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Abstract

Rectangular matrix-vector products (MVPs)
are used extensively throughout machine
learning and are fundamental to neural net-
works such as multi-layer perceptrons. How-
ever, rectangular MVPs are notably missing
not used as normalizing flow transforms. This
paper identifies this methodological gap and
plugs it with a tall and wide MVP change
of variables formula. Our theory builds up
to a scalable algorithm that envelops existing
dimensionality increasing flow methods such
as augmented flows (Huang et al., 2020). We
show that tall MVPs are closely related to the
stochastic inverse of wide MVPs and empiri-
cally demonstrate that they improve density
estimation over existing dimension changing
methods.

1 Introduction

Despite the prominence of rectangular matrix-vector
products (MVPs) in neural network architectures,
rectangular MVPs have yet to be analyzed in the
context of density estimation. MVPs are prevalent
in machine learning because they can learn useful
linear combinations of inputs. Additionally, the input
and output dimensionality can impact on the kind
of representations that are learned. For example, it
may be convenient to map to a higher dimension
in order to perform richer computations (Dupont
et al., 2019; Zhang et al., 2020) or map to a lower
dimension in order to learn low dimensional structure.
However these properties are inherently at odds
with architectures that require invertibility, such as
normalizing flows.

Proceedings of the 24th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2021, San Diego,
California, USA. PMLR: Volume 130. Copyright 2021 by
the author(s).

Normalizing flows (Dinh et al., 2014; Rezende
and Mohamed, 2015; Papamakarios et al., 2019) trans-
form simple probability distributions into complex
ones using bijective functions whose parameters are
trained for maximum likelihood exactly using the
probability change of variables formula. One such
transformation is the square matrix vector product,
x = Az. As long as A is square and has full rank,
there is a one-to-one mapping between x and z, so we
can apply the change of variable formula to compute
the density of x or z. However if A is rectangular,
there is no longer a bijective map between every x and
z because their dimensionalities will differ.

We cannot map across dimensions with deter-
ministic functions in the context of normalizing flows
because there will no longer be a bijective map between
the entire input and output space. To see why this
happens, consider a normalizing flow that uses a tall
MVP to map its low dimensional latent state to a
high dimensional data point. The tall MVP will only
map to a hyperplane in the high dimensional data
space rather than the entire output space. This is
problematic because the model cannot assign a density
to a point it cannot generate, so it will almost surely
not be a valid model for real world datasets that can
lie anywhere in the high dimensional space. By a
similar argument, a flow that uses a wide MVP to map
its high dimensional latent space to a low dimensional
data point will have a subspace of latent vectors that
map to the same data point. This is also an issue
because the change of variable formula expects a single
inverse associated with a data point, but the wide
MVP gives us an infinite number of possible inverses.
As we can see, the direct use of rectangular MVPs is
fundamentally incompatible with normalizing flows.
However, we can alleviate these issues by explicitly
modeling these failure cases.

In this paper we discuss how to incorporate
rectangular matrix vector products into normalizing
flows. Given a ”tall” vector t and ”short” vector s,
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we show that to relate t and s with a matrix vector
product it is necessary to also model a noise random
variable, ε, that is placed in an orthogonal direction
to the MVP in order to bypass the incompatibility
between rectangular MVPs and normalizing flows. In
particular, we examine the equation t = As + U⊥ε
where s, ε ∼ ps(s)pε(ε|s) and U⊥ε is orthogonal
to As for all s, ε. We show that the problems of
representing data with a tall MVP and wide MVP
and closely related and are in fact an instance the
recently proposed SurVAE Flows (Nielsen et al., 2020).
Furthermore, we introduce a novel algorithm called the
RealMVP that affords the use of rectangular MVPs
that scales well to high dimensions. We review related
work in section 2 and review preliminary details of our
approach in section 3. Section 4 introduces our main
theory that establishes a change of variables formula
for rectangular MVPs and connects tall MVPs with
additive orthogonal noise to wide MVPs. In section
5 we slightly modify the methodology of section 4 to
circumvent computational issues and arrive at the
RealMVP. Finally, in section 6 we demonstrate that
our algorithm for rectangular MVPs outperforms the
existing approach for rectangular MVPs.

