Published as a conference paper at ICLR 2025

UNIFIED PARAMETER-EFFICIENT UNLEARNING
FOR LLMS

Chenlu Ding!*f Jiancan Wu'! Yancheng Yuan?? Jinda Lu!

Kai Zhang! Alex Su! Xiang Wang' Xiangnan He'3!
! 'University of Science and Technology of China 2Hong Kong Polytechnic University
3MoE Key Laboratory of Brain-inspired Intelligent Perception and Cognition, USTC

ABSTRACT

The advent of Large Language Models (LLMs) has revolutionized natural lan-
guage processing, enabling advanced understanding and reasoning capabilities
across a variety of tasks. Fine-tuning these models for specific domains, par-
ticularly through Parameter-Efficient Fine-Tuning (PEFT) strategies like LoRA,
has become a prevalent practice due to its efficiency. However, this raises sig-
nificant privacy and security concerns, as models may inadvertently retain and
disseminate sensitive or undesirable information. To address these issues, we
introduce a novel instance-wise unlearning framework, LLMEraser, which sys-
tematically categorizes unlearning tasks and applies precise parameter adjust-
ments using influence functions. Unlike traditional unlearning techniques that
are often limited in scope and require extensive retraining, LLMEraser is de-
signed to handle a broad spectrum of unlearning tasks without compromising
model performance. Extensive experiments on benchmark datasets demonstrate
that LLMEFEraser excels in efficiently managing various unlearning scenarios while
maintaining the overall integrity and efficacy of the models. Our code is available
athttps://github.com/oceanoceanna/LLMEraser.

1 INTRODUCTION

Large language models (LLMs) demonstrate remarkable capabilities in knowledge understanding
and complex reasoning (Li et al., 2023; Zhang et al., 2024b; Li, 2024; Li et al., 2024; Lee et al.,
2024), having sparked increasing interest in adapting LLMs to specific domains through fine-tuning
techniques (Li & Liang, 2021; Dettmers et al., 2023; Zhang et al., 2023; Zaken et al., 2022). Among
them, Parameter-Efficient Fine-Tuning (PEFT) (Li & Liang, 2021; Liu et al., 2021), such as LoRA
(Hu et al., 2022), has emerged as the mainstream paradigm, offering significant reductions in re-
source costs by fine-tuning only a small subset of parameters. While highly effective, the reliance
on domain-specific data for fine-tuning raises concerns regarding data leakage and privacy (Lu et al.,
2024; Blanco-Justicia et al., 2024), such as potentially memorizing or propagating sensitive, biased,
copyrighted, or harmful information (Liu et al., 2024c; Qu et al., 2024). In this light, researchers
have introduced unlearning techniques (Jang et al., 2023; Kurmanji et al., 2023; Kumar et al., 2023)
into LLMs, to “forget” specific data without requiring the time-consuming and resource-intensive
process of retraining.

Prior efforts in exploring unlearning in LLMs primarily focus on removing specific concepts
(Kassem et al., 2023; Jang et al., 2023). A typical example is the erasure of LLM’s ability to
recall information related to the Harry Potter series (Eldan & Russinovich, 2023). While these ef-
forts yield valuable insights, they risk inadvertently affecting related concepts, such as other novels
with similar titles. In this work, we broaden the scope by investigating instance-wise unlearning

*Work done at The Hong Kong Polytechnic University.

TEqual contribution. {dingchenlu200103,wujcan} @ gmail.com

fCorrespondence to Jiancan Wu, Yancheng Yuan, and Xiangnan He. {wujcan@gmail.com,
yancheng.yuan@polyu.edu.hk, xiangnanhe @ gmail.com}

https://github.com/oceanoceanna/LLMEraser

Published as a conference paper at ICLR 2025

Table 1: A summary of existing LLM unlearning methods and their application scenarios. ‘E’ and
‘A’ are abbreviations for Exact unlearning and Approximate unlearning, respectively.

Related Work Mode Method Preserve Model -~ Freefrom o rr pe
Architecture Retrain/Pretrain
Retrain - Retrain X
SISA (Bourtoule et al., 2021) E Retrain Sub-model X X
FairSISA (Kadhe et al., 2023) E Retrain Sub-model X X
APA (Hu et al., 2024c) E Retrain Sub-model X X
Gradient Ascent A Fine-tuning X X X
EUL (Chen & Yang, 2023) A Fine-tuning X X X
E2URec (Wang et al., 2024) A Fine-tuning X X X X
LLMEraser (Ours) A Parameter Editing

tasks, which allow us to target more nuanced aspects of model behavior. To this end, we first present
various instance-wise unlearning tasks for LLMs, as illustrated in Figure 1. More case studies can
be found in Appendix G. Specifically, consider a training instance z = (z,y) in a supervised fine-
tuning dataset, where x represents the query and ¥ is the response. We can categorize the LLMs
unlearning tasks at the instance level as follows:

* Instance Removal (IR). It removes the sample z = (z,y) from the training set.

* Query Modification (QM). It adjusts the input tokens in query «, such as removing specific noisy
tokens or correcting certain erroneous tokens.

* Response Correction (RC). It corrects the model’s response y, including updating outdated an-
swers or rectifying incorrect classification results.

In this work, we focus on unlearning the domain-specific data used solely in PEFT, which re-
quires updating the PEFT adapters (e.g., LoRA). Technically, recent LLM-unlearning efforts can
be roughly grouped into two categories. Exact unlearning approaches divide data into disjoint
shards and retrain adapters (Bourtoule et al., 2021; Hu et al., 2024c). Despite effectiveness, these
methods have inherent limitations — inevitably destroying the model’s original structure and neces-
sitating the retraining cost. Approximate unlearning methods, on the other hand, aim to replicate
the performance of the retrained model, often aligning the output of the target data closely with ran-
domness through KL-divergence-based PEFT (Liu et al., 2024a; Qu et al., 2024). Nonetheless, this
paradigm primarily focuses on data removal (e.g., IR) and hardly corrects biased or inaccurate data
(e.g., QM, RC), as it falls short in guiding the output of the target data towards accurate information,
rather than mere randomness. See Table | for the summary of current LLMs unlearning methods,
with detailed descriptions available in Appendix A. Overall, both approaches struggle to efficiently
handle these instance-wise LLM unlearning tasks and are not specifically designed for unlearning
within the PEFT framework. It calls for a general LLM unlearning method capable of addressing
these various tasks.

In pursuit of parameter-efficient unlearning, we identify the influence function (Koh & Liang, 2017)
as a promising tool. At its core is to formulate the parameter changes caused by perturbations in the
form of the inverse Hessian-vector-product (Agarwal et al., 2016), where Hessian matrix represents
the curvature of the loss function w.r.t. model parameters. However, the direct application of the
influence function to LLMs presents two significant challenges: the expensive cost of calculating the
inverse Hessian-vector-product for vast model parameters and the cumulative errors introduced by
approximation strategies (e.g., stochastic estimation (Agarwal et al., 2016)). Consequently, the use
of influence functions for LLM unlearning remains largely underexplored. To fill this research gap,
we propose a unified parameter-efficient unlearning framework, LLMEraser, for various instance-
wise unlearning tasks. Specifically, for each type of unlearning task, LLMEraser leverages influence
functions to directly calculate the parameter changes in the PEFT adapters and then efficiently up-
date the adapter parameters, thus bypassing the need for time-consuming model retraining or fine-
tuning. Furthermore, we reformulate the calculation of the inverse Hessian-vector-product into a
finite-sum quadratic programming problem (Nesterov, 2013; Beck & Teboulle, 2009), significantly
reducing computational complexity while mitigating the approximation errors from stochastic es-
timation. LLMEraser has several advantages: model-agnostic, applicable to various instance-wise
unlearning tasks, and ensuring fast model updates. We conduct experiments on both LLMs and
Multimodal Large Language Models (MLLMs), specifically focusing on LLMs for Recommenda-

Published as a conference paper at ICLR 2025

Instance Removal Query Modification Exact LLM Unlearning
= Input: Find out the °Input: Solve the following

W largest one from a set of equation system. Give me Output - {
numbers. 1001, 22, 500, the final answer. 3x - 4y = >
-3999, 1e6, 85, -2e6 1, 2x + 3y =1200 oz ey, Training
Output: 1e6 Output: x =3,y =2 I I Set
A h _' X0 Tee
taput—Find—eut—the 2 Input: Solve the following - & Shardk f
largest-one-from-a-set-of equation system. Give me = \
Aebers—1004-22. 500 the final answer. 3x - 4y = Input .
-3999, 166,85 266 1,2x+3y=12 - Adapterk’ | U;::;J:'s’:g
Output—1e6 Output: x=3,y=2
Response Correction o Approximate LLM Unlearning
utput
Input: Select the oldest person from the list. George >
Washington, Confucius, Michael Jordan, Michelangelo. E)
Output: |George Washington { Training
‘ P Set X\
<« Input: Select the oldest person from the list. George - .
Washington, Confucius, Michael Jordan, Michelangelo. = Unlearning
Output: Confucius Input Request
(a) Taxonomy of LLM unlearning tasks. (b) Overview of exact/approximate LLM Unlearning.

Figure 1: 1a: A brief description of the different types of LLM unlearning tasks. 1b: The framework
of exact LLM unlearning method, approximate unlearning method.

tion (LLM4Rec) as well as MLLM relation mining tasks to validate the effectiveness of LLMEraser.
Our extensive evaluations across these diverse scenarios demonstrate that LLMEraser consistently
outperforms the state-of-the-art unlearning methods.

2 PRELIMINARY

This section introduces key concepts underpinning our methodology. We cover instruction tuning
to enhance LLMs’ understanding of human instructions, followed by PEFT, highlighting LoRA for
efficient updates. Lastly, we discuss the influence function, which analyzes parameter changes from
data perturbations. These foundations set the stage for the techniques discussed later.

2.1 INSTRUCTION TUNING

Instruction tuning is a key technique that leverages carefully curated datasets of human-annotated
instructions and corresponding responses to enhance LLMs’ capacity to comprehend and respond
to human instructions (Wei et al., 2022; Liu et al., 2023b; Sanh et al., 2022). Given a downstream
task dataset Z = {z|z = (z,y)} containing n instances, where z represents a description of the
human instruction and y is the corresponding response, LLMs are fine-tuned using the following
autoregressive (Brown et al., 2020; Touvron et al., 2023a) objective:

lyl

max Z Zlog (P (ys | ©,y<; @), (D

(zy)eZ t=1

where ® is LLMs’ parameters, ¥, is the ¢-th token of y, and y., represents tokens preceding y;.

