward, which warrants further investigation.
Additionally, our method does not effectively synergize with sequential models, and this incompatibility
represents a limitation of our proposed approach.

A Limitations

We have currently attempted to extend ADR to sequential models, such as the Decision Transformer
(DT) (Chen et al., 2021) (Remove the Return token and use transformer as a fully supervised policy), but
we have find that the experimental results are not as impressive as those under the MDP setting. We will
further explore the possibility of extending ADR to sequential models.

B Social Impacts

We propose a new supervised IL framework, ADR. Meanwhile, we point out that the advantage of ADR
lies in that it can effectively avoid the cumulative offset sourced from sub-optimal Reward/Value functions.
In addition, the effect of ADR exceeds all previous IL frameworks and even achieves better performance
than IQL on robotic arm/kitchen tasks, which will greatly promote the development of IL frameworks under
supervised learning.

C Hyper parameters and Implementation details

Our method is slightly dependent on hyper-parameters. We introduce the core hyperparameters here:

Table 6: Crucial hyper-parameters of ADR.

Hyperparameter Value

VAE training iterations 1e5

policy training iterations 1e6

batch size 64
learning rate (lr) of π 1e−4

lr of VQ-VAE 1e−3

evaluation frequency 1e3

L in Equation 4 1
λ in Equation 13 1

Optimizing Equation 9 All selected tasks except for che-mr
Random Seeds {0,2,4,6}

Optimizing Equation 7 che-mr

Model Architecture

MLP Policy 4× Layers MLP (hidden dim 256)
VQVAE (encoder and decoder) 3× Layers MLP (hidden dim: 2× action dim; latent dim: 750)

4096 tabular embeddings
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D Experiments

Evaluation setting. We run each task multiple times, recording all evaluated results and taking the highest
score from each run as the outcome. We then average these highest scores. For score computation, we use
the same metric as D4RL i.e., output−expert

expert−random × 100. Our experiment are running on computing clusters with
16×4 core cpu (Intel(R) Xeon(R) CPU E5-2637 v4 @ 3.50GHz), and 16×RTX2080 Ti GPUs

Implementation details. Our code is based on CORL (Tarasov et al., 2022). Specifically, in terms of a
training framework, we adapted the offline training framework of Supported Policy Optimization (SPOT) (Wu
et al., 2022), decomposing it into multiple modules and modifying it to implement our algorithm. Regarding
the model architecture, we implemented the VQVAE ourselves, while the MLP policy architecture is based
on CORL. Some general details such as warm-up, a discount of lr, e.g. are implemented by CORL. We have
appended our source code in the supplement materials.
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Figure 7: Comparison of training time.

Computing efficiency of DWR. To further showcase the computational efficiency of DWR, we selected
the che-mr environment as the benchmark and systematically varied the batch size from 10 to 300 while
measuring the training time (using a 1000-step size in the policy updating stage). As depicted in Figure 7,
it’s evident that the training time of ADR is significantly lower compared to ADE-divergence (which shares
the same conceptual framework as Equation 6), and such advantage becomes especially pronounced with
larger batch sizes. Therefore, the computational efficiency of ADR has been convincingly demonstrated.

Ablation of the upper bound of ADR. In order to demonstrate the effectiveness of minimizing
Equation 9 (upper-bound) over minimizing Equation 7 (objective), we conduct fine-grained comparisons.
Specifically, we compare minimizing Equation 9, Equation 7 on all selected tasks sourced from Gym-Mujoco
domain (hop denotes hopper, wal denotes walker2d, che denotes halfcheetah), minimizing Equation 9 achieve
overall better performance (8 out of 12), indicating the necessity of Equation 9.

E Experimental Details of baselines

Our baselines on Gym-Mujoco domain mainly includes: ORIL (Zolna et al., 2020), SQIL (Reddy et al.,
2019), IQ-Learn (Garg et al., 2022), ValueDICE (Kostrikov et al., 2019), DemoDICE (Kim et al., 2022),
SMODICE (Ma et al., 2022a), and CEIL (Liu et al., 2023b). The majority of experimental results of these
baselines are cited from CEIL (Liu et al., 2023b).