In summary, our contributions are as follows:

• A theory that relates wide MVPs and tall MVPs
in the context of probabilistic transformations
(Fig.1).

• A scalable algorithm, called the RealMVP, to use
rectangular MVPs for density estimation in exist-
ing machine learning libraries (Fig.2).

2 Related Work

Recent work in normalizing flows has focused on
extending their capabilities to non-bijective functions
(Nielsen et al., 2020), dimension changing (Huang
et al., 2020; Cunningham et al., 2020) and generally
bypassing the topological constraints of bijectivity
(Cornish et al., 2020). Our work lies at the intersection
of these methods.

SurVAE (Nielsen et al., 2020) introduced a framework
to consider surjective functions as probabilistic
transformations. A key insight to their work is that
surjective functions can be stochastically inverted.
This stochastic inverse is constructed so that its sam-
ples can always be deterministically reconstructed to
the same value. The paper considered absolute value,
maximum, sort, rounding, slice and ReLU surjections.
We introduce a new kind of surjective transformation
based on rectangular matrix multiplication - a tall
MVP with orthogonal noise is the stochastic inverse of

of a wide MVP with its pseudo-inverse matrix.

Injective functions can be composed with nor-
malizing flows to build flows whose image is a manifold
in the data space (Gemici et al., 2016; Brehmer and
Cranmer, 2020; Kumar et al., 2020). These flows have
no probability density defined for off-manifold data
but instead have a density defined over their image.
Given a sequence of injective and bijective functions
f1, . . . , fK and base distribution pz(z), the probability
density function of x = f1 ◦ · · · ◦ fK(z) = f1:K(z) is
given by the equation (Gemici et al., 2016)

p(f1:K(z)) = pz(f1:K(z))|df1:K(z)

dx

T
df1:K(z)

dx
|− 1

2 (1)

In contrast to the change of variable formula for
bijective functions, the Jacobian determinant term
does not decompose as the product of Jacobian
determinants for each fk - a computational challenge
noted by (Brehmer and Cranmer, 2020; Kumar et al.,
2020). Our proposed method does not suffer from this
computational challenge and instead maintains a log
likelihood contribution that decomposes for every flow
layer specifically because we consider a model that
is valid over the entire data space. In section 4.1 of
the appendix, we outline an argument for why the
dirac delta term in Eq.12 accounts for the difference
between the two formulations.

The authors of (Cunningham et al., 2020) also
considered tall MVPs with additive noise in a decom-
posable way, however they arrived at their objective
from properties of the Gaussian distribution instead
of a direct change of variables formula. Furthermore,
they considered full rank noise instead of orthogonal
noise which meant that their objective was not closed
form in general.

Augmented flows (Huang et al., 2020) introduced a
method to increase the dimensionality of vectors by
padding data with noise. Our method generalizes their
coupling based encoding transformation. When the
matrix A in the methodology section of our paper is

equal to

ï
I
0

ò
, the RealMVP reduces to vector padding

as presented in augmented flows. After the first
encoding transformation, the rest of the augmented
flows network uses a flow over the augmented data
space. Although our method can be decomposed as
the composition of an augmented flow layer followed
by a square MVP, this composed approach requires
storing the entire square matrix which can become
computationally intractable in high dimensions.
(Dupont et al., 2019) and (Zhang et al., 2020) proposed
a similar method but in the context of neural ODEs
(Chen et al., 2018) and residual flows (Chen et al.,
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2019) and focused on using padding to overcome the
topological limitations of bijectivty.

Continuously indexed normalizing flows (Cor-
nish et al., 2020) show that in order to learn a target
distribution with a different topology than that of
the base distribution, the transformation cannot only
use bijective functions. To do this in practice, the
authors propose using bijective functions that are
indexed with a continuous random variable with
a practical algorithm that resembles that of the
augmented flows paper. Like the continuously indexed
flow, the wide MVP uses an auxiliary variable to
augment a deterministic transformation, however our
method does not use a bijective function but instead a
surjective function.

3 Preliminaries

3.1 Properties involving the image of a tall
matrix

We first review some identities involving the orthonor-
mal basis for the image of a tall matrix and its orthog-
onal complement. An intuitive reference can be found
at (Ratliff, 2014).