2.2 PARAMETER-EFFICIENT FINE-TUNING

LLMs typically consist of billions of parameters, making full fine-tuning computationally expen-
sive. Parameter-Efficient Fine-Tuning (PEFT) addresses this challenge by updating only a small
number of the parameters while still achieving satisfactory performance. Among them, LoRA (Hu
et al., 2022) stands out as particularly effective, which freezes the original pretrained parameters
while introducing pairs of low-rank-decomposition weight matrices to simulate parameter updates.
Formally, the optimization objective for LoRA is expressed as follows:

[yl

max Z Zlog (P (ye | %, y<e; @ + AD(O))), 2

(z,y)eZ t=1

Published as a conference paper at ICLR 2025

where O is the trainable parameters that is significantly smaller in size compared to ®.

2.3 INFLUENCE FUNCTION

The influence function was first applied in machine learning by Koh & Liang (2017) to analyze the
outputs of black-box models. For the dataset Z, we focus on the following empirical risk minimiza-
tion (Shalev-Shwartz & Ben-David, 2014; Vapnik, 1998; Bartlett & Mendelson, 2002) problem:

6¢e argmln R(Z;0)|R(Z;0) Z L((z,y); , (3)
(:1:,1/ EZ

where © is the trainable model parameter and © is the minimizer of Equation 3. £ (+;©) is the loss
function, and for Equation 2, it is defined as:

[yl

L ((a, Zlog (e | 2, y<i; @ + AD(D))). €

When a training example (z,y) is upweighted by an infinitesimal amount e, the perturbed loss for
Orew (€) can be expressed as:

Orew (€) € argmin {£(Z, (1,1),:0) | (2, (1,9), :0) := R(Z:0) + eL (x,9):0)} . ()

When € ~ 0, the parameter change AO(€) = Oy (€) — © can be approximately calculated by ap-
plying a Taylor expansion of Equation 3. Please refer to (Koh & Liang, 2017) for detailed derivation.
Specifically, AO(¢) can be written as:

A6(e) ~ ~eHg VoL ((2,4):0), ©)

where Hgy = V3 R(Z; ©) is the Hessian matrix, Vo £((z, y); ©) represents the gradient of £ w.rz.
parameters O, evaluated at .

3 METHOD

In this work, we propose LLMEraser, a framework that updates the PEFT adapter parameters to
handle various instance-wise unlearning tasks. As shown in Figure 2, our approach leverages the
influence function to directly estimate the parameter changes for various unlearning tasks, circum-
venting the resource-consuming fine-tuning or retraining procedures. Moreover, we present a novel
algorithm to accelerate the computation of the inverse Hessian-vector-product in the influence func-
tion, enabling its efficient implementations in LLMs. Finally, we summarize how LLMEraser works.

3.1 TAXONOMY OF LLM UNLEARNING TASKS

We focus on instance-wise unlearning tasks for LLMs, specifically for PEFT that uses domain-
specific data. For an instance z = (x,y), where x represents the query and y is the response, we
propose a taxonomy of unlearning tasks based on the operation applied to the target instance.

Instance Removal (IR). When a specific instance z = (z, y) is either restricted from use or contains
harmful content, it necessitates complete elimination from the training set, along with its associated
influence on the model.

Query Modification (QM). This category involves modifying the query z, transforming z = (z,y)
into 2z’ = (2, y). It could not only delete outdated or incorrect tokens in the query x, such as noisy
interactions from a user’s history, but also update erroneous or outdated tokens with correct ones.

Response Correction (RC). Here, the focus is on rectifying the output component y of the instance
z. That is, replacing z = (x,y) with 2’ = (x,y’). For binary classification tasks, such as answering
“Yes” or “No”, it corrects mislabeled outputs by flipping the labels. For other tasks, such as multi-
class classification or question answering, it is applied to rectify inaccurate responses.

Published as a conference paper at ICLR 2025

Parameter
: Updating
Q{\ PEFT ol
Adapter)
Unlearning | LLME @ New
Request & raser Adapter
Influence %‘ Parameter
& \ Function Changes

LLM Unlearning f

Figure 2: The framework of LLMEraser. The old adapter is obtained through PEFT on domain-
specific data. When an unlearning request arrives (e.g., deleting or correcting certain data from
the training set), LLMEraser utilizes influence functions to compute the parameter changes caused
by such request. These estimated parameter modifications are added to the old adapter’s weights,
resulting in the new adapter parameters—essentially the unlearned model parameters.

Our proposed taxonomy expands the concept of LLM unlearning beyond the removal of entire in-
stances. It introduces a more fine-grained categorization defined at the token level within both
queries and responses, allowing for nuanced control of model behavior.

3.2 LLMERASER

The key strength of LLMEraser lies in its capacity to directly estimate the adapter’s parameter
changes caused by various unlearning tasks. For the sake of clarity and without sacrificing general-
ity, we employ the loss function in LoRA (c¢f: Equation 4) as our example, while other alternatives
would yield similar formulations.

To develop a unified approach for solving all unlearning tasks in our taxonomy, we begin by con-
sidering a general case where perturbations are applied to both the query (x) and response (y) com-
ponents of an instance z. This generalized framework allows us to model each specific unlearning
task as a special case of this perturbation scenario. Formally, we define the perturbation ¢ applied
to z as z5 = (x + 65,y + J,), where J, and J, represent perturbations to the query and response,
respectively. We now formulate the perturbed empirical risk minimization problem as:

Os(e) € argmin {R(Z2;0) + eL (+ 0,y + 0y);) — eL (@,); O)}, ()

where (:)\5 (¢) is the minimizer of the optimization problem after applying a perturbation § of magni-
tude € to the sample z. Following the derivation in (Koh & Liang, 2017), when the sample size n is
sufficiently large, by taking ¢ = % (i.e., € = 0), we can safely estimate the parameter change AOy
as follows:

1 . —1
A = = (V3R(Z:0)) (G(ey) — Gla + 60y +3,)), ®)

where G(z,y) is an abbreviations for Ve L ((z,y); @) Next, we present the perturbations and

corresponding parameter changes for different unlearning tasks.

* Instance Removal. The deletion of data corresponds to the perturbation function in Equation 5.

By setting € = —% like Equation 6, it is equivalent to removing instance z. The set of deleted
instances is denoted as Sir. By aggregating the gradients of all deleted instances, the parameter

change AOr can be expressed as follows:
I (o2 o)
A6r~ =~ (VAR(Z:0)) Y Glay). ©
(z,y) ESR

* Query Modification. Modifying certain tokens in the query x is equivalent to perturbing x with
0., where d,, represents deleting noisy tokens or correcting inaccurate tokens, while keeping the re-
sponse unchanged (i.e., ,, = 0). Hence, the perturbed instance z is represented as z5 = (2405, y),

Published as a conference paper at ICLR 2025

with the set of instances requiring the removal or modification of specific tokens represented by
Som. By aggregating the gradients of all instances in Sqwm, the parameter change ABGqy induced
by query modification can be shown as follows:

Nogu = (VBR(Z:6) | X G- Y VeGl+dny)|. (10)

(z,y)€Sam (z+35,y) ESqm

* Response Correction. Correcting the response solely corresponds to J,, = 0 while perturbing the
response y with d,. Here d,, represents updates to outdated answers or adjustments to erroneous
classification results. With zs = (z,y + J,), the set of instances with rectified labels is Sgc. The
parameter change AOgc is as follows:

A@Rw%(vg}z(z;é))fl Y Gy - Y G@y+ds)]|. an

(z,y) ESrc (z,y+0dy)ESre

However, computing inverse Hessian-vector-product results presents significant challenges. Al-
though CG (Hestenes et al., 1952; Fletcher, 2000; Shewchuk et al., 1994) shows some promise, it
requires full-batch gradient computation (Koh & Liang, 2017), making it impractical for large-scale
datasets. Stochastic estimation (Agarwal et al., 2016) expands (VZR(Z;©))~" into a truncated
power series and iteratively estimates parameter changes, but it suffers from cumulative approxima-
tion errors (Blanco-Justicia et al., 2024; Basu et al., 2021). Next, we elaborate a new efficient and
scalable algorithm for computing A©ry for different unlearning tasks.

3.3 A NEW ALGORITHM FOR COMPUTING PARAMETER CHANGES

Inspired by the previous studies (Ding et al., 2025), LLMEraser reformulates the calculation of
parameter changes as solving an equivalent optimization problem expressed in summation form,
enabling efficient resolution using mini-batch algorithms. Specifically, we focus on the following
optimization problem regarding A:

1 A
min F(A) := 5ATV(%R(Z; O)A — (b, A), (12)
where (,) represents the inner product of vectors, and b is defined as:
1 P eyyess 9(@,9), if Task = IR
b= % Z(m,y)E&M g(l’, y) - % Z(m—&-&z,y)ES]M g(:[,’ + 0z, y), if Task =1IM . (13)

1 2 (zy)esee 9T Y) — 1 Z(%y%y)esm G(z,y+4d,), if Task=RC

Since © is the minimizer of Equation 3, it satisfies the second-order necessary optimality condi-
tion (Nocedal & Wright, 1999; Luenberger et al., 1984; Bertsekas, 1997), resulting in the matrix

V3 R(Z; é) being symmetric and positive semidefinite. Thus, Equation 12 is essentially a convex
quadratic problem, with a gradient of V4 R(Z;0)A — b.

Given that AOr, can be interpreted as the solution to the linear system V3 R(Z; é)A = b, ad-
dressing A O, is effectively equivalent to optimizing Equation 12. Due to the summation form of

VER(Z; é), Equation 12 can be reformulated as the following finite-sum formation:

FA) =1 3 fww).8), (14)
(

z,y)EZ

where f((z,y),A) is defined as:
F((2:9). 8) = 3ATVRL ((2,),0) A - (b, 2). (1s)

By employing scalable algorithms (e.g., SGD) to optimize problem 12, we can obtain the solu-
tion for A©Or. It is worth noting that both the function value and the gradient can be efficiently

Published as a conference paper at ICLR 2025

computed using the Hessian-vector-product (HVP)', reducing the complexity from O(p?) to O(p)
(Pearlmutter, 1994), where p is the number of trainable parameters. The pseudocode for computing
parameter changes can be found in Appendix B. Error analysis for our proposed algorithm can be
found in Appendix D.

