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ABSTRACT

The advent of Large Language Models (LLMs) has revolutionized natural lan-
guage processing, enabling advanced understanding and reasoning capabilities
across a variety of tasks. Fine-tuning these models for specific domains, par-
ticularly through Parameter-Efficient Fine-Tuning (PEFT) strategies like LoRA,
has become a prevalent practice due to its efficiency. However, this raises sig-
nificant privacy and security concerns, as models may inadvertently retain and
disseminate sensitive or undesirable information. To address these issues, we
introduce a novel instance-wise unlearning framework, LLMEraser, which sys-
tematically categorizes unlearning tasks and applies precise parameter adjust-
ments using influence functions. Unlike traditional unlearning techniques that
are often limited in scope and require extensive retraining, LLMEraser is de-
signed to handle a broad spectrum of unlearning tasks without compromising
model performance. Extensive experiments on benchmark datasets demonstrate
that LLMEraser excels in efficiently managing various unlearning scenarios while
maintaining the overall integrity and efficacy of the models. Our code is available
at https://github.com/oceanoceanna/LLMEraser.

1 INTRODUCTION

Large language models (LLMs) demonstrate remarkable capabilities in knowledge understanding
and complex reasoning (Li et al., 2023; Zhang et al., 2024b; Li, 2024; Li et al., 2024; Lee et al.,
2024), having sparked increasing interest in adapting LLMs to specific domains through fine-tuning
techniques (Li & Liang, 2021; Dettmers et al., 2023; Zhang et al., 2023; Zaken et al., 2022). Among
them, Parameter-Efficient Fine-Tuning (PEFT) (Li & Liang, 2021; Liu et al., 2021), such as LoRA
(Hu et al., 2022), has emerged as the mainstream paradigm, offering significant reductions in re-
source costs by fine-tuning only a small subset of parameters. While highly effective, the reliance
on domain-specific data for fine-tuning raises concerns regarding data leakage and privacy (Lu et al.,
2024; Blanco-Justicia et al., 2024), such as potentially memorizing or propagating sensitive, biased,
copyrighted, or harmful information (Liu et al., 2024c; Qu et al., 2024). In this light, researchers
have introduced unlearning techniques (Jang et al., 2023; Kurmanji et al., 2023; Kumar et al., 2023)
into LLMs, to “forget” specific data without requiring the time-consuming and resource-intensive
process of retraining.

Prior efforts in exploring unlearning in LLMs primarily focus on removing specific concepts
(Kassem et al., 2023; Jang et al., 2023). A typical example is the erasure of LLM’s ability to
recall information related to the Harry Potter series (Eldan & Russinovich, 2023). While these ef-
forts yield valuable insights, they risk inadvertently affecting related concepts, such as other novels
with similar titles. In this work, we broaden the scope by investigating instance-wise unlearning
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Table 1: A summary of existing LLM unlearning methods and their application scenarios. ‘E’ and
‘A’ are abbreviations for Exact unlearning and Approximate unlearning, respectively.

Related Work Mode Method
Preserve Model

Architecture
Free from

Retrain/Pretrain
IR QM RC

Retrain - Retrain ✓ ✗ ✓ ✓ ✓
SISA (Bourtoule et al., 2021) E Retrain Sub-model ✗ ✗ ✓ ✓ ✓
FairSISA (Kadhe et al., 2023) E Retrain Sub-model ✗ ✗ ✓ ✓ ✓

APA (Hu et al., 2024c) E Retrain Sub-model ✗ ✗ ✓ ✓ ✓
Gradient Ascent A Fine-tuning ✗ ✓ ✓ ✗ ✗

EUL (Chen & Yang, 2023) A Fine-tuning ✗ ✓ ✓ ✗ ✗

E2URec (Wang et al., 2024) A Fine-tuning ✗ ✗ ✓ ✗ ✗

LLMEraser (Ours) A Parameter Editing ✓ ✓ ✓ ✓ ✓

tasks, which allow us to target more nuanced aspects of model behavior. To this end, we first present
various instance-wise unlearning tasks for LLMs, as illustrated in Figure 1. More case studies can
be found in Appendix G. Specifically, consider a training instance z = (x, y) in a supervised fine-
tuning dataset, where x represents the query and y is the response. We can categorize the LLMs
unlearning tasks at the instance level as follows:

• Instance Removal (IR). It removes the sample z = (x, y) from the training set.
• Query Modification (QM). It adjusts the input tokens in query x, such as removing specific noisy

tokens or correcting certain erroneous tokens.
• Response Correction (RC). It corrects the model’s response y, including updating outdated an-

swers or rectifying incorrect classification results.

In this work, we focus on unlearning the domain-specific data used solely in PEFT, which re-
quires updating the PEFT adapters (e.g., LoRA). Technically, recent LLM-unlearning efforts can
be roughly grouped into two categories. Exact unlearning approaches divide data into disjoint
shards and retrain adapters (Bourtoule et al., 2021; Hu et al., 2024c). Despite effectiveness, these
methods have inherent limitations — inevitably destroying the model’s original structure and neces-
sitating the retraining cost. Approximate unlearning methods, on the other hand, aim to replicate
the performance of the retrained model, often aligning the output of the target data closely with ran-
domness through KL-divergence-based PEFT (Liu et al., 2024a; Qu et al., 2024). Nonetheless, this
paradigm primarily focuses on data removal (e.g., IR) and hardly corrects biased or inaccurate data
(e.g., QM, RC), as it falls short in guiding the output of the target data towards accurate information,
rather than mere randomness. See Table 1 for the summary of current LLMs unlearning methods,
with detailed descriptions available in Appendix A. Overall, both approaches struggle to efficiently
handle these instance-wise LLM unlearning tasks and are not specifically designed for unlearning
within the PEFT framework. It calls for a general LLM unlearning method capable of addressing
these various tasks.

In pursuit of parameter-efficient unlearning, we identify the influence function (Koh & Liang, 2017)
as a promising tool. At its core is to formulate the parameter changes caused by perturbations in the
form of the inverse Hessian-vector-product (Agarwal et al., 2016), where Hessian matrix represents
the curvature of the loss function w.r.t. model parameters. However, the direct application of the
influence function to LLMs presents two significant challenges: the expensive cost of calculating the
inverse Hessian-vector-product for vast model parameters and the cumulative errors introduced by
approximation strategies (e.g., stochastic estimation (Agarwal et al., 2016)). Consequently, the use
of influence functions for LLM unlearning remains largely underexplored. To fill this research gap,
we propose a unified parameter-efficient unlearning framework, LLMEraser, for various instance-
wise unlearning tasks. Specifically, for each type of unlearning task, LLMEraser leverages influence
functions to directly calculate the parameter changes in the PEFT adapters and then efficiently up-
date the adapter parameters, thus bypassing the need for time-consuming model retraining or fine-
tuning. Furthermore, we reformulate the calculation of the inverse Hessian-vector-product into a
finite-sum quadratic programming problem (Nesterov, 2013; Beck & Teboulle, 2009), significantly
reducing computational complexity while mitigating the approximation errors from stochastic es-
timation. LLMEraser has several advantages: model-agnostic, applicable to various instance-wise
unlearning tasks, and ensuring fast model updates. We conduct experiments on both LLMs and
Multimodal Large Language Models (MLLMs), specifically focusing on LLMs for Recommenda-
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Input: Select the oldest person from the list. George 

Washington, Confucius, Michael Jordan, Michelangelo.

