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Abstract
Prompt design is a critical factor in the e!ectiveness of Large Lan-
guage Models (LLMs), yet remains largely heuristic, manual, and
di"cult to scale. This paper presents the #rst comprehensive evalu-
ation of Automatic Prompt Optimization (APO) methods for real-
world, high-stakes multiclass classi#cation in a commercial setting,
addressing a critical gap in the existing literature where most of
the APO frameworks have been validated only on benchmark clas-
si#cation tasks of limited complexity.

We introduce APE-OPRO, a novel hybrid framework that com-
bines the complementary strengths of APE and OPRO, achieving
notably better cost-e"ciency, around 18% improvement over OPRO,
without sacri#cing performance. We benchmark APE-OPRO along-
side both gradient-free (APE, OPRO) and gradient-based (ProTeGi)
methods on a dataset of 2,500 labeled products.

Our results highlight key trade-o!s: ProTeGi o!ers the strongest
absolute performance at lower API cost but higher computational
time as noted in [6], while APE-OPRO strikes a compelling balance
between performance, API e"ciency, and scalability. We further
conduct ablation studies on depth and breadth hyperparameters,
and reveal notable sensitivity to label formatting, indicating implicit
sensitivity in LLM behavior. These #ndings provide actionable
insights for implementing APO in commercial applications and
establish a foundation for future research in multi-label, vision, and
multimodal prompt optimization scenarios.
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Figure 1: Comparison of evaluated methods based on Mean
Test Weighted F1 and Mean Cost per destination. Results
are averaged over !ve runs per destination, spanning 2,500
products across 10 destinations and each run involves an
optimization process with 10 iterations and 10 prompts per
iteration using GPT-4.1 (optimizer) and GPT-4o-mini (scorer).
See Section 3 for details on cost computation.

1 Introduction
Large Language Models (LLMs) have revolutionized natural lan-
guage processing across tasks such as summarization, question
answering, and classi#cation. However, when used in a prompt-
based setting, their real-world performance is highly sensitive to
the phrasing and structure of input prompts. Designing e!ective
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prompts is often a manual, heuristic-driven process that lacks re-
producibility and scalability. Zero-shot prompting, while attractive
for its simplicity, frequently falls short of production-grade per-
formance without prompt optimization. To address the challenge
of e!ective prompt design, recent studies have introduced auto-
matic prompt optimization (APO) techniques that iteratively re#ne
prompts using model feedback or search strategies. Although these
approaches have shown promising results, they have primarily
been evaluated on tasks such as binary classi#cation or short-form
output, often using benchmark datasets with limited complexity.
To the best of our knowledge, this work represents the #rst com-
prehensive evaluation of APO methods in a complex, real-world
single-label multiclass classi#cation setting.

Building on this foundation, our study presents a systematic
investigation of prompt optimization strategies for a commercially
impactful classi#cation task at Viator (a global platform that aggre-
gates and sells curated travel experiences). We evaluate a range of
APO methods and propose a novel hybrid approach APE-OPRO,
that integrates the strengths of APE’s exploration with OPRO’s
metaprompt-based approach, and have performed a detailed cost-
performance analysis on a curated dataset of 2,500 manually labeled
products in the top 10 globally diverse destinations. The techniques
explored in this work fall into two main approaches:
• Gradient-Free Methods have gained signi#cant attention in
recent literature, with several promising approaches such as Dual-
Phase Accelerated Prompt Optimization [12], GPO [7], and PE2 [13].
In this work, we focus on two widely adopted gradient-free meth-
ods—APE [17] and OPRO [11]. These serve as strong baselines and
exemplify contrasting strategies for prompt optimization in the
absence of gradient information.
• Gradient-Based Methods have also attracted substantial in-
terest, with approaches such as ProTeGi [6], TextGrad [14], and
GREATER [2] advancing di!erentiable prompt optimization. In this
study, we speci#cally focus on ProTeGi [6], which o!ers a robust
and scalable gradient-based framework that aligns well with our
experimental design and evaluation objectives.

In addition to gradient-based and gradient-free strategies, there
exists a third category of optimization methods inspired by evo-
lutionary algorithms. Evolutionary methods explore the prompt
search space using biologically inspired mechanisms such as mu-
tation, selection, and recombination. Notable examples include
EvoPrompt [8], PromptBreeder [3] and SPRIG [16]. As noted in the
OPRO paper [11], EvoPrompt’s optimization trajectory tends to
be less stable compared to OPRO, primarily due to its reliance on
limited prompt history and the absence of task exemplars during
re#nement. Consequently, we do not include these methods in our
experimental evaluation.

