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ABSTRACT

Modern machine learning problems are frequently formulated in federated learning
domain and incorporate inherently heterogeneous data. Weighting methods operate
efficiently in terms of iteration complexity and represent a common direction in
this setting. At the same time, they do not address directly one of the main obstacle
in federated and distributed learning — communication bottleneck. We tackle this
issue by incorporating compression into the weighting scheme. We establish the
convergence under a convexity assumption, considering both exact and stochastic
oracles. Finally, we evaluate the practical performance of the proposed method on
classification problems.

1 INTRODUCTION

Behind groundbreaking results achieved by new machine learning models lies a carefully constructed
optimization process. From the advent of Stochastic Gradient Descent (SGD) (Robbins
& Monro, |1951) to adaptive methods like Adam (Kingma & Bal[2014) and beyond, new outputs of
optimization theory not only accelerated convergence but have, at times, redefined what is possible in
entire industries. Contemporary supervised machine learning approaches universally require large-
scale training data to reach state-of-the-art results on established benchmarks (Alzubaidi et al., 2021}
Hoffmann et al.| 2022} |Shoeybi et al., [2019). The primary way to process this volume of samples
is usage of multiple nodes for computations. This setting poses new challenges for the research
community, highlighting once again that the future of the entire field hinges on novel solutions.

To harness the full potential of such data, distributed learning (Verbraeken et al.,|2020) has become a
domain paradigm, enabling cutting-edge results in computer vision (CV) (Goyal et al,[2017), natural
language processing (NLP) (Shoeybi et al.,2019)), and recommendation systems (Covington et al.,
2016)) by leveraging multiple machines working in parallel. Formally, this setting can be characterized
by the following formulation of an optimization problem:
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where f;(6) represents the empirical risk (Shalev-Shwartz et al.,[2010) for data at node i. A bottleneck
emerges in this distributed setting: communication. During the training process local model states
should be synchronized. This coordination steps can be prohibitively time-expensive and completely
offset advantage gained from a parallel processing.

Distributed learning offers several major approaches to address this issue: local steps techniques
(Stichl, 2018} |Gorbunov et al., 2021b), partial participation concept (Li et al.| 2019; Rizk et al.,
2021)), data-similarity-based methods (Hendrikx et al.l [2020; Kovalev et al., [2022; [Lin et al.| [2023)).
Finally, in our work, we adopt compression. The first works in this field were dedicated to one-bit
quantization (Seide et al., 2014} Bernstein et al., 2018)). Currently, the most widely used techniques
include quantization (Alistarh et al., |2017)) and sparsification (Alistarh et al.l 2018; [Beznosikov et al.|
2023a) methods such as RandK and TopK. A key consideration in this context is that increasing
the number of nodes enhances the robustness of the training process to inaccuracies in aggregated
local gradients. This gives rise to a trade-off between transmission precision and communication cost,
which can be exploited by compressing gradients during aggregation. Formally, compression can be
described using unbiased and contractive compression operators. In our work, we utilize the former.



Definition 1. We say that a map C : R? — R? is an unbiased compression operator, or simply
unbiased compressor, if there exist a constant w such that holds:

E[Q(z)] ==z, E [||Q(x)|\2} < w||x||2f0r all z € R, 2)

Contemporary problem formulations often additionally involve heterogeneity, which necessitates
the development of federated learning techniques (Konecny et al.l 2016; McMahan et al., 2017}
Smith et al.| 2017; L1 et al., 2020; |[Kairouz et al.,|2021). The high cost of transmitting raw samples
often makes homogeneous redistribution infeasible. Moreover, settings exist in which observation
redistribution is impractical or fundamentally disallowed (Nishio & Yonetani, 2019} |Zhang et al.,
20205 [D1ao et al., [2020; Mishchenko et al., [2023; | Khirirat et al., 2023; Islamov et al., 2025).

Standard formulation (T]) of the objective function treats all devices equally. However, since the data
across nodes may inherently differ, the effectiveness of this formulation becomes questionable. To
address this issue, various weighting strategies was proposed, alternating the optimization problem
into:

M
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where 7; represent weights constrained to the simplex A1, provided by particular weighting
method. The idea here is to assign big weights to clients with clean representative or even unique
data, and small weights to ones with noisy inappropriate samples. If this is achieved by any means,
performance of the model can be improved by effectively training it on higher-quality observations.

Currently, a wide range of weighting methods has been developed (McMahan et al.,|2017; Nishio
& Yonetani, [2019; Wang et al.,|2020; Cao et al., 2020). Each technique offers its own advantages,
such as adaptivity or the absence of extra information communication. Agnostic reformulation of
optimization problem (Mohri et al., 2019; Namkoong & Duchi, 2016} Shalev-Shwartz & Ben-David,
2014; Hashimoto et al., | 2018):

M
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where A is a convex subset of AM~1 combines both of these advantages. The weights are selected
automatically during training, while the strategy requires only the local losses to be known by the
server. Communicating this information is inexpensive and does not exacerbate the communication
bottleneck. Intuitively, the method operates as follows: if certain nodes possess unique observations,
a brief training phase can lead to a rapid loss reduction on the remaining users’ samples. This, in turn,
assigns higher weights to the devices holding the unique data, thereby mitigating the problem of data
imbalance and reducing model bias.

However, while mitigating the issues of data heterogeneity across nodes, weighting methods do
not address the core challenge — the communication bottleneck — which makes them independently
nonviable in real-world applications. To address this fundamental problem and unlock the practical
potential of weighting methods we aim to investigate the following question.

Is it possible to effectively combine weighting-based approaches with communication compression
techniques?

2 OUR CONTRIBUTION

* We answer the posed question affirmatively by introducing ADT (Algorithm[T). It incorpo-
rates compression (I)) into agnostic weighting scheme (@). Moreover, operating in the saddle
point problem setting, the proposed method never requires the transmission of full gradients,
which is further reinforce practical applicability.

* We establish theoretical guarantees under general assumptions for the weighting setup. Our
analysis additionally includes practically relevant settings of stochastic local oracles and
partial participation.

* We validate ADT performance on the classification problems.



3 RELATED WORKS

In this section, we intend to survey both classical results and recent developments in the fields of
weighting methods, compression, and saddle point problems, with a particular focus on studies that
integrate the latter two. These directions are most relevant to our work.