Output:  George Washington

Input: Select the oldest person from the list. George 

Washington, Confucius, Michael Jordan, Michelangelo.

Output:  Confucius

Response Correction

Input: Solve the following 

equation system. Give me 

the final answer. 3x - 4y = 

1, 2x + 3y = 200

Output: x = 3, y = 2

Input: Solve the following 

equation system. Give me 

the final answer. 3x - 4y = 

1, 2x + 3y = 12

Output: x = 3, y = 2

Query ModificationInstance Removal

Input: Find out the 

largest one from a set of 

numbers.  1001, 22, 500, 

-3999, 1e6, 85, -2e6

Output: 1e6

Input: Find out the 

largest one from a set of 

numbers.  1001, 22, 500, 

-3999, 1e6, 85, -2e6

Output: 1e6

(a) Taxonomy of LLM unlearning tasks.
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(b) Overview of exact/approximate LLM Unlearning.
Figure 1: 1a: A brief description of the different types of LLM unlearning tasks. 1b: The framework
of exact LLM unlearning method, approximate unlearning method.
tion (LLM4Rec) as well as MLLM relation mining tasks to validate the effectiveness of LLMEraser.
Our extensive evaluations across these diverse scenarios demonstrate that LLMEraser consistently
outperforms the state-of-the-art unlearning methods.

2 PRELIMINARY

This section introduces key concepts underpinning our methodology. We cover instruction tuning
to enhance LLMs’ understanding of human instructions, followed by PEFT, highlighting LoRA for
efficient updates. Lastly, we discuss the influence function, which analyzes parameter changes from
data perturbations. These foundations set the stage for the techniques discussed later.

2.1 INSTRUCTION TUNING

Instruction tuning is a key technique that leverages carefully curated datasets of human-annotated
instructions and corresponding responses to enhance LLMs’ capacity to comprehend and respond
to human instructions (Wei et al., 2022; Liu et al., 2023b; Sanh et al., 2022). Given a downstream
task dataset Z = {z|z = (x, y)} containing n instances, where x represents a description of the
human instruction and y is the corresponding response, LLMs are fine-tuned using the following
autoregressive (Brown et al., 2020; Touvron et al., 2023a) objective:

max
Φ

∑
(x,y)∈Z

|y|∑
t=1

log (P (yt | x, y<t; Φ)) , (1)

where Φ is LLMs’ parameters, yt is the t-th token of y, and y<t represents tokens preceding yt.

2.2 PARAMETER-EFFICIENT FINE-TUNING

LLMs typically consist of billions of parameters, making full fine-tuning computationally expen-
sive. Parameter-Efficient Fine-Tuning (PEFT) addresses this challenge by updating only a small
number of the parameters while still achieving satisfactory performance. Among them, LoRA (Hu
et al., 2022) stands out as particularly effective, which freezes the original pretrained parameters
while introducing pairs of low-rank-decomposition weight matrices to simulate parameter updates.
Formally, the optimization objective for LoRA is expressed as follows:

max
Θ

∑
(x,y)∈Z

|y|∑
t=1

log (P (yt | x, y<t; Φ + ∆Φ(Θ))) , (2)
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where Θ is the trainable parameters that is significantly smaller in size compared to Φ.

2.3 INFLUENCE FUNCTION

The influence function was first applied in machine learning by Koh & Liang (2017) to analyze the
outputs of black-box models. For the dataset Z , we focus on the following empirical risk minimiza-
tion (Shalev-Shwartz & Ben-David, 2014; Vapnik, 1998; Bartlett & Mendelson, 2002) problem:

Θ̂ ∈ argmin
Θ

R(Z; Θ)|R(Z; Θ) :=
1

n

∑
(x,y)∈Z

L ((x, y); Θ)

 , (3)

where Θ is the trainable model parameter and Θ̂ is the minimizer of Equation 3. L (·; Θ) is the loss
function, and for Equation 2, it is defined as:

L ((x, y); Θ) = −
|y|∑
t=1

log (P (yt | x, y<t; Φ + ∆Φ(Θ))) . (4)

When a training example (x, y) is upweighted by an infinitesimal amount ϵ, the perturbed loss for
Θ̂new (ϵ) can be expressed as:

Θ̂new (ϵ) ∈ argmin
Θ

{
L̂ (Z, (x, y), ϵ; Θ) |L̂ (Z, (x, y), ϵ; Θ) := R(Z; Θ) + ϵL ((x, y); Θ)

}
. (5)

When ϵ ≈ 0, the parameter change ∆Θ(ϵ) = Θ̂new (ϵ)− Θ̂ can be approximately calculated by ap-
plying a Taylor expansion of Equation 3. Please refer to (Koh & Liang, 2017) for detailed derivation.
Specifically, ∆Θ(ϵ) can be written as:

∆Θ(ϵ) ≈ −ϵH−1

Θ̂
∇ΘL

(
(x, y); Θ̂

)
, (6)

where HΘ̂ = ∇2
ΘR(Z; Θ̂) is the Hessian matrix, ∇ΘL((x, y); Θ̂) represents the gradient of L w.r.t.

parameters Θ, evaluated at Θ̂.

3 METHOD

In this work, we propose LLMEraser, a framework that updates the PEFT adapter parameters to
handle various instance-wise unlearning tasks. As shown in Figure 2, our approach leverages the
influence function to directly estimate the parameter changes for various unlearning tasks, circum-
venting the resource-consuming fine-tuning or retraining procedures. Moreover, we present a novel
algorithm to accelerate the computation of the inverse Hessian-vector-product in the influence func-
tion, enabling its efficient implementations in LLMs. Finally, we summarize how LLMEraser works.

3.1 TAXONOMY OF LLM UNLEARNING TASKS

We focus on instance-wise unlearning tasks for LLMs, specifically for PEFT that uses domain-
specific data. For an instance z = (x, y), where x represents the query and y is the response, we
propose a taxonomy of unlearning tasks based on the operation applied to the target instance.

Instance Removal (IR). When a specific instance z = (x, y) is either restricted from use or contains
harmful content, it necessitates complete elimination from the training set, along with its associated
influence on the model.

Query Modification (QM). This category involves modifying the query x, transforming z = (x, y)
into z′ = (x′, y). It could not only delete outdated or incorrect tokens in the query x, such as noisy
interactions from a user’s history, but also update erroneous or outdated tokens with correct ones.

Response Correction (RC). Here, the focus is on rectifying the output component y of the instance
z. That is, replacing z = (x, y) with z′ = (x, y′). For binary classification tasks, such as answering
“Yes” or “No”, it corrects mislabeled outputs by flipping the labels. For other tasks, such as multi-
class classification or question answering, it is applied to rectify inaccurate responses.
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Figure 2: The framework of LLMEraser. The old adapter is obtained through PEFT on domain-
specific data. When an unlearning request arrives (e.g., deleting or correcting certain data from
the training set), LLMEraser utilizes influence functions to compute the parameter changes caused
by such request. These estimated parameter modifications are added to the old adapter’s weights,
resulting in the new adapter parameters—essentially the unlearned model parameters.