Let A ∈ RN×M , N > M be a tall matrix with full rank
1. Its singular value decomposition is written as:

A =
[
U‖ U⊥

] ïS
0

ò
V T

[
U‖ U⊥

]
and V are orthogonal matrices with sizes

RN×N and RM×M respectively. The M columns of U‖
span the image of A while the N −M columns of U⊥
span the orthogonal complement of the image of A.

The pseudo inverse of A is defined as

A+ = (ATA)−1AT (2)

and satisfies A+A = I. The pseudo inverse exists and
is unique for every matrix A with full rank (Penrose,
1955). We can also relate U‖ and U⊥ with A+:

U‖ = A(ATA)
−1
2 , U‖U

T
‖ = AA+

U⊥U
T
⊥ = I −AA+

To keep notation clean later in this document, we will
use A⊥ to denote U⊥U

T
⊥ :

A⊥ := U⊥U
T
⊥ (3)

1We will assume all matrices have full rank unless stated
otherwise.

We further simplify the notation in this paper by
writing wide matrices as the pseudo inverse of a
tall matrix. Specifically, we consider wide matrices
A+ ∈ RM×N ,M < N whose singular value decomposi-
tion is:

A+ = V
[
S−1 0

] ïUT‖
UT⊥

ò
In this setting, U‖ and U⊥ take a different interpreta-
tion - U⊥ has columns that span the nullspace of A+

and U‖ spans its orthogonal complement. This obser-
vation will play a vital role in the probability density
function of wide MVPs.

3.2 Selected properties of the dirac delta
function

The dirac delta function (S.N. Gurbatov, 2011) is used
to develop key steps in our derivations. In this section
we review the properties that are used in this paper.

Consider a random variable z ∼ pz(z), z ∈ RM and
a function f : RM → RN . Then the random variable
x = f(z) has the probability density function (Au and
Tam, 1999):

px(x) =

∫
pz(z)δ(x− f(z))dz (4)

Eq.4 serves as the starting point for our derivations.
Although it is a valid equation, it is not practical be-
cause the integrand takes the values 0 or ∞. We can
go from Eq.4 to a practical formula using the sifting
property of the dirac delta function:∫

f(z)δ(z − a)dz = f(a) (5)

The general strategy we take in our derivations is to
identify integrals of delta functions and make their
form amenable to the sifting property. We can do this
trivially when dim(x) = dim(z) and f is invertible to
get the standard change of variables formula, but is
not as straight forward when dim(x) 6= dim(z). The
following three identities can help us get there:

δ(Px) = δ(x)|P |−1, P ∈ RN×N (6)∫
δ(x− f(z))dx = 1, ∀f(z) (7)

δ(

ï
x1
x2

ò
) = δ(x1)δ(x2) (8)

Eq.6 and Eq.7 are combined with Eq.8 to form key steps
in the derivations for tall and wide MVPs respectively.



RealMVP: A Change of Variables Method For Rectangular Matrix-Vector Products

3.3 Factored Representation

We will refer to the trivial way to represent rectangular
MVPs using a square and vector padding as the ”fac-
tored” method. This method uses the combination of
vector padding followed by a square MVP to simulate
a rectangular MVP.

A
 vs

 M

I
0

 (9)

[
A+

]
vs
[
I 0

]  M−1

 (10)

Although square MVPs are a standard part of normal-
izing flows and vector padding in normalizing flows can
be performed using Augmented Flows (Huang et al.,
2020), we will see in this paper that it can be beneficial
to learn A directly.

4 Rectangular MVPs for Normalizing
Flows

We will start by discussing tall MVPs and their short-
comings. To remedy their issues, we will add noise that
is orthogonal their image, which will naturally lead to
wide MVPs. Full derivations can be found in section 3
of the appendix.

4.1 Tall MVP

The probability density function of a tall matrix vector
product is known (Dyrholm, 2004) but is only useful
in practice when data is guaranteed to lie on its image.