3.1 WEIGHTING METHODS

First approach in this field FedAvg (McMahan et al., |2017) suggests to assign weights to clients
regarding the size of dataset m;: m; = =%, where m = Ef\il m;. This approach enables weight
determination prior to training initiation, which precludes the need for additional inter-node commu-
nication and mitigates associated bottleneck. However, it only addresses data imbalance in terms of
quantity rather than quality. Subsequent approaches employ dynamic weight assignment. To estimate
client importance, they leverage such information as cross-client weight distribution divergence
(Wang et al.| 2020), local-global gradient discrepancy (Cao et al.l 2020; Nguyen et al., [2020)), and
local loss (Mohri et al.,[2019; |Cho et al.| 2022)). Alternative approaches leverage hardware-aware
metrics, including node computation capacity and connection stability, to accelerate training. These
methods minimize participation of edge devices with significantly slower compute or communication
capabilities (Nishio & Yonetani, [2019; [Li et al., [2022} Ribero et al.,[2022).

Utilized in this paper technique @I) (Mohri et al.|, |2019; Namkoong & Duchil [2016} |Shalev-Shwartz &
Ben-David, 2014} [Hashimoto et al.,|2018)) offers the benefit of adaptivity while introducing minimal
additional communication overhead, as it only requires transmitting local loss values — a single scalar
per device. The communication cost of aggregating this exact information is incomparably lower
than even that of compressed gradients. This feature is particularly crucial as we aim to address the
communication bottleneck. Finally, as can be observed, problem (@) is a saddle-point problem not a
classical minimization one. This introduces additional challenges to algorithm design and theoretical
analysis.

3.2 METHODS FOR SADDLE POINT PROBLEMS

The Gradient Descent method can be generalized to Descent-Ascent algorithm for saddle
point problems (SPP). However, this straightforward generalization may fail to converge even
for relatively simple objective functions (Beznosikov et al., 2023b). A more robust alternative,
the Ext ragradient method, was introduced in 1976 by |[Korpelevich|and has since become a
fundamental paradigm for solving saddle point problems. The original Ext ragradient algorithm
requires two gradient evaluations per iteration, but there are modifications that reduce this to a single
one, for instance, optimistic approach (Popov, |1980). It is worth noting that alternative techniques for
solving SPP also exist (Tseng, 2000; |[Nesterov}, 2007 [Malitsky}, 2015). At the same time, the research
community continues to actively adapt Ext ragradient method to various settings (Nemirovski,
2004} |Alacaoglu & Malitskyl [2022), including distributed learning with communication compression
(Beznosikov et al., [2022).

3.3 COMPRESSION METHODS

QSGD (Alistarh et al.,2017)) was one of the initial steps toward understanding compression techniques
applied to classical minimization problems. It examined the incorporation of quantized communica-
tion into SGD (Robbins & Monro, |1951). Authors used restrictive assumptions that all nodes have
identical functions, and the stochastic gradients have bounded second moment. These assumptions
were relaxed in subsequent studies (Khirirat et al., | 2018}, Mishchenko et al.l 2024). Additionally,
QSGD suffered from an irreducible term in the theoretical convergence bound, caused by the stochas-
ticity of the compressor, even when full local gradients were computed. The next notable concept in
this field was the error feedback technique. Initially introduced as a successful heuristic (Seide et al.|
2014; Strom), [2015), later it obtained theoretical support in (Stich et al.| 2018}, [Karimireddy et al.,
2019) and enabled the analysis of biased compression. Then, a significant advancement followed
with the idea of compressing the difference between successive local gradient estimators, instead of
directly compressing the gradients. This concept was first introduced in the DIANA (Mishchenko
et al.| 2024} and enabled vanishing irreducible compressor stochasticity term, improved theoretical
guarantees and extension of the analysis to new settings. Later, in (Richtarik et al.| 2021, it was
shown that local state difference compression can be interpreted as a variant of the error feedback



technique, which led to the development of the EF21 algorithm. Subsequently, in MARINA (Gor
bunov et al., 2021a)) the PAGE (Li et al., 2021} variance reduction technique was utilized. Using
biased local gradient estimators MARINA reached state-of-the-art convergence rates. Finally, the
authors of DASHA (Tyurin & Richtarik, [2022)) ultimately combined error feedback with the EF21
mechanism and achieved optimal oracle complexity while preserving the state-of-the-art communica-
tion performance of MARINA. Moreover, they eliminated the need for periodic transmission of full
gradients, which was required in MARINA.

Despite the fundamental importance of variational inequalities including saddle point problems,
and their extensive study, methods for them which incorporate the compression remains largely
unexplored. Only several algorithms operating in this setting was proposed. MASHA (Beznosikov,
et al.,2022), integrates operator compression with the Ext ragradient concept. An extension of
this approach, Optimistic MASHA (Beznosikov & Gasnikovl 2022)), incorporates the optimistic
principle and, through the use of permutation compressor, leverages data similarity to strengthen
theoretical guarantees. Finally, Three Pillars (Beznosikov et al.|[2023c) combines compres-
sion, data similarity, and local steps, unifying all three concepts within a single framework and
achieving optimal theoretical guarantees. However, despite these theoretical advantages, the practical
applicability of Three Pillars remains limited. In particular, due to its strong reliance on data
similarity across all devices. Moreover, a key practical drawback of all three methods lies in the
requirement for periodic transmission of full operator values.

4 SETUP

The analysis in this work is conducted relying on further assumptions.

Assumption 1. Foralli=1,2,..., M, let f; beNI:i-Lipschitz, ie, |fi(01) — fi(02)] < Li||61 — 62|
holds for all 0,05 € R, We denote L = mgx{Li}.

Assumption 2. For all i = 1,2,..., M, let f; be L;-smooth, i.e., |V f;(01) — Vfi(62)] <
L;||6y — 05| holds for all 61,05 € R?. We denote L = max{L;}.
7

Assumption 3. Foralli=1,2,..., M, let f; be convex, i.e., fi(61) > fi(02) + (V f:(02),61 — 62)
holds for all 01,05 € RY.

