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ABSTRACT

This paper focuses on Winograd transformation in 3D convolutional neural net-
works (CNNs) that are more over-parameterized compared with the common 2-
D version. The over-increasing Winograd parameters not only exacerbate train-
ing complexity but also barricade the practical speedups due simply to the vol-
ume of element-wise products in the Winograd domain. We attempt to reduce
trainable parameters by introducing a low-rank Winograd transformation, a novel
training paradigm that decouples the original large tensor into two less storage-
required trainable tensors, leading to a significant complexity reduction. Built
upon our low-rank Winograd transformation, we take one step ahead by propos-
ing a low-rank oriented sparse granularity that measures column-wise parameter
importance. By simply involving the non-zero columns in the element-wise prod-
uct, our sparse granularity is empowered with the ability to produce a very regular
sparse pattern to acquire effectual Winograd speedups. To better understand the
efficacy of our method, we perform extensive experiments upon 3D CNNs. Re-
sults manifest that our low-rank Winograd transformation well outperforms the
vanilla Winograd transformation. We also show that our proposed low-rank ori-
ented sparse granularity permits practical Winograd acceleration compared with
the vanilla counterpart.

1 INTRODUCTION

Compared to their 2D counterparts, 3D convolutional neural networks (CNNs) have received sub-
stantial accuracy increases in many video processing tasks, as a result of their superior capacity of
extracting spatio-temporal features within video frames. Unfortunately, the supreme performance is
gained at the price of large amounts of computing resources for both training and inference, primar-
ily because the 3D kernels are more computationally intensive. However, many restrictions such as
runtime, memory and power budge prevent 3D CNNs from running on many real-world devices.

Fast convolution algorithms such as Winograd convolution (Lavin & Gray, 2016) and fast Fourier
transform (FFT) (Mathieu et al., 2013) can greatly reduce the computational cost of the spatial con-
volution. The principle of Winograd convolution and FFT is to replace spatial convolution operations
with element-wise product and discard redundant multiplications in convolution. Conventional FFT
based convolution is fast for large filters, therefore most recent attention focuses on Winograd con-
volution principally for the small 3×3 filters adopted by state-of-the-art CNNs. Another potential
line to tackle the over-parameterized issue is network pruning that reduces network complexity by
removing unnecessary units (Frankle & Carbin, 2018; Luo et al., 2017). It seems that Winograd con-
volution and network pruning can be well combined to further save computation costs. However,
they are not naturally compatible since the sparsity property from network pruning is diminished
after the kernel transformation of the Winograd algorithm. To tackle this incompatibility, (Li et al.,
2017b) performed pruning operations upon Winograd domain while (Liu et al., 2018) added the
ReLU function after the Winograd transformation to increase the sparsity of element-wise product.
However, both studies do not take into account a reality that Winograd kernel is position-sensitive
as later demonstrated by (Li et al., 2017b) in which an importance factor matrix is further utilized to
gauge the significance of different kernel positions.

In spite of the aforementioned progress, current investigations mostly give attention to the Winograd
transformation in 2D CNNs

(
see Fig. 1(a)

)
. A direct extension of these methods to 3D CNNs is
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Figure 1: Comparison between (a) the vanilla Winograd transformation and (b) our low-rank Wino-
grad transformation. We decouple the whole Winograd weights into two smaller matrices, leading
to significant reduction in trainable parameters.

inapplicable, as we analyze, for two issues. First, 3D Winograd transformation causes considerable
parameter increase. Taking F(2, 3)-based Winograd algorithm as an example, a typical 3D convolu-
tional kernel with a shape of 3 × 3 × 3 is often replaced by a 4 × 4 × 4 Winograd kernel, leading
to 2.37× more parameters while it is only 1.78× for 2D case. More parameters from Winograd
transformation do not always benefit model capacity but causing model redundancy as analyzed
in Sec. 3.2 and verified in Sec. 4.2. Also, the over-increasing trainable parameters pose a serious
challenge to the capability of training machine. Second, existing methods fail to accelerate Wino-
grad transformation even though conducting pruning upon Winograd domain. Similar to the weight
pruning (LeCun et al., 1989; Han et al., 2015b; Frankle & Carbin, 2018), prior implementations
derive irregular sparse weight matrix, which receives very limited speed gains since the irregular
sparsity barely takes advantage of vector processing architectures such as single instruction multiple
data (SIMD), and poorly utilizes memory buses (Lin et al., 2022). Therefore, it remains unsolved
to excavate Winograd transformation for acceleration, in particular to 3D CNNs primarily for the
ever-increasing element-wise product in the Winograd domain.

In this paper, we put forward a novel Winograd transformation for 3D CNNs towards solving the
above issues. Considering the over-increasing parameters in 3D CNNs, as shown in Fig. 1(b), we
introduce a low-rank Winograd transformation method that represents the updating matrix (variation
from a pre-trained Winograd weight tensor to the final fine-tuned one) with two smaller matrices.
In this fashion, we concentrate on updating weights in the main directions of the whole Winograd
space during fine-tuning process, leading to superior performance over the vanilla Winograd trans-
formation, or even better performance than the original spatial model. Besides, the two less storage-
required matrices lead to significant reduction on trainable Winograd parameters, also much smaller
than the original training parameters in the spatial domain. With regard to Winograd transformation
acceleration, we further present a low-rank oriented sparse granularity that quantifies importance of
each tensor column. The rationale behind this is to derive a more regular sparse pattern by simply
involving the non-zero columns in the element-wise product of Winograd domain. To that effect, we
introduce a scoring sequence to continuously accumulate the the magnitude and gradient of column
position in each training iteration as the importance assessment, and finally remove all weights in
compliance with the low-scored columns. Practical speedups are observed from our low-rank ori-
ented sparse granularity. For example, under the pruning rates of 50% and 70%, we obtain 1.80×
and 3.35× speedup gains on C3D model compared to the vanilla Winograd transformation (see
Fig. 6).