Beyond these methods, there also exist alternative optimization
strategies that do not #t neatly into the gradient-based, gradient-
free, or evolutionary frameworks. For example, PromptAgent [9]
employs Monte Carlo Tree Search to explore and select optimal
prompt sequences. CRISPO [4] and SCULPT [5] rely on iterative
re#nement guided by model generated critiques and suggestions.
PREFER [15] adopts an ensemble based feedback-re$ect-re#ne loop
to enhance prompt quality. While promising, these strategies are

considered complementary and are not included in our current
evaluation.

1.1 Contributions
Our work makes the following key contributions:

• PushingBeyondBinary: Real-World Evaluation ofAPO
in Multiclass Classi!cation: We introduce a challenging
real-world task of single-label, multiclass classi#cation us-
ing our proprietary dataset of 2,500 high-revenue products
across ten globally diverse destinations. This departs from
the binary classi#cation focus prevalent in most prior work,
directly addressing the need for such evaluation highlighted
as one of the limitations in [6].

• APE-OPRO: A hybrid APO framework: We propose APE-
OPRO, a novel hybrid approach that combines APE [17]
and OPRO [11]. APE-OPRO matches OPRO’s performance
while signi#cantly reducing API costs by ↑18% as shown in
#gure 1.

• Cost-Performance Trade-o"s in Prompt Optimization:
We perform a comprehensive cost-sensitive analysis of di-
verse APO approaches including gradient-based (ProTeGi)
and gradient-free (APE, OPRO) and highlight their trade-
o!s between weighted F1 performance and API cost. No-
tably, ProTeGi delivers strong cost e"ciency despite requir-
ing longer execution time compared to other algorithms.

• Revealing Implicit LLM sensitivity: We uncover a pre-
viously unreported sensitivity in APE where prompt per-
formance is sensitive to label formatting, emphasizing how
the stochastic behavior of large language models can impact
automated prompt optimization.

Although this study focuses on single label classi#cation, we
outline a generalizable framework for cost-aware APO evaluation
and identify promising research frontiers inmulti-label, multimodal,
and multilingual prompt optimization.

2 Problem Formulation
To improve product discoverability on Viator, we initially adopted
a multi-label taxonomy in which individual products could be as-
signed multiple, overlapping categories (e.g., a tour labeled both
‘Historical’ and ‘Cultural’). While this approach improved overall
visibility, it also caused popular products to appear in many cat-
egories, which reduced the diversity of products shown to users
and limited exposure for less prominent yet relevant o!erings. To
address this issue, we transitioned to a single label, multiclass taxon-
omy, where each product is assigned one mutually exclusive label
from a prede#ned set. This structure reduces cognitive load and
facilitates easier comparison across distinct categories. In contrast
to traditional hierarchical systems, our $at, destination-speci#c
taxonomy is better aligned with how users naturally explore travel
experiences and contributes to improved product discoverability,
as illustrated in Figure 2.

We frame this task as a single-label classi#cation problem speci#c
to each destination𝐿 , where, for a given product description 𝑀 ↓ D,
the objective is to assign the most appropriate label from a de#ned,
mutually exclusive set C𝐿 = {𝑁𝐿1 , 𝑁𝐿2 , . . . , 𝑁𝐿𝑀𝐿

} .
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Viator List Page
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Use-case: Single Label on product 
card at Viator listing pages to help 

users differentiate products

Viator Product Detail Page

Figure 2: Work#ow for single-label classi!cation of Viator products. Product text from Viator’s product description pages is
passed to a prompt optimization method, which generates a single, destination-speci!c label to improve product di"erentiation
on listing pages.

Rather than relying on conventional supervised training ap-
proaches due to limited ground truth, we frame the problem as a
prompt optimization task using Large Language Models. Our goal
is to #nd an optimal natural language prompt 𝑂↔ ↓ P such that the
LLM, when conditioned on 𝑂↔ and input 𝑀 , produces the correct
label. Formally, we seek:

𝑂↔ = argmax
𝑁↓P

ED↗↑D
[
𝑃 (𝑂,D↗)

]
, (1)

where 𝑃 (𝑂,D↗) is an evaluation metric (e.g., weighted f1) calcu-
lated over a sample D↗ of the training data, assessing the LLM
performance using prompt 𝑂 .