In terms of evaluation on kitchen or Adroit domains. The majority baselines include OTR (Luo et al., 2023)
and CLUE (Liu et al., 2023a) that utilize reward estimating via IL approaches, and policy optimization

17



Under review as submission to TMLR

ho
p-m

e

ch
e-m

e

wal-
me

an
t-m

e
ho

p-m ch
e-m

wal-
m

an
t-m

ho
p-m

r

ch
e-m

r

wal-
mr

an
t-m

r
0

30

60

90

120

A
ve

ra
ge

 N
or

m
al

iz
ed

 D
4R

L 
Sc

or
e

min upper-bound vs. min objective
Upper bound
Objective

Figure 8: Abaltion of upper bound.

via Implicit Q Learning (IQL) (Kostrikov et al., 2021). We also encompass Conservative Q Learning
(CQL) (Kumar et al., 2020b) and IQL for comparison. Specifically, these experimental results are from:

• The experiment results of OTR and CLUE are directly cited from Luo et al. and Liu et al.

• The experimental results of CQL (oracle) and IQL (oracle) are separately cited from Kumar et al.
and Kostrikov et al., and the experimental results of OTR on kitchen domain is obtained by running
the official codebase https://github.com/ethanluoyc/optimal_transport_reward.

• The experimental results of DD and LD in Figure 3 are cited from Li.

F Theoretical Analysis

Theorem F.1 (ADR can be solved by linear weighted regression form). Given expert log behavior density
log P ∗(a|s) : S ×A → R, sub-optimal log behavior density log P̂ (a|s) : S ×A → R, and the empirical policy
πθ : S → A, offline dataset D. Minimizing the KL divergence between πθ and P ∗, while maximizing the KL
divergence between πθ and P̂ , i.e., Equation 6. is equivalent to: minπθ

E(s,a)∼D
[

log P̂ (a|s)
P ∗(a|s) · ||πθ(·|s)− a||2

]
,

Proof.

J(πθ) = E(s,a)∼D[DKL[πθ||P ∗]−DKL[πθ||P̂ ]]

= E(s,a)∼D

[
πθ(a|s) · log πθ(a|s)

P ∗(a|s)

]
− E(s,a)∼D

[
πθ(a|s) · log πθ(a|s)

P̂ (a|s)

]
= E(s,a)∼D

[
πθ(a|s) ·

(
log πθ(a|s)

P ∗(a|s) − log πθ(a|s)
P̂ (a|s)

)]
= E(s,a)∼D

[
πθ(a|s) · log P̂ (a|s)

P ∗(a|s)
]
.

(15)

Then we further derivative E(s,a)∼D
[
πθ(a|s) · log P̂ (a|s)

P ∗(a|s)
]
:

According to our assumption in section of Problem formulation, the policy we employ is a Gaussian policy,
which adheres to a Gaussian distribution π ∼ N (µ, σ), specifically, given i.d.d variables π0, π1, · · · , πn, it has
µ =

∑
πi

n and σ =
∑

|π−µ|
n

Furthermore, we consider the process of maximizing the likelihood πθ(a|s) rather than only maximizing
πθ(a|s) i.e.
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E(s,a)∼D
[
πθ(a|s) · log P̂ (a|s)

P ∗(a|s)
]
≡ E(s,a)∼D

[
log πθ(a|s) · log P̂ (a|s)

P ∗(a|s)
]

= E(s,a)∼D
[

log 1
σ
√

2π
exp(− (πθ(a|s)− µ)2

2σ2 ) · log P̂ (a|s)
P ∗(a|s)

]
= E(s,a)∼D

[
(log 1

σ
√

2π
− (πθ(a|s)− µ)2

2σ2 ) · log P̂ (a|s)
P ∗(a|s)

]
= E(s,a)∼D

[
const− (π(a|s)− µ)2

2σ2 · log P̂ (a|s)
P ∗(a|s)

]
.