2 RELATED WORK

Spatial-Domain Pruning. Spatial-domain pruning is the practice of removing parameters from an
existing network. It may entail removing individual parameters, a.k.a. weight pruning, or parameters
in groups such as filter pruning and block pruning. For weight pruning, individual weights are
measured by a certain criterion such as weight magnitude (Han et al., 2015b;a; Frankle & Carbin,
2018), higher-order information (LeCun et al., 1989; Hassibi et al., 1993; Dong et al., 2017) (Lee
et al., 2019) and so on. These methods are demonstrated to well preserve model performance.
However, the resulting irregular sparse matrix requires specialized hardware/libraries to achieve
practical speedups. For filter pruning, the entire filters are removed by standards such as ℓ1/ℓ2-
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norm (Li et al., 2017a; Liu et al., 2017; He et al., 2018), activation sparsity (Hu et al., 2016), lasso
regression-based channel selection (He et al., 2017), and rank of feature maps (Lin et al., 2020). In
contrast to weight pruning, filter pruning advantages in acceleration but causing more performance
drops. Therefore, block pruning, where a block of weights is removed simultaneously, has received
recent research focus (Meng et al., 2020; Niu et al., 2021; Lin et al., 2022) for its better performance
than filter pruning as well as hardware-friendly deployment than weight pruning. However, vanilla
spatial pruning methods cannot be directly combined with the Winograd convolution because the
Winograd transformation diminishes the sparsity resulting from pruning (Yu et al., 2019).

Winograd-Domain Pruning. Though vanilla spatial pruning fails to cooperate with the Winograd
convolution, its main pruning principles have been extended to remove parameters in Winograd do-
main. (Liu & Turakhia, 2016) removed Winograd-domain kernels, meanwhile they retained kernels
from the original network. However, dimension inconsistency arises since the Winograd-domain
kernels are of a higher dimension than the spatial-domain kernels. To solve this issue, (Li et al.,
2017b) introduced Winograd layers in exchange for the standard convolutional layers. The pruning
and training are simultaneously conducted in the Winograd layers. In this fashion, the dimension in-
consistency issue is eliminated and the sparsity in Wiongrad domain also increases. (Liu et al., 2018)
introduced the ReLU operation to the Winograd domain to derive sparse transformed activations. At
the same time, it improves the possibility of sparse element-wise product in the Winograd domain.
(Yu et al., 2019) specified that different positions of the Winograd layers contribute differently to the
output activations. Despite the progress, these studies lead to hardware-unfriendly irregular sparse
patterns, causing imbalanced workloads among the data flows. To leverage the multiplication reduc-
tion from sparsity, (Lu & Liang, 2018; Yang et al., 2020) devised sparse patterns that benefit more
from the practical speedups on specialized hardware.

3 METHODOLOGY

3.1 3D WINOGRAD

Giving a 3D convolution weight G ∈ Rcout×cin×r1×r2×r3 where cout and cin denote the input
and output channel, and (r1, r2, r3) forms the kernel size, it is convoluted with a 3D image I ∈
Rcin×din×hin×win where din, hin and win respectively denote the image depth, height and width.
The convolutional result is a 3D feature map O ∈ Rcout×dout×hout×wout , where dout, hout and wout

respectively denote the feature map depth, height and width. Each element of O is computed in the
spatial convolution with a stride of 1 as:

O[m,n,x,y] =

cin∑
c=1

r1∑
u=1

r2∑
v=1

r3∑
w=1

G[m,c,n,x,y]I[c,n+u,x+v,y+w]. (1)

By contrast, the Winograd convolution disassembles the input I into several overlapping tiles
{I1, I2, ...}, in which each tile is a sub-matrix of Ii ∈ I and has a shape of cin × t1 × t2 × t3
where t1 = dout + r1 − 1, t2 = hout + r2 − 1, t3 = wout + r3 − 1. A thorough comprehension can
be referred to (Lavin & Gray, 2016). Notice in what follows, we introduce r = r1 = r2 = r3 and
t = t1 = t2 = t3 for brevity since current networks have a uniform kernel size such as 3 × 3 × 3
across different dimensions, and also the output feature is characterised with dout = hout = wout.
Similar to Eq. (1), each tile Ii can be convoluted separately with the weight G, resulting in a
basic output tile Oi that is a sub-matrix of O and has a shape of cout × m × m × m where
m = d′out = h′

out = w′
out. Note that, any Oi and Oj are non-overlapping and the spatial con-

volution result O can be obtained by reassembling {O1,O2, ...} in order.