To solve this optimization problem, we investigate several APO
techniques, categorizing them as gradient-free (APE [17], OPRO
[11]) and gradient-based (ProTeGi [6]). We also introduce a novel
hybrid method, APE-OPRO, combining APE’s initialization with
OPRO’s metaprompt guided prompt generation. We unify these
methods within a general prompt optimization framework as de-
scribed in Figure 3.

This framework operates iteratively, starting with an initial
prompt. Each iteration involves an expansion phase, where an
optimizer model generates multiple candidate prompts (de#ning
the width). These candidates are then evaluated using a compu-
tationally less expensive scorer model. The top (𝑄 = 3) performing
prompts, are selected and fed back into the optimizer for the next
iteration. This cycle continues for a #xed number of iterations, de-
#ned as the depth. The framework is $exible enough to encapsulate
the explored APO strategies. This modular design, which separates
prompt generation from evaluation, facilitates experimentation
across di!erent techniques.

Each destination uses a custom template for the prompt where
the candidate label set C𝐿 is inserted into a #xed template A.5.1 to
preserve semantic relevance and improve performance.

Figure 3: Prompt Optimization Framework

3 Cost Computation
We compute the cost of APO for each destination as follows:
• 𝑅 be the total number of iterations,
• 𝑆 be the number of prompts generated per iteration,
• 𝑇

op
in (𝑈) and 𝑇

op
out(𝑈) be the input and output token costs for the op-

timizer model (expansion phase) in iteration 𝑈 (prompt generation),
• 𝑇sc

in (𝑈, 𝑉 ) and 𝑇sc
out(𝑈, 𝑉 ) be the input and output token costs for

scoring (scoring phase) the 𝑉-th prompt in iteration 𝑈 .
Then, the total cost1 for one run is:

Total Cost =
𝑀∑
𝑂=1

[
𝑇
op
in (𝑈) +𝑇

op
out(𝑈) +

𝑃∑
𝑄=1

(
𝑇sc
in (𝑈, 𝑉 ) +𝑇

sc
out(𝑈, 𝑉 )

) ]
(2)

For each method (APE, OPRO, APE-OPRO, and ProTeGi), the
total cost is computed as the cumulative sum of input and output
tokens across all optimization iterations, as de#ned in Equation 2.
As shown in Figure 3, each iteration includes two stages: prompt
expansion (handled by optimizer model) and prompt evaluation

1Reported costs do not account for potential savings from prompt caching or batch
API calls in o%ine scenarios
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Figure 4: Distribution of labels in Top 10 Destinations

(handled by scorer model). Unless otherwise stated, we use GPT-4.1
for optimization and GPT-4o-mini for scoring2.

4 Experiment Setup
4.1 Dataset
Our dataset comprises proprietary Viator travel experiences from
ten diverse global destinations, selected to capture a wide range of
user interests and destination types. These include major European
cities (Rome, Paris, Lisbon, Amsterdam, Edinburgh, Athens), Asia
(Tokyo), North American entertainment centers (Las Vegas), and
island or remote destinations (Maui, Reykjavik), o!ering geographic
and cultural diversity.

Table 1: Overview of the dataset split by destination, includ-
ing train/test size, number of unique labels, and average to-
ken count per product description

Destination Train Test #Labels Avg. #Tokens

Rome 52 390 14 190
Lisbon 75 213 23 180
Amsterdam 50 109 16 185
Paris 73 229 19 189
Las Vegas 59 186 17 179
Athens 58 185 19 198
Tokyo 65 190 18 183
Edinburgh 51 125 15 179
Reykjavik 63 114 17 183
Maui 48 166 12 173

4.1.1 Data Collection and Preprocessing. For each destination,
we extracted product information from Viator’s product description
as illustrated in Figure 2. Each entry in the experience contains an
average of 185 tokens of descriptive text.

4.1.2 Labeling Process. To initiate the taxonomy re#nement,
we manually labeled a subset of top ranked products that cover
80% of the revenue within each destination, focusing on popular
and representative experiences. This revenue-weighted sampling

2https://openai.com/api/pricing/

approach ensures that our taxonomy captures economically signi#-
cant experience categories while maintaining destination-speci#c
relevance. Two domain experts independently labeled each experi-
ence, achieving an interannotator agreement of 87. 3% (Cohen’s 𝑊
= 0.81), with disagreements resolved by discussion.