3.4 THE WORKFLOW OF LLMERASER

LLMEraser focuses on unlearning domain-specific data and updating the parameters of the PEFT
adapters. Overall, the workflow of LLMEraser is as follows:

* Leverage domain-specific data and apply PEFT techniques to train and obtain the initial adapter,
which captures the model’s performance on the original dataset.

* When certain data becomes unavailable, process and validate the unlearning request to ensure
compliance with regulations or organizational policies before initiating the unlearning procedure.

» Utilize LLMEraser, which employs influence functions to efficiently calculate the necessary
changes in the model parameters resulting from the specified unlearning request. This step en-
sures that the impact of the unavailable data is removed from the model.

* Apply the computed parameter adjustments to the parameters of the previously trained adapter,
effectively updating it to reflect the removal of the unavailable data. This yields the final unlearned
model parameters while preserving efficiency and minimizing retraining overhead.

4 EXPERIMENT

In this section, we carry out extensive experiments to assess the performance and efficiency of
LLMEraser. The experiments are designed to explore the following key research questions: RQ1:
How does LLMEraser perform across various unlearning tasks? RQ2: How does LLMEraser per-
form at different unlearning ratios? RQ3: How does the efficiency of LLMeraser compared to other
unlearning methods?

4.1 EXPERIMENTAL SETUPS

We conduct experiments on both LLMs and Multimodal Large Language Models (MLLMs), fo-
cusing specifically on LLMs for Recommendation (LLM4Rec) (Bao et al., 2023; Liao et al., 2024)
and MLLM relation mining tasks (Wu et al., 2024c; Ye et al., 2024), to validate the effectiveness of
our proposed LLMEraser. We choose LLaMA2-7B (Touvron et al., 2023b) as our backbone LLM
and LLaVA 1.5-7B (Liu et al., 2023a) for the MLLM experiments. Comprehensive details on task,
datasets, baselines, and evaluation metrics for our proposed LLMEraser can be found in Appendix C.

4.2 RESULTS ANALYSIS FOR VARIOUS UNLEARNING TASKS (RQ1)

We design a variety of comprehensive experiments to thoroughly validate the effectiveness of
LLMEraser across the three unlearning tasks we have proposed.

4.2.1 RESULTS ANALYSIS ON INSTANCE REMOVAL

For instance removal, we directly delete a proportion of training instances and subsequently evaluate
the performance of each unlearning method. The experimental results on LLM4Rec are shown in
Table 2. We can find that: (1) LLMEraser closely mirrors the performance of Retrain. The perfor-
mance gap between LLMEraser and Retrain is merely 0.0038, constituting only 0.6% of Retrain’s
performance. This can be attributed to our method’s direct estimation of the parameter changes be-
tween the retrained model and the original model, allowing for a highly accurate calculation of these
changes. (2) Other unlearning methods exhibit notable declines in model performance. Specifically,
Gradient Ascent and E2URec show average decreases of 2.7% and 2.4%, respectively, as they do
not explicitly aim to approximate the Retrain model during the fine-tuning process.

'"HVP has a corresponding implementation in PyTorch; refer to https://pytorch.org/docs/
stable/autograd.html for details.

https://pytorch.org/docs/stable/autograd.html
https://pytorch.org/docs/stable/autograd.html

Published as a conference paper at ICLR 2025

4.2.2 RESULTS ANALYSIS ON QUERY MODIFICATION & RESPONSE CORRECTION

Adversarial attack experiments are widely employed to assess the efficacy of data modification for
unlearning techniques (Wu et al., 2023; Moon et al., 2024; Cha et al., 2024). The core idea is first
randomly introducing corrupted instances into the dataset, which inevitably leads to a decline in
model performance, and then leveraging unlearning techniques to correct these noisy data on the
model. Following this setting, we evaluate the performance of LLMEraser in both query modifica-
tion and response correction tasks.

For query modification, we conduct experiments on the LLM4Rec task by adding adversarial noise
to the user interaction sequences, i.e., randomly deleting some items from the sequences (Inter-
action Removal) or replacing them with corrupt ones (Interaction Replacement), and then using
LLMeEraser to rectify the data. Table 3 presents the experimental results. We can observe that: (1)
LLMEraser brings a substantial utility gain to the model compared to the corrupted baseline, signif-
icantly reducing the negative impact of noisy data. Specifically, it achieves an average improvement
of 5.1% compared to the corrupted model in both settings, with a peak increase of 5.5% in inter-
action removal setting. Moreover, its performance is closest to that of Retrain, demonstrating its
effectiveness in correcting inaccurate input information. (2) SISA and RecEraser fail to improve
performance. Their average results in both settings decreased by 7.0% and 31.3% compared to the
corrupted baseline. The reasons may lie in their dataset partitioning and submodel retraining strat-
egy, potentially leading to a loss of crucial contextual information and introducing inconsistencies
in learned representations. (3) RecEraser underperforms SISA in most cases. Designed on tradi-
tional recommendation models, RecEraser relies on users’ collaborative signals to optimize shard
partitioning; however, this strategy fails to effectively adapt to LLM4Rec.

For response correction, we introduce noise into the training data of the MLLMs task by randomly
assigning incorrect labels to a portion of the samples. In the spurious biases task for MLLMs, we
reverse 40% the original “yes/no” labels. For the hard hallucination mining task in MLLMs, we
assign random labels to 40% of the samples. We leverage LLM unlearning to mitigate the neg-
ative impact of such noisy data, aiming to approximate the performance of retraining with clean
data. The experimental results of response correction unlearning task on spurious biases task and
hard hallucination mining task are presented in Table 4 and 5, respectively. We can draw the fol-
lowing observations: (1) LLMEraser effectively performs response correction, achieving average
improvements of 14.2% and 18.9% on the spurious biases task and hard hallucination mining task,
respectively, compared to the corrupted baseline. Compared to other methods, LLMEraser shows
the smallest performance gap relative to Retrain. On the spurious biases task and hard hallucination
mining task, the average differences with Retrain are 0.024 and 0.048, which account for 2.9% and
7.5% of Retrain’s performance, respectively. Whether addressing label reversal in binary classifica-
tion or correcting labels in multi-class scenarios, LLMEraser can eliminate the negative impact of
noisy labels and restore them to their clean, original state. (2) The improvement brought by SISA is
not significant. Although SISA ensures that dirty data is replaced with clean data during retraining,
its data segmentation strategy can inevitably hurt model performance.

4.3 RESULTS ANALYSIS FOR DIFFERENT UNLEARNING RATIOS (RQ2)

To assess the sensitivity of various unlearning methods to different scales of unlearning data, we con-
duct experiments using different unlearning ratios in instance removal and query modification tasks.
For the instance removal, we employ TallRec as the LLM4Rec framework, where 5% and 10% of in-
stances are removed. Meanwhile, for query modification, LLARA is utilized as the backbone, where
5% and 10% of user interactions are deleted. The experimental results are shown in Figure 3. From
these results, we can find that: (1) In the instance removal task, LLMEraser consistently performs
closest to Retrain across different unlearning ratio settings, with an average performance decline of
only 1.18%. This indicates that LLMEraser can effectively delete data while minimizing the neg-

Table 2: Experimental results on the instance removal task with 5% of training data removed, using
TALLRec as the LLM4Rec model on the BookCrossing dataset.

Original Retrain Gradient Ascent E2URec LLMEraser (Ours)
AUC 0.6400 0.6357 0.6187 0.6205 0.6319

Published as a conference paper at ICLR 2025

Table 3: Experimental results on the QM task, using LLaRA as the LLM4Rec model on the Movie-
Lens and LastFM datasets. “10% Interaction Removal” refers to 10% of users have items removed
from their interaction sequences, “5% Interaction Replacement” refers to 5% of users have items
replaced with noisy interactions. Corrupted refers to the model trained with the noisy data.

Method . .Movielens. . . . LastFM . .

HitRatio@1 ValidRatio HitRatio@1 ValidRatio
Retrain 0.4565 0.9684 0.4508 1.0000
10% Tnteraction Corrupted 0.4222 0.9375 0.4344 1.0000
Removal SISA 0.4130 0.9684 0.4132 0.9918
RecEraser 0.2717 0.9684 0.4298 0.9918
LLMEraser (Ours) 0.4456 0.9684 0.4463 0.9918
Retrain 0.4565 0.9684 0.4508 1.0000
59 nteraction Corrupted 0.4316 0.9684 0.4344 0.9918
Replacement SISA 0.3804 0.9684 0.4050 0.9918
RecEraser 0.3152 0.9684 0.3689 1.0000
LLMEraser (Ours) 0.4516 0.9789 0.4426 1.0000

Table 4: Experimental results on the MM-SPUBENCH for RC tasks, where Corrupted denotes we
assign wrong labels for 40% of the training samples.

MM-SPUBENCH
BG TN CO RS Col. Ori. LS PA Sha

Retrain 0.88 0.80 0.83 1.00 0.78 0.86 0.86 0.66 0.70 0.82 0.84
Corrupted 0.76 0.62 0.67 0.80 0.67 0.76 0.65 0.68 0.67 0.70 0.71
SISA 0.84 0.65 079 1.00 064 079 0.86 0.73 0.57 0.76 0.77
LLMEraser 0.86 0.70 0.80 1.00 0.78 0.85 0.84 0.76 0.67 0.81 0.81

Method Average All

ative impact on model performance. (2) In the query modification task, LLMEraser consistently
achieves the best performance across various unlearning ratios, with an average improvement of
4.9% compared to corrupted method. Notably, at an unlearning ratio of 10%, the relative improve-
ment reaches 5.1%. The average difference between LLMEraser and Retrain is only 0.0079. In
comparison to SISA and RecEraser, LLMEraser demonstrates a superior ability to maintain model
utility. This highlights the effectiveness of LLMEraser, demonstrating its robust performance across
varying unlearning demands. (3) We observe an interesting phenomenon in query modification task
under adversarial attack settings, with a sufficiently high unlearning ratio (in this case, 5% and 10%),
both SISA and Receraser require retraining all shards with the same clean data, resulting in equiva-
lent outcomes. Despite the direct use of clean data for retraining, they still struggle to obtain optimal
model performance.