Unfortunately, the spatial convolution is computationally intensive. Therefore, (Lavin & Gray, 2016)
introduced Winograd’s minimal filtering algorithm (Winograd, 1980) (Winograd algorithm) to re-
duce the complexity of convolution over each basic tile Ii. The principle of Winograd is to replace
convolution operations with element-wise product. Conventional studies (Vincent et al., 2017; Kim
et al., 2019; Meng & Brothers, 2019; Alam et al.) focus on 1D Winograd algorithm abbreviated as
F (m, r) and 2D Winograd version as F (m × m, r × r). This paper is devoted to 3D Winograd
algorithm F (m×m×m, r × r × r). The entire procedure can be generally formulated as:

Oi[m,:,:,:] = TO

( cin∑
c=1

(
TK(G[m,c,:,:,:])⊙ TI(Ii[c,:,:,:])

))
, (2)
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where ⊙ stands for element-wise product. In Eq. (2), the kernel G[m,c,:,:,:] and input tile Ii[c,:,:,:]
are individually converted into the Winograd domain of the same shape by the Winograd kernel
transformation TK(x) = R(GxGT )GT ∈ Rcout×cin×t×t×t and input transformation TI(x) =
R
(
BTxB

)
B ∈ Rcin×t×t×t. Finally, the Winograd-domain kernel and input tile are multiplied in

an element-wise manner, results of which are transformed back to the vanilla spatial domain by the
Winograd inverse transformation TO(x) = R

(
R(ATxA)A

)
∈ Rcout×cin×m×m×m. Herein, G, B

and A are three transformation matrices determined by F (m ×m ×m, r × r × r). Their specific
formats can turn to (Lavin & Gray, 2016). R(·) denotes clock-wise dimension rotation. Considering
a 3-D matrix mat[z,y,x], a toy example for R(·) is illustrated as: R(mat[z,y,x]) = mat[y,x,z].

Compared with the vanilla spatial-domain 3D convolution, 3D Winograd convolution F (m ×m ×
m, r × r × r) reduces the multiplication from r3 × m3 to (m + r − 1)3. Given the property that
the transformation matrices G, B and A are filled with zero elements or identical/opposite elements
and the operations in TK(·), TI(·), and TO(·) can be replaced by additions, the major computation
bottleneck comes from the element-wise product.

Particularly, (Li et al., 2017b) introduced a 2D Winograd layer parameterized by a weight tensor
GW ∈ Rcout×cin×t×t to replace the Winograd kernel transformation. The element-wise operation
costs are expected to decrease from deriving a sparse GW . In this paper, we extend the Winograd
layer to 3D and introduce GW ∈ Rcout×cin×t×t×t to replace the Winograd-domain kernel for the
element-wise product with the Winograd-domain input tile. Eq. (2) can be rewritten as:

Oi[m,:,:,:]
= TO

( cin∑
c=1

GW [m,c,:,:,:] ⊙ TI(Ii[c,:,:,:])
)
. (3)

Different from the 1D or 2D Winograd layer, more parameters are introduced in 3D Winograd layer,
which raises a formidable challenge to not only train the increasing parameters, but also speedup
the element-wise product. These two issues are respectively solved in this paper by introducing a
low-rank Winograd transformation in Sec. 3.2 and a low-rank oriented sparse granularity in Sec. 3.3,
which are also two core contributions of this paper.

In what follows, we refer to the model with Winograd layers as the Winograd model and the one
with convolutional layers as the spatial model.

3.2 LOW-RANK WINOGRAD TRANSFORMATION

The Winograd model shares a two-step training pipeline similar to the spatial model, including
inheriting weights from a pre-trained model, and fine-tuning on the downstream task. The former
can be accomplished by using the Winograd-transformed spatial weights as the pre-trained weights,
i.e., GW = TK(G). However, it is challenging to fine-tune a 3D Winograd model primarily due
to the increasing trainable parameters and expensive element-wise product. When looking back on
the Winograd weight GW , we observe that the over-increasing parameters do not always benefit the
performance gains.

Before diving into an in-depth analysis, we first rearrange the 3D spatial kernel G ∈ Rcout×cin×t×t×t

and the basic input tile Ii ∈ Rcin×t×t×t into 2D matrices G ∈ Rcoutcin×r3 and Ii ∈ Rcin×t3 . The
Winograd transformations TK(·), TI(·), and TO(·) are supposed to be modified accordingly:

TK(G) = R(GGGT )GT , G ∈ Rcout×cin×r×r×r → TK(G) = GTK , G ∈ Rcoutcin×r3 , (4)

TI(Ii) = R(BTIiB)B, Ii ∈ Rcin×t×t×t → TI(Ii) = IiTI , Ii ∈ Rcin×t3 , (5)

TO(Ui) = R
(
R(ATUiA)A

)
, Ui ∈ Rcout×t×t×t → TO(Ui) = UiTO, Ui ∈ Rcout×t3 , (6)

where Ui =
∑cin

c=1 TK(G[m,c,:,:,:])⊙ TI(Ii[c,:,:,:]) is the operational result in the Winograd domain,
and TK ∈ Rr3×t3 , TI ∈ Rt3×t3 are transformation matrices that map G and Ii from the spatial
domain to the Winograd domain and TO ∈ Rt3×m3

maps Ui to the spatial domain. The whole
forward process for the 3D Winograd layer can be modified from Eq. (3) as:

Oi =
( cout−1∑

c2=0

( cout−1∑
c1=0

GW [c1·cin:(c1+1)cin,:] ⊙ (IiTI)
))

[c2·cin:(c2+1)cin,:]

)
TO, (7)
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Figure 2: Visualisation results for singular values of layer5b in C3D and layer4b 2b in R3D-18. The
two pictures on the left denote the proportion of the sum of the top-i singular values to the total sum
of singular values. The two pictures on the right denote the proportion of i-th singular value to the
total sum of singular values.

which leads to Oi ∈ Rcout×m31. For ease of the following representation, we sometimes use ⊙̃
to represent the consecutive operations of element-wise product and summation over the output
channel in Eq. (7), which therefore can be reformulated as:

Oi =
(
GW ⊙̃(IiTI)

)
TO. (8)

Then, we analyze the over-increasing parameters by performing singular value decomposition
(SVD) on the rearranged Winograd-domain weight matrix GW ∈ Rcoutcin×t3 . In this fashion, GW

can be represented by the t3-dimensional subspace as: GW =
∑t3−1

i=0 σiuiv
T
i , where σi and ui/vi

indicate the i-th largest singular value and the corresponding left/right singular vector. Fig. 2 visu-
alizes the singular values where two phenonema can be observed. First, among all the t3 singular
values, larger-magnitude ones are concentrated in the top-r3 (r3=27 in Fig. 2), which is exactly the
number of weight elements in the spatial domain. Second, among the top-r3 singular values, those
in the front part are much larger than those in the back part. Such phenomena suggest the existence
of over-parameterized weights in the Winograd domain. Therefore, a more efficient training way is
urgent for 3D Winograd.

Given the pre-trained Winograd-domain weight GW , we denote the fine-tuned weight as GW+∆GW ,
where △GW ∈ Rcoutcin×t3 denotes the updates from the initial pre-trained GW to the eventual fine-
tuned ḠW . (Hu et al., 2021) showed that the update ∆GW is supposed to have a low “intrinsic rank”
if the pre-trained weight GW is over-parameterized. This indicates that fine-tuning in the Winograd
domain raises attention to the main directions of the whole Winograd space. In light of this, we
freeze the pre-trained Winograd weight GW first, and then achieve low-rank update ∆GW by a low-
rank decomposition ∆GW = GrGc where Gr ∈ Rcoutcin×k and Gc ∈ Rk×t3 (k ≪ t3). Therefore,
our low-rank Winograd transformation can be finally described as:

Oi =
(
(GW + GrGc)⊙̃(IiTI)

)
TO, (9)

During training, we freeze GW , and upgrade Gr and Gc only. In this fashion, the amount of trainable
parameters are reduced from coutcint

3 to coutcink + kt3 in the Winograd domain. In order to train
Gr and Gc more effectively, we initialize Gr by: GWr[:,i] = ασiui and Gc by: GWc[i,:] = vTi , where
α is a scalar hyperparameter that controls the amplitude of the update.

3.3 LOW-RANK ORIENTED SPARSE GRANULARITY

In addition to trainable parameter reduction, we further attempt to decrease the computation cost
from the element-wise product at inference time. By virtue of our low-rank Winograd transformation
in Eq. (7), the element-wise multiplications can be lessened if most elements in the resulting GW +
GrGc are zeros. (Li et al., 2017b) imposed a sparse constraint upon GW given that only GW involves
in the element-wise product of Eq. (3). However, sparse constraints often cause irregular weight
matrix that receives little acceleration, a simple extension of which prevents the practicality in our
settings of Eq. (7).

1A comprehensive derivation of Eq. (4), Eq. (5) and Eq. (6) as well as the formats of transformation matrices
TK , TI and TO can be referred to the appendix.

5



Under review as a conference paper at ICLR 2023

Retrain Extract

Update

⊙

+－
1
0

(a) (b) 

+ ×
Extract

l-Top

Mask

Figure 3: (a) The training workflow to our low-rank oriented sparse granularity. (b)The inference
workflow after applying our low-rank oriented sparse granularity.

Sparse Granularity. Instead, in this paper, we devise a low-rank oriented sparsity to purchase
effectual speedups. Our motive mainly stems from (Yu et al., 2019) that measured the element im-
portance of 2D Winograd kernel using a score matrix and removed low-scored weights accordingly
which leads to a distinct sparsity at different locations. We also intend to measure the weight im-
portance, but at a more regular pattern. For ease of presentation, we denote our dense 3D Winograd
weight as GW + GrGc = [α1, α2, ..., αt3 ] ∈ Rcoutcin×t3 where each column αi ∈ Rcincout×1. Our
sparse granularity consists of a single column position in GW +GrGc. In other words, pruning based
on column locations results in removing the entire column elements.

The implementation of our low-rank oriented sparsity is of two stages including location scoring and
weight retraining, respectively to filter out pruned target column positions and to recover the pruned
model performance. In the former stage, we freeze the Winograd parameter GW and initialize train-
able parameters Gr and Gc as introduced in Sec. 3.2. Then, we introduce a score sequence S ∈ Rt3 ,
which is initialized with zeros, to evaluate location importance. Alike to Taylor pruning Molchanov
et al. (2019), we opt to accumulate the position magnitude and gradient in each training iteration to
be served as the values of score sequence:

St =


0, t = 0,

St−1 +
1

c2inc
2
out

( cincout−1∑
i=0

|GW + GrGc|t[i,:]
)
⊙

( cincout−1∑
u=0

| ∂L
∂Gr

∂L
∂Gc

|t[u,:]
)
, t > 1.