(16)

Subsequently, we substitute µ with
∑

ai

n when π(a|s) is given. In particular, the index i does not represent a
time index but rather identifies the variable a. Subsequently, we obtain:

E(s,a)∼D
[
const−

(πθ(a|s)−
∑

ai

n )2

2σ2 · log P̂ (a|s)
P ∗(a|s)

]
= E(s,a)∼D

[
const−

(
∑

(πθ(a|s)−ai)
n )2

2σ2 · log P̂ (a|s)
P ∗(a|s)

]
, (17)

where const represents a constant.

Furthermore, since the offline data do not vary with the time index, the σ is a fixed value, minimiz-

ing E(s,a)∼D
[
const − (

∑
(πθ(a|s)−ai)

n )2

2σ2 · log P̂ (a|s)
P ∗(a|s)

]
is equivalent to minimizing E(s,a)∼D

[
( (

∑
(πθ(a|s)−ai)2

n ) ·
log P ∗(a|s)

P̂ (a|s)

]
.

Therefore, minimizing J(πθ) is equivalent to minimizing E(s,a)∼D
[
(π − a)2 · log P ∗(a|s)

P̂ (a|s)

]
.

Assumption F.2. Assuming max{DKL[π∗||π̂], DKL[π̂||π∗]} ≤ δ.

Theorem F.3. Given D∗, based on Assumption F.2, we have:

ED∗ [π∗ log π∗

π̂
] ≤ M

2n
·
√

log 2
δ

, (18)

with probability 1− δ. Where n = |D∗|, M = max(st,at) π∗(at|st) log π∗(at|st)
π̂(a|s) |(st,at)∼D∗

Proof.

Our derivation is based on Hoeffding in-equality, and We first let Xi = π∗(ai|si) log π∗(ai|si)
π̂(a|s) , X̄ =

∑
t

Xt

n ,
then we have:

P (|X̄i − Eπ∗ [DKL[π||π∗]]| ≥ m) ≤ 2 · e− 2n2·m2
M2 . (19)

Then let 2 · e− 2n2·m2
M2 = δ, we obtain t = M

2n

√
log 2

δ . Furthermore, with 1− δ probability we have:

|X̄i − Eπ∗ [DKL[π||π∗]]| ≤ 2 · e− 2n2·m2
M2 . (20)

Meanwhile, we have assumed that DKL[π∗||π̂] ≤ δ, and thus we obtain ED∗ [π∗ log π∗

π̂ ] ≤ M
2n ·

√
log 2

δ .

Proposition F.4 (Policy Convergence of ADR). Assuming Equation 6 can finally converge to ϵ via minimizing
Eq 8, meanwhile, assuming Assumption F.2 is held. Then E(s,a)∼D̂[DKL(π||π∗)]→ M

2n ·
√

log 2
δ +∆C +ϵ.Where

n = |D∗|,M := arg maxXi
{Xi = π∗(at|st) log π∗(at|st)

π̂(at|st) |(st, at) ∼ D∗} with probability 1− δ.

19



Under review as submission to TMLR

Proof.

Using Bayes’ rule, we have: P ∗(a|s) = π∗(a|s)P (s)
P ∗(s) , P̂ (a|s) = π̂(a|s)P (s)

P̂ (s)

Substitute it into the KL divergence terms in the objective function.DKL[π||P ∗], DKL[π||P̂ ], we have:

ED[DKL[π||P ∗]] = ED

[
π(a|s) · log π(a|s)

P ∗(a|s)

]
= ED [DKL[π||π∗]] + C1, (21)

ED[DKL[π||P̂ ]] = ED

[
π(a|s) · log π(a|s)

P̂ (a|s)

]
= ED [DKL[π||π̂]] + C2, (22)

Here, C1 and C2 are constants related to the marginal distribution of the state P (s), P̂ (s) and P ∗(s), and
they do not change with the policy π

Then, we bring Equation 21 and Equation 22 to Equation 6. Then we have:

ED [DKL[π||π∗]] + C1 − (ED [DKL[π||π̂]] + C2) ≤ ϵ. (23)

Case 1 Meanwhile, we can observe from Equation F.1 that it’s a weighted BC objective, and we assume
this objective can well estimate the offline dataset i.e., ED̂[DKL[π||π̂]] → 0, therefore ED[DKL[π||π̂]] =
ED̂∪D∗ [DKL[π||π̂]] ≈ ED̂[DKL[π||π̂]].