4.4 RESULTS ANALYSIS FOR UNLEARNING EFFICIENCY (RQ3)

Efficiency is a key metric in evaluating unlearning techniques, par-

ticularly for LLMs. We here conduct experiments, comparing our Table 6: Execution time in the
proposed LLMEraser against existing techniques. For a fair com- QM task.

parison, we report the execution time in the QM task, where 5% Method Ti

of users have items replaced with noisy interactions. All methods etho ime (s)
are run on a single Nvidia A100 GPU. Table 6 presents the results. Retrain 5.4 x 10*
We can observe that: (1) Due to the parallel training of sub-models, SISA 1.8 % 10*
the retraining time of both SISA and RecEraser can be reduced to
some extent. However, RecEraser requires data partitioning based ~ RecEraser 2.0 x 10*
on similarity, which introduces additional computational overhead. LLMEraser 1.4 x 103
Moreover, both methods remain highly inefficient as unlearning re-
quests necessitate retraining of the adapters. (2) In contrast, our
proposed LLMEraser exhibits remarkable efficiency in handling unlearning tasks. By directly mod-
ifying model parameters, LLMEraser achieves a speedup of approximately 31.25 times compared
to retraining, requiring only about 1.4 x 103seconds to update the parameters. This reduction in
execution time demonstrates the effectiveness of our approach in accelerating the computation of

Published as a conference paper at ICLR 2025

Table 5: Experimental results on the R-BENCH for RC tasks, where Corrupted denotes we assign
wrong labels for 40% of training samples.

Method Recall FI1-Score Precision Accuracy Yes
Retrain 0.70 0.66 0.63 0.65 0.55
Corrupted 0.47 0.50 0.53 0.54 0.44
SISA 0.47 0.49 0.52 0.52 0.45
LLMEraser (Ours) 0.68 0.63 0.58 0.56 0.50

Unlearning Ratio: 0.05 Unlearning Ratio: 0.05

3

0.6400
064 0.6357 0.4565 0.4516
0.6319 =5 04316
=2
g 0.6205 2
= 0.6187 - 3 040
Zoe o g 0.3804
el T o35
' 0.3152
0.60 030
Original Retrain Gradient Ascent E2URec LLMEraser Corrupted ~ Retrain SISA RecEraser LLMEraser

Unlearning Ratio: 0.10 Unlearning Ratio: 0.10

0.65

0.6400 04565

0.64 i 0.4457
O 0.6288 0.6277 G 0.4239
S .
Lo 0.3804
0.6114 :
061 0.6049 ’—‘ 03152

0.60 0.30
Original Retrain Gradient Ascent E2URec LLMEraser Corrupted ~ Retrain SISA RecEraser LLMEraser

(a) Impact of unlearning ratio in IR. (b) Impact of unlearning ratio in QM.
Figure 3: 3a: Experimental results of the instance removal task using TallRec as the LLM4Rec
model on the BookCrossing dataset, where 5% and 10% of the training data were randomly deleted.
3b: Experimental results of the query modification task using LLaRA as the LLM4Rec model on
the MovieLens dataset, where interactions were randomly removed from 5% and 10% of users.

HitRatio@1

parameter changes. Additional experimental results and related analyses on the memory usage and
execution time of LLMEraser can be found in Appendix E.

5 LIMITATIONS

LLMEraser offers efficient parameter updates without the need for retraining, making it versatile
across different unlearning tasks while also reducing computational overhead. Despite the improve-
ments brought by LLMEraser, its potential shortcomings should not be overlooked. Calculating
parameter changes for different unlearning tasks requires accessing the gradient information of the
target data and assumes the availability of the training set. Furthermore, the influence function’s re-
liance on the first-order Taylor expansion of the optimization objective leads to inevitable estimation
errors, representing an inherent limitation of such an approach.

6 CONCLUSION AND FUTURE WORK

This paper introduces LLMEraser, a unified parameter-efficient unlearning framework. By sys-
tematically categorizing and addressing various unlearning tasks, LLMEraser leverages influence
functions for parameter adjustments, circumventing the cumbersome retraining processes common
in traditional methods. Extensive experiments on benchmark datasets show that LLMEraser excels
in efficiently handling various unlearning tasks while preserving the overall integrity and efficacy
of the models. Additionally, LLMEraser opens new avenues for future research, encouraging the
exploration of enhanced unlearning techniques and their implications in diverse applications, such
as data privacy and ethical Al Future studies could explore the broader applicability of LLMEraser
and potential optimizations for its computational efficiency and accuracy.

10

Published as a conference paper at ICLR 2025

ACKNOWLEDGEMENTS

This research is supported by the National Science and Technology Major Project
(20237ZD0121102), National Natural Science Foundation of China (92270114, 62302321,
U24B20180, 62121002). The work of Yancheng Yuan is supported by the Research Center for
Intelligent Operations Research and The Hong Kong Polytechnic University under grant P0045485.
This research is also supported by the advanced computing resources provided by the Supercomput-
ing Center of the USTC.

REFERENCES

Naman Agarwal, Brian Bullins, and Elad Hazan. Second order stochastic optimization in linear
time. CoRR, abs/1602.03943, 2016.

Ian Arawjo, Chelse Swoopes, Priyan Vaithilingam, Martin Wattenberg, and Elena L. Glassman.
Chainforge: A visual toolkit for prompt engineering and LLM hypothesis testing. In CHI, pp.
304:1-304:18. ACM, 2024.

Keqin Bao, Jizhi Zhang, Yang Zhang, Wenjie Wang, Fuli Feng, and Xiangnan He. Tallrec: An
effective and efficient tuning framework to align large language model with recommendation. In
RecSys, pp. 1007-1014. ACM, 2023.

Peter L. Bartlett and Shahar Mendelson. Rademacher and gaussian complexities: Risk bounds and
structural results. J. Mach. Learn. Res., 3:463-482, 2002.

Samyadeep Basu, Phillip Pope, and Soheil Feizi. Influence functions in deep learning are fragile. In
ICLR. OpenReview.net, 2021.

Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse
problems. SIAM J. Imaging Sci., 2(1):183-202, 2009.

Dimitri P Bertsekas. Nonlinear programming. Journal of the Operational Research Society, 48(3):
334-334, 1997.

Alberto Blanco-Justicia, Najeeb Jebreel, Benet Manzanares-Salor, David Sédnchez, Josep Domingo-
Ferrer, Guillem Collell, and Kuan Eeik Tan. Digital forgetting in large language models: A survey
of unlearning methods. CoRR, abs/2404.02062, 2024.

Lucas Bourtoule, Varun Chandrasekaran, Christopher A. Choquette-Choo, Hengrui Jia, Adelin
Travers, Baiwu Zhang, David Lie, and Nicolas Papernot. Machine unlearning. In SP, pp. 141-
159. IEEE, 2021.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford,
Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. In NeurIPS, 2020.

Robin D. Burke. Hybrid recommender systems: Survey and experiments. User Model. User Adapt.
Interact., 12(4):331-370, 2002.

William Cain. Prompting change: exploring prompt engineering in large language model ai and its
potential to transform education. TechTrends, 68(1):47-57, 2024.

Ivan Cantador, Peter Brusilovsky, and Tsvi Kuflik (eds.). Proceedings of the 2nd International Work-
shop on Information Heterogeneity and Fusion in Recommender Systems, HetRec ’11, Chicago,
Illinois, USA, October 27, 2011, 2011. ACM.

Sungmin Cha, Sungjun Cho, Dasol Hwang, Honglak Lee, Taesup Moon, and Moontae Lee. Learn-
ing to unlearn: Instance-wise unlearning for pre-trained classifiers. In AAAI pp. 11186-11194.
AAAI Press, 2024.

11

Published as a conference paper at ICLR 2025

Chong Chen, Fei Sun, Min Zhang, and Bolin Ding. Recommendation unlearning. In WWW, pp.
2768-2777. ACM, 2022.

Jiaao Chen and Diyi Yang. Unlearn what you want to forget: Efficient unlearning for llms. In
EMNLP, pp. 12041-12052. Association for Computational Linguistics, 2023.

Yuxin Chen, Junfei Tan, An Zhang, Zhengyi Yang, Leheng Sheng, Enzhi Zhang, Xiang Wang, and
Tat-Seng Chua. On softmax direct preference optimization for recommendation. In NeurlPS,
2024.

Zhikai Chen, Haitao Mao, Hang Li, Wei Jin, Hongzhi Wen, Xiaochi Wei, Shuaiqiang Wang, Dawei
Yin, Wenqi Fan, Hui Liu, and Jiliang Tang. Exploring the potential of large language models
(llms)in learning on graphs. SIGKDD Explor., 25(2):42-61, 2023.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, Parker Schuh,
Kensen Shi, Sasha Tsvyashchenko, Joshua Maynez, Abhishek Rao, Parker Barnes, Yi Tay, Noam
Shazeer, Vinodkumar Prabhakaran, Emily Reif, Nan Du, Ben Hutchinson, Reiner Pope, James
Bradbury, Jacob Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin, Toju Duke, Anselm Lev-
skaya, Sanjay Ghemawat, Sunipa Dev, Henryk Michalewski, Xavier Garcia, Vedant Misra, Kevin
Robinson, Liam Fedus, Denny Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim, Barret
Zoph, Alexander Spiridonov, Ryan Sepassi, David Dohan, Shivani Agrawal, Mark Omernick,
Andrew M. Dai, Thanumalayan Sankaranarayana Pillai, Marie Pellat, Aitor Lewkowycz, Erica
Moreira, Rewon Child, Oleksandr Polozov, Katherine Lee, Zongwei Zhou, Xuezhi Wang, Bren-
nan Saeta, Mark Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy Meier-Hellstern, Douglas
Eck, Jeff Dean, Slav Petrov, and Noah Fiedel. Palm: Scaling language modeling with pathways.
J. Mach. Learn. Res., 24:240:1-240:113, 2023.

Nasrin Dehbozorgi, Mourya Teja Kunuku, and Seyedamin Pouriyeh. Personalized pedagogy
through a llm-based recommender system. In AIED Companion (2), volume 2151 of Commu-
nications in Computer and Information Science, pp. 63—70. Springer, 2024.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
of quantized llms. In NeurIPS, 2023.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of deep
bidirectional transformers for language understanding. In NAACL-HLT (1), pp. 4171-4186. As-
sociation for Computational Linguistics, 2019.