Theorem 1. Let s ∈ RM , t ∈ RN , N > M 2 and
A ∈ RN×M be defined as in section 3. The probability
density function of a tall MVP, t = As, is:

t = As, s ∼ ps(s) (11)

pt(t) = δ(UT⊥ t)ps(A
+t)|ATA|− 1

2 (12)

Eq.12 has two notable components: ps(A
+t)|ATA|− 1

2

and δ(UT⊥ t). The first term, ps(A
+t)|ATA|− 1

2 , is the
standard change of variables formula for a tall matrix
when t is restricted to the image of A (Gemici et al.,
2016). The other term, δ(UT⊥ t), is a dirac delta function
centered at the orthogonal component of t on the image
of A.

2We use the variable names s and t instead of z and x to
avoid confusion about the name of the data variable. We let
t denote a data vector when when we use a tall MVP and
s when we are using a wide MVP to reflect that data will
be the ”tall” or ”short” compared to the latent variable.

Intuitively, the dirac delta term ensures that t lies on
the image of A because it is 0 otherwise. In addition,
it also ensures that pt(t) integrates to 1 over RN . How-
ever, the term cannot be used in practice because it
is equal to ∞ when t ∈ Im(A). We alleviate this issue
by convolving pt(t) with some distribution in order to
apply the sifting property of the dirac delta function
(S.N. Gurbatov, 2011).

4.2 Tall MVP with additive orthogonal noise

We can remove the dirac delta term in Eq.12 by con-
sidering the sum of a tall matrix vector product with
orthogonal noise. There are two parts to this formula-
tion - the noise should be additive because the proba-
bility density of the summed vector is the convolution
of density of each summand, and orthogonal to the
image of A so that the convolution yields a closed form
equation.

Theorem 2. Let s, t and A be defined as before. Con-
sider a random variable ε ∈ RN−M . The vector U⊥ε
will be orthogonal to the image of A. The probability
density function of a tall MVP with additive orthogonal
noise, t = As+ U⊥ε, is:

t = As+ U⊥ε, s ∼ ps(s), ε ∼ pε(ε|s) (13)

pt(t) = ps(A
+t)pε(U

T
⊥ t|A+t)|ATA|− 1

2 (14)

The theorem can be proven in a similar manner to
Thm.1 (see the appendix section 3.2). This result might

seem trivial - if we had started with the vector

ï
s
ε

ò
∼

ps(s)pε(ε|s), we could have computed the density of t =[
U‖ U⊥

] ïSV T 0
0 I

ò ï
s
ε

ò
using the well-known square

MVP change of variable formula. The distinction is
important for two reasons. First, explicitly considering
s and ε has the intuitive explanation that if t represents
noisy data that is generated around a hyperplane, then
the generative model t = As + U⊥ε suitably models
these assumptions. Second, for t and s that are related
as s = A+t, the problem of inferring t from s requires
identifying an ε so that t = As+ U⊥ε. In other words,
the tall MVP with additive orthogonal noise is the
stochastic inverse of the wide MVP.

4.3 Wide MVP

Recall that it is sufficient to represent any wide matrix
as the pseudo inverse of some tall matrix. Consider
s = A+t. The linear map A+ is surjective, so there is
a space of possible t that yields the same value of s.

Theorem 3. Let s, t and A be defined as before. The
probability density function of a wide MVP, s = A+t,
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Method Tall Wide ∆ Log Likelihood Runtime Memory

SVD t = As+ U⊥ε, ε ∼ pε(ε|s)
ï
s
ε

ò
=

ï
A+

UT⊥

ò
t log pε(ε|s)− 1

2
|ATA| O(N3) O(NM)

Factored t = M

ï
s
ε

ò
, ε ∼ pε(ε|s)

ï
s
ε

ò
= M−1t log pε(ε|s)− log |M | O(N)/O(N2) O(N2)

RealMVP
t = As+ γ⊥, γ⊥ = A⊥γ,

γ ∼ N(γ|µ(s),Σ(s))

ï
s
γ⊥

ò
=

ï
A+

A⊥

ò
t logZ(µ(s)− γ⊥|A,Σ(s)) O(M3) O(NM)