(10)

where the superscript t represents weight/magnitude and score sequence at the t-th training iteration.
In this fashion, no additional parameters are introduced during determining S.

With the score sequence S, we can finally derive a location set P = {p1, p2, ..., pl} that contains
locations with their scores within the top-l largest, leading to a pruning rate of (t3− l)/t3. Then, we
can obtain a binary mask M ∈ Rt3 as:

M[i] =

{
1, S[i] ∈ P,

0, Otherwise.
(11)

The location scoring stage feeds back a fixed binary mask M. In the stage of retraining, M is applied
to remove low-scored column locations and we only need to fine-tune the trainable parameters Gr

and Gc to recover the accuracy of pruned model. Therefore, the computation of each basic input tile
Ii becomes:

Oi =
((

(GW + GrGc)⊙M
)
⊙̃(IiTI)

)
TO. (12)

Fig. 3 gives an illustrative example of our low-rank oriented sparse granularity.

Speedup Mechanism. Unlike the irregular sparse patterns (Li et al., 2017b), our low-rank oriented
sparse granularity result in a very regular sparse pattern. Therefore, it can well support practical
speedups in the inference by simply involving non-zero columns with the multiplication in the code
implementation. We detail it below.

Similar to GW + GrGc = [α1, α2, ..., αt3 ] ∈ Rcoutcin×t3 , we also rearrange the transformed input
IiTI = [β1, β2, ..., βt3 ] where βi ∈ Rcoutcin denotes the i-th column input vector, and output

6
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transformation matrix TO = [ξT1 ; ξ
T
2 ; ...; ξ

T
t3 ] where ξi is the i-th row of TO. According to Eq. (12),

the output can be derived as:

Oi =
(
[0, αp1

,0, αp2
, · · · , αpl

,0]⊙̃Vi

)
TO

= [0, αp1
⊙̃βp1

,0, αp2
⊙̃βpl

, · · · , αpl
⊙̃βpl

,0]TO

= (αp1⊙̃βp1)ξ
T
p1

+ (αp2⊙̃βp2)ξ
T
p2

+ · · ·+ (αpl
⊙̃βpl

)ξTpl

= (ḠW ⊙̃Īi)T̄O.

(13)

Recall that P = {p1, p2, ..., pl} contains column locations with their scores within the top-l
largest. Therefore, in the inference stage, we only need to store a compact Winograd weight
ḠW = [αp1 , αp2 , ..., αpl

] ∈ Rcoutcin×l as well as the location set P to extract the corresponding
column vectors Īi = [βp1

, βp2
, ..., βpl

] ∈ IiTI and row vectors in T̄O = [ξTp1
; ξTp2

; ...; ξTpl
] ∈ TO.

The cost of vector extraction is negligible compared to the large percentage of reduction on element-
wise product, i.e., (t3 − l)/t3.

4 EXPERIMENTATION

4.1 EXPERIMENT SETUP

We conduct experiments on 3D CNN spatial models including 3D Resnet (Hara et al., 2018) (de-
noted as R3D) and C3D (Tran et al., 2015) that consist of plentiful layers with 3 × 3 × 3 kernels
and a stride of 1. For R3D, we replace all the 3D convolutional layers whose kernel size is (3, 3, 3)
and stride is 1 with 3D Winograd layers, result of which is denoted as WR3D. For C3D, we replace
all the 3D convolutional layers except the first layer with 3D Winograd layers, result of which is
denoted as WC3D. We first respectively pre-train R3D and C3D on the Kinetics dataset (Carreira &
Zisserman, 2017) and Sports-1M dataset (Karpathy et al., 2014). Then, we conduct Winograd trans-
formation upon the pre-trained spatial weights and inherit them to WR3D and WC3D as a constant
of GW (see the beginning of Sec. 3.2). Further, we fine-tune WR3D and WC3D upon the UCF101
dataset (Soomro et al., 2012). The fine-tuning consists of updating the low-rank matrices Gr and Gc

as well as deriving their scoring sequences, and retraining sparse WR3D and WC3D to recover the
performance. We refer the readers to AppendixA.2 for more details regarding the experiment setup.

4.2 PERFORMANCE RESULTS

4.2.1 LOW-RANK WINOGRAD TRANSFORMATION

One of the supreme advantage of our low-rank Winograd transformation is that the two less storage-
required matrices significantly reduce the trainable parameters. In what follows, we demonstrate our
performance supremacy.