Chenlu Ding, Jiancan Wu, Yancheng Yuan, Junfeng Fang, Cunchun Li, Xiang Wang, and Xiangnan
He. Addressing delayed feedback in conversion rate prediction via influence functions. arXiv
preprint arXiv:2502.01669, 2025.

Jesse Dodge, Gabriel Ilharco, Roy Schwartz, Ali Farhadi, Hannaneh Hajishirzi, and Noah Smith.
Fine-tuning pretrained language models: Weight initializations, data orders, and early stopping.
arXiv preprint arXiv:2002.06305, 2020.

Ronen Eldan and Mark Russinovich. Who’s harry potter? approximate unlearning in llms. CoRR,
abs/2310.02238, 2023.

Junfeng Fang, Houcheng Jiang, Kun Wang, Yunshan Ma, Xiang Wang, Xiangnan He, and Tat-
Seng Chua. Alphaedit: Null-space constrained knowledge editing for language models. CoRR,
abs/2410.02355, 2024a.

Junfeng Fang, Shuai Zhang, Chang Wu, Zhengyi Yang, Zhiyuan Liu, Sihang Li, Kun Wang, Wenjie
Du, and Xiang Wang. Moltc: Towards molecular relational modeling in language models. In ACL
(Findings), pp. 1943-1958. Association for Computational Linguistics, 2024b.

Roger Fletcher. Practical methods of optimization. John Wiley & Sons, 2000.

F. Maxwell Harper and Joseph A. Konstan. The movielens datasets: History and context. ACM
Trans. Interact. Intell. Syst., 5(4):19:1-19:19, 2016.

12

Published as a conference paper at ICLR 2025

Magnus Rudolph Hestenes, Eduard Stiefel, et al. Methods of conjugate gradients for solving linear
systems, volume 49. NBS Washington, DC, 1952.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin de Laroussilhe, An-
drea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for
NLP. In ICML, volume 97 of Proceedings of Machine Learning Research, pp. 2790-2799. PMLR,
2019.

Cunchen Hu, Heyang Huang, Liangliang Xu, Xusheng Chen, Jiang Xu, Shuang Chen, Hao Feng,
Chenxi Wang, Sa Wang, Yungang Bao, Ninghui Sun, and Yizhou Shan. Inference without inter-
ference: Disaggregate LLLM inference for mixed downstream workloads. CoRR, abs/2401.11181,
2024a.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. In The Tenth Inter-
national Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022.
OpenReview.net, 2022. URL https://openreview.net/forum?id=nzZeVKeelFYfO9.

Jun Hu, Wenwen Xia, Xiaolu Zhang, Chilin Fu, Weichang Wu, Zhaoxin Huan, Ang Li, Zuoli Tang,
and Jun Zhou. Enhancing sequential recommendation via llm-based semantic embedding learn-
ing. In WWW (Companion Volume), pp. 103—-111. ACM, 2024b.

Zhiyu Hu, Yang Zhang, Minghao Xiao, Wenjie Wang, Fuli Feng, and Xiangnan He. Exact and
efficient unlearning for large language model-based recommendation. CoRR, abs/2404.10327,
2024c.

Joel Jang, Dongkeun Yoon, Sohee Yang, Sungmin Cha, Moontae Lee, Lajanugen Logeswaran, and
Minjoon Seo. Knowledge unlearning for mitigating privacy risks in language models. InACL (1),
pp- 14389-14408. Association for Computational Linguistics, 2023.

Hongye Jin, Xiaotian Han, Jingfeng Yang, Zhimeng Jiang, Zirui Liu, Chia-Yuan Chang, Huiyuan
Chen, and Xia Hu. LLM maybe longlm: Self-extend LLM context window without tuning. CoRR,
abs/2401.01325, 2024.

Swanand Ravindra Kadhe, Anisa Halimi, Ambrish Rawat, and Nathalie Baracaldo. Fairsisa: En-
semble post-processing to improve fairness of unlearning in 1lms. CoRR, abs/2312.07420, 2023.

Aly M. Kassem, Omar Mahmoud, and Sherif Saad. Preserving privacy through dememorization:
An unlearning technique for mitigating memorization risks in language models. In EMNLP, pp.
4360-4379. Association for Computational Linguistics, 2023.

Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions. In
ICML, volume 70 of Proceedings of Machine Learning Research, pp. 1885-1894. PMLR, 2017.

Xiaoyu Kong, Jiancan Wu, An Zhang, Leheng Sheng, Hui Lin, Xiang Wang, and Xiangnan He. Cus-
tomizing language models with instance-wise lora for sequential recommendation. In NeurlIPS,
2024.

Vinayshekhar Bannihatti Kumar, Rashmi Gangadharaiah, and Dan Roth. Privacy adhering machine
un-learning in NLP. In IJCNLP (Findings), pp. 268-277. Association for Computational Linguis-
tics, 2023.

Meghdad Kurmanji, Peter Triantafillou, Jamie Hayes, and Eleni Triantafillou. Towards unbounded
machine unlearning. In NeurIPS, 2023.

Chanhee Kwak, Junyeong Lee, Kyuhong Park, and Heeseok Lee. Let machines unlearn - machine
unlearning and the right to be forgotten. In AMCIS. Association for Information Systems, 2017.

Byung-Kwan Lee, Beomchan Park, Chae Won Kim, and Yong Man Ro. Collavo: Crayon large

language and vision model. In ACL (Findings), pp. 1121-1138. Association for Computational
Linguistics, 2024.

13

https://openreview.net/forum?id=nZeVKeeFYf9

Published as a conference paper at ICLR 2025

Likun Li, Haoqi Zeng, Changpeng Yang, Haozhe Jia, and Di Xu. Block-wise lora: Revisiting
fine-grained lora for effective personalization and stylization in text-to-image generation. CoRR,
abs/2403.07500, 2024.

Shaoxu Li. Diffstyler: Diffusion-based localized image style transfer. CoRR, abs/2403.18461, 2024.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. In
ACL/IJCNLP (1), pp. 4582-4597. Association for Computational Linguistics, 2021.

Zongxi Li, Xianming Li, Yuzhang Liu, Haoran Xie, Jing Li, Fu Lee Wang, Qing Li, and Xiaoqin
Zhong. Label supervised llama finetuning. CoRR, abs/2310.01208, 2023.

Jiayi Liao, Sihang Li, Zhengyi Yang, Jiancan Wu, Yancheng Yuan, Xiang Wang, and Xiangnan He.
Llara: Large language-recommendation assistant. In SIGIR, pp. 1785-1795. ACM, 2024.

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
tuning. CoRR, abs/2310.03744, 2023a.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham Neubig. Pre-
train, prompt, and predict: A systematic survey of prompting methods in natural language pro-
cessing. ACM Comput. Surv., 55(9):195:1-195:35, 2023b.

Sijia Liu, Yuanshun Yao, Jinghan Jia, Stephen Casper, Nathalie Baracaldo, Peter Hase, Xiaojun
Xu, Yuguang Yao, Hang Li, Kush R. Varshney, Mohit Bansal, Sanmi Koyejo, and Yang Liu.
Rethinking machine unlearning for large language models. CoRR, abs/2402.08787, 2024a.

Xiao Liu, Kaixuan Ji, Yicheng Fu, Zhengxiao Du, Zhilin Yang, and Jie Tang. P-tuning v2:
Prompt tuning can be comparable to fine-tuning universally across scales and tasks. CoRR,
abs/2110.07602, 2021.

Yiheng Liu, Hao He, Tianle Han, Xu Zhang, Mengyuan Liu, Jiaming Tian, Yutong Zhang, Jiaqi
Wang, Xiaohui Gao, Tianyang Zhong, Yi Pan, Shaochen Xu, Zihao Wu, Zhengliang Liu, Xin
Zhang, Shu Zhang, Xintao Hu, Tuo Zhang, Ning Qiang, Tianming Liu, and Bao Ge. Under-
standing llms: A comprehensive overview from training to inference. CoRR, abs/2401.02038,
2024b.

Zheyuan Liu, Guangyao Dou, Zhaoxuan Tan, Yijun Tian, and Meng Jiang. Towards safer large
language models through machine unlearning. In ACL (Findings), pp. 1817-1829. Association
for Computational Linguistics, 2024c.

Weikai Lu, Zigian Zeng, Jianwei Wang, Zhengdong Lu, Zelin Chen, Huiping Zhuang, and Cen
Chen. Eraser: Jailbreaking defense in large language models via unlearning harmful knowledge.
CoRR, abs/2404.05880, 2024.

Ximing Lu, Sean Welleck, Jack Hessel, Liwei Jiang, Lianhui Qin, Peter West, Prithviraj Am-
manabrolu, and Yejin Choi. QUARK: controllable text generation with reinforced unlearning.
In NeurIPS, 2022.

David G Luenberger, Yinyu Ye, et al. Linear and nonlinear programming, volume 2. Springer,
1984.

Hanjia Lyu, Song Jiang, Hanqing Zeng, Yinglong Xia, Qifan Wang, Si Zhang, Ren Chen, Christo-
pher Leung, Jiajie Tang, and Jiebo Luo. Llm-rec: Personalized recommendation via prompting
large language models. In NAACL-HLT (Findings), pp. 583-612. Association for Computational
Linguistics, 2024.

Wenyu Mao, Jiancan Wu, Weijian Chen, Chongming Gao, Xiang Wang, and Xiangnan He.
Reinforced prompt personalization for recommendation with large language models. CoRR,
abs/2407.17115, 2024.

Joanna Misztal-Radecka and Bipin Indurkhya. Getting to know your neighbors (KYN). explaining
item similarity in nearest neighbors collaborative filtering recommendations. In UMAP (Adjunct
Publication), pp. 59-64. ACM, 2020.

14

Published as a conference paper at ICLR 2025

Saemi Moon, Seunghyuk Cho, and Dongwoo Kim. Feature unlearning for pre-trained gans and
vaes. In AAAI pp. 21420-21428. AAAI Press, 2024.

Daye Nam, Andrew Macvean, Vincent J. Hellendoorn, Bogdan Vasilescu, and Brad A. Myers. Using
an LLM to help with code understanding. In /CSE, pp. 97:1-97:13. ACM, 2024.

Yurii E. Nesterov. Gradient methods for minimizing composite functions. Math. Program., 140(1):
125-161, 2013.