We developed a $at labeling taxonomy (a non-hierarchical set
of 66 mutually exclusive categories) to classify travel experience
products across 10 major destinations. The number of labels varies
by destination (from 12 for Maui to 23 for Lisbon), re$ecting the di-
versity of available experiences. Some labels are destination-speci#c
(e.g., “Volcano Tours” for Reykjavik), while others are universal
(e.g., “City Highlights”).3

4.1.3 Dataset Characteristics. As illustrated in Figure 4, the
distribution of labels follows a long tail pattern, where a few labels
represent a large proportion of products, typically representing
highly popular and destination-speci#c activities, while many other
labels correspond to niche or very common o!erings. For example,
in Rome, “Sacred &Holy Site” accounts for 26.47% and “Countryside
& Coast” represents 8.82% of all experiences, while in Las Vegas,
“Adventure” represents 19%, “City Highlight” represents 3.24%.

The “Other Experiences” label is included as an additional can-
didate label across all destinations during the training stage to
handle products associated with rare or previously unseen cate-
gories. When the label is assigned, the product is $agged for manual
review by Destination Managers, who periodically assess whether a
new dedicated label should be introduced based on product volume.

4.1.4 Destination Selection Criteria for Evaluation. To pro-
vide a representative evaluation of prompt optimization methods,
we focus on three key destinations: Rome, Amsterdam, and Lis-
bon. These were chosen to capture a range of product diversity
and complexity in the labeling. Rome represents a destination with
well de#ned tourist attractions and relatively clear categorization.
In contrast, Amsterdam o!ers moderate complexity due to its di-
verse range of experience types, while Lisbon presents the most
challenging case with the highest number of distinct labels (23).

4.2 Train-Test Split
To ensure consistency across methods, we adopt a standardized
train-test split strategy.We perform strati#ed sampling by randomly
sampling up to four examples per label within each destination to
construct the training set. The remaining examples are reserved
for evaluation in the test set. Using four examples per label ensures
su"cient representation during training while also minimizing the
risk of labels appearing only in the training set and not in the test set,
leading to a fairer evaluation. All methods are trained exclusively
on the training set and the test set is strictly held out and used only
for #nal evaluation. The number of training and test instances after
the split is summarized in Table 1.

4.3 Prompt Optimization Con!guration
All methods are executed under a uniform con#guration of hyperpa-
rameters unless otherwise stated. For APE, OPRO, and APE-OPRO,

3Due to proprietary constraints, the dataset is not publicly released but can be simulated
using category-rich classi#cation tasks.
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we #x the optimization depth (number of iterations) to 10, and the
breadth (number of prompts generated per iteration) to 10.

For ProTeGi, we similarly set the search-depth to 10, aligning
it with the other methods for comparability. The max-expansion-
factor, which controls the number of prompt candidates passed to
the selection stage in each iteration, is also set to 10. This parameter
plays a role analogous to the breadth in the other methods. All
remaining hyperparameters for ProTeGi are set as described in
Section 3 (Setup) of the original paper, except for the subset D𝑅𝑂𝑆𝑂 ,
which we set to half of the training data, i.e., D𝑇𝑈𝑉𝑂𝑆/2.

Prompt selection at each iteration is based on macro F1 score,
which encourages generalizable prompts by evaluating perfor-
mance uniformly across all classes. We do not incorporate any
early stopping criteria in our experiments. Instead, each algorithm
is allowed to run for a #xed maximum number of iterations, ensur-
ing a consistent evaluation framework across all methods.

4.4 Evaluation Metric
For #nal performance evaluation, we report the weighted F1 score
due to the high class imbalance present in our multiclass classi#ca-
tion task. While macro F1 o!ers equal weighting across classes, it
is highly sensitive to errors in rare labels, where a single misclassi-
#cation can cause the F1 score for that class to drop to zero. This
can disproportionately skew the overall result.

In contrast, weighted F1 accounts for class frequency, providing
a more robust and representative measure of model performance
in practical scenarios—particularly where dominant classes are of
primary interest. A detailed de#nition of this metric is provided in
Appendix A.2.

4.5 Algorithms
4.5.1 CoT[10]. This serves as the baseline Chain-of-Thought (CoT)
prompt, in which the phrase - Think step by step before answering
is appended to the base instruction. We include this standard CoT
formulation to establish a performance baseline, enabling a com-
parison of the cost-performance trade-o!s associated with more
advanced prompting strategies.

4.5.2 APE[17]. Among various prompt optimization strategies,
the APE framework is notable for its conceptual simplicity and
minimal explicit feedback. We adapt APE following the framework
in #gure 3 for our use case as described in Algorithm 1.