5 ALGORITHMS AND THEORETICAL ANALYSIS

5.1 DESCRIPTION OF THE ALGORITHM

Now we are ready to present our Algorithm|[[|ADT (Agnostic DIANA). In suggested approach each
iteration begins with the nodes computing weighted loss gradient f;, compressing the difference
with their local memory state, and sending the result to the server — Lines 5] [7] and [9] respectively.
Additionally, Lines 5] and [7| represents the modifications required in stochastic local oracle and partial
participation settings. The nodes then update their local states on Line[§]

All remaining operations are carried out on the server side. Firstly, it aggregate compressed local
differences and local losses — Line Then, gradients estimators g and p with respect to 6 and
7 are computed on Lines |12and After that, the update of 6§ is performed using the optimistic
version ¢ of oracle g — Lin and At the same time, the weights 7; are constrained to remain
within a subset A of the simplex. Hence, a Mirror Descent step on Line[I7]is applied to update
them. Where the Kullback-Leibler divergence is used as the Bregman divergence. Additionally, we
point out that due to the maximization over 7; in agnostic objective formulation (@), a positive sign
precedes the inner product. Finally, server updates the local state i and communicates 6 and 7; to
each node.

Thus, Lines [T6] and [T7]— considering Lines [13] and [T3] — correspond to a step of Optimistic
Extragradient (Yudin,[1983) method (Popovi|[1980). While Lines|[7} 8] [[ T} [I2} [[8]reflect the idea
of difference compression introduced in DIANA (Mishchenko et al.| [2024). This concept resembles
the variance reduction technique (Johnson & Zhang, |2013)) and similarly enables the elimination of
the irreducible term, caused by the stochasticity, in the convergence analysis. These methods are
driven by an intuitive idea: near the optimum of a smooth function, the full gradient tends to zero,
while local gradients may remain relatively large.



At the same time, according to Definition E],
the distortion introduced by the compressor
scales with the norm of its input. As are- 1: Input: Starting points 8 € R% 7% € A,

Algorithm 1 ADI

sult, near the optima compression of local {ROYM 19 € R and h° = ZM L hY, num-

. . . . . =1 i= ’
gradient introduce a significant noise and pre- ber of iterations KX, number of nodes M, random
vent the aggregated estimator from converg- variables 1¥ ~ Bern(p).

ing to zero. This leads to erratic oscillations 2. Parameters: «, 3,75, v > 0;p € (0, 1].
near the solution * in practice and to an irre- fork=1,2,3,...,K do
ducible variance term in theoretical analysis. 4. for all nodes i = 1,2, ..., M in parallel do

W

In contrast, the difference between local gra- b — ok £ (O
dients at nearby points is bounded due to the  5: fi =7 Vfi(07)
smoothness of each local objective. Hence, L f= 7T7ILC Viie (0 ")
as the algorithm approaches the optimum and  ¢: AF = ﬁk — hk

the update steps diminish, it becomes neces- [ Ak — Q(AF)

sary to compress progressively finer differ-  7: . ; " ¢ i
ences. Consequently, the local estimators h” L Aj = jQ(Ai)
tend to the local gradients V f;(6*). It ensure . hEFL = pk 4 BAK
that the aggregated estimator h* converges 9: send AF £:(6%) to server
to zero. This property allows the method to . end for vt

converge to the optimum itself, rather thanto ;. Ak — ZM Ak

a neighborhood of it. =L

o _ 12: M= hF 4 AF
Let us now justify the choice of DIANA as the 3.

g
g
. k _ (¢ (pk
this end we consider alternative candidates. 14: 1’2 = (f i(0 ))izl
p

compression foundation in our method. To M
. : - — . k k _ -1
Firstly, DASHA (Tyurin & Richtarik, 2022), 15: =1 +a)p ap
i 16:  OFFL =gk — 40"
which demonstrates state-of-the-art results 1 o9 n L
in the classical minimization setting, offers 17: ™ = arg Y {%r (p",m) + Dip(m,m )}
theoretical guarantees under non-convex ob- . k+1 _ 1k Ak
o . . 18: ho*tt = hF + BA
jective functions. At the same time, the the- B+l kil .. sth .
- . . . 19: server send 7w; ", 0 to " node for all ¢
oretical analysis of SPP in such setting re- 20- end for i

mains largely underdeveloped, making the
extension of DASHA’s analysis to our sce-
nario intricated. MASHA (Beznosikov et al., 2022)), on the other hand, operates in the SPP setting
and incorporates compression. However, it requires periodic communication of full gradients, which
significantly limits its practical applicability. By establishing the analysis of DIANA within the SPP
setup, we avoid such constraints while leveraging its compression strategy.

Another detail we want to highlight is simplex regularization. In various problem settings, it may

be advantageous to impose additional constraints on the weights by restricting the feasible set to

a subset A of the simplex AM~1 (Mehta et al., 2024). Let us provide a reasoning, helpful for

understanding which regularization can be suitable in our case. Considering optimization problem

@) with A = AM~1 at optimum point the weights take the form of 7;, = 1,7; = 0 for all j # 4,

where 79 = argmax f;(6*). At the same time, some clients may possess noisy samples. The model
?

can not — and should not — learn patterns from such data. Even a single device with notable higher
noise level can cause an obstacle to effective training. Particularly, since its data is less representative,
it experiences a slower decrease in loss. As training progresses, this leads to the weight of that client
growing close to one. Further training will only lead to overfitting the model to the noise present
in the data of the given device. This potential issue can be mitigated by using A = AM~1 0 QM,
where QM = {x eRM |O <z; < %} and a € [1, M].The parameter a controls the trade-off
between full flexibility in weight assignment and stronger averaging. Specifically, setting a = 1
recovers formulation (IJ), while @ = M imposes no additional constraints on the weights. We employ
regularization of the specified form and additionally highlight its role in the theoretical sectrion.

Finally, let us follow all communications in the proposed algorithm. At each iteration, transmissions
of f;(6%), A¥ from the nodes to the server and 7%, 8* in the opposite direction are required. As f;(6*)
and 7 are scalar values they do not pose major threat to communication efficiency. Then, both Af
and 6% have dimensionality d. The vector * is transmitted from the server to nodes, which poses
fewer challenges (Kairouz et al.|[2021). In contrast, aggregation of Ai on the server constitutes the



main obstacle to communication efficiency. ADI address this issue since Af is compressed version of
AF, which makes its transmission significantly cheaper than that of an general vector of dimension d.
5.2 CONVERGENCE GUARANTIES IN EXACT LOCAL GRADIENT SETTING

We establish the convergence with respect to Gap function (Definition [2]in Section|D). It is standard

for convex-concave SPP setup criteria. To initiate the analysis, we introduce the notation z = (7T

k
and F(z%) = ( _gpk> . Descent Lemma(Section imposes conditions on operator F’ evaluation
across iterations. Then Lemmas [I|and [2| (Section [C)) justify the transition to the Gap(z) function and
further analysis.