Jorge Nocedal and Stephen J Wright. Numerical optimization. Springer, 1999.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser
Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul F. Christiano, Jan
Leike, and Ryan Lowe. Training language models to follow instructions with human feedback.
In NeurIPS, 2022.

Martin Pawelczyk, Seth Neel, and Himabindu Lakkaraju. In-context unlearning: Language models
as few shot unlearners. arXiv preprint arXiv:2310.07579, 2023.

Michael J. Pazzani and Daniel Billsus. Content-based recommendation systems. In The Adaptive
Web, volume 4321 of Lecture Notes in Computer Science, pp. 325-341. Springer, 2007.

Barak A. Pearlmutter. Fast exact multiplication by the hessian. Neural Comput., 6(1):147-160,
1994.

Youyang Qu, Ming Ding, Nan Sun, Kanchana Thilakarathna, Tianqing Zhu, and Dusit Niyato. The
frontier of data erasure: Machine unlearning for large language models. CoRR, abs/2403.15779,
2024.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAl blog, 1(8):9, 2019.

Victor Sanh, Albert Webson, Colin Raffel, Stephen H. Bach, Lintang Sutawika, Zaid Alyafeai,
Antoine Chaffin, Arnaud Stiegler, Arun Raja, Manan Dey, M Saiful Bari, Canwen Xu, Urmish
Thakker, Shanya Sharma Sharma, Eliza Szczechla, Taewoon Kim, Gunjan Chhablani, Nihal V.
Nayak, Debajyoti Datta, Jonathan Chang, Mike Tian-Jian Jiang, Han Wang, Matteo Manica,
Sheng Shen, Zheng Xin Yong, Harshit Pandey, Rachel Bawden, Thomas Wang, Trishala Neeraj,
Jos Rozen, Abheesht Sharma, Andrea Santilli, Thibault Févry, Jason Alan Fries, Ryan Teehan,
Teven Le Scao, Stella Biderman, Leo Gao, Thomas Wolf, and Alexander M. Rush. Multitask
prompted training enables zero-shot task generalization. In /ICLR. OpenReview.net, 2022.

Ayush Sekhari, Jayadev Acharya, Gautam Kamath, and Ananda Theertha Suresh. Remember what
you want to forget: Algorithms for machine unlearning. In NeurIPS, pp. 18075-18086, 2021.

Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learning - From Theory to
Algorithms. Cambridge University Press, 2014.

Wenbo Shang and Xin Huang. A survey of large language models on generative graph analytics:
Query, learning, and applications. CoRR, abs/2404.14809, 2024.

Leheng Sheng, An Zhang, Yi Zhang, Yuxin Chen, Xiang Wang, and Tat-Seng Chua. Language
models encode collaborative signals in recommendation. arXiv preprint arXiv:2407.05441, 2024.

Jonathan Richard Shewchuk et al. An introduction to the conjugate gradient method without the
agonizing pain. 1994.

Jiabin Tang, Yuhao Yang, Wei Wei, Lei Shi, Lixin Su, Suqi Cheng, Dawei Yin, and Chao Huang.
Graphgpt: Graph instruction tuning for large language models. In SIGIR, pp. 491-500. ACM,
2024.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal Azhar, Aurélien Rodriguez, Ar-
mand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation
language models. CoRR, abs/2302.13971, 2023a.

15

Published as a conference paper at ICLR 2025

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher,
Cristian Canton-Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy
Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurélien Rodriguez, Robert Stojnic,
Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models.
CoRR, abs/2307.09288, 2023b.

Vladimir Vapnik. Statistical learning theory. John Wiley & Sons google schola, 2:831-842, 1998.

Hangyu Wang, Jianghao Lin, Bo Chen, Yang Yang, Ruiming Tang, Weinan Zhang, and Yong Yu.
Towards efficient and effective unlearning of large language models for recommendation. CoRR,
abs/2403.03536, 2024.

Jason Wei, Maarten Bosma, Vincent Y. Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du,
Andrew M. Dai, and Quoc V. Le. Finetuned language models are zero-shot learners. In /CLR.
OpenReview.net, 2022.

Jiancan Wu, Xiangnan He, Xiang Wang, Qifan Wang, Weijian Chen, Jianxun Lian, and Xing Xie.
Graph convolution machine for context-aware recommender system. Frontiers Comput. Sci., 16
(6):166614, 2022.

Jiancan Wu, Yi Yang, Yuchun Qian, Yongduo Sui, Xiang Wang, and Xiangnan He. GIF: A general
graph unlearning strategy via influence function. In WWW, pp. 651-661. ACM, 2023.

Jiancan Wu, Xiang Wang, Xingyu Gao, Jiawei Chen, Hongcheng Fu, and Tianyu Qiu. On the
effectiveness of sampled softmax loss for item recommendation. ACM Trans. Inf. Syst., 42(4):
98:1-98:26, 2024a.

Junkang Wu, Yuexiang Xie, Zhengyi Yang, Jiancan Wu, Jinyang Gao, Bolin Ding, Xiang Wang, and
Xiangnan He. 3-dpo: Direct preference optimization with dynamic /. In NeurIPS, 2024b.

Mingrui Wu, Jiayi Ji, Oucheng Huang, Jiale Li, Yuhang Wu, Xiaoshuai Sun, and Rongrong Ji.
Evaluating and analyzing relationship hallucinations in large vision-language models. In ICML.
OpenReview.net, 2024c.

Xin Xin, Tiago Pimentel, Alexandros Karatzoglou, Pengjie Ren, Konstantina Christakopoulou, and
Zhaochun Ren. Rethinking reinforcement learning for recommendation: A prompt perspective.
In SIGIR, pp. 1347-1357. ACM, 2022.

Junjie Xu, Zongyu Wu, Minhua Lin, Xiang Zhang, and Suhang Wang. LLM and GNN are comple-
mentary: Distilling LLM for multimodal graph learning. CoRR, abs/2406.01032, 2024a.

Xuhai Xu, Bingsheng Yao, Yuanzhe Dong, Saadia Gabriel, Hong Yu, James A. Hendler, Marzyeh
Ghassemi, Anind K. Dey, and Dakuo Wang. Mental-llm: Leveraging large language models for
mental health prediction via online text data. Proc. ACM Interact. Mob. Wearable Ubiquitous
Technol., 8(1):31:1-31:32, 2024b.

Wengian Ye, Guangtao Zheng, Yunsheng Ma, Xu Cao, Bolin Lai, James M. Rehg, and Aidong
Zhang. Mm-spubench: Towards better understanding of spurious biases in multimodal 1lms.
CoRR, abs/2406.17126, 2024.

Charles Yu, Sullam Jeoung, Anish Kasi, Pengfei Yu, and Heng Ji. Unlearning bias in language mod-

els by partitioning gradients. In ACL (Findings), pp. 6032—-6048. Association for Computational
Linguistics, 2023.

16

Published as a conference paper at ICLR 2025

Elad Ben Zaken, Yoav Goldberg, and Shauli Ravfogel. Bitfit: Simple parameter-efficient fine-
tuning for transformer-based masked language-models. In ACL (2), pp. 1-9. Association for
Computational Linguistics, 2022.

Biao Zhang, Zhongtao Liu, Colin Cherry, and Orhan Firat. When scaling meets LLM finetuning:
The effect of data, model and finetuning method. In /ICLR. OpenReview.net, 2024a.

Qingru Zhang, Minshuo Chen, Alexander Bukharin, Pengcheng He, Yu Cheng, Weizhu Chen, and
Tuo Zhao. Adaptive budget allocation for parameter-efficient fine-tuning. In /CLR. OpenRe-
view.net, 2023.

You Zhang, Jin Wang, Liang-Chih Yu, Dan Xu, and Xuejie Zhang. Personalized lora for human-
centered text understanding. In AAAL pp. 19588-19596. AAAI Press, 2024b.

Yushun Zhang, Congliang Chen, Naichen Shi, Ruoyu Sun, and Zhi-Quan Luo. Adam can converge
without any modification on update rules. In NeurIPS, 2022.

Yuyue Zhao, Jiancan Wu, Xiang Wang, Wei Tang, Dingxian Wang, and Maarten de Rijke. Let
me do it for you: Towards LLM empowered recommendation via tool learning. In SIGIR, pp.
1796-1806. ACM, 2024.

Cai-Nicolas Ziegler, Sean M. McNee, Joseph A. Konstan, and Georg Lausen. Improving recom-
mendation lists through topic diversification. In WWW, pp. 22-32. ACM, 2005.

A OVERVIEW OF EXISTING LLM UNLEARNING METHODS

» SISA (Bourtoule et al., 2021): It works by dividing the training dataset into partitions, allowing
for targeted unlearning of specific instances. The methodology typically involves the following
steps: data partitioning, retraining, and aggregation. However, a notable limitation of SISA is that
it does not preserve the model architecture and requires retraining of sub-models, which can lead
to increased computational costs.

* FairSISA (Kadhe et al., 2023): FairSISA improves upon SISA by incorporating fairness en-
hancements. It still relies on the paradigm of retraining sub-models to handle unlearning requests.
This approach inherently alters the model architecture and necessitates the retraining of the sub-
models, which can limit the flexibility and efficiency of the unlearning process.

* APA (Hu et al., 2024c): This study introduces the first exact unlearning approach for large lan-
guage model-based recommendation (LLMRec), focusing on the removal of personal data to com-
ply with privacy regulations. The Adapter Partition and Aggregation (APA) method is proposed,
which combines data partitioning with parameter aggregation to reduce inference latency while
maintaining performance. This approach enables efficient unlearning without incurring the ex-
tra costs typically associated with traditional methods. However,it can affect the integrity of the
adapter structure and necessitates retraining of sub-models.

» Gradient Ascent: It utilizes the gradient of the target instance to fine-tune the adapter by moving
in the direction of the negative gradient of the deleted data. However, this approach is not effective
for input modification and output correction tasks, as gradient ascent of target instances cannot
adequately handle these scenarios.

* EUL (Chen & Yang, 2023): This work introduces a lightweight approach for LLMs to efficiently
forget specific information without complete retraining. It incorporates unlearning layers into
transformer architectures, utilizing a selective teacher-student formulation, and employs a fusion
mechanism to combine multiple unlearning layers into a unified layer. This enables LLMs to
dynamically handle a sequence of deletion requests while maintaining model performance. The
introduction of adapters alters the model’s structure, and the KL divergence-based methods are
only effective for instance removal tasks, as obtaining a model trained on clean data is not feasible.