4.5.3 OPRO[11]. We adapt the original OPRO framework to bet-
ter suit our task of iterative prompt re#nement for label de#nition
in prompt based classi#cation. Speci#cally, we make two key modi-
#cations: (1) we exclude exemplars from the metaprompt, as our
generated prompts are signi#cantly longer (↑1300) tokens on av-
erage) and more descriptive than standard OPRO setups; and (2)
we restrict the metaprompt to the top 3 performing prompts with
their scores, rather than the original set of 20, to maintain clarity
and reduce prompt length. The meta-prompt template is provided
in Section A.5.3.

4.5.4 APE-OPRO. In this method, we integrate the methodolo-
gies of APE and OPRO, to improve the prompt optimization for our
speci#c use case. Since OPRO does not incorporate any prompt and
scores in its initial iteration, we use APE’s initialization strategy

Algorithm 1 APE-style Prompt Optimization Framework
1: Input: Initial prompt 𝑂0, training data D𝑇𝑈𝑉𝑂𝑆 , #iterations 𝑋 ,

#prompts 𝑌 = 10
2: Initialize 𝑍0 = {𝑂0}, 𝑈 = 0
3: while 𝑈 < 𝑋 do
4: 𝑈 ↘ 𝑈 + 1; 𝑍𝑂 = ≃
5: for each prompt 𝑂 ↓ 𝑍𝑂⇐1 do
6: Generate 𝑌/|𝑍𝑂⇐1 | semantically similar prompts using

optimizer 𝐿 Section A.5.2
7: Add generated prompts to 𝑍𝑂
8: Compute macro F1 for each prompt in 𝑍𝑂 (using scorer) on

D𝑇𝑈𝑉𝑂𝑆
9: Select top 3 performing prompts→ 𝑍𝑂
10: Output: Best prompt (based on macro F1) 𝑂𝑊 over all iterations

by generating semantically similar variants of the initial system
prompt A.5.1. This step mirrors the Iterative Monte Carlo Search
approach in APE [17]. We then evaluate these candidate prompts on
a training dataset and select the top 3 prompts based on macro F1.
These high-performing prompts, along with their evaluation scores,
are embedded into a metaprompt A.5.3, which is used to guide
the subsequent round of prompt generation. This iterative process
is repeated for 10 iterations (including APE’s initial iteration) to
progressively re#ne and improve prompt quality.

4.5.5 ProTeGi[6]. ProTeGi (Prompt Tuning via Gradient-Inspired
Optimization) treats prompt engineering as an iterative process
guided by performance feedback,mimicking gradient descent through
natural language updates. As shown in #gure 3, we adapt ProTeGi
to suit our speci#c task as described in Algorithm 2.

Algorithm 2 ProTeGi Prompt Optimization Framework
1: Input: Initial system prompt 𝑂0, training dataset D𝑇𝑈𝑉𝑂𝑆 , #iter-

ations (search-depth) 𝑋 , #prompts (breadth) 𝑎 = 10
2: Initialize 𝑍0 = {𝑂0}, 𝑈 = 0
3: while 𝑈 < 𝑋 do
4: 𝑈 ↘ 𝑈 + 1; 𝑍𝑂 ↘ ≃; max_exp_factor ↘ 𝑎/|𝑍𝑂⇐1 |
5: for each prompt 𝑂𝑂⇐1𝑄 ↓ 𝑍𝑂⇐1 do
6: Evaluate 𝑂𝑂⇐1𝑄 on D𝑇𝑈𝑉𝑂𝑆 , and identify failure cases
7: Generate feedback (using optimizer) 𝐿 Section A.5.4
8: Use LLM (optimizer) to generate prompts incorporating

feedback→ 𝑍𝑂 𝑄 𝐿 Section A.5.5
9: Use MC-based sampling to generate 2 semantically sim-

ilar prompts→ 𝑍𝑅𝑋
𝑂 𝑄 𝐿 Section A.5.6

10: 𝑍𝑂 𝑄 ↘ 𝑍𝑂 𝑄 ⇒ 𝑍𝑅𝑋
𝑂 𝑄 ;

11: if |𝑍𝑂 𝑄 |> max_exp_factor then
12: 𝑍𝑂 𝑄 ↘ 𝑏𝑐𝑑𝐿𝑒𝑓.𝑔𝑐𝑓𝑂𝑖(𝑍𝑂 𝑄 ,max_exp_factor)
13: 𝑍𝑂 ↘ 𝑍𝑂 ⇒ 𝑍𝑂 𝑄

14: Compute macro F1 for each prompt in 𝑍𝑂 (using scorer) as
per Successive Halving [1] with D𝑅𝑂𝑆𝑂 = D𝑇𝑈𝑉𝑂𝑆/2

15: 𝑍𝑂 ↘ top 3 prompts based on macro F1
16: Output: Best prompt 𝑂𝑊 over all iterations based on macro F1

Exemplar selection is a unique challenge, and we intentionally
refrained from incorporating examples in the prompt templates
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Figure 5: Total cost comparison between APE-OPRO and
OPRO across 10 destinations. Each bar re#ects the aggre-
gated cost over 10 optimization iterations with 10 candidate
prompts per iteration

of the methods evaluated. Consequently, we exclude in-context
learning (ICL) methods from our comparison to ensure fairness and
plan to explore them in future work.