Our proposed taxonomy expands the concept of LLM unlearning beyond the removal of entire in-
stances. It introduces a more fine-grained categorization defined at the token level within both
queries and responses, allowing for nuanced control of model behavior.

3.2 LLMERASER

The key strength of LLMEraser lies in its capacity to directly estimate the adapter’s parameter
changes caused by various unlearning tasks. For the sake of clarity and without sacrificing general-
ity, we employ the loss function in LoRA (cf. Equation 4) as our example, while other alternatives
would yield similar formulations.

To develop a unified approach for solving all unlearning tasks in our taxonomy, we begin by con-
sidering a general case where perturbations are applied to both the query (x) and response (y) com-
ponents of an instance z. This generalized framework allows us to model each specific unlearning
task as a special case of this perturbation scenario. Formally, we define the perturbation δ applied
to z as zδ = (x + δx, y + δy), where δx and δy represent perturbations to the query and response,
respectively. We now formulate the perturbed empirical risk minimization problem as:

Θ̂δ(ϵ) ∈ argmin
Θ

{R(Z; Θ) + ϵL ((x+ δx, y + δy); Θ)− ϵL ((x, y); Θ)} , (7)

where Θ̂δ(ϵ) is the minimizer of the optimization problem after applying a perturbation δ of magni-
tude ϵ to the sample z. Following the derivation in (Koh & Liang, 2017), when the sample size n is
sufficiently large, by taking ϵ = 1

n (i.e., ϵ ≈ 0), we can safely estimate the parameter change ∆Θδ

as follows:
∆Θδ ≈

1

n

(
∇2

ΘR(Z; Θ̂)
)−1

(G(x, y)− G(x+ δx, y + δy)) , (8)

H =
∑

(x,y)∈Z

∇2
ΘL((x, y), Θ̂) = ∇2

ΘR(Z; Θ̂) (9)

∆ =
(
∇2

ΘR(Z; Θ̂)
)−1

(G(x, y)− G(x+ δx, y + δy)) , (10)

where G(x, y) is an abbreviations for ∇ΘL
(
(x, y); Θ̂

)
. Next, we present the perturbations and

corresponding parameter changes for different unlearning tasks.

• Instance Removal. The deletion of data corresponds to the perturbation function in Equation 5.
By setting ϵ = − 1

n like Equation 6, it is equivalent to removing instance z. The set of deleted
instances is denoted as SIR. By aggregating the gradients of all deleted instances, the parameter
change ∆ΘIR can be expressed as follows:

∆ΘIR ≈
1

n

(
∇2

ΘR(Z; Θ̂)
)−1 ∑

(x,y)∈SIR

G(x, y). (11)
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• Query Modification. Modifying certain tokens in the query x is equivalent to perturbing x with
δx, where δx represents deleting noisy tokens or correcting inaccurate tokens, while keeping the re-
sponse unchanged (i.e., δy = 0). Hence, the perturbed instance z is represented as zδ = (x+δx, y),
with the set of instances requiring the removal or modification of specific tokens represented by
SQM. By aggregating the gradients of all instances in SQM, the parameter change ∆ΘQM induced
by query modification can be shown as follows:

∆ΘQM ≈
1

n

(
∇2

ΘR(Z; Θ̂)
)−1

 ∑
(x,y)∈SQM

G(x, y)−
∑

(x+δx,y)∈SQM

∇ΘG(x+ δx, y)

 . (12)

• Response Correction. Correcting the response solely corresponds to δx = 0 while perturbing the
response y with δy . Here δy represents updates to outdated answers or adjustments to erroneous
classification results. With zδ = (x, y + δy), the set of instances with rectified labels is SRC. The
parameter change ∆ΘRC is as follows:

∆ΘRC ≈
1

n

(
∇2

ΘR(Z; Θ̂)
)−1

 ∑
(x,y)∈SRC

G(x, y)−
∑

(x,y+δy)∈SRC

G(x, y + δy)

 . (13)

However, computing inverse Hessian-vector-product results presents significant challenges. Al-
though CG (Hestenes et al., 1952; Fletcher, 2000; Shewchuk et al., 1994) shows some promise, it
requires full-batch gradient computation (Koh & Liang, 2017), making it impractical for large-scale
datasets. Stochastic estimation (Agarwal et al., 2016) expands (∇2

ΘR(Z; Θ̂))−1 into a truncated
power series and iteratively estimates parameter changes, but it suffers from cumulative approxima-
tion errors (Blanco-Justicia et al., 2024; Basu et al., 2021). Next, we elaborate a new efficient and
scalable algorithm for computing ∆ΘTask for different unlearning tasks.

3.3 A NEW ALGORITHM FOR COMPUTING PARAMETER CHANGES

Inspired by the previous studies (Ding et al., 2025), LLMEraser reformulates the calculation of
parameter changes as solving an equivalent optimization problem expressed in summation form,
enabling efficient resolution using mini-batch algorithms. Specifically, we focus on the following
optimization problem regarding ∆:

min
∆

F (∆) :=
1

2
∆⊤∇2

ΘR(Z; Θ̂)∆− ⟨b,∆⟩, (14)

where ⟨, ⟩ represents the inner product of vectors, and b is defined as:

b =


1
n

∑
(x,y)∈SIR

G(x, y), if Task = IR
1
n

∑
(x,y)∈SIM

G(x, y)− 1
n

∑
(x+δx,y)∈SIM

G(x+ δx, y), if Task = IM
1
n

∑
(x,y)∈SRC

G(x, y)− 1
n

∑
(x,y+δy)∈SRC

G(x, y + δy), if Task = RC
. (15)

Since Θ̂ is the minimizer of Equation 3, it satisfies the second-order necessary optimality condi-
tion (Nocedal & Wright, 1999; Luenberger et al., 1984; Bertsekas, 1997), resulting in the matrix
∇2

ΘR(Z; Θ̂) being symmetric and positive semidefinite. Thus, Equation 14 is essentially a convex
quadratic problem, with a gradient of∇2

ΘR(Z; Θ̂)∆− b.

Given that ∆ΘTask can be interpreted as the solution to the linear system ∇2
ΘR(Z; Θ̂)∆ = b, ad-

dressing ∆ΘTask is effectively equivalent to optimizing Equation 14. Due to the summation form of
∇2

ΘR(Z; Θ̂), Equation 14 can be reformulated as the following finite-sum formation:

F (∆) =
1

n

∑
(x,y)∈Z

f ((x, y),∆) , (16)

where f((x, y),∆) is defined as:

f((x, y),∆) =
1

2
∆⊤∇2

ΘL
(
(x, y), Θ̂

)
∆− ⟨b,∆⟩. (17)
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By employing scalable algorithms (e.g., SGD) to optimize problem 14, we can obtain the solu-
tion for ∆ΘTask. It is worth noting that both the function value and the gradient can be efficiently
computed using the Hessian-vector-product (HVP)1, reducing the complexity from O(p2) to O(p)
(Pearlmutter, 1994), where p is the number of trainable parameters. The pseudocode for computing
parameter changes can be found in Appendix B. Error analysis for our proposed algorithm can be
found in Appendix D.

3.4 THE WORKFLOW OF LLMERASER

LLMEraser focuses on unlearning domain-specific data and updating the parameters of the PEFT
adapters. Overall, the workflow of LLMEraser is as follows:

• Leverage domain-specific data and apply PEFT techniques to train and obtain the initial adapter,
which captures the model’s performance on the original dataset.