Figure 1: Overview of the algorithms presented in this paper. All three approaches define an invertible map
between t and (s, ε/γ⊥) so that it is possible to exactly recover the log-likelihood contribution. The SVD method is
described in section 4.2, the factored in section 3.3 and RealMVP in section 5. The SVD and factored approaches
use ε ∈ RN−M to model the noise orthogonal to As while the scalable method uses γ⊥ ∈ RN . When M << N ,
the RealMVP can run faster and cost less memory than the SVD and factored methods while still relating t and
s through a rectangular MVP and providing a closed form likelihood contribution.

is

s = A+t, t ∼ pt(t) (15)

ps(s) =

∫
pt(As+ U⊥ε)dε|ATA|

1
2 (16)

Proof.

ps(s) =

∫
pt(t)δ(s−A+t)dt

=

∫
pt(t)δ(s−A+t)

∫
δ(ε− UT⊥ t)dε︸ ︷︷ ︸

1

dt (17)

=

∫ ∫
pt(t)δ(

ï
s
ε

ò
−
ï
A+

UT⊥

ò
︸ ︷︷ ︸
R

t)dεdt

=

∫ ∫
pt(t)δ(

[
A U⊥

]︸ ︷︷ ︸
R−1

ï
s
ε

ò
− t) |ATA| 12︸ ︷︷ ︸

|R|−1

dεdt (18)

=

∫
pt(As+ U⊥ε)dε|ATA|

1
2

The critical step in the proof is Eq.17 - it builds a
new dirac delta term that is amenable to the sifting
property of the dirac delta function in Eq.18.

Intuitively, Eq.16 says that the probability density of a
short variable is proportional to the average density of
all the tall vectors that could have generated it. In fact,
this set of tall vectors is equal to {t : t = As+U⊥ε, ∀ε},
which is exactly the image of a tall MVP where s is
fixed.

Another way to understand the role of U⊥ε is
to connect it to the nullspace of A+. For any ε, it is
true that A+U⊥ε = 0. So given an inverse of s (which
we choose to be As), we can construct a different in-
verse by simply adding U⊥ε because s = A+(As+U⊥ε).

This second interpretation directly connects our
method to SurVAE Flows (Nielsen et al., 2020). The
tall MVP has a deterministic inverse, s = A+t, while
the wide MVP has a stochastic inverse, t = As+ U⊥ε,
where ε is drawn from some distribution q(ε|s).
q(ε|s) can be introduced as an importance sampling
distribution to help evaluate a lower bound on log ps(s)
(Jordan et al., 1998):

log ps(s) ≥
∫
q(ε|s) log

pt(As+ U⊥ε)

q(ε|s)
dε|ATA| 12 (19)

5 The RealMVP

The equations presented in the previous section require
the ability to compute and potentially back-propagate
through U⊥ during training. This may be expensive
or not available coding libraries for machine learning
because computing U⊥ involves computing the SVD of
A. Ideally we should have expressions involving only
simple computations with A. We can achieve this by
considering a slightly different kind of orthogonal noise.

Recall that A⊥ := U⊥U
T
⊥ = I − AA+. A⊥ is

not only easy to compute, but matrix multiplication
with A⊥ will project onto a space orthogonal to
the image of A. For these reasons, we replace
the orthogonal noise from Eq.13, U⊥ε with a new
noise variable, A⊥γ where γ ∈ RN is drawn from a
Gaussian with parametrized mean and covariance
N (γ|µ(s),Σ(s)). The resulting structural equation for
t is:

γ ∼ N (γ|µ(s),Σ(s)), s ∼ ps(s)
t = As+A⊥γ︸︷︷︸

γ⊥

, (20)

A major difference between Eq.13 and Eq.20 is the
choice of orthogonal noise. Previously we sampled
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a RealMVP for tall matrix vector products

1: Input t , A, θ

2: s← A+t // Pseudo-inverse

3: µ,Σ← NN(s, θ) // Features distribution

4: γ⊥ ← t−AA+t // Get orthogonal features

5: L← logZ(µ− γ⊥|A,Σ) // Likelihood contr.