5 Results
Allmethods beginwith the same initial system prompt template A.5.1,
which does not include label de#nitions. We observe that the #nal
prompts for all methods except APE contain label de#nitions, which
naturally emerge through the iterative optimization process. The
#nal prompts selected for the Lisbon destination are available in
Section A.6. For each method, the prompt with the highest macro
F1 across 10 iterations is selected for test set evaluation.

5.1 Cost vs. Performance Trade-o"
The cost–performance trade-o! across #ve prompting methods, in-
cluding CoT, evaluated over the top ten destinations is summarized
in Figure 1. The following key insights emerge from the analysis:

(1) Cost is not linearly correlated with performance—higher cost
does not always guarantee better results.
(2) ProTeGi achieves the highest overall performance while re-
maining more cost-e!ective than both OPRO and APE-OPRO,
although it incurs higher execution time as noted in [6].
(3) APE-OPRO matches OPRO’s performance with signi#cantly
lower cost, demonstrating the value of combining prompt initial-
ization and iterative re#nement.

A comprehensive performance comparison of all methods across
10 destinations is provided in Appendix A.1.

5.2 APE-OPRO vs OPRO
This section analyzes why APE-OPRO o!ers better cost-e"ciency
while maintaining similar performance compared to OPRO. As
shown in Figure 5, OPRO consistently incurs higher costs across
all destinations, with Amsterdam showing the most signi#cant
di!erence, nearly twice the cost of APE-OPRO. On average, OPRO
incurs 18% higher costs under our standard run con#guration.
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Figure 6: Distribution of token count for the best prompt
saved in each optimization iteration for APE-OPRO and
OPRO in Amsterdam

This disparity in cost stems from their initialization strategies.
APE-OPRO begins with APE generated prompts, which are seman-
tically similar variants of the initial system prompt A.5.1. These
prompts are scored using macro F1, and the top 3 are fed into the
metaprompt to produce structured prompts with label de#nitions,
continuing this cycle until a #xed number of iterations. In contrast,
OPRO starts with the metaprompt directly, without prior prompts
or scores. As a result, it creates long and detailed prompts from the
beginning, which then lead to even longer prompts in later steps.

We illustrate this distinction in Figure 6 using Amsterdam as
a representative case, where the divergence is particularly pro-
nounced and serves as a clear example to contextualize the observed
behavior. APE-OPRO starts with a lower token count in the #rst it-
eration, due to its APE initialization, and increases gradually. OPRO,
by contrast, exhibits a steep early rise in token count, plateauing
around iteration 6. For illustration, we include the best prompts
from both methods at iterations 1 and 4 in Appendix A.4. Iteration
1 highlights initialization di!erences, while iteration 4 shows the
signi#cant di!erence in token counts between two methods.

This di!erence in approach is analogous to gradient descent,
where OPRO attempts a large optimization jump in the #rst iter-
ation, and potentially diverges from a cost-e"cient solution. In
contrast, APE-OPRO follows a more gradual, stepwise re#nement
process starting from a simple prompt and improving it iteratively,
leading to more e"cient prompt evolution at reduced cost, while
achieving similar performance.

5.3 Variance Analysis
Given the inherent stochasticity of LLMs, quantifying the vari-
ance in model performance is crucial for assessing generalizability.
Figure 7 presents the average test weighted F1 scores computed
over #ve independent runs for each method across three distinct
destination datasets. Each bar in the #gure is annotated with the
corresponding standard deviation, and error bars are included to
visualize variability.

Our analysis reveals that model performance exhibits notice-
able variation across destinations, underscoring the in$uence of
dataset-speci#c characteristics on the e"cacy of eachmethod.Meth-
ods such as APE , OPRO , and APE-OPRO consistently exhibit lower
variance across all destinations, suggesting more stable behavior



Prompt Smart, Pay Less: Cost-Aware APO for Real-World Applications Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

±
0.

02
  
  
 

±
0.