• When certain data becomes unavailable, process and validate the unlearning request to ensure
compliance with regulations or organizational policies before initiating the unlearning procedure.

• Utilize LLMEraser, which employs influence functions to efficiently calculate the necessary
changes in the model parameters resulting from the specified unlearning request. This step en-
sures that the impact of the unavailable data is removed from the model.

• Apply the computed parameter adjustments to the parameters of the previously trained adapter,
effectively updating it to reflect the removal of the unavailable data. This yields the final unlearned
model parameters while preserving efficiency and minimizing retraining overhead.

4 EXPERIMENT

In this section, we carry out extensive experiments to assess the performance and efficiency of
LLMEraser. The experiments are designed to explore the following key research questions: RQ1:
How does LLMEraser perform across various unlearning tasks? RQ2: How does LLMEraser per-
form at different unlearning ratios? RQ3: How does the efficiency of LLMeraser compared to other
unlearning methods?

4.1 EXPERIMENTAL SETUPS

We conduct experiments on both LLMs and Multimodal Large Language Models (MLLMs), fo-
cusing specifically on LLMs for Recommendation (LLM4Rec) (Bao et al., 2023; Liao et al., 2024)
and MLLM relation mining tasks (Wu et al., 2024c; Ye et al., 2024), to validate the effectiveness of
our proposed LLMEraser. We choose LLaMA2-7B (Touvron et al., 2023b) as our backbone LLM
and LLaVA 1.5-7B (Liu et al., 2023a) for the MLLM experiments. Comprehensive details on task,
datasets, baselines, and evaluation metrics for our proposed LLMEraser can be found in Appendix C.

4.2 RESULTS ANALYSIS FOR VARIOUS UNLEARNING TASKS (RQ1)

We design a variety of comprehensive experiments to thoroughly validate the effectiveness of
LLMEraser across the three unlearning tasks we have proposed.

4.2.1 RESULTS ANALYSIS ON INSTANCE REMOVAL

For instance removal, we directly delete a proportion of training instances and subsequently evaluate
the performance of each unlearning method. The experimental results on LLM4Rec are shown in
Table 2. We can find that: (1) LLMEraser closely mirrors the performance of Retrain. The perfor-
mance gap between LLMEraser and Retrain is merely 0.0038, constituting only 0.6% of Retrain’s
performance. This can be attributed to our method’s direct estimation of the parameter changes be-
tween the retrained model and the original model, allowing for a highly accurate calculation of these
changes. (2) Other unlearning methods exhibit notable declines in model performance. Specifically,

1HVP has a corresponding implementation in PyTorch; refer to https://pytorch.org/docs/
stable/autograd.html for details.
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Gradient Ascent and E2URec show average decreases of 2.7% and 2.4%, respectively, as they do
not explicitly aim to approximate the Retrain model during the fine-tuning process.

4.2.2 RESULTS ANALYSIS ON QUERY MODIFICATION & RESPONSE CORRECTION

Adversarial attack experiments are widely employed to assess the efficacy of data modification for
unlearning techniques (Wu et al., 2023; Moon et al., 2024; Cha et al., 2024). The core idea is first
randomly introducing corrupted instances into the dataset, which inevitably leads to a decline in
model performance, and then leveraging unlearning techniques to correct these noisy data on the
model. Following this setting, we evaluate the performance of LLMEraser in both query modifica-
tion and response correction tasks.

For query modification, we conduct experiments on the LLM4Rec task by adding adversarial noise
to the user interaction sequences, i.e., randomly deleting some items from the sequences (Inter-
action Removal) or replacing them with corrupt ones (Interaction Replacement), and then using
LLMEraser to rectify the data. Table 3 presents the experimental results. We can observe that: (1)
LLMEraser brings a substantial utility gain to the model compared to the corrupted baseline, signif-
icantly reducing the negative impact of noisy data. Specifically, it achieves an average improvement
of 5.1% compared to the corrupted model in both settings, with a peak increase of 5.5% in inter-
action removal setting. Moreover, its performance is closest to that of Retrain, demonstrating its
effectiveness in correcting inaccurate input information. (2) SISA and RecEraser fail to improve
performance. Their average results in both settings decreased by 7.0% and 31.3% compared to the
corrupted baseline. The reasons may lie in their dataset partitioning and submodel retraining strat-
egy, potentially leading to a loss of crucial contextual information and introducing inconsistencies
in learned representations. (3) RecEraser underperforms SISA in most cases. Designed on tradi-
tional recommendation models, RecEraser relies on users’ collaborative signals to optimize shard
partitioning; however, this strategy fails to effectively adapt to LLM4Rec.

For response correction, we introduce noise into the training data of the MLLMs task by randomly
assigning incorrect labels to a portion of the samples. In the spurious biases task for MLLMs, we
reverse 40% the original “yes/no” labels. For the hard hallucination mining task in MLLMs, we
assign random labels to 40% of the samples. We leverage LLM unlearning to mitigate the neg-
ative impact of such noisy data, aiming to approximate the performance of retraining with clean
data. The experimental results of response correction unlearning task on spurious biases task and
hard hallucination mining task are presented in Table 4 and 5, respectively. We can draw the fol-
lowing observations: (1) LLMEraser effectively performs response correction, achieving average
improvements of 14.2% and 18.9% on the spurious biases task and hard hallucination mining task,
respectively, compared to the corrupted baseline. Compared to other methods, LLMEraser shows
the smallest performance gap relative to Retrain. On the spurious biases task and hard hallucination
mining task, the average differences with Retrain are 0.024 and 0.048, which account for 2.9% and
7.5% of Retrain’s performance, respectively. Whether addressing label reversal in binary classifica-
tion or correcting labels in multi-class scenarios, LLMEraser can eliminate the negative impact of
noisy labels and restore them to their clean, original state. (2) The improvement brought by SISA is
not significant. Although SISA ensures that dirty data is replaced with clean data during retraining,
its data segmentation strategy can inevitably hurt model performance.

4.3 RESULTS ANALYSIS FOR DIFFERENT UNLEARNING RATIOS (RQ2)

To assess the sensitivity of various unlearning methods to different scales of unlearning data, we con-
duct experiments using different unlearning ratios in instance removal and query modification tasks.
For the instance removal, we employ TallRec as the LLM4Rec framework, where 5% and 10% of in-
stances are removed. Meanwhile, for query modification, LLARA is utilized as the backbone, where
5% and 10% of user interactions are deleted. The experimental results are shown in Figure 3. From

Table 2: Experimental results on the instance removal task with 5% of training data removed, using
TALLRec as the LLM4Rec model on the BookCrossing dataset.

Original Retrain Gradient Ascent E2URec LLMEraser (Ours)
AUC 0.6400 0.6357 0.6187 0.6205 0.6319
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Table 3: Experimental results on the QM task, using LLaRA as the LLM4Rec model on the Movie-
Lens and LastFM datasets. “10% Interaction Removal” refers to 10% of users have items removed
from their interaction sequences, “5% Interaction Replacement” refers to 5% of users have items
replaced with noisy interactions. Corrupted refers to the model trained with the noisy data.