Case 2 Similar to Case 1, we can also obtain: ED∗ [DKL[π||π̂]] ≈ ED∗ [DKL[π∗||π̂]]].

Assign Equation 23, we have:

ED [DKL[π||π∗]]− ED [DKL[π||π̂]] ≤ ϵ + C2 − C1 (24)
ED [DKL[π||π∗]] ≤ ED [DKL[π||π̂]] + ∆C + ϵ (25)

(Case 1) ED [DKL[π||π∗]] ≤ ED∗ [DKL[π||π̂]] + ∆C + ϵ (26)
(Case 2) ED [DKL[π||π∗]] ≤ ED∗ [DKL[π∗||π̂]] + ∆C + ϵ (27)

(Theorem F.3) ED [DKL[π||π∗]] ≤ M

2n
·
√

log 2
δ

+ ∆C + ϵ, (28)

where, ∆C = C1−C2 is a constant term, dependent on the state distribution. δ originates from Assumption F.2,
n = |D∗|, M := arg maxXi{Xi = π∗(at|st) log π∗(at|st)

π̂(at|st) |(st, at) ∼ D∗}.

Lemma F.5. Given the state distribution of empirical and expert policy d(s), dπ∗(s). Meanwhile, given the
state-action distribution of empirical and expert policy dπ(s, a), dπ∗(s, a) we have:

DKL[dπ(s)||dπ∗
(s)] ≤ DKL[dπ(s, a)||dπ∗

(s, a)]. (29)

Lemma F.6. Given the distribution of empirical and expert transitions dπ(s, a, s′), dπ∗(s, a, s′) we have
following relationship:

DKL[dπ(s, a, s′)||dπ∗
(s, a, s′)] = DKL[dπ(s, a)||dπ∗

(s, a)]. (30)

Proof. of Lemma F.5 and Lemma F.6 see Lemma 1 and Lemma 2 from Ma et al.
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Assumption F.7. Suppose the policy extracted from Equation is π, we separately define the state marginal
of the dataset, empirical policy, and expert policy as dD, dπ and dπ∗ , they satisfy this relationship:

DKL[dπ||dπ∗
] ≤ DKL[dD||dπ∗

]. (31)

Lemma F.8 (lemma 2 from Cen et al. (2024)). Suppose the maximum reward is Rmax = max ||r(s, a)||, and
V (ρ0) = Es0 [V (s0)] denote the performance given a policy π, then with Assumption F.7:

|V π(ρ0)− V π∗
(ρ0)| ≤ Rmax

1− γ
DT V [d∗(s)||dD(s)] + 2 ·Rmax

1− γ
EdD [DT V [π(·|s)||π∗(·||s)]]. (32)

Proof of Lemma F.8 see Lemma 2 from Cen et al.
Proposition F.9. (Value Bound of ADR) Given the empirical policy π and the optimal policy π∗, let V π(ρ0)
and V π∗(ρ0) separately denote the value network of π and π∗, and given the discount factor γ. Meanwhile, let
Rmax as the upper bound of the reward function i.e., Rmax = max ||r(s, a)||. Based on the Assumption F.7,
Assumption F.2, Lemma F.8, and Proposition 5.2, we can obtain:

|V π(ρ0)− V π∗
(ρ0)| ≤ Rmax

1− γ
DT V [d∗(s)||dD(s)] + 2 ·Rmax

1− γ
·

√
2 · (M

2n
·
√

log 2
δ

+ ∆C + ϵ), (33)

Where, ∆C = C1 − C2 is a constant term, typically dependent on the state distribution. The δ originates
from Assumption F.2, n = |D∗|, M := arg maxXi

{Xi = π∗(at|st) log π∗(at|st)
π̂(at|st) |(st, at) ∼ D∗}.

Proof.