6: return s , L

b RealMVP for wide matrix vector products

1: Input s , A, θ

2: µ,Σ← NN(s, θ) // Features distribution

3: γ ∼ N (µ,Σ) // Sample features

4: γ⊥ ← γ −AA+γ // Orthogonalize features

5: t← As+ γ⊥ // Generate output

6: L← − logZ(µ− γ⊥|A,Σ) // Likelihood contr.

7: return t , L

Figure 2: RealMVP algorithm. The similarities between the tall (Fig.2a) and wide (Fig.2b) algorithms are
highlighted by the colors. Each algorithm is based on the structural equation, t = As+ γ⊥ where γ⊥ = A⊥γ and
γ ∼ N(γ|µ(z),Σ(z)) (see section 5 for a full discussion). The likelihood contribution of each algorithm depends
on the orthogonal component and a learned distribution over this orthogonal space. These algorithms correspond
to Eq.22 and Eq.26 respectively.

ε ∈ RN−M from an unconstrained distribution pε(ε|s)
to construct the vector U⊥ε which is orthogonal to the
image of A. Here we draw γ ∈ RN from a constrained
distribution N (γ|µ(s),Σ(s)), where µ(s) and Σ(s) can
be deep neural networks, in order to construct the
vector A⊥γ.

The choice to have γ lie in RN is motivated by
the fact MVPs with A⊥ are significantly easier to
compute than with U⊥, and the choice of having its
prior distribution be a parametrized Gaussian is so
that the math for the marginal densities of t and s
considerably simplify. This simplification is a result of
the following definition:

Definition 4. Let x ∈ RN , z ∈ RM , A ∈ RN×M and
let N (x|µ,Σ) denote the probability density function
of a Gaussian centered at µ with covariance Σ. We
construct the function Z(x|A,Σ) to be equal to the
following:

Z(x|A,Σ) : =

∫
N (x|Az,Σ)dz (21)

=
N (x|0,Σ)

N (h|0, J)
|J |−1

J =ATΣ−1A, h = ATΣ−1x

Refer to appendix section 3.4 for the derivation.

5.1 Tall MVP with additive orthogonal noise

Next, we derive the probability density function for the
RealMVP.

Theorem 5. Let s, t and A be defined as before. If
t = As + A⊥γ, s ∼ ps(s), γ ∼ N (γ|µ(s),Σ(s)),

then the probability density function of t is

pt(t) = ps(A
+t)Z(µ(A+t)−A⊥t|A,Σ(A+t)) (22)

Proof.

pt(t) = ps(A
+t)pUT

⊥γ
(UT⊥ t|A+t)|ATA|

−1
2

= ps(A
+t)

∫
pγ(A⊥t+ U‖r|A+t)dr|ATA|

−1
2

= ps(A
+t)

∫
pγ(A⊥t+As|A+t)ds

= ps(A
+t)

∫
N (µ(A+t)−A⊥t|As,Σ(A+t))ds

= ps(A
+t)Z(µ(A+t)−A⊥t|A,Σ(A+t))

This new pdf does not depend on U⊥ and is still avail-
able in closed form. In practice, we can define ps(s)
using a normalizing flow and (µ(s),Σ(s)) using an un-
constrained neural network. ps(s) will define learn the
distribution on the image of A while N (µ(s),Σ(s)) will
learn the distribution over the orthogonal component
of the image at a given point. The final learning algo-
rithm in Fig.2a breaks a tall vector into a parallel and
an orthogonal component, passes the parallel compo-
nent back through the rest of the normalizing flow, and
evaluates the likelihood of the orthogonal component.

5.2 Wide MVP

The RealMVP can also be used for wide matrix vector
products, however the derivation of the density is a bit
more involved. We begin with two lemmas that are
proved in appendix section 3.6 and 3.7.
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Figure 3: Runtime comparison between the SVD, factored and RealMVP algorithms for increasing dimensions N .
Each plot shows how execution time (milliseconds) varies with the dimensionality of the tall vector (N). We
repeat this experiment over three different short vector dimensionalities (M) and over both the tall and wide
computations. See Fig.1 for an overview of the different algorithms. Each experiment is run on roughly as large
of a problem as possible before our hardware was not able to allocate enough memory to complete the tall and
wide computations. Our experiments were run on one NVIDIA 1080Ti GPU with 11GB of memory. The SVD
and factored algorithms are not able to run in problems where N > 20, 000 while the RealMVP continues to work
even when N = 50, 000.