Method Movielens LastFM
HitRatio@1 ValidRatio HitRatio@1 ValidRatio

10% Interaction
Removal

Retrain 0.4565 0.9684 0.4508 1.0000
Corrupted 0.4222 0.9375 0.4344 1.0000

SISA 0.4130 0.9684 0.4132 0.9918
RecEraser 0.2717 0.9684 0.4298 0.9918

LLMEraser (Ours) 0.4456 0.9684 0.4463 0.9918

5% Interaction
Replacement

Retrain 0.4565 0.9684 0.4508 1.0000
Corrupted 0.4316 0.9684 0.4344 0.9918

SISA 0.3804 0.9684 0.4050 0.9918
RecEraser 0.3152 0.9684 0.3689 1.0000

LLMEraser (Ours) 0.4516 0.9789 0.4426 1.0000

Table 4: Experimental results on the MM-SPUBENCH for RC tasks, where Corrupted denotes we
assign wrong labels for 40% of the training samples.

Method MM-SPUBENCH Average AllBG TN CO RS Col. Ori. LS PA Sha.

Retrain 0.88 0.80 0.83 1.00 0.78 0.86 0.86 0.66 0.70 0.82 0.84
Corrupted 0.76 0.62 0.67 0.80 0.67 0.76 0.65 0.68 0.67 0.70 0.71

SISA 0.84 0.65 0.79 1.00 0.64 0.79 0.86 0.73 0.57 0.76 0.77
LLMEraser 0.86 0.70 0.80 1.00 0.78 0.85 0.84 0.76 0.67 0.81 0.81

these results, we can find that: (1) In the instance removal task, LLMEraser consistently performs
closest to Retrain across different unlearning ratio settings, with an average performance decline of
only 1.18%. This indicates that LLMEraser can effectively delete data while minimizing the neg-
ative impact on model performance. (2) In the query modification task, LLMEraser consistently
achieves the best performance across various unlearning ratios, with an average improvement of
4.9% compared to corrupted method. Notably, at an unlearning ratio of 10%, the relative improve-
ment reaches 5.1%. The average difference between LLMEraser and Retrain is only 0.0079. In
comparison to SISA and RecEraser, LLMEraser demonstrates a superior ability to maintain model
utility. This highlights the effectiveness of LLMEraser, demonstrating its robust performance across
varying unlearning demands. (3) We observe an interesting phenomenon in query modification task
under adversarial attack settings, with a sufficiently high unlearning ratio (in this case, 5% and 10%),
both SISA and Receraser require retraining all shards with the same clean data, resulting in equiva-
lent outcomes. Despite the direct use of clean data for retraining, they still struggle to obtain optimal
model performance.

4.4 RESULTS ANALYSIS FOR UNLEARNING EFFICIENCY (RQ3)

Table 6: Execution time in the
QM task.

Method Time (s)
Retrain 5.4× 104

SISA 1.8× 104

RecEraser 2.0× 104

LLMEraser 1.4× 103

Efficiency is a key metric in evaluating unlearning techniques, par-
ticularly for LLMs. We here conduct experiments, comparing our
proposed LLMEraser against existing techniques. For a fair com-
parison, we report the execution time in the QM task, where 5%
of users have items replaced with noisy interactions. All methods
are run on a single Nvidia A100 GPU. Table 6 presents the results.
We can observe that: (1) Due to the parallel training of sub-models,
the retraining time of both SISA and RecEraser can be reduced to
some extent. However, RecEraser requires data partitioning based
on similarity, which introduces additional computational overhead.
Moreover, both methods remain highly inefficient as unlearning re-
quests necessitate retraining of the adapters. (2) In contrast, our
proposed LLMEraser exhibits remarkable efficiency in handling unlearning tasks. By directly mod-
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Table 5: Experimental results on the R-BENCH for RC tasks, where Corrupted denotes we assign
wrong labels for 40% of training samples.

Method Recall F1-Score Precision Accuracy Yes

Retrain 0.70 0.66 0.63 0.65 0.55
Corrupted 0.47 0.50 0.53 0.54 0.44

SISA 0.47 0.49 0.52 0.52 0.45
LLMEraser (Ours) 0.68 0.63 0.58 0.56 0.50

Original Retrain Gradient Ascent E2URec LLMEraser
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(b) Impact of unlearning ratio in QM.
Figure 3: 3a: Experimental results of the instance removal task using TallRec as the LLM4Rec
model on the BookCrossing dataset, where 5% and 10% of the training data were randomly deleted.
3b: Experimental results of the query modification task using LLaRA as the LLM4Rec model on
the MovieLens dataset, where interactions were randomly removed from 5% and 10% of users.

ifying model parameters, LLMEraser achieves a speedup of approximately 31.25 times compared
to retraining, requiring only about 1.4 × 103seconds to update the parameters. This reduction in
execution time demonstrates the effectiveness of our approach in accelerating the computation of
parameter changes. Additional experimental results and related analyses on the memory usage and
execution time of LLMEraser can be found in Appendix E.

5 LIMITATIONS

LLMEraser offers efficient parameter updates without the need for retraining, making it versatile
across different unlearning tasks while also reducing computational overhead. Despite the improve-
ments brought by LLMEraser, its potential shortcomings should not be overlooked. Calculating
parameter changes for different unlearning tasks requires accessing the gradient information of the
target data and assumes the availability of the training set. Furthermore, the influence function’s re-
liance on the first-order Taylor expansion of the optimization objective leads to inevitable estimation
errors, representing an inherent limitation of such an approach.

6 CONCLUSION AND FUTURE WORK

This paper introduces LLMEraser, a unified parameter-efficient unlearning framework. By sys-
tematically categorizing and addressing various unlearning tasks, LLMEraser leverages influence
functions for parameter adjustments, circumventing the cumbersome retraining processes common
in traditional methods. Extensive experiments on benchmark datasets show that LLMEraser excels
in efficiently handling various unlearning tasks while preserving the overall integrity and efficacy
of the models. Additionally, LLMEraser opens new avenues for future research, encouraging the
exploration of enhanced unlearning techniques and their implications in diverse applications, such
as data privacy and ethical AI. Future studies could explore the broader applicability of LLMEraser
and potential optimizations for its computational efficiency and accuracy.
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A OVERVIEW OF EXISTING LLM UNLEARNING METHODS

• SISA (Bourtoule et al., 2021): It works by dividing the training dataset into partitions, allowing
for targeted unlearning of specific instances. The methodology typically involves the following
steps: data partitioning, retraining, and aggregation. However, a notable limitation of SISA is that
it does not preserve the model architecture and requires retraining of sub-models, which can lead
to increased computational costs.

• FairSISA (Kadhe et al., 2023): FairSISA improves upon SISA by incorporating fairness en-
hancements. It still relies on the paradigm of retraining sub-models to handle unlearning requests.
This approach inherently alters the model architecture and necessitates the retraining of the sub-
models, which can limit the flexibility and efficiency of the unlearning process.

• APA (Hu et al., 2024c): This study introduces the first exact unlearning approach for large lan-
guage model-based recommendation (LLMRec), focusing on the removal of personal data to com-
ply with privacy regulations. The Adapter Partition and Aggregation (APA) method is proposed,
which combines data partitioning with parameter aggregation to reduce inference latency while
maintaining performance. This approach enables efficient unlearning without incurring the ex-
tra costs typically associated with traditional methods. However,it can affect the integrity of the
adapter structure and necessitates retraining of sub-models.