* E2URec (Chen & Yang, 2023): This method uses lightweight LoRA modules and a teacher-
student framework to forget specific data while maintaining performance. However, the extra
LoRA module changes the original model architecture, and the teacher-student framework re-
quires pretraining on both retained and forgotten data, which is intricate and cannot perform well
on other tasks like editing.

17

Published as a conference paper at ICLR 2025

B ALGORITHM FOR CALCULATING PARAMETER CHANGES

The algorithm for calculating the parameter changes A©r, can be found in Algorithm 1. This
algorithm accelerates the computation of parameter changes resulting from unlearning requests and
is applicable in large-scale data scenarios.

Algorithm 1 Calculate Parameter Changes A©r,q

1: Input: target_data, train_data_loader, old_adapter, loss_fun, n, Task, A, Ay
2: Output: Parameter changes AO g

3. if Task = IR then

4: b+ %Z(%y)esmg(x,y)

5: else if Task = RC then

6: b % Z(z,y)GSIM G(z,y) — % Z(m—i—ém,y)ESIM G(x +0z,y)
7. else if Task = IM then

8: b % Z(z,y)ESRC G(z,y) — % Z(m,ywy)esm G(x,y+6y)
9: end if
10: A < initialize(A;nit)

11: optimizer < Adam([A],lr = Ay,)

12: while not converge do

13: data < get batch(train_data_loader)

14: batch_loss + loss_fun(data.x, data.y)

15: batch_grad < V(batch_loss, old_adapter.parameters())

16: hvp + V(batch_grad, old_adapter.parameters(), output = b)

17: optimizer.zero_grad()
18: funv_value < % - (hup, p) — (b, p)
19: funv_value.backward()

20: optimizer.step()
21: end while
22: Return Parameter changes AOr, = A

C EXPERIMENTAL DETAILS

In this section, we briefly introduce the tasks used to validate LLMEraser on the unlearning tasks for
IR, QM, and RC, as discussed in Section 4. These tasks are designed to assess LLMEraser’s effec-
tiveness in handling unlearning scenarios, where specific instances or data are removed or corrected
when certain unlearning request arrives.

* For LLM4Rec unlearning tasks, our implementation is based on two representative PEFT meth-
ods: TallRec (Bao et al., 2023) for item rating, and LLaRA (Liao et al., 2024) for item ranking.
Specifically, we frame the rating tasks (TallRec) as a binary classification problem, predicting
whether or not the user prefers a target item. We employ AUC as the evaluation metric. For the
ranking tasks (LLaRA), which recommend items to users from a candidate set, we utilize HitRa-
tio@1 and ValidRatio to evaluate the relevance of recommended items among all candidates and
the proportion of effective responses separately.

* In terms of MLLMs unlearning tasks, we focus on hard hallucination mining, e.g., understanding
of relation (Wu et al., 2024c) and spurious biases (Ye et al., 2024). We structure the evaluation
as binary or multi-choice classification problems, which aim to select the ground-truth from the
noisy labels. Specifically, for relation understanding, we follow (Wu et al., 2024c) to present
the Recall, F1-Score, Precision, Classification accuracy, Yes ratio as the evaluation metrics. For
spurious biases, we follow (Wu et al., 2024c) to show the classification accuracy for 9 types of
spurious correlations, which is Background (BG), Texture and Noise (TN), Co-occurring Objects
(CO), Relative Size (RS), Colorization (Col.), Orientation (Ori.), Lighting and Shadows (LS),
Perspective and Angle (PA), and Shape (Sha.).

Datasets: Our experimental datasets for LLM4Rec unlearning tasks include three commonly used
recommendation datasets: BookCrossing (Ziegler et al., 2005), MovieLens (Harper & Konstan,

18

Published as a conference paper at ICLR 2025

2016), and LastFM (Cantador et al., 2011). We follow the data preprocessing and dataset partitioning
as described in (Bao et al., 2023) and (Liao et al., 2024). For MLLMs unlearning tasks, we utilize
MMSpuBench (Ye et al., 2024), and R-Bench (Wu et al., 2024c) with the representative masked
instances for evaluation, partitioning the data is into training (60%), validation (20%), and testing
(20%) set.

Baselines: We carefully select the following methods for comparison. Original: The original model
without unlearning modifications. Retrain: It retrains the adapters using the dataset after correc-
tion or removal. SISA (Sekhari et al., 2021): It divides the training data into disjoint shards and
subsequently retrains sub-models (adapters) associated with the shards containing unlearning data.
RecEraser (Chen et al., 2022): An enhancement of SISA, refining the aggregation strategy and
taking into account collaborative signals during data partitioning. Gradient Ascent: It finetunes
adapters using the reverse gradients of the deleted data. E2URec (Wang et al., 2024): An approach
to implement instance removal based on KL divergence within a teacher-student framework.

D ESTIMATION ERRORS ANALYSIS OF LLMERASER

The approximation errors in LLMEraser consist of two primary components: first, the errors in-
troduced by the Taylor expansion approximation in the derivation of the influence function, where
high-order terms are neglected; and second, the errors arising from the new algorithm proposed in
Section 3.3 for solving the inverse Hessian-vector-product. We will conduct the error analysis in
two parts accordingly.

D.1 ERRORS ANALYSIS FOR TAYLOR EXPANSION APPROXIMATION

Without loss of generality, we consider approximation error in Equation 6. In other words, we will
analyze the error ||A©(e) + eH(;V@E((x, ¥); 0)].

The derivation below follows from (Zhang et al., 2022), where we assume that Hg is invertiable.
As we discussed in our paper, this can be guaranteed if the second-order sufficient condition holds

at ©.

Since @new(e) is an optimal solution to the perturbed loss function defined in Equation 5, we have
VoR(Z;Ohew(€) + eVo L((x,Y); Onew(€)) = 0.

Since @new(e) ~ O when € is sufficiently small, it follows from the Taylor expansion that

0= [VoR(Z:0) +eVeoL((r,y);0)] + [Hg + VHL((2,); ©)]AB(e) + o(| AB(e)).

Since © is an optimal solution to the loss function defined in Equation 3, we have VeR(Z; @) =0.
Therefore,

AO(e) = —[Hg + VEL((2,9);:0)] " (Ve L((z,y); ©) + o | AB(e)]))-
Since © is an optimal solution to the loss function defined in Equation 3, Hg is positive semidefinite.
Therefore, the assumption that Hg is invertiable implies that Hg is positive definte. Therefore, we
know that
AO(e) = —HZ (Ve L((z,y);©) + o|e) [AB(e)| + o([|AB(e)]).
Therefore, as € — 0,
1A6(e) + Hg (Vo L((x,y); O)|l = o(le]) + o(| AB(e)) — 0.

In our applications, we know that ¢ = O(1/n), where n is the number of training samples. There-

fore, € should be very small and our approximation to A©(e) by the influence function should be
accurate for applications with a very large training datasets.

19

Published as a conference paper at ICLR 2025

Table 7: Memory usage (measured in megabytes, MB) for different LoRA ranks (8, 16, 32) on the
QM task, using LLaRA as the LLM4Rec model on the LastFM dataset, where 10% of users have
items replaced with noisy interactions.

Method LoRAr=8 LoRAr=16 LoRAr=32
Retrain 33040 MB 33868 MB 34128 MB
SISA 33040 MB 33868 MB 34128 MB

LLMEraser (Ours) 30760 MB 31386 MB 31834 MB

D.2 ERRORS ANALYSIS FOR OUR PROPOSED ALGORITHM

For our proposed Algorithm, the estimation errors analysis is as follows. For a given (approximate)
solution A to the Equation 12, the error is defined as

err(8) := |[VER(Z;©)A — bl = [VE(A)]],

where the function F'(-) is defined in Equation 14. Therefore, the theoretical analysis of err(A) is
equivalent to the error analysis of ||VF'(A,)|| for the sequence {A,};>1 generated by the optimiza-
tion algorithm for solving the problem Equation 9, Equation 10, and Equation 11.

Since we use ADAM as a default optimizer for solving Equation 9, Equation 10, and Equation 11,
we analyze the error |[VF(A,)| for the sequence {A;},;>1 generated by ADAM. It follows from
(Zhang et al., 2022) that ADAM can converge without modifications if the hyper-parameters are
appropriately chosen (say the default choice 5, = 0.9, 52 = 0.999).

Moreover, under reasonable assumptions (see (Zhang et al., 2022) for more details), it holds that
min_E[VF(A)]> = O(log T/VT) = O(1/VT).

Since for sufficiently large 7', log T < T for any ¢ > 0, we know we can achieve
min E|VF(Ay)]l2 <€
km <t<T

for small € > 0 in 6(6_2) ~ O(e?) iterations. This proof also ensures the convergence of the
algorithm proposed in Section 3.3.

E DISCUSSION ABOUT THE EFFICIENCY OF LLMERASER

Our proposed algorithm in Section 3.3 for computing the parameter changes not only accelerates
the calculation of parameter changes but also significantly reduces GPU memory consumption. As
highlighted in our paper, while Conjugate Gradients (CG) is an effective method for computing
parameter changes, it requires full-batch computation (Agarwal et al., 2016), which is infeasible
for LLMs. Our new algorithm overcomes this limitation, making it practical to compute adapter’s
parameter changes in the context of LLMs.

Specifically, LLMEraser formulates the parameter updates as an inverse Hessian-vector-product
(Equation 9, Equation 10, and Equation 11). Importantly, although the inverse Hessian appears
in the formulation, it does not require explicit computation or inversion of the Hessian matrix. Di-
rectly calculating the inverse Hessian-vector-product has a time complexity of O(p®) and a space
complexity of O(p?), as the Hessian matrix needs to be stored—making it highly memory-intensive.

Our method transforms the computation of the inverse Hessian-vector-product into the problem of
solving for the Hessian-vector-product, enabling efficient resolution through mini-batch algorithms.
The Hessian-vector-product, if computed directly via the full Hessian matrix multiplication, would
have a time and space complexity of O(p?). However, using HVP (Hessian-free methods), we avoid
the explicit computation and storage of the Hessian matrix, reducing both time and space complex-
ity to O(p) (Pearlmutter, 1994). By further leveraging mini-batch optimization for Equation 12,
LLMEraser achieves a space complexity of O(p), ensuring its scalability.