Finally, Theorem [I] represents our main theoretical result.
Theorem 1. Let Assumptions hold and aa = 1, f = % H = 327%W2% N = 77w,

— — _ : 1 1 1 1
Ve = Yo = 7 S Y0 = mln{2z 96w3 F14Mw? \/2 4ME2+576%L2+28012L2 } Then, after K

iterations of Algorithm[I|with unbiased compressor|[l| Q and exact local gradients solving problem
(@) the following holds:

E[Gap(Zk)] < K
where

vV = E[nle%c{4DKL(7r,7rl)+2||91—9||2

i -l

1 M 9 1 2
+27<F(z1)—F(zo)»z—zl>}+HZZ’ +N2ka_th }
k=0 i=1 k=0

andZx = + 22{21 2F,

This implies the following bounds on the number of communication rounds and the amount of
information transmitted from the clients to the server.

Corollary 1. In setting of Theorem[I|with v = ~o, Algorithm|[I\with exact local gradients needs

1 _~ 3/2 =4 1/2 w3 |
O|-|Lw”?+LM"*+ L — 4w
€ M

iterations in order to reach e-accuracy with respect to E [Gap(Zx )| Additionally, it requires

1= - MY T
(’)( Lw'’?+ L +L< w+1>)
el w M |

bits communicated from nodes to the server.

The first term in both bounds in Corollary (1| originate from the recursion on ||7rf+1 — k|3 1t
the weights are fixed, these terms vanish, and under condition w < M, compression leads to at
least no increase in communication complexity. Returning to the analysis of the full result, we
must acknowledge that weighting algorithms typically suffer from weak theoretical guarantees. For
instance, theoretically FedAvg enjoys only sublinear convergence rate in the strongly convex setting
(L1 et al.l 2019). In our setup, the weighting-induced terms deteriorate the theoretical guarantees
monotonically with increasing compression rate. Finally, discussing the role of simplex regularization
A in the theoretical analysis, we note that it enables an acceleration by a factor of ﬁ in square-root
terms.

5.3 CONVERGENCE GUARANTIES IN STOCHASTIC LOCAL ORACLE SETTING

Despite introducing new challenges, federated learning is still subject to classical difficulties of
gradient-based optimization. In practice, computing the full even local gradient may be prohibitively
expensive, especially in the presence of devices with limited computational capabilities. This makes
stochastic optimization (Robbins & Monro, 1951} Bottou et al., 2018]) particularly relevant in practical



applications, including the context of federated learning. We extend our analysis to cover this setting
as well.

Guaranties in this case are provided under assumption that all nodes have access to an unbiased oracle
Vfie (x*) with bounded variance, i.e., Assumption holds.

Assumption 4. Letforallk =1,2,..., K andi=1,2,..., M V f; ¢, (0%) satisfies
i) EVfig (0%) = V(")
it) E|IV fig, (0°) = V£(0°)|* < o®.
ADT structure imposes minor modification in this setting. Particularly, Line [5|transforms into sample

fF = 7kV fi ¢, (0%). The theoretical analysis similarly remains largely unchanged, as stochasticity
was already involved in the compression operator, and the oracle is assumed to be independent of it.
Thus, we can reformulate Theoremﬂ]for stochastic oracle setting as follows.

Theorem 2. Let in setting of Theorem|[I|additionally Assumption holds. Then, it implies
64a’w

= 29K Tt M

for iterations of Algorithm[I|with stochastic local oracles.

Choosing v = min {70, A/ %} we obtain the further guarantees.

Corollary 2. In setting of Theoremwith v = min {70, M }, Algorithmwith stochastic

128a2w202 K
local oracles needs

1 [w?o? -, - w3
i et /2 1/2 ol
O<€2|: ]+ Lw”? + LM +L< -+ w

iterations in order to reach e-accuracy with respect to E [Gap(Zx )| Additionally, it requires

1 [wo? 1= - MV? w
i Bl - 1/2 [l
0(62{M]+6{Lw + L o +L< M-i—l)})

bits communicated from nodes to the server.

E[Gap(zk)] <

g

In this case, guaranties in Theorem are affected by an additional irreducible term ~>=5-- 64“ ‘*’ o? induced

by the stochasticity of the local oracle. It is general term for analysis in stochastic oracle setup with
Assumption In its presence, optimal stepsize -y transforms into v = min {’yo, 1/ 128&‘{%} and

. . . . .. 2
communication complexity bounds include an additional term E% {%] .

5.4 CONVERGENCE GUARANTIES IN PARTIAL PARTICIPATION SETTING

Another classical direction in federated learning is partial participation (Li et al.,|2019; Rizk et al.,
2021)). In its context only the subset of all nodes are involved in each computation and communication
round. This modification addresses several challenges inherent to federated setting, primarily the
periodic unavailability of some devices (Li et al.,|2019; [Yang et al., 2021)). We establish theoretical
guarantees for this setup as well.

UJ — —
; - =7 =<

N
1 1 1
T = mm{zL \/96(‘;) +14M (=) \/2 AML2+576& ()’ L2+28( } it implies

E[Gap(zk)| <

Corollary 3. In setting of Theorem with 3 = 2, H =

—

v
29K
for iterations of Algorithm[I|with partial participation.

According Corollary [3] we bound number of communication rounds and the volume of data sent
from the clients to the server.



Corollary 4. In setting of Corollarywith Y = Yps Algorithmwith partial participation needs

w3 w
_i'_i

1|+ /w o2 = /
ol=L(= LMY + L —
() - * Mp3 ~ p

€ p

iterations in order to reach e-accuracy with respect to E [Gap(Zx )| Additionally, it requires

1/2 1

1. - M2

of- L<w> +Lp+L<1/w+1>
€ p w Mp

bits communicated from nodes to the server.