• Gradient Ascent: It utilizes the gradient of the target instance to fine-tune the adapter by moving
in the direction of the negative gradient of the deleted data. However, this approach is not effective
for input modification and output correction tasks, as gradient ascent of target instances cannot
adequately handle these scenarios.

• EUL (Chen & Yang, 2023): This work introduces a lightweight approach for LLMs to efficiently
forget specific information without complete retraining. It incorporates unlearning layers into
transformer architectures, utilizing a selective teacher-student formulation, and employs a fusion
mechanism to combine multiple unlearning layers into a unified layer. This enables LLMs to
dynamically handle a sequence of deletion requests while maintaining model performance. The
introduction of adapters alters the model’s structure, and the KL divergence-based methods are
only effective for instance removal tasks, as obtaining a model trained on clean data is not feasible.

• E2URec (Chen & Yang, 2023): This method uses lightweight LoRA modules and a teacher-
student framework to forget specific data while maintaining performance. However, the extra
LoRA module changes the original model architecture, and the teacher-student framework re-
quires pretraining on both retained and forgotten data, which is intricate and cannot perform well
on other tasks like editing.
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B ALGORITHM FOR CALCULATING PARAMETER CHANGES

The algorithm for calculating the parameter changes ∆ΘTask can be found in Algorithm 1. This
algorithm accelerates the computation of parameter changes resulting from unlearning requests and
is applicable in large-scale data scenarios.

Algorithm 1 Calculate Parameter Changes ∆ΘTask

1: Input: target data, train data loader, old adapter, loss fun, n, Task, ∆init, ∆lr

2: Output: Parameter changes ∆ΘTask
3: if Task = IR then
4: b← 1

n

∑
(x,y)∈SIR

G(x, y)
5: else if Task = RC then
6: b← 1

n

∑
(x,y)∈SIM

G(x, y)− 1
n

∑
(x+δx,y)∈SIM

G(x+ δx, y)

7: else if Task = IM then
8: b← 1

n

∑
(x,y)∈SRC

G(x, y)− 1
n

∑
(x,y+δy)∈SRC

G(x, y + δy)

9: end if
10: ∆← initialize(∆init)
11: optimizer ← Adam([∆], lr = ∆lr)
12: while not converge do
13: data← get batch(train data loader)
14: batch loss← loss fun(data.x, data.y)
15: batch grad← ∇(batch loss, old adapter.parameters())
16: hvp← ∇(batch grad, old adapter.parameters(), output = b)
17: optimizer.zero grad()
18: funv value← 1

2 · ⟨hvp, p⟩ − ⟨b, p⟩
19: funv value.backward()
20: optimizer.step()
21: end while
22: Return Parameter changes ∆ΘTask = ∆

C EXPERIMENTAL DETAILS

In this section, we briefly introduce the tasks used to validate LLMEraser on the unlearning tasks for
IR, QM, and RC, as discussed in Section 4. These tasks are designed to assess LLMEraser’s effec-
tiveness in handling unlearning scenarios, where specific instances or data are removed or corrected
when certain unlearning request arrives.

• For LLM4Rec unlearning tasks, our implementation is based on two representative PEFT meth-
ods: TallRec (Bao et al., 2023) for item rating, and LLaRA (Liao et al., 2024) for item ranking.
Specifically, we frame the rating tasks (TallRec) as a binary classification problem, predicting
whether or not the user prefers a target item. We employ AUC as the evaluation metric. For the
ranking tasks (LLaRA), which recommend items to users from a candidate set, we utilize HitRa-
tio@1 and ValidRatio to evaluate the relevance of recommended items among all candidates and
the proportion of effective responses separately.

• In terms of MLLMs unlearning tasks, we focus on hard hallucination mining, e.g., understanding
of relation (Wu et al., 2024c) and spurious biases (Ye et al., 2024). We structure the evaluation
as binary or multi-choice classification problems, which aim to select the ground-truth from the
noisy labels. Specifically, for relation understanding, we follow (Wu et al., 2024c) to present
the Recall, F1-Score, Precision, Classification accuracy, Yes ratio as the evaluation metrics. For
spurious biases, we follow (Wu et al., 2024c) to show the classification accuracy for 9 types of
spurious correlations, which is Background (BG), Texture and Noise (TN), Co-occurring Objects
(CO), Relative Size (RS), Colorization (Col.), Orientation (Ori.), Lighting and Shadows (LS),
Perspective and Angle (PA), and Shape (Sha.).

Datasets: Our experimental datasets for LLM4Rec unlearning tasks include three commonly used
recommendation datasets: BookCrossing (Ziegler et al., 2005), MovieLens (Harper & Konstan,
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2016), and LastFM (Cantador et al., 2011). We follow the data preprocessing and dataset partitioning
as described in (Bao et al., 2023) and (Liao et al., 2024). For MLLMs unlearning tasks, we utilize
MMSpuBench (Ye et al., 2024), and R-Bench (Wu et al., 2024c) with the representative masked
instances for evaluation, partitioning the data is into training (60%), validation (20%), and testing
(20%) set.

Baselines: We carefully select the following methods for comparison. Original: The original model
without unlearning modifications. Retrain: It retrains the adapters using the dataset after correc-
tion or removal. SISA (Sekhari et al., 2021): It divides the training data into disjoint shards and
subsequently retrains sub-models (adapters) associated with the shards containing unlearning data.
RecEraser (Chen et al., 2022): An enhancement of SISA, refining the aggregation strategy and
taking into account collaborative signals during data partitioning. Gradient Ascent: It finetunes
adapters using the reverse gradients of the deleted data. E2URec (Wang et al., 2024): An approach
to implement instance removal based on KL divergence within a teacher-student framework.

D ESTIMATION ERRORS ANALYSIS OF LLMERASER

The approximation errors in LLMEraser consist of two primary components: first, the errors in-
troduced by the Taylor expansion approximation in the derivation of the influence function, where
high-order terms are neglected; and second, the errors arising from the new algorithm proposed in
Section 3.3 for solving the inverse Hessian-vector-product. We will conduct the error analysis in
two parts accordingly.

D.1 ERRORS ANALYSIS FOR TAYLOR EXPANSION APPROXIMATION

Without loss of generality, we consider approximation error in Equation 6. In other words, we will
analyze the error ∥∆Θ(ϵ) + ϵH−1

Θ̂
∇ΘL((x, y); Θ̂)∥.

The derivation below follows from (Zhang et al., 2022), where we assume that HΘ̂ is invertiable.
As we discussed in our paper, this can be guaranteed if the second-order sufficient condition holds
at Θ̂.

Since Θ̂new(ϵ) is an optimal solution to the perturbed loss function defined in Equation 5, we have

∇ΘR(Z; Θ̂new(ϵ)) + ϵ∇ΘL((x, y); Θ̂new(ϵ)) = 0.

Since Θ̂new(ϵ) ≈ Θ̂ when ϵ is sufficiently small, it follows from the Taylor expansion that

0 = [∇ΘR(Z; Θ̂) + ϵ∇ΘL((x, y); Θ̂)] + [HΘ̂ + ϵ∇2
ΘL((x, y); Θ̂)]∆Θ(ϵ) + o(∥∆Θ(ϵ)∥).