02
  
  
 

±
0.

02
  
  
 

±
0.

02
  
  
 

±
0.

04
  
  
 

±
0.

03
  
  
 

±
0.

02
  
  
 

±
0.

02
  
  
 

±
0.

04
  
  
 

±
0.

05
  
  
 

±
0.

04
  
  
 

±
0.

03
  
  
 

Amsterdam Lisbon Rome
0

0.2

0.4

0.6

0.8

APE OPRO
APE-OPRO ProTeGi

Te
st

 W
ei

gh
te

d 
F1

Figure 7: Evaluation ofmethod generalizability across diverse
destination datasets, showing the average weighted F1 score
and standard deviation over !ve independent test trials per
method

under repeated evaluations. The average standard deviation in per-
formance across the three destinations is approximately 0.04 for
ProTeGi , followed by 0.03 for OPRO , 0.026 for APE-OPRO , and 0.02
for APE . We hypothesize that one contributing factor to the slightly
higher variance observed in ProTeGi may be the limited size of
the sampled training dataset used in our implementation, where
D𝑅𝑂𝑆𝑂 = D𝑇𝑈𝑉𝑂𝑆/2, as opposed to the larger dataset sizeD𝑅𝑂𝑆𝑂 = 64
recommended by the original authors [6].

5.4 Convergence Analysis
Convergence analysis evaluates model stability and generalization
as reasoning depth increases, helping determine whether further
depth yields meaningful gains or if performance has plateaued.
We evaluate this by tracking the mean and variance of weighted
F1 scores on both training and test sets across increasing depths,
averaging results over #ve independent runs per method and across
three destinations. Figure 8 shows these trends for ProTeGi, while
convergence plots for other methods appear in Section A.10. Several
notable patterns emerge:
(1) ProTeGi consistently shows strong convergence and general-
ization across all three destinations, with a narrow train-test gap
and performance largely stabilizing by iteration 5–6.
(2) For Amsterdam, CoT performs well even at shallow depths,
leaving limited room for further gains. Most models plateau early.
(3) For Rome, all methods demonstrate continued performance
improvement up to depth 10, suggesting potential for further gains
with increasing depth.
(4) For Lisbon, both ProTeGi and APE-OPRO show rapid gains from
the start and converge by depth 5–6, while OPRO achieves most of
its improvement in the #rst iteration and plateaus by depth 1.
(5) Interestingly, all 4 methods often show lower weighted F1 scores
on the training set than on the test set. This counter-intuitive pat-
tern stems from our sampling strategy, limiting training to at most
four examples per label, thus making training metrics highly sensi-
tive to individual errors. In contrast, the larger test set yields more
stable and representative performance scores.
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Figure 8: Convergence analysis for ProTegi on 3 key destina-
tions

These #ndings collectively highlight the e"ciency and generaliza-
tion strength of ProTegi, while also illustrating destination-speci#c
dynamics in convergence behavior.

5.5 Ablating on Depth
For all methods except CoT, with no principled stopping criterion,
the number of optimization iterations (or depth) is a key hyperpa-
rameter. As such, the optimal depth might vary across methods and
datasets. We evaluated each method at multiple depths to assess
its impact on performance and cost, with ProTeGi’s search-depth
serving as its analogous control.

Figure 9 reports the test set weighted F1 scores for three destina-
tions across di!erent iteration counts. Due to low variance observed
in performance metrics 5.3, we present results from a single run
per con#guration.

As expected, increasing iteration count signi#cantly raises costs.
Moving from 5 to 10 and 15 iterations typically resulted in a 2x and
3x cost increase, respectively. ProTeGi showed a slightly steeper
rise, averaging 2.3–2.6x and 3.3–3.6x (see Appendix, Figure 18).
While scorer output tokens increase linearly with depth, ProTeGi’s
optimizer input/output and scorer input tokens grow super-linearly,
likely due to more detailed feedback generating longer prompts.
However, this increased speci#city did not consistently yield bet-
ter performance. For ProTeGi, test weighted F1 scores sometimes
plateaued or declined with increased iteration depth (from 5 to 10
and 10 to 15), consistent with trends in the original [6] paper. Simi-
lar diminishing returns were observed in other methods, suggesting
that smaller depths may su"ce for e!ective prompt optimization.