Analysis in this setting relies on the observation that multiplying the compression operator by the
%, with  ~ Bern(p), yields another valid compression operator. It remains unbiased, while its
compression rate w is scaled by a factor of p. Finally we note that our analysis in stochastic local
gradients and partial participation settings can be straightforwardly merged.

6 EXPERIMENTS

To validate the performance of our algorithm ADT on practical tasks, we compare it in experiments
against baseline methods that employ either weighting schemes or communication compression
techniques. Specifically, ADI with no compression and EF21(Richtarik et all [2021)), DIANA
(Mishchenko et al.| [2024) serve as representatives respectively. Although weighting-based approaches
are specifically designed to improve performance in heterogeneous settings, we assess the generality of
ADT by conducting experiments under varying degrees of heterogeneity, including the homogeneous
case. It is also important to note that classical approaches and weighting-based methods formally
solve different optimization problems (I)) and (3). Consequently, comparing them in terms of loss is
not valid, and we instead rely on model quality metrics such as accuracy.

We conduct a comparative evalua- iid. non-i.i.d.
tion on image classification tasks us- g0
ing CIFAR-10 (Krizhevsky et al.| Y sl /__,,n//\:/:/'\ (J:(VAV-\m
2009) dataset and RESNET-18 (Meng  »u| A7 IR k')
v Y 4 8 /X
et al.}|2019) neural network architec- / Ny a
ture, which is considered to be a stan- = "|f | *Ditne comp.) < B D
dard benchmark for optimizers perfor- 4 DIANA « DiANA
mance. We set number of clients M " T,
equal to 10 and eValuate OptimiZerS # communication rounds # communication rounds
under 2 major data distribution setups: (a) Rand50% compressor.
i.i.d. distribution, where each client iid non-i.i.d.
has the same number of data sam- 2 .
. ,_,,n/“!" v ,',,--/“r *

ples, and class labels are uniformly - A S N
distributed across clients; and non- % s 2% AN Av*\/"” =
ii.d. distribution (namely Dirichlet 3|/~ SR

. . < = < o
one with the parameter o = 0.5) with 4 o o oo / o o oo
different amount of data samples per Tiyoiaa Tiyoua
Cllent. 2000 4000 6000 8000 10000 2000 4000 6000 8000 10000

# communication rounds # communication rounds

The first set of experiments, presented
in Figure [I compares ADI with
compression-based methods under dif-
ferent setups of data heterogeneity
and parameter K = 10%, 50% for
RandK compressor. To ensure a fair comparison, we run the experiments for 10k communica-
tion rounds with stochastic oracle for each method and tune theirs hyperparameters.

(b) Rand10% compressor.

Figure 1: Performance comparison for ADT across different
heterogeneity levels.

As illustrated in the plots presented in Figures|Ta] [Ib] the weighting mechanism plays a crucial role in
the convergence behavior of our method. By effectively mitigating the impact of data heterogeneity,
ADTI demonstrates superior convergence properties compared to baseline approaches. Furthermore,
the accumulated weight adjustments significantly influence the later stages of training, contributing to
enhanced model accuracy and overall performance. With the identity compressor, ADI reduces to an



Optimistic Extragradient (Popov}[1980) method for problem (@), effectively representing
a standalone weighting-based optimization approach.

Ablation study. The second experiment (see 90

Figurd2) compares same methods, but we ap- ‘

ply weighting technique to all of them. We use 80 W N
RandK with K = 10% and non-i.i.d. data distri- 70 - ~ ST
bution, we observe consistent improvements in 60 g/

convergence across all methods — demonstrating
that the weighting mechanism enhances robust-
ness even in highly heterogeneous settings. This
experimental validation highlights the signifi- 30
cant advantage of setup (@) over conventional
distributed learning approaches, particularly in
challenging heterogeneous environments where 10

traditional methods exhibit poor performance. 0 2000 4000 6000 8000 10000
# communication rounds

—e— ADI (no comp.)
—&— ADI

20 «— DIANA (weighted) -
—— EF21 (weighted)

\\
\%i\

We further analyze the evolution of client
weights under Algorithm|[T]in a heterogeneous Figure 2: Weighting approach comparison.
setting, with full results shown in Figure

At initialization, all clients are assigned equal
weights, reflecting no prior knowledge of their

data quality or relevance. As training progresses,

the weights rapidly diverge, adapting to the sta- oz
tistical heterogeneity of local datasets. Over
time, each client’s weight converges to a dis- oz
tinct, stable plateau — indicating that the system
learns a consistent, data-driven importance score
for every participant.
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°
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This convergence behavior reveals two key
phases of the optimization process:

0.05

(i) an early exploration phase, during
which substantial weight adjustments
. . . . 2000 4000 6000 8000 10000
occur as the algorlthm identifies infor- # communication rounds
mative clients;

Figure 3: Weights magnitudes for Algorithm|[l]in

(if) a later stabilization phase, where non-i.i.d. data distribution setup.

weights remain nearly constant once
the global model approaches a global
optimum.

Notably, significant reweighting ceases once the optimizer enters a neighborhood of a (local or global)
minimum, suggesting that the weighting mechanism primarily acts during transient, high-gradient
stages of training—precisely when client contributions are most discriminative.

7 DISCUSSION

This study has introduced a method for federated learning, supported by comprehensive theoretical
analysis and empirical validation. Theoretical guarantees were established for a range of relevant
scenarios, including setups with exact local gradients, stochastic local oracles, and partial client
participation. Experimental results demonstrated that the superiority of the proposed method over the
baselines becomes more pronounced as the level of compression and data heterogeneity increases.
This allows it to be concluded that two of the most important problems in federated learning —
the communication bottleneck and heterogeneity — can be addressed concurrently, offering new
potential for specific federated learning formulations. Additionally, the developed approach maintains
performance comparable to baseline algorithms in homogeneous data settings and never requires the
transmission of full gradients, thus further supporting its practical utility.
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A ADDITIONAL EXPERIMENTS AND CLARIFICATIONS

A.1 ADDITIONAL CLARIFICATION ON IMAGE CLASSIFICATION PROBLEM

Our experiments are conducted on the CIFAR-10 dataset using a RESNET-18 architecture, with
M = 10 clients for federated training. We evaluate each sampling strategy under three representa-
tive data partitioning schemes: (homo) an i.i.d. homogeneous split, where each client receives a
statistically identical sample of the data; (hetero) a heterogeneous configuration in which clients are
assigned disjoint class subsets, simulating non-i.i.d. label distributions; and (pathological) a strongly
heterogeneous regime, reflecting real-world imbalances through uneven data quantities and skewed
class distributions across clients. This controlled setup enables a rigorous comparison of Algorithm T]
under increasingly realistic and challenging federated learning conditions.