Since Θ̂ is an optimal solution to the loss function defined in Equation 3, we have∇ΘR(Z; Θ̂) = 0.
Therefore,

∆Θ(ϵ) = −[HΘ̂ + ϵ∇2
ΘL((x, y); Θ̂)]−1(ϵ∇ΘL((x, y); Θ̂) + o(∥∆Θ(ϵ)∥).

Since Θ̂ is an optimal solution to the loss function defined in Equation 3, HΘ̂ is positive semidefinite.
Therefore, the assumption that HΘ̂ is invertiable implies that HΘ̂ is positive definte. Therefore, we
know that

∆Θ(ϵ) = −H−1

Θ̂
(ϵ∇ΘL((x, y); Θ̂) + o(|ϵ|)∥∆Θ(ϵ)∥+ o(∥∆Θ(ϵ)∥).

Therefore, as ϵ→ 0,

∥∆Θ(ϵ) +H−1

Θ̂
(ϵ∇ΘL((x, y); Θ̂)∥ = o(|ϵ|) + o(∥∆Θ(ϵ)∥)→ 0.

In our applications, we know that ϵ = O(1/n), where n is the number of training samples. There-
fore, ϵ should be very small and our approximation to ∆Θ(ϵ) by the influence function should be
accurate for applications with a very large training datasets.
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Table 7: Memory usage (measured in megabytes, MB) for different LoRA ranks (8, 16, 32) on the
QM task, using LLaRA as the LLM4Rec model on the LastFM dataset, where 10% of users have
items replaced with noisy interactions.

Method LoRA r = 8 LoRA r = 16 LoRA r = 32

Retrain 33040 MB 33868 MB 34128 MB
SISA 33040 MB 33868 MB 34128 MB

LLMEraser (Ours) 30760 MB 31386 MB 31834 MB

D.2 ERRORS ANALYSIS FOR OUR PROPOSED ALGORITHM

For our proposed Algorithm, the estimation errors analysis is as follows. For a given (approximate)
solution ∆̃ to the Equation 14, the error is defined as

err(∆̃) := ∥∇2
ΘR(Z; Θ̂)∆̃− b∥ = ∥∇F (∆̃)∥,

where the function F (·) is defined in Equation 16. Therefore, the theoretical analysis of err(∆̃) is
equivalent to the error analysis of ∥∇F (∆t)∥ for the sequence {∆t}t≥1 generated by the optimiza-
tion algorithm for solving the problem Equation 11, Equation 12, and Equation 13.

Since we use ADAM as a default optimizer for solving Equation 11, Equation 12, and Equation 13,
we analyze the error ∥∇F (∆t)∥ for the sequence {∆t}t≥1 generated by ADAM. It follows from
(Zhang et al., 2022) that ADAM can converge without modifications if the hyper-parameters are
appropriately chosen (say the default choice β1 = 0.9, β2 = 0.999).

Moreover, under reasonable assumptions (see (Zhang et al., 2022) for more details), it holds that

min
km≤t≤T

E∥∇F (∆t)∥2 = O(log T/
√
T ) = Õ(1/

√
T ).

Since for sufficiently large T , log T < T q for any q > 0, we know we can achieve

min
km≤t≤T

E∥∇F (∆t)∥2 ≤ ϵ

for small ϵ > 0 in Õ(ϵ−2) ≈ O(ϵ−2) iterations. This proof also ensures the convergence of the
algorithm proposed in Section 3.3.

E DISCUSSION ABOUT THE EFFICIENCY OF LLMERASER

Our proposed algorithm in Section 3.3 for computing the parameter changes not only accelerates
the calculation of parameter changes but also significantly reduces GPU memory consumption. As
highlighted in our paper, while Conjugate Gradients (CG) is an effective method for computing
parameter changes, it requires full-batch computation (Agarwal et al., 2016), which is infeasible
for LLMs. Our new algorithm overcomes this limitation, making it practical to compute adapter’s
parameter changes in the context of LLMs.

Specifically, LLMEraser formulates the parameter updates as an inverse Hessian-vector-product
(Equation 11, Equation 12, and Equation 13). Importantly, although the inverse Hessian appears
in the formulation, it does not require explicit computation or inversion of the Hessian matrix. Di-
rectly calculating the inverse Hessian-vector-product has a time complexity of O(p3) and a space
complexity of O(p2), as the Hessian matrix needs to be stored—making it highly memory-intensive.

Our method transforms the computation of the inverse Hessian-vector-product into the problem of
solving for the Hessian-vector-product, enabling efficient resolution through mini-batch algorithms.
The Hessian-vector-product, if computed directly via the full Hessian matrix multiplication, would
have a time and space complexity of O(p2). However, using HVP (Hessian-free methods), we avoid
the explicit computation and storage of the Hessian matrix, reducing both time and space complex-
ity to O(p) (Pearlmutter, 1994). By further leveraging mini-batch optimization for Equation 14,
LLMEraser achieves a space complexity of O(p), ensuring its scalability.

The results for the LastFM dataset using the LLaRA backbone with LoRA ranks of 8, 16, and 32
are shown in the Table 8.
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Table 8: Experimental results on the QM task for different LoRA ranks (8, 16, 32), using LLaRA
as the LLM4Rec model on the LastFM dataset, where 10% of users have items replaced with noisy
interactions. “Corrupted” refers to the model trained with the noisy data.

Method LoRA r = 8 LoRA r = 16 LoRA r = 32
HitRatio@1 ValidRatio HitRatio@1 ValidRatio HitRatio@1 ValidRatio

Retrain 0.4508 1.0000 0.4417 0.9836 0.4215 0.9918
Corrupted 0.4344 0.9918 0.4098 1.0000 0.4016 1.0000

LLMEraser 0.4426 1.0000 0.4344 1.0000 0.4180 1.0000

Table 9: Execution time (measured in seconds) for different LoRA ranks (8, 16, 32) on the QM
task, using LLaRA as the LLM4Rec model on the LastFM dataset, where 10% of users have items
replaced with noisy interactions.

Method LoRA r = 8 LoRA r = 16 LoRA r = 32

Retrain 1.68× 104 1.69× 104 1.69× 104

LLMEraser (Ours) 1.50× 103 1.53× 103 1.56× 103

We can observe that LLMEraser effectively reduces the negative impact of noisy data and brings a
significant utility gain. The HitRatio@1 improves by an average of 4.9%, and the performance is
comparable to that of Retrain. This demonstrates that LLMEraser can effectively forget and correct
the adverse effects caused by noisy data.

Regarding GPU memory usage, we measure the GPU utilization of the LLaRA backbone with LoRA
rank sets to 8, 16, and 32. The statistical information and the experimental results (with memory
usage measured in megabytes (MB)) are shown in Table 7.

The GPU utilization of SISA is identical to that of Retrain because SISA (Kwak et al., 2017) ef-
fectively requires retraining all parameters (We report the memory usage required to train a single
shard). Similarly, fine-tuning-based methods such as gradient descent also necessitates updating all
parameters. The backbone of the LLM we used is LLaMA2-7B (Touvron et al., 2023b).

The runtime results for LoRA with ranks 8, 16, and 32 on the LastFM dataset are shown in Table 9.
The evaluation is measured in seconds.