Lemma 6. Let B =

ï
A+

A⊥

ò
. Then B+ =

ï
A
A⊥

ò
and

|BTB| = |ATA|−1.

Lemma 7. Let B =

ï
A+

A⊥

ò
. Consider the left singular

vectors of B that are orthogonal to the image of B,
U⊥(B). Then there exists an orthogonal matrix, Q,

such that U⊥(B) =

ï
0
U‖

ò
Q.

With these lemmas we begin the derivation of the
scalable wide MVP algorithm. We start by deriving
the change of variables formula for a wide MVP in a
different form than Eq.16.

Lemma 8. Let s, t and A be defined as before. The
probability density function of s = A+t, where t ∼ pt(t)
is

ps(s) =

∫
δ(UT‖ γ⊥)pt(Ax+A⊥γ⊥)dγ⊥|ATA|

1
2 (23)

Proof.

ps(s) =

∫
pt(t)δ(s−A+t)dt

=

∫
pt(t)δ(s−A+t)

∫
δ(γ⊥ −A⊥t)dγ⊥dt

=

∫ ∫
pt(t)δ(

ï
s
γ⊥

ò
−
ï
A+

A⊥

ò
︸ ︷︷ ︸
B

t)dγ⊥dt

=

∫
δ(UT⊥(B)

ï
s
γ⊥

ò
)pt(B

+

ï
s
γ⊥

ò
)dγ⊥|BTB|

−1
2

=

∫
δ(UT‖ γ⊥)pt(As+A⊥γ⊥)dγ⊥|ATA|

1
2

Eq.23 is not outright useful - it is an intractable integral
with an integrand that takes the value 0 of∞. However,
we can introduce a specially constructed importance
sampler, q(γ⊥|s), in order to cancel the delta term. We
prove the following lemma in appendix section 3.9:

Lemma 9. Let γ⊥ = A⊥γ, γ ∼ N(γ|µ,Σ). Then

pγ⊥(γ⊥) = δ(UT‖ γ⊥)Z(µ− γ⊥|A,Σ)|ATA| 12 (24)

Using lemmas 8 and 9, we can easily derive the final
pdf.

Theorem 10. Let s, t and A be defined as before. Also
let q(γ⊥|s) be the pdf of γ⊥ where γ⊥ = A⊥γ, γ ∼
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Circles Swiss roll Grid

Factored 1.32 3.71 2.95
RealMVP 1.31 3.60 2.85

(a) Directly learning a rectangular matrix instead of a large
square matrix like in Eq.9 yields better density estimation
results. The table shows negative log likelihood over the test
set for synthetic 2d datasets (lower is better).

Multiscale type Bits/dimension ↓
Baseline 4.67
Factored 3.88
RealMVP 3.72

(b) We interpret the multiscale architecture (Dinh et al.,
2017) as a pixel-wise tall MVP and find that learning a tall
MVP. The table shows bits per dimension over the test set
of the CIFAR-10 (Krizhevsky) dataset (lower is better).

Figure 4: Density estimation comparison learning rectangular MVPs with our approach (Full) and an existing
method (Factored). See Eq.9 and Eq.10 for the comparison between the full and factored parametrization of
rectangular matrices.

N(γ|µ(s),Σ(s)). Then the probability density function
of s = A+t is

ps(s) =

∫
q(γ⊥|s)

pt(As+ γ⊥)

Z(µ(s)− γ⊥|A,Σ(s))
dγ⊥ (25)

Proof.

ps(s) =

∫
δ(UT‖ γ⊥)pt(Ax+A⊥γ⊥)dγ⊥|ATA|

1
2

=

∫
q(γ⊥|s)
q(γ⊥|s)

δ(UT‖ γ⊥)pt(Ax+A⊥γ⊥)dγ⊥|ATA|
1
2

=

∫
q(γ⊥|s)

pt(As+A⊥γ⊥)

Z(µ(s)− γ⊥|A,Σ(s))
dγ⊥

=

∫
q(γ⊥|s)

pt(As+ γ⊥)

Z(µ(s)− γ⊥|A,Σ(s))
dγ⊥

The log of Eq.25 can be optimized using the ELBO
decomposition (Jordan et al., 1998) of log ps(s).