A.2 ADDITIONAL EXPERIMENTS

To evaluate the performance of proposed method under tightly controlled conditions, we conduct
additional experiments on the simplest task. We use the diabets_scaled (Chang & Lin,[2011)
dataset for linear regression task consisting of 768 samples with 8 features and two classes. As
baselines, we select the communication compression algorithm DIANA (Mishchenko et al.,[2024);
for uncompressed weighting method, we use ADI with identical compressor as Optimistic
Extragradient (Popov,|[1980) for formulation (EI) Additionally, we compare ADI with MASHA
(Beznosikov et al}},[2022) for problem (@), which is an analogous method combining both weighting
and compression. For all algorithms with compression we utilize RandK compressor.

To model different degrees of heterogeneity, we introduce parameter «;, € [0, 1]. While emulating
training on M = 4 devices, we distribute data across clients as follows: the first node receives
ﬁ + ah% observations from the negative class and 152 positive observations. The remaining
data is distributed uniformly across the other M — 1 devices. Thus, o, = 1 corresponds to
complete heterogeneity where the negative class appears only on one device while the other devices
contain exclusively positive class observations. Accordingly, op, = 0 corresponds to complete data
homogeneity.

ap =0 ap =0.5 ap =1
o 25 8 o8 %
I R - et
07 P o 07 b s 07 N
A g " = 7} et
0.6 ] 0.61f 0.6 r
05 05 0.5
—e— ADI (no comp.) —e— ADI (no comp.) —e— ADI (no comp.)
0.4 —m— ADI 04 —m— ADI 0.4 —m— ADI
Jj *— DIANA f +— DIANA +— DIANA
0.31% —— MASHA 0314 —a— MASHA 0.3 —— MASHA
50 100 150 200 250 300 350 400 50 100 150 200 250 300 350 400 50 100 150 200 250 300 350 400
#bits transferred #bits transferred #bits transferred

(a) Convergence comparison.

ap =0 ap = 0.5 ap =1
045 0.6 —
0 //‘ 0.7
05 00
§o35 § ]
o o4 g8 /
=
gozs >‘< g g“ /
£ 020 ~ 20317 2o
g —— Node 1~ — _% p—— Node 1 ,g p— Node 1
20157 — Node 2 | Z 02 — Node 2 = %21 — Node 2
010 Node 3 Node 3 s 01 Node 3 e —
—— Node 4 i 0.1{-—— Node 4 —— Node 4
0.05 0.0
50 100 300 350 400 50 100 300 350 400 50 100 150 200 250 300 350 400

150 200 250 150 200 250 0
#bits transferred #bits transferred #Dbits transferred

(b) Weight magnitude for ADI’s nodes.

Figure 4: Performance comparison for ADT across different heterogeneity levels.

The first series of experiments (Figure ) compares ADI with the specified baselines under different
levels of data heterogeneity (o, equal to 0, 0.5, and 1). For all compression methods, we use RandK
with K = 1. MASHA additionally transmits full gradients every 8 iterations. These experiments
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confirm the superiority of weighting methods: while showing comparable performance on homoge-
neous data, ADT gains significant advantage over DIANA as heterogeneity increases. By comparing
Optimistic Extragradient with other methods, we demonstrate the effectiveness of com-
pression, particularly in combination with weighting approaches across varying heterogeneity levels.
Finally, we present the evolution of ADT algorithm’s weights across iterations. We observe that their
dynamics can be unpredictable, particularly in the homogeneous setup. Yet this does not lead to
performance degradation.
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Figure 5: ADT and DIANA with RandK across different K with oy, = 0.5.
Experiments in Figure [5|compares ADT and DIANA at aj, = 0.5 with different compressor constants

K (8,5,2,1). This comparison highlights that the advantage of weighting remains independent of the
compression level even under aggressive compression as Randl.
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Figure 6: Weights stabilization in homogeneous and heterogeneous setups.

Finally, in Figure [ we verified that ADT weights ultimately stabilize in both complete homogeneity
and heterogeneity cases. Notably, in the homogeneous scenario, their pre-stabilization evolution does
not affect performance.

B GENERAL INEQUALITIES AND NOTATION

Suppose z,y € R?, 71,75 € A and D, is Kullback—Leibler divergence. Then, following inequality
holds:

1
(@) < 5 el + 55 1ol (Fen)
o +yl? < (1+a) =l + (1 +a™) |yl (CS)
1 1 .
DKL(W17W2)25||7T1*7T2||%2 §H7T1*7T2H2- (Pi)

Definition 2. Let F' : R — R? and D be a compact subset of R%. Then, for any z € R? we define
Gap(z) = ma;g{(F(z’), z =2},
z'e

Definition 3. Let ||z|yits represents the amount of bits required to encode the vector z € RY, b
denotes the number of bits per floating point value, and d is the dimensionality of the problem (i.e.,
bd = ||z|lpits). Then for compression operator Q we define the expected density of compressed vector

E[Q()|

quw bd
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C AUXILIARY LEMMAS

Lemma [T|reflects the general fact from the theory of saddle point problems.

Lemma 1. If a function f(z,y) : X x Y — R is convex w.r.t. © and concave w.r.t. y, then target
operator F for the min-max problem mingc x maxyecy{ f(z,y)} of the form

_( Vaf(z.y)
Flz) = (vyﬂx,y))
is monotone e.i.,
(F(z1) — F(22),21 — 2z2) > 0forall z1,20 € Z2 =X x ).

Proof. We start from the definition of monotonicity, given in the statement, and utilize the convexity
and concavity of f:

(F(z1) = F(22),21 — 22) = (Vaf(21,91) — Vaf(x2,92), 21 — 22)
—(Vyf(@1,91) = Vyf(22,92), 1 — ¥2)
(Vaf(@i,p1), 21 — 22) +(=Vy f(z1,91), 91 — y2)
H(Vaf(x2,y2), 12 — 1) + (=Vy f(22,92), Y2 — y1)
f(xi,y1) — flo,y1) + flo1,y2) — f(21,91)
+f(x2,y2) — f(w1,92) + f(22,91) — f(22,92) = 0.