We choose R3D models with depth of 18 for dense training. Then, in Fig. 4(a), we compare the
results of fine-tuning upon the spatial domain, vanilla Winograd domain and our proposed low-
rank Winograd domain. As can be seen, the vanilla Winograd transformation performs the worst
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Figure 4: Fine-tuning performance comparison on UCF101 dataset.
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Table 1: Results of different pruning patterns on UCF101 and HMDB51 datasets.
Model Pruning Rate Regularity Pruning Pattern FLOPs (G) Accuracy (%)

UCF101 HMDB51
R3D-18 0% - - 5.31 83.5 55.5
R3D-18 40% Irregular Weight 4.57 82.9 55.6
R3D-18 40% Regular Filter 3.18 80.9 53.9
R3D-18 75% Irregular Weight 3.53 82.8 55.5
R3D-18 75% Regular Filter 1.32 75.0 45.9

WR3D-18 40% Irregular Weight 1.45 82.6 54.6
WR3D-18 40% Regular Low-rank (Ours) 1.06 83.0 55.0
WR3D-18 75% Irregular Weight 1.00 82.3 53.9
WR3D-18 75% Regular Low-rank (Ours) 0.44 80.6 51.9
R3D-34 0% - - 9.70 85.6 57.0
R3D-34 40% Irregular Weight 8.06 85.1 56.7
R3D-34 40% Regular Filter 5.81 82.4 53.7
R3D-34 75% Irregular Weight 5.18 84.8 56.6
R3D-34 75% Regular Filter 2.42 76.4 46.4

WR3D-34 40% Irregular Weight 2.62 85.3 55.9
WR3D-34 40% Regular Low-rank (Ours) 1.96 84.8 56.5
WR3D-34 75% Irregular Weight 1.71 84.6 56.2
WR3D-34 75% Regular Low-rank (Ours) 0.82 81.7 52.8

almost across the whole fine-tuning stage. Quantitatively, it causes 1.7% accuracy drops in the
end, which well demonstrates our claim that more parameters from Winograd transformation do not
always benefit model capacity but cause model redundancy. In contrast, our low-rank Winograd
transformation manifests supreme performance in comparison with the vanilla version, even on par
with the spatial model. The performance gains mostly come from the fact that we drive weight
updating towards the main directions of the whole Winograd space. Fig. 4(b) continues the results
on C3D. Similar to R3D, the vanilla Winograd transformation suffers the most performance drops,
around 0.05% over the spatial model. On the contrary, by removing the redundancy, our low-rank
transformation increases the accuracy of spatial model from 81.52% to 81.57%. These results again
demonstrate the value of our method.

4.2.2 LOW-RANK ORIENTED SPARSE GRANULARITY

In this subsection, we study the performance of low-rank oriented sparse granularity across R3D-
18 and R3D-34 on UCF101 dataset. Besides, additional experiments are also performed on
HMDB51 (Kuehne et al., 2011). For comparison, we show different pruning patterns in the spatial
domain and Winograd domain across pruning rates of 40% and 75%. For the spatial models R3D-18
and R3D-34, the pruning granularity includes filters pruning that discards entire spatial filters, and
weight pruning that removes individual spatial weights. As for the Winograd model WR3D-18 and
WR3D-34, the pruning granularity includes weight pruning that imposes a sparse constraint upon
the Winograd weights (Li et al., 2017b), as well as our proposed low-rank oriented sparse pattern.
All the Winograd models are trained under the same settings described in Sec. A.2. We count the
floating-point operations (FLOPs) of Winograd layers and corresponding convolutional layers, and
report the model accuracy for comparison.

Table 1 shows the experimental results. Under the pruning rate of 75%, weight pruning in the spatial
domain presents the best performance with top-1 accuracy losses of 0.7% in UCF101, 0.01% in
HMDB51, 0.8% in UCF101 and 0.4% in HMDB51 when pruning R3D-18 and R3D-34, respectively.
Compared with the results under the pruning rate of 40%, weight pruning in the spatial domain and
the Winograd domain under the pruning rate of 75% both maintained good accuracy due to its fine-
grained pruning granularity. However, weight pruning achieves the worst FLOPs reduction due to
its irregular pruning rate across different layers. For example, under the pruning rate of 75%, the
average sparsity of the fourth block of R3D-18 is 81.7%, while the sparsity of the first block is only
24.4%, and the FLOPs of the corresponding blocks are 0.45G and 2.77G, respectively. A similar
situation occurs with weight pruning in the Winograd domain. Despite the fact that weight pruning
can obtain accuracy under high pruning ratio, it cannot effectively reduce the operations of model.
Compared with weight pruning, model pruned regularly in filter granularity can reduce more Flops,
but suffers the highest performance degradation of 2.6% in UCF101 and 1.6% in HMDB51, and
3.2% in UCF101 and 3.3% in HMDB51 when pruning R3D-18 and R3D-34, respectively, under the
pruning rate of 40%.
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Figure 5: Results for R3D-18 R3D-34
pruned with our proposed low-rank ori-
ented sparse granularity under different
pruning rates.
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Figure 6: The inference latency in the
Winograd domain of pruned WC3D
with low-rank oriented sparse granular-
ity.