5.6 Ablating on Breadth
Another key hyperparameter across all evaluated methods is the
breadth—the number of prompts generated and evaluated per itera-
tion. This controls the size of the candidate pool assessed during
each round to select the top (𝑄 = 3) prompts for the next iteration.
In ProTeGi , this is implemented during the selection phase (suc-
cessive halving), where a #xed number of prompts are forwarded
if the post-expansion pool exceeds the speci#ed breadth.
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Figure 9: Change in Performance for depth or maximum
number of iterations for each method across destinations

5 10 15
0

0.2

0.4

0.6

0.8

5 10 15
0

0.2

0.4

0.6

0.8

5 10 15
0

0.2

0.4

0.6

0.8

APE OPRO APE-OPRO ProTeGi

Breadth Breadth Breadth

Te
st

 W
ei

gh
te

d 
F1

Amsterdam Lisbon Rome

Figure 10: Change in Performance for breadth or maximum
number of prompts in each iteration for each method across
destinations

Figure 10 shows the impact of varying breadth (5, 10, 15) on test
weighted F1 scores across three destinations. As expected, increas-
ing breadth resulted in a roughly 2x and 3x cost increases for most
methods when moving from 5 to 10 and 15 prompts, respectively,
ProTeGi showed a more subdued cost increase (refer Appendix,
Figure 20). This is because breadth in ProTeGi mainly impacts the
scorer model during selection, with prompt generation in the ex-
pansion phase governed by separate, #xed parameters (e.g., number
of feedbacks per error group, gradients per feedback, and prompts
per gradient) that were not varied in this study.

Similar to depth, increasing breadth yields marginal or negative
gains in test weighted F1 scores, indicating diminishing returns.
This suggests that smaller breadth values may su"ce for e!ective
prompt optimization across all methods.

5.7 Sensitivity to Label List Formatting in
Prompt Templates

To evaluate the impact of label formatting on prompt optimization
performance while keeping label order #xed, we investigated how
di!erent styles of presenting label lists such as hyphenation (- La-
bel), numeric pre#xes (1. Label), and alphabetical pre#xes (a. Label)
a!ect model behavior within the initial system prompt A.5.1. The
corresponding prompt templates for these formatting styles are
provided in Appendix A.3. This experiment was conducted across
all four methods and we explicitly stated in the prompt: Treat all
labels as equally likely and independent of their position in the list.
Despite this explicit guidance, we observed that APE was notably
sensitive to changes in label formatting, particularly when labels
were numerically or alphabetically indexed. In contrast, the other
methods remained largely una!ected (see Appendix Section A.3).
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Figure 11: E"ect of Label Formatting Styles such as hyphens
(-), numbers (1., 2., 3., · · ·), alphabets (𝑐.,𝑗 ., 𝑁 ., · · ·) on APE’s Per-
formance

To quantify this e!ect, we ran #ve independent trials of APE on
the three key destinations, reporting the test weighted F1 scores
and their variance in Figure 11.

A likely reason for this sensitivity is that APE generates #nal
prompts without including label de#nitions, relying only on the
label names. In contrast, other methods generate detailed label
de#nitions, which may help reduce the impact of formatting e!ects.

6 Conclusion and Future work
In this work, we addressed a critical gap by providing the #rst
comprehensive evaluation of APO methods for real-world, com-
mercially relevant multiclass classi#cation task. We systematically
benchmarked prominent gradient-free (APE, OPRO) and gradient-
based (ProTeGi) approaches on our proprietary dataset and intro-
duced APE-OPRO, a novel hybrid framework. Our empirical analy-
sis revealed key performance-cost trade-o!s relevant to practical
implementation. While ProTeGi demonstrated superior API cost-
e"ciency and performance, it required longer execution times.
APE-OPRO o!ered a compelling balance by matching OPRO’s
performance, outperforming APE, and signi#cantly reducing cost
compared to OPRO. These #ndings provide valuable insights for
practitioners, allowing them to choose between optimizing for API
cost (using ProTeGi) or balancing speed and performance (using
APE-OPRO), based on their speci#c computational and time limita-
tions. This versatility underscores APO’s e!ectiveness for complex
commercial applications.

Moving forward, our study highlights several promising avenues
for future research in APO. Key directions include developing meth-
ods for more structured and #ne-grained control over prompt up-
dates [7], as current techniques o!er limited granularity. Expanding
the scope of APO is also critical, particularly to address multi label
tasks and to extend optimization techniques to vision and multi-
modal domains, which remain largely underexplored. Furthermore,
investigating the impact of incorporating persona-based prompt-
ing (for example, using destination-speci#c personas) within the
optimization process presents another interesting direction. Finally,
exploring the use of di!erent models as scorers and optimizers may
o!er new insights into performance–cost trade-o!s.
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