In Proposition 5.2, we have proved that if E(s,a)∼D
[
πθ(a|s) · log P̂ (a|s)

P ∗(a|s)
]

can finally converge to ϵ. Then

E(s,a)∼D̂[DKL(π||π∗)]→ M
2n ·

√
log 2

δ + ∆C + ϵ

Subsequently, based on Lemma F.8, we derivative:

|V π(ρ0)− V π∗
(ρ0)| ≤Rmax

1− γ
DT V [d∗(s)||dD(s)] + 2 ·Rmax

1− γ
EdD [DT V [π(·|s)||π∗(·||s)]] (34)

≤ Rmax

1− γ
DT V [d∗(s)||dD(s)] + 2 ·Rmax

1− γ
EdD [

√
2 ·DKL[π(·|s)||π∗(·||s)]] (35)

= Rmax

1− γ
DT V [d∗(s)||dD(s)] + 2 ·Rmax

1− γ
·

√
2 · (M

2n
·
√

log 2
δ

+ ∆C + ϵ). (36)

Proof of Equation 9.

First, we define: X = log P ∗

P̂
, Y = ||πθ − a||2. And,we try to prove Equation 9.

• case1: If X is independent with Y, and then E[XY ] = E[X] · E[Y ]. Furthermore, Equation 9 is held.

• case2: If X is not independent with Y, i.e. Cov(X, Y ) < 0, we can apply the in-equability of covariance,
i.e.: Cov(X, Y ) = E[XY ] − E[X]E[Y ]. Since X and Y are two different distributions. Therefore,
Cov(X, Y ) ≤ 0, and then Equation 9 is held.

Proof of the multiplicative terms’ convergency.

• Regard M := arg maxXi{Xi = π∗(at|st) log π∗(at|st)
π̂(at|st) |(st, at) ∼ D∗}. Obviously, M → 0 when

DKL(π̂||π∗)→0.
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• In terms of n, it is the capacity of |D∗|, and therefore, n is a fixed integer.

• Regard C1 − C2, it has C1 − C2 = π(a|s) · log P ∗

P̂
≤ log P ∗

P̂
. And log P ∗

P̂
→ 0 when DKL(π̂||π∗)→0.

Therefore, the conclusion of Proposition 5.3 is related to dataset quality. Specifically, as π∗ becomes
closer to π̂, the multiplicative terms will approach zero.

G Supplement Experimental Results

Experimental Results from Every seeds. We present the experimental results for each run, which can
be accessed through the logging data in supply materials we have provided in table 7. Meanwhile, we provide
the comparision between ADR and diffusions in table 8

Table 7: Experimental results from All seeds. Includes 5 demonstrations for learning from demonstration
(Lfd) on the Gym-mujoco domain, and 1 demonstration for Lfd on the Kitchen and Adroit domain. Our
seeds are 0, 2, 4, 6. The training data is included in the appendix, and the value of each seed is obtained by
returning the maximum value.

Tasks Seed 1 Seed 2 Seed 3 Seed 4 Avg.

hopper-me 108.73135306 112.36561301 104.13708473 111.21583144 109.1± 3.2
halfcheetah-me 76.91686914 73.34520366 71.3600813 75.65439524 74.3± 2.1
walker2d-me 110.01480035 110.15162557 110.41349757 109.86814345 110.1± 0.2
Ant-me 132.47422373 132.43903581 132.87375784 133.18474616 132.7± 0.3
hopper-m 67.43902685 68.53755386 69.49494087 70.39486176 69.0± 1.1
halfcheetah-m 44.26977365 43.96688663 43.96063228 44.002488 44.0± 0.1
walker2d-m 89.01287452 84.82661744 84.96199657 86.20352661 86.3± 1.7
Ant-m 107.18757783 105.82195401 106.37078241 106.89800012 106.6± 0.5
hopper-mr 76.28604245 75.62349403 75.23570126 71.8023475 74.7± 1.7
halfcheetah-mr 39.04827579 39.08606318 39.24549748 39.34331542 39.2± 0.1
walker2d-mr 69.91171614 60.40786853 72.87922707 65.9015982 67.3± 4.7
Ant-mr 95.29014082 97.260068 94.74996758 94.31474188 95.4± 1.1