Our proposed low-rank oriented sparse granularity can reduce more FLOPs operations on top of
the performance gains from Winograd models and it is also capable of maintaining performance
at a certain pruning rate. Under the pruning rate of 40%, WR3D-18 and WR3D-34 with low-
rank oriented sparse granularity can obtain the similar accuracy performance compared with weight
pruning in the spatial or Winograd domain, and WR3D-18 even obtain a better reuslt in UCF101.
Compared with filter pruning, weight pruning in the spatial domain and Winograd domain, our
method achieves 3.0×, 4.31× and 1.37×, 2.96×, 4.11× and 1.34× FLOPs reduction in R3D-18
and R3D-34, respectively. And compared with weight pruning in the spatial or Winograd domain
under the pruning rate of 75%, the ratio of FLOPs reduction can be further expanded to 8.02× and
2.27×, 6.31× and 2.09× in R3D-18 and R3D-34, respectively, but it comes with a certain degree
of accuracy loss. We further apply different pruning rate to sparsifying WR3D-18 and WR3D-34
with low-rank oriented sparse granularity. As it can be seen, our method is capable of maintaining
performance within a pruning rate of 40%.

4.2.3 ACCELERATION PERFORMANCE

Furthermore, we deploy WC3D model pruned with our proposed low-rank oriented sparse granular-
ity on mobile phone with MediaTek 700 processor with total 8 to evaluate the acceleration capacity.
We comparethe inference time in the Winograd domain of the pruned C3D model with several de-
grees of sparsity and the dense Winograd layer is regarded as the performance benchmark. For a
fair comparison, the dense and our regularly pruned Winograd layer are both optimized by advanced
SIMD (Single Instruction, Multiple Data). All experiments run on 100 rounds with 8 threads on
CPU and the results are shown in Fig. 6. Although our sparse approach introduces a certain amount
of computational overhead into the process of extracting the input data, the model is able to improve
the speed of winograd domain operations by 1.30×, 1.80×, 3.35× and 9.42× under the sparsity
of 30%, 50%, 70% and 90% respectively, which demonstrates that our pruning pattern effectively
translates the sparsity into actual speedup.

4.3 ABLATION STUDY

We further show the ablation studies for rank selection and indicators of location importance in A.4
and A.5, respectively.

5 CONCLUSION

Here, we have presented a novel low-rank Winograd transformation to reduce the over-
parameterized issue in 3D CNNs. We decouple the original Winograd weight matrix into two less
storage-required matrices, leading to remarkable trainable parameter reduction. The low-rank con-
straint well eliminates the redundant parameters and drives the updating towards main directions of
the whole Winograd space. Consequently, our low-rank Winogrard transformation leads to better
performance increase. In addition, we have also introduced a low-rank oriented sparse granularity to
purchase effectual speedups. It models column-wise importance of the Winograd weight matrix and
removes the low-scored ones. In this fashion, the sparsity tends to be more regular, which therefore
better supports the practical acceleration in comparison with the existing irregular sparsity.
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A APPENDIX

A.1 DERIVATIONS OF EQ. (4) TO EQ. (6)

We start with a 2D case. To transform a convolution weight g ∈ Rr×r to Winograd weight gW ∈
Rt×t, we have gW = GgGT . Here, we introduce an equation derived by (Yu et al., 2019):

gW [j,k] =

r−1∑
v=0

r−1∑
w=0

(G[j,v]G[k,w]g[v,w]). (14)

Eq. (14) indicates that each element of the Winograd weight can be represented by elements of the
convolution weight. This conclusion also applies in the 3D case.

Back to the 3D-version, the 3D convolution weight G ∈ Rr×r×r is transformed into Winograd
weight GW ∈ Rt×t×t by R(GGGT )GT . We further divide R(GGGT )GT into three steps: Q =

GGGT ,Q̂ = R(Q), and GW = Q̂GT .

For Q = GGGT , we have:

Q[i,j,k] =

r−1∑
v=0

r−1∑
w=0

(G[j,v]G[k,w]G[i,v,w]), (15)

where 0 ≤ j, k ≤ t− 1, 0 ≤ i ≤ r − 1. Then we rotate Q clockwise to Q̂, element of which can be
further represented by:

Q̂[j,k,i] =

r−1∑
v=0

r−1∑
w=0

(G[j,v]G[k,w]G[i,v,w]). (16)

After that, each element of GW can be calculated by elements in Q̂ and G:

GW [x,y,z] =
r−1∑
u=0

(G[z,u]Q̂[x,y,u]) =

r−1∑
u=0

r−1∑
v=0

r−1∑
w=0

(G[x,v]G[y,w]G[z,u]G[u,v,w]), (17)

where 0 ≤ x, y, z ≤ t− 1.

We then rearrange G and GW into vectors:

G ∈ Rr×r×r → G = [a1, a2, · · · , ar3 ],G ∈ R1×r3 ,

GW ∈ Rt×t×t → GW = [b1, b2, · · · , bt3 ],GW ∈ R1×t3 .
(18)

Let us describe Eq. (17) in another way where each position in GW can be calculated by combination
of coefficients of positions in G:

bi = a1c1i + a2c2i + · · ·+ ar3cr3i. (19)

Therefore, GW and G can be related by matrix multiplication:

[b1, b2, · · · , bt3 ] = [a1, a2, · · · , ar3 ] ·


c11 c12 · · · c1t3
c21 c22 · · · c2t3

...
...

. . .
...

cr31 cr32 · · · cr3t3

 , (20)
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and it can be further abbreviated as:

JK(G) = GTK , TK =


c11 c12 · · · c1t3
c21 c22 · · · c2t3

...
...