Y

O

The following Lemma 2] (Lemma 3 in (Alacaoglu & Malitskyl [2022)) justifies the interchange of the
maximum and the expectation operators, which is crucial for transitioning from the descent lemma to
the actual convergence criterion in the main theorem.

Lemma 2. Let F = {F}, } ;> be a filtration uy, a stochastic process adopted to F with E [uy41|Fi] =
0. Then for any K € N, z, € Z and compact set D C Z the following holds:

K-1 1 1 K-1
2 2
E lmef% ;(Uk+1az>] < max <2za —2lP 45 D Ellugsl| ) : )

k=0

Proof. Let vy = 24, Uk41 = Vg + Ug1. Since uy — F|-measurable, vy, — F)|-measurable as well.

Then we write

lverr = 2l1* = ok = 2* + 2(ups1, 00 = 2) + Juwsa ||

Summing over k =0,1,..., K — 1 we get
K-1 K—-1
D 2upgr,z —og) < o — 2l + Y [lusa ||
k=0 k=0

Maximizing and taking expectation we obtain
K—1 K—1

K-1
1 1
E max Z (ugs1,2) — Z (Ukt1,v8) | < irzneaé(Hvo —z|*+E 5 Z ||uk+1||21 .
k=0 k=0 k=0
Finally, due to F-measurability of v, and by the tower property of conditional expectation, the second
sum on the left-hand side vanishes. It concludes the proof. O

D MISSING PROOFS

Now we are ready to start the main analysis. We proceed with the descent Lemma 3]

Lemma 3. Let v, = v9 = . Then, after K iterations of Algorithm [l solving problem @) the
following holds:

2’Y<F(Zk+1),zk+l —Z> S (2DKL(7T,7Tk)—2DKL(7T,7TIC+1))
+ (16" = 011> = (10" — 0[1*)
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where z = (2) and F(z*) =

+ (20l (F) = PR, 2 = 2F)

—2y(F (") = F(2¥), 2 - 241))
1 1
—§||7Tk+1 - WkHQ - §||0’erl - 9k||2

+292(p* — p" 12 4+ 29| gF — g%,

(%)

Proof. We proceed with algorithm steps evaluation.

Mirror descent step provides:

0 < (=" + Vy(r*t) — Vo (ak), 7w — ohH1)

= _7<ﬁk’ ™=
Rearranging it we reach:

Dgr(m, o) <

0 update rule implies:
||9k+1 _ 9||2

IN

Summing 2(6) and (7) we get:

7Y 4 Dgp(m,7%) — Dgp(m, 7)) — Dgep (n%FE 7).

k) _ DKL(ﬂ'k-H; k) _ ’7<ﬁk,ﬂ' o 77k+1>
") =1+ a)(pt,m — 7"

Dy (m,7%) — Dgcp (a1 7h) — y(pF, m — 7k 1)

—alpt — pFl

Dicr(m, ) — Dy (71, 7%) — 5 (ph — phHL o — bt
P — Py et — g —

—yalpt — Pk ey, )

16% — 0] + |05+ — 6% | + 2(6%+1 — 6%, 6% — 0)

6% — 6]|2 — 951 — 6% || + 2(6%+ — 6%, 9F+1 — p)

167 = 011> = (|01 — %[> + 2+(g*, 0 — 6**)

1% =01 — 0¥ — 0|1 + 2v(1 + a)(g*, 6 — 6*F1)
—2valgh .0 — 6FHY)

167 = 011> = (|61 — %[> + 2+(g*, 0 — ")

2valgh — g1, 0 — 6+

16% = 62 — [|0F+1 — 6F||2 + 29(g" — g*+1, 0 — O+

H29(gF L0 — 05 FTY 4 2ya(gh — gL 0 — 0%

+2ya(gh — gF1 6% — gF ). (7

2Dy (m, 75 + 05+ — )2

S QDKL(ﬂ',ﬂ'k) + Hek - 0”2 - 2DKL(7Tk+1,7Tk) — ||9k-"_1 — 9k||2
—2y(p* — p" = Pty 29 (gh — gF T 6 — 61T
—29(p*t m — )+ 29(gF 6 — 6

—2ya(p”
~2ya(p®

Now we rewrite last inequality using z = (i) and F(zF) = ( g k).

—pk_l,ﬂ' _ ﬂ_k> + 2704(gk _gk—l,e _ 9k>
—pk_l,ﬂ—k _ 7Tlc-|-1> + 2’ya<gk _ gk—ljgk _ 9k+1>.
k

-p

2D (m, 71 + (|07 - 0]
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< 2Dger(mr, %) + (|0% — 0)|* — 2Dgep (2F T 7h) — ||0F T — 0F||2
FoY(F(2F) = F(zM4Y), 2 — 2941y 4 2q(F (1), 2 — oK+
+2ya(F(2F) — F(zF71), 2 — 2%)
“2yalpt — pF L — Y o 2qalg — gF T, 6% — gL,
Pinsker’s inequality (PI) and (CS) with 8 = 2+ provides
2Dgep (mr, ) 4 (|05 — 92
< 2Dgep(m,7") 4+ [|0F = 0| — |7 — 7|2 — [J0F T — 02
+29(F(2F) — F(2"h), 2 — 281 4 2y (F (2P, 2 — 2L
+2va(F(2F) — F(z*71), 2 = 2%)

207 [p = p* P 4 et - AR
+2097lg" — g |P + 516" — 6%+,

Finally, rearranging brings us to

2y(F(HH1), 244 — )
< (2Dgp(m,7*) = 2Dgep (m, 7)) + (16 — 61> — |6 — 6]|*)
+ (2ye(F (%) — F(zF71), 2 = 2F) — 29(F (") — F(2%), 2 — 2FT1Y)

(0% X )
_ (1 _ 5) H7rk+1 _ ﬂ.kH% _ (1 _ 5) ||9k+1 _ ekHQ

k71||2 k71||2.