door-cloned 3.3699566 4.83888018 4.5226364 6.33812655 4.8± 1.1
door-human 9.35201591 13.05773712 9.10674378 18.71432687 12.6± 3.9
hammer-cloned 12.26944958 19.06662599 18.08395955 21.09296431 17.6± 3.3
hammer-human 9.37490127 13.78847087 40.01083644 23.73657046 21.7± 11.8
pen-cloned 110.88785576 92.09658 75.64396931 59.05532153 84.4± 19.2
pen-human 118.47072952 136.50561455 107.8325132 119.68575723 120.6± 10.3
relocate-cloned -0.19486202 -0.18540353 -0.25482428 -0.23930115 -0.2± 0.0
relocate-human 0.92621742 3.62704217 3.07594114 0.2939339 2.0± 1.4

kitchen-mixed 87.5 90.0 87.5 85.0 87.5± 1.8
kitchen-partial 80.0 77.5 85.0 80.0 80.6± 2.7
kitchen-completed 95.0 - - - 95.0

Table 8: ADR and Diffusion policy on Androit tasks.
Tasks DD LD ADR

door-cloned 9.0±1.6 12.0±1.6 4.8±1.1
door-human 6.9±1.2 9.8±1.0 12.6±3.9
hammer-cloned 0.9±0.1 4.2±0.1 17.6±3.3
hammer-human 1.0±0.1 4.6±0.1 21.7±11.8
pen-cloned 47.7±9.2 60.7±9.1 84.4±19.2
pen-human 64.1±9.0 79.0±8.1 120.6±10.3
relocate-cloned -0.2±0.0 -0.1±0.0 -0.2±0.0
relocate-human 0.2±0.1 0.2±0.1 2.0±1.4

Total (Androit) 129.6 170.4 263.5
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Training stability of ADR. Despite behavior cloning not being theoretically monotonic, we still present
the training curve of ADR. As shown in Figure 9 and Figure 10, we averaged multiple runs and plotted the
training curve, demonstrating that ADR exhibits stable training performance.
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Figure 9: Training curves of ADR on all tasks sourced from Gym-Mujoco domain.
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Figure 10: Training curves of ADR on tasks sourced from kitchen and Adroit domain.
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OOD Risky Analysis. We further elaborate on the process of collecting experimental results related to
Figure 11. Firstly, we need to train policys on chosen datasets. Specifically, our ADR is trained on five expert
trajectories as demonstrations D∗ and the complete medium dataset D̂, which serves as the unknown-quality
dataset mentioned in the paper, while retaining the best-performing model. Additionally, when training
IQL and CQL, we mix the demonstrations D∗ ∪ D̂ with the unknown-quality dataset and use both IQL and
CQL algorithms for training. After obtaining the models, we collect the logits from different models using
the following specific method: we sample the states {s−20, s−19, · · · , s−1} ∼ π∗ of the last 20 steps from a
trajectory in the expert dataset and use them as inputs for ADR, IQL, and CQL. Simultaneously, we retain
the actions {a−20, a−19, · · · , a−1} ∼ π∗ corresponding to these states to create heatmaps.

We collect action prediction by inputting the sampled states into three models obtained by train (ADR,
IQL and CQL) respectively. And after obtaining the actions, we reduce them to one dimension using PCA.
Subsequently, we stack the collected actions together with the actions from the same time steps in the sampled
expert dataset, calculate the covariance matrix, and then plot a heatmap to obtain Figure 11. Specifically,
since the format of the dataset is [model prediction, demo] , only the top-left and bottom-right quarters of
the heatmap have higher correlation values, which are higher than the correlations in the remaining positions
of the heatmap. For convenience, we name each heatmap plot as "Algorithm-Demo". From the plots, we can
observe that ADR learns relatively good patterns on both the hopper and walker2d tasks, while CQL and
IQL can only learn specific patterns respectively.
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Figure 11: Heatmap of policy distributions. Higher values along the diagonal indicate a better fit of the
policy to the expert policy, while lower values outside the diagonal indicate lower OOD risk for the policy.
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