Corollary 11. The ELBO of log ps(s) is

log ps(s) ≥ Eq(γ⊥|s)[log
pt(As+ γ⊥)

Z(µ(s)− γ⊥|A,Σ(s))
] (26)

We can train using Eq.26. The algorithm, shown in
Fig.2b, constructs a tall vector by projecting the input
short vector onto the image of A and by sampling its
orthogonal component using the importance sampler.

6 Experiments

The goal of our experiments is to demonstrate that
learning the full parametrization of a rectangular ma-
trix outperforms the factored parametrization. We
show this for wide MVPs (Eq.10) on 2D toy datasets
and tall MVPs on the CIFAR-10 (Krizhevsky) dataset.
All of our code is written using the JAX (Bradbury
et al., 2018) python library.

6.1 Algorithm Scalability

Our first experiment compares the speed of the SVD,
factored and RealMVP algorithms across increasing
dimensions. The results in Fig.3 look at the runtime
of each algorithm in milliseconds over various input
and output dimensionalities for both the tall and wide
MVPs. Each algorithm was run until either the tall
or wide algorithms could not be performed due to
memory constraints (this experiment was run on one
NVIDIA 1080Ti GPU with 11 GB of memory). For
these experiments, we set the noise distribution to be
a Gaussian whose parameters are a linear combination
of ε/γ to provide a fair comparison of the different
methods.

We find that the SVD approach is the slowest
algorithm, factored is fastest in small dimensions
and RealMVP is the fastest (and only tractable
algorithm) in high dimensions. Even though the
SVD algorithm has the same memory complexity as
RealMVP, in practice the computation of the SVD
itself may require more than O(MN) memory which
causes the method to fail relatively quickly. Similarly,
the factored algorithm fails quickly due to memory
constraints. RealMVP, on the other hand, scales well
with N . These results indicate that RealMVP is a
viable method to low dimensional global structure to
high dimensional problems, such as image modeling,
by using a tall MVP to connect a high dimensional
and low dimensional flow.

6.2 Wide matrix

We compare the full and factored parametrization of a
wide MVP on toy 2d datasets. The model starts with
a wide MVP that uses either the RealMVP or factored
parametrization to increase the dimensionality of the
data to R4

R2 →Wide MVP→ R4
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The remainder of the flow has more three layers before
the unit Gaussian prior - a mixture of logistics non-
linearity (Ho et al., 2019) with 8 mixture components,
a square MVP, and another mixture of logistics with
8 mixture components (see section 5 of the appendix
for more details on the experimental setup). Over all
three datasets, the full parametrization of the wide
MVP yielded better density estimation results.

6.3 Tall matrix

Our tall MVP tests replace the factor step of the multi-
scale architecture (Dinh et al., 2017) for image models.
The multiscale architecture can be thought of as a flow
layer that pads gaussian noise to an input using a tall
MVP with orthogonal noise. With this view in mind,
we use tall MVPs to reduce the dimensionality of an
input by half. We test the CIFAR-10 dataset with
three tall MVPs:

R32×32×3 → Tall MVP→ R16×16×6

→ Tall MVP→ R8×8×12

→ Tall MVP→ R4×4×24

The MVPs act on each pixel along the channel di-
mension, like a one by one convolution (Kingma and
Dhariwal, 2018), so that the computations remained
tractable. In addition to the RealMVP and factored
parametrization, we also include the regular multiscale
factorization for comparison. The results in table 4b
show that the use of tall MVPs to reduce dimensional-
ity outperforms the baseline method of Gaussianizing
half of the dimensions, and that RealMVP outperforms
the factored parametrization.

7 Conclusion

We presented a novel method for using rectangular ma-
trix vector products as probabilistic transformations.
We showed that tall MVPs with additive orthogonal
noise are the stochastic inverse of wide MVPs and
derived a learning algorithm that can be easily imple-
mented. As future work, we hope to investigate efficient
parametrizations of A that allows for fast computation
of A+.
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