The results for the LastFM dataset using the LLaRA backbone with LoRA ranks of 8, 16, and 32
are shown in the Table 8.

20

Published as a conference paper at ICLR 2025

Table 8: Experimental results on the QM task for different LoRA ranks (8, 16, 32), using LLaRA
as the LLM4Rec model on the LastFM dataset, where 10% of users have items replaced with noisy
interactions. “Corrupted” refers to the model trained with the noisy data.

Method LoRAr=38 LoRAr=16 LoRAr=32
HitRatio@1 ValidRatio HitRatio@1 ValidRatio HitRatio@1 ValidRatio
Retrain 0.4508 1.0000 0.4417 0.9836 0.4215 0.9918

Corrupted 0.4344 0.9918 0.4098 1.0000 0.4016 1.0000
LLMEraser 0.4426 1.0000 0.4344 1.0000 0.4180 1.0000

Table 9: Execution time (measured in seconds) for different LoRA ranks (8, 16, 32) on the QM
task, using LLaRA as the LLM4Rec model on the LastFM dataset, where 10% of users have items
replaced with noisy interactions.

Method LoRAr=8 LoRAr=16 LoRAr=32

Retrain 1.68 x 10* 1.69 x 10* 1.69 x 104
LLMEraser (Ours) 1.50 x 103 1.53 x 103 1.56 x 103

We can observe that LLMEraser effectively reduces the negative impact of noisy data and brings a
significant utility gain. The HitRatio@1 improves by an average of 4.9%, and the performance is
comparable to that of Retrain. This demonstrates that LLMEraser can effectively forget and correct
the adverse effects caused by noisy data.

Regarding GPU memory usage, we measure the GPU utilization of the LLaRA backbone with LoRA
rank sets to 8, 16, and 32. The statistical information and the experimental results (with memory
usage measured in megabytes (MB)) are shown in Table 7.

The GPU utilization of SISA is identical to that of Retrain because SISA (Kwak et al., 2017) ef-
fectively requires retraining all parameters (We report the memory usage required to train a single
shard). Similarly, fine-tuning-based methods such as gradient descent also necessitates updating all
parameters. The backbone of the LLM we used is LLaMA2-7B (Touvron et al., 2023b).

The runtime results for LORA with ranks 8, 16, and 32 on the LastFM dataset are shown in Table 9.
The evaluation is measured in seconds.

In summary, the time and space complexity of LLMEraser are both O(p), where p represents the
number of parameters. This indicates that LLMEraser is highly efficient in terms of both time and
space, as its performance scales linearly with the number of parameters. This efficiency makes
LLMEraser a suitable choice for real-world applications where computational resources and time
are critical considerations.

F RELATED WORK

F.1 LARGE LANGUAGE MODELS

Recent advancements in natural language processing (NLP) (Nam et al., 2024; Jin et al., 2024) have
been significantly driven by the development of pretrained language models and Large Language
Models. The introduction of models like BERT (Devlin et al., 2019) and GPT-2 (Radford et al.,
2019) marked a pivotal shift in leveraging large-scale unsupervised pretraining, enabling superior
performance across various NLP tasks through fine-tuning. The scaling of language models led to
the emergence of LLMs such as GPT-3 (Brown et al., 2020) and PaLM (Chowdhery et al., 2023),
which have pushed the boundaries of language understanding and generation. These models, with
billions of parameters, are capable of performing complex reasoning and handling diverse tasks with
minimal instruction.

Recent research has explored parameter-efficient fine-tuning techniques, which adapt large mod-
els to specific applications without requiring extensive computational resources. Techniques like
Adapter modules (Houlsby et al., 2019) and Low-Rank Adaptation (LoRA) (Hu et al., 2022) have
gained popularity for their efficiency and effectiveness in maintaining performance while reducing

21

Published as a conference paper at ICLR 2025

the number of trainable parameters. Furthermore, instruction tuning (Liu et al., 2023a; Tang et al.,
2024) using domain-specific data has emerged as a key strategy to enhance model performance in
specialized contexts. Works by Ouyang et al. (2022) and Dodge et al. (2020) illustrate how tai-
loring models to specific tasks through targeted instruction can significantly improve their utility,
particularly in complex domains, demonstrating the importance of context and relevance in model
training.

LLMs have found extensive applications in various downstream tasks (Fang et al., 2024b; Hu et al.,
2024a; Wu et al., 2024b), demonstrating their versatility across domains such as natural language
processing, information retrieval, and knowledge graph augmentation (Zhang et al., 2024a; Xu et al.,
2024b; Fang et al., 2024a; Sheng et al., 2024). For instance, LLMs are employed to enhance the
accuracy of query- based systems by leveragmg their ability to understand and generate contextually
relevant responses, improving user experience in search applications (Liu et al., 2024b; Shang &
Huang, 2024). Additionally, they are utilized in graph analytics, enabling complex reasoning tasks
and facilitating the extraction of insights from structured data (Chen et al., 2023; Xu et al., 2024a).
The adaptability of LLMs through prompt engineering further supports their deployment in specific
use cases, allowing for tailored outputs that meet diverse requirements (Arawjo et al., 2024; Cain,
2024).

In a similar vein, LLMs are increasingly being integrated into recommendation systems, building
on their capabilities in natural language processing and understanding user preferences. Traditional
recommendation systems often rely on collaborative filtering (Misztal-Radecka & Indurkhya, 2020;
Wau et al., 2024a), content-based approaches (Pazzani & Billsus, 2007; Wu et al., 2022), or hybrid
models (Burke, 2002). Recent advances, including Reinforced Prompt Personalization (Mao et al.,
2024; Xin et al., 2022), and the incorporation of LLMs into recommendation systems via tool learn-
ing (Zhao et al., 2024; Dehbozorgi et al., 2024) or fine-tuning with recommendation-specific data
(Kong et al., 2024; Chen et al., 2024), have significantly improved personalization. These methods
enable LLMs to better capture user preferences and context (Lyu et al., 2024; Hu et al., 2024b),
ultimately enhancing the accuracy and relevance of recommendations.

F.2 LARGE LANGUAGE MODELS UNLEARNING

The concept of unlearning in Large Language Models has garnered considerable attention as con-
cerns over data privacy and model integrity have intensified. In-context unlearning, proposed by
Pawelczyk et al. (2023), allows the selective removal of data points by supplying flipped labels
during inference, effectively maintaining performance while unlearning specific information. Ad-
ditionally, Quark by Lu et al. (2022) employs a reinforcement learning framework to control and
reduce undesirable behaviors, enhancing text generation without extensive retraining.

Chen & Yang (2023) introduce a lightweight unlearning method that integrates unlearning layers
into transformer architectures, facilitating efficient data removal. Knowledge Unlearning by Jang
et al. (2023) demonstrates that targeted gradient ascent can effectively forget sensitive informa-
tion, surpassing traditional methods in performance retention. The technique proposed by Eldan &
Russinovich (2023) facilitates the removal of specific facts related to the Harry Potter series while
preserving the model’s overall performance.

Other approaches, such as the Partitioned Gradient Update (PGU) method by Yu et al. (2023), aim to
reduce social biases effectively. Collectively, these studies underline the significance of unlearning
in LLMs, paving the way for safer, more responsible Al applications.

G MORE EXAMPLES OF VARIOUS UNLEARNING TASKS

22

Published as a conference paper at ICLR 2025

Instance Removal Case Study

QUETY znswering “Yes or “No'-

Response Ne-

Query Modification Case Study

This user has watched: The Ric ife [emb], Air
Force One [emb], Murder at 1600 [emb], Absolute
Power in the previous [emb]. Please predict the next
movie this user will watch. Choose the answer from the

Query following 10 movie titles: Face/Off [emb], Primal Fear
[emb], Ransom [emb], Men in Black [emb], Twelve
Monkeys [emb], Lone Star [emb], Mr. Holland‘s Opus
[emb], Jackie Chan’s First Strike [emb], Waiting for
Guffman [emb], The Long Kiss Goodnight [emb].
Answer:

Response Face/Off

After Query Modification

This user has watched: Fhe-Rich-Man's-\Wifefembl-Air
Force One [emb], Murder at 1600 [emb], Absolute
Power in the previous [emb]. Please predict the next
movie this user will watch. Choose the answer from the

Query following 10 movie titles: Face/Off [emb], Primal Fear
[emb], Ransom [emb], Men in Black [emb], Twelve
Monkeys [emb], Lone Star [emb], Mr. Holland‘s Opus
[emb], Jackie Chan’s First Strike [emb], Waiting for
Guffman [emb], The Long Kiss Goodnight [emb].
Answer:

Figure 4: Instance Removal Case Study & Query Modification Case Study.

23

Published as a conference paper at ICLR 2025

Response Correction Case Study

Query Is the elephant in red mask standing next to a tree in
green mask?

Response Yes

After Response Correction

Response No

Response Correction Case Study

You are a helpful assistant that can answer questions for an
image. I will provide you 4 options.\nResponse

Query Format\nChoice: A single character from A, B, C, D.\nWhich
feature best indicates the identity of the object that has a floral
pattern and is placed on a chair?\nChoices:A. The objects soft
texture\nB. The indoor setting\nC. The wooden chair\nD. The
background clutter .

Response D

After Response Correction

Response A

Figure 5: Response Correction Case Study.

24

	Introduction
	Preliminary
	Instruction Tuning
	Parameter-efficient Fine-tuning
	Influence Function

	Method
	Taxonomy of LLM Unlearning Tasks
	LLMEraser
	A New Algorithm for Computing Parameter Changes
	The Workflow of LLMEraser

	Experiment
	Experimental Setups
	Results Analysis for Various Unlearning Tasks (RQ1)
	Results Analysis on Instance Removal
	Results Analysis on Query Modification & Response Correction

	Results Analysis for Different Unlearning Ratios (RQ2)
	Results Analysis for Unlearning Efficiency (RQ3)

	Limitations
	Conclusion And Future Work
	Overview of Existing LLM Unlearning Methods
	Algorithm for calculating parameter changes
	Experimental details
	Estimation Errors Analysis of LLMEraser
	Errors Analysis for Taylor Expansion Approximation
	Errors analysis for our proposed algorithm

	Discussion About the Efficiency of LLMEraser
	Related Work
	Large Language Models
	Large Language Models Unlearning

	More examples of various unlearning tasks