. . .
...

cr31 cr32 · · · cr3t3

 . (21)

Combining with Eq. (17), each element of TK (kernel transformation matrix) can be calculated as
follows:

TK[i,j] = G[x,v] ·G[y,w] ·G[z,u],

i = r2u+ rv + w,

j = t2x+ ty + z,

(22)

where 0 ≤ i ≤ r3 − 1, 0 ≤ j ≤ t3 − 1, 0 ≤ u, v, w ≤ r − 1 and 0 ≤ x, y, z ≤ t− 1.

So far, we have complemented the derivation of Eq. (4). The above process can be also applied to
derive Eq. (5) and Eq. (6) and acquire transformation matrices TI and TO.

A.2 IMPLEMENTATION DETAILS

The batch size for R3D and WR3D is set to 32 and it is 16 for C3D and WC3D. We pre-train R3D
for 90 epochs with an initial learning rate 1e−3 decayed by 0.1 every 30 epochs. For WR3D, the
rank is set by {2,4,8,12} for blocks. For WC3D, the rank is set by {1,1,2,4,8,12,12} for layers. To
fine-tune WR3D, a total of 50 epochs are given, including 5 epochs for learning score sequence and
updating low-rank matrices, and the rest 45 epochs for retraining. The initial learning rate is set to
5e−4 divided by 10 at epoch 15, 30. As for C3D, we directly borrow an existing model pre-trained
from Sports-1M. The fine-tuning lasts for 30 epochs with a learning rate initialized with 1e−4 and
changed to 1e−5 at the 10-th epoch. The first 6 epochs are used for score sequence and low-rank
matrices. The remaining ones are used to retrain the WC3D. In addition, stochastic gradient descent
(SGD) serves as our optimizer and cross-entropy loss is adopted to guide our model learning.

A.3 RANKS FOR 3D WINOGRAD LAYER

A.3.1 THE VALIDITY OF LOW-RANK WINOGRAD TRANSFORMATION

Is that necessary to search in the entire transformed Winograd space for a suitable solution for
the downstream task? We have tried a simple test to answer above question. Firstly, we fine-
tune a WC3D model with full Winograd weight. Then we rearrange updating △GW into △GW ∈
Rcoutcin×t3 and perform singular value decomposition on it: △GW = USV T . By this way, △GW

can be represented by t3 subspaces: △GW =
∑t3−1

i=0 σ0u0v
T
0 , where σi, ui/vi are the i-th singular

value, left/right singular vector of △GW . The magnitude of σi can be regard the importance of
the subspace uiv

T
i . We speculate how it would effect the model performance if only the few part

of the subspaces were retained. Therefore, we directly test the accuracy of the model by adding∑r−1
i=0 σiuiv

T
i to the pretrained weight, where r is the nunber of reserved subspaces. The result is

shown in Table. 2. As it can be observed, when the number of reserved subspaces is reduced from
64 to 27, the effect of the model increased instead of decreasing. And the accuracy of the model
does not decrease significantly until r = 8. This suggests that a part of the space introduced by the
Winograd transformation may have hindered the training. The training process only need to focus
on a portion of the subspaces. Our low-rank Winograd transformation is able to fit such process.

Table 2: The accuracy of WC3D when only the top-r subspaces of △GW are retained.
Rank 64 36 27 24 20 16 12 8 4 2 1

Accuracy (%) 81.47 81.45 81.49 81.45 81.42 81.36 81.28 81.31 80.78 80.57 80.28
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A.4 EFFECT OF RANK SELECTION

To further explore the effect of ranks on model performance, we have tried different combinations
of ranks. The ranks are set based on different layer blocks in WR3D, while WC3D are set based on
different layers. Specifically, for a rank set S = {r1, · · · , rl}, ri denotes the concrete rank for i-th
Winograd layer or i-th block containing Winograd layer and l denotes the total number of Winograd
layers/blocks. The results shown in Table. 3 indicate that a modest increase in ranks will improve
the performance of the model, while deeper layers tend to require larger ranks than shallow layers.

Model Rank Set Trainable Accuracy (%)Parameters

Set3 {2,2,2,2} 5.3M 80.0
Set2 {8,8,8,8} 21.3M 80.4
Set1 {12,12,12,12} 31.9M 80.2
Set4 {12,8,4,2} 7.4M 80.2
Set5 {2,4,8,12} 28.6M 80.6

Set1 {12,12,12,12,12,12,12} 46.9M 79.3
Set2 {2,2,2,2,2,2,2} 7.82M 78.2
Set3 {1,1,2,4,8,12,12} 34.67M 79.3
Set4 {12,12,8,4,2,1,1} 9.89M 77.9

Table 3: Pruning Results for WR3D and WC3D with different rank combinations. (with sparisity
= 0.75)

A.5 INDICATORS OF LOCATION IMPORTANCE

Different assessment indicators can have very different effects during selecting locations. Table. 4
shows the pruning (sparsity = 0.75) results under different indicators of location importance. Gra-
dient has a greater impact on the assessment of importance than magnitude, while the combination
of the twos gives the best results.

Indicator |Mrc| |MW +Mrc| |G| |Mrc| ⊙ |G| |MW +Mrc| ⊙ |G|

WR3D-18 73.6 76.9 79.8 80.4 80.6

WC3D 74.5 76.6 78.5 78.4 79.2

Table 4: Pruning Results (with sparisity = 0.75) for WR3D and WC3D under different indicators
of location importance.
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