In summary, the time and space complexity of LLMEraser are both O(p), where p represents the
number of parameters. This indicates that LLMEraser is highly efficient in terms of both time and
space, as its performance scales linearly with the number of parameters. This efficiency makes
LLMEraser a suitable choice for real-world applications where computational resources and time
are critical considerations.

F RELATED WORK

F.1 LARGE LANGUAGE MODELS

Recent advancements in natural language processing (NLP) (Nam et al., 2024; Jin et al., 2024) have
been significantly driven by the development of pretrained language models and Large Language
Models. The introduction of models like BERT (Devlin et al., 2019) and GPT-2 (Radford et al.,
2019) marked a pivotal shift in leveraging large-scale unsupervised pretraining, enabling superior
performance across various NLP tasks through fine-tuning. The scaling of language models led to
the emergence of LLMs such as GPT-3 (Brown et al., 2020) and PaLM (Chowdhery et al., 2023),
which have pushed the boundaries of language understanding and generation. These models, with
billions of parameters, are capable of performing complex reasoning and handling diverse tasks with
minimal instruction.

Recent research has explored parameter-efficient fine-tuning techniques, which adapt large mod-
els to specific applications without requiring extensive computational resources. Techniques like
Adapter modules (Houlsby et al., 2019) and Low-Rank Adaptation (LoRA) (Hu et al., 2022) have
gained popularity for their efficiency and effectiveness in maintaining performance while reducing
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the number of trainable parameters. Furthermore, instruction tuning (Liu et al., 2023a; Tang et al.,
2024) using domain-specific data has emerged as a key strategy to enhance model performance in
specialized contexts. Works by Ouyang et al. (2022) and Dodge et al. (2020) illustrate how tai-
loring models to specific tasks through targeted instruction can significantly improve their utility,
particularly in complex domains, demonstrating the importance of context and relevance in model
training.

LLMs have found extensive applications in various downstream tasks (Fang et al., 2024b; Hu et al.,
2024a; Wu et al., 2024b), demonstrating their versatility across domains such as natural language
processing, information retrieval, and knowledge graph augmentation (Zhang et al., 2024a; Xu et al.,
2024b; Fang et al., 2024a; Sheng et al., 2024). For instance, LLMs are employed to enhance the
accuracy of query-based systems by leveraging their ability to understand and generate contextually
relevant responses, improving user experience in search applications (Liu et al., 2024b; Shang &
Huang, 2024). Additionally, they are utilized in graph analytics, enabling complex reasoning tasks
and facilitating the extraction of insights from structured data (Chen et al., 2023; Xu et al., 2024a).
The adaptability of LLMs through prompt engineering further supports their deployment in specific
use cases, allowing for tailored outputs that meet diverse requirements (Arawjo et al., 2024; Cain,
2024).

In a similar vein, LLMs are increasingly being integrated into recommendation systems, building
on their capabilities in natural language processing and understanding user preferences. Traditional
recommendation systems often rely on collaborative filtering (Misztal-Radecka & Indurkhya, 2020;
Wu et al., 2024a), content-based approaches (Pazzani & Billsus, 2007; Wu et al., 2022), or hybrid
models (Burke, 2002). Recent advances, including Reinforced Prompt Personalization (Mao et al.,
2024; Xin et al., 2022), and the incorporation of LLMs into recommendation systems via tool learn-
ing (Zhao et al., 2024; Dehbozorgi et al., 2024) or fine-tuning with recommendation-specific data
(Kong et al., 2024; Chen et al., 2024), have significantly improved personalization. These methods
enable LLMs to better capture user preferences and context (Lyu et al., 2024; Hu et al., 2024b),
ultimately enhancing the accuracy and relevance of recommendations.

F.2 LARGE LANGUAGE MODELS UNLEARNING

The concept of unlearning in Large Language Models has garnered considerable attention as con-
cerns over data privacy and model integrity have intensified. In-context unlearning, proposed by
Pawelczyk et al. (2023), allows the selective removal of data points by supplying flipped labels
during inference, effectively maintaining performance while unlearning specific information. Ad-
ditionally, Quark by Lu et al. (2022) employs a reinforcement learning framework to control and
reduce undesirable behaviors, enhancing text generation without extensive retraining.

Chen & Yang (2023) introduce a lightweight unlearning method that integrates unlearning layers
into transformer architectures, facilitating efficient data removal. Knowledge Unlearning by Jang
et al. (2023) demonstrates that targeted gradient ascent can effectively forget sensitive informa-
tion, surpassing traditional methods in performance retention. The technique proposed by Eldan &
Russinovich (2023) facilitates the removal of specific facts related to the Harry Potter series while
preserving the model’s overall performance.

Other approaches, such as the Partitioned Gradient Update (PGU) method by Yu et al. (2023), aim to
reduce social biases effectively. Collectively, these studies underline the significance of unlearning
in LLMs, paving the way for safer, more responsible AI applications.

G MORE EXAMPLES OF VARIOUS UNLEARNING TASKS
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Query Modification Case Study

Query

This user has watched: The Rich Man's Wife [emb], Air 

Force One [emb], Murder at 1600 [emb], Absolute 

Power in the previous [emb]. Please predict the next 

movie this user will watch. Choose the answer from the 

following 10 movie titles: Face/Off [emb], Primal Fear 

[emb], Ransom [emb], Men in Black [emb], Twelve 

Monkeys [emb], Lone Star [emb], Mr. Holland‘s Opus 

[emb], Jackie Chan’s First Strike [emb], Waiting for 

Guffman [emb], The Long Kiss Goodnight [emb]. 

Answer: 

Response Face/Off

This user has watched: The Rich Man's Wife [emb], Air 

Force One [emb], Murder at 1600 [emb], Absolute 

Power in the previous [emb]. Please predict the next 

movie this user will watch. Choose the answer from the 

following 10 movie titles: Face/Off [emb], Primal Fear 

[emb], Ransom [emb], Men in Black [emb], Twelve 

Monkeys [emb], Lone Star [emb], Mr. Holland‘s Opus 

[emb], Jackie Chan’s First Strike [emb], Waiting for 

Guffman [emb], The Long Kiss Goodnight [emb]. 

Answer: 

After Query Modification 

Instance Removal Case Study

Query

Given the user’s historical interactions, please determine

whether the user will enjoy the target new movie by

answering "Yes" or "No".

User’s liked items: GodFather.

User’s disliked items: Star Wars.

Target new movie: Iron Man

Response No.

Query

Figure 4: Instance Removal Case Study & Query Modification Case Study.
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Response Correction Case Study

Query Is the elephant in red mask standing next to a tree in 
green mask?

Response Yes

Response No

After Response Correction 

Response Correction Case Study

Query

You are a helpful assistant that can answer questions for an 
i m a g e .  I  w i l l  p r o v i d e  y o u  4  o p t i o n s . \ n R e s p o n s e 
Format\nChoice: A single character from A, B, C, D.\nWhich 
feature best indicates the identity of the object that has a floral 
pattern and is placed on a chair?\nChoices:A. The object‘s soft 
texture\nB. The indoor setting\nC. The wooden chair\nD. The 
background clutter

Response D

Response A 

After Response Correction 

Figure 5: Response Correction Case Study.
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