+2a%(|p* — p +2a4%gF — g

D.1 ANALYSIS IN EXACT LOCAL GRADIENTS SETTING

Let us introduce the convergence criterion. In saddle point problems under the convex-concave setting
convergence measures in term of the Gap function (Definition 2). Since ADT incorporates possibly
randomized compression operator Q, the convergence guaranties for it is based on E [Gap(z)]. This
guaranties are provided by Theorem I]

Theorem Let Assum tzons hold and o = 1, = L H = 3272w? N = 73,
p Y Y

w’

Yo =7 =7 < Y = mln{ \/96w3+14Mw2,\/2 4ML2+576W TENETIETE } Then, after K

iterations of Algorithm[I|with unbiased compressor|[l| Q and exact local gradients solving problem
@) the following holds:

E[Gap(z)] < 5 1o

where

V= E[max{4DKL(7r, ) 4+ 2(10 — 0% + 29(F(2') — F(2°), 2 — zl>}

z€D

I
=) =
] >
N?T‘

— Rk

2 LT 2
+N2ka—th} and Zg
k=0

£l
Il
-

Proof. We proceed with using the unbiasedness (2)) of compressor Q:

E[F(%)|24] = E K}’;:) zk} —E Kh’“ + 305 QU - h?))

P ] <£k>é &,

where /& = Mk = M 2kV£i(6F). Considering f(6,7) = S22, 7 £i(6) we note that it
is convex with respect to 6 due to convexity of all f;. At the same time, f is linear, and therefore

'11\

18



concave with respect to all 7;. Then, noting that F(z) = ( Vof (?g)?))’ we invoke Lemmato

establish its monotonicity.
Our objective is to obtain convergence with respect to Gap(z) = max {(F(z),z — x)}. Hence, the
e

next step is conditioning the result of Lemrnaon z#*1 using o = 1 and summing over k = 1 to K,
Z F(2FTY), M — )
k=1

K
sz[wm(m)—wm( ) 4 (|16F — 0] — 6% — 6]%)
+(

27 k)—F(zk 1),z—zk>—2’y<F(zk+1)—F(zk),z—szrl})

| kE+1 1 ‘9k+1 _ 9k||2

1| SFa—

2 L9
+22lp* = g2 4+ 2920 — g

= (2DKL(7T,7r1) — 2DKL(7T,7TK+1)) + (HH1 — <9||2 — ||0KJrl — €||2)

+ (2V(F (') — F(2°), 2 — 2"y = 29(F (2511 — F(25), 2 — 25 11))

K—1
+ Z [2'7(?(,2’”1) — F(ZFY), 2 — zk+1>}
k=1

1
+Z [ gL k2 §||0k+1 — k)2

+22lp* = 52 4+ 292 g — g ).

Maximizing obtained inequality over compact set z € D and taking full expectation, we get

K
27 Eigleag{ ;(F(sz“l),szrl - z)}] < E[I;lea%({ (2D (7, 7') — 2D g (7, 1))
+ (10" =01 — 116"+ — 0]%)
+(29(F(2") = F(2"),z — 2")

—%(F(ZK“) — F(z"), 2 = 2571

n Z 2 (F k+1 F(ZkJrl)’Z _ Zk+1>}
k=1
K
k—‘,—l k2_19k+1_0k2
+y |- [ [
k=1

PP =P 2 - ]| @)

Several next steps evaluate different terms of (8], starting with the LHS.

Due to monotonicity of F,

Gap (é%) ggleag{<ZF 2 —z>}

Combined with the positive homogeneity of the Gap function, for Zx = % Zszl 2¥ it yields

KGap (Zg) <max{<ZF , 2" z>} 9)

19



We apply Lemma 2]to bound the first sum on the RHS of (8):

2Kk [max{ Kz_:l <fy (F(Zk+1) _ F(zk+1)) JZ— Zk+1> }}

z€D Pt
K-1 o
=2E |:Izn€a%({ 2 (v (F(+1) — F(7) | 2) }]
K-1
E k-‘rl) F(zk+1)) ,Zk+1>
k=1
K— 1
k+1 k+1
2@[%{ )2 )] o
K—-1 9
< max (Iza — 21%) + 92 D E|F(EY - Y. (10)
k=1

We continue with evaluating of the last term applying properties (2)) of unbiased compressor Q:

E|[F(H) - FEH|° = EH@) - (huzy%’?(ﬁ_h?))’r

— By = (f* —n*)

M
= Y CE||o(fl - 1)
=1 y

—2;E<Q(ff—hf),f’“—hk>

2
k
7hi

2 ~ 2
|-

< fEHf’uthQ. (1)

. . .. 0 . .
Finally, using (Pi), the definition of z = (w) and choosing z, = z! — 2*T1, we estimate

max{ 2D (m, 7)) + 6" = 0} = max{|lxt — |2 + " 0]}

z€D

_ 2
= max{z, — 2l }. (12)

wh =

2
— h¥ H and combining (T0),(TT)

_ 2
Introducing new notation v* = | H fF—hnk
with (T2) we derive:

i=1

[max{K1<’y S+ F(zk+1)),zzk+1>}]

z€D
k=1
K
Srznea%{QDKL(w,ﬂl)—i—HGl—9H2}+72Z(wwk—vk). (13)

After that, we estimate 272|[p* — p*~1||? in (8) via Assumption|i}

27" — PP < 292 MEP|J6" — 02, (14)
Last term we want evaluate in (§) is 272(|g* — gF 1|2
29%E|lg" — ¢ H|?

20



_ 2’}/2EHhk + Ak _ hk—l o Ak—1||2
M

=29%E (Y (hF - hf 1) + i Q(fk—nk) - IXM: Q(fFt—nt)

i=1 =1 i=1

B
()
QC?
Q/
'M
(@)
/N
S
L
I
|
-

M
= 2B |63 Q (f -t +

=1 7

u
= 2B ||>Q(ff—nt) - (1-5)

=1 [

M= L

o(f )

Il
-

2 2

+49%(1 - B)’E (15)

|3 o (it -t)

Terms differ only in their indices, which makes it convenient to analyze them separately. Here we
utilize cross-device compressor independence and unbiasedness once again:

(1-t)

(e-nt)| - zEHQw )"+ e o (7 -#) 2 (7 1)
- e (o) 0 (7 )
- N D 1 Ny
- e
= (w—l)w + 0k, (16)

Substituting (T6) into (T3) we reach
292E|g* — ¢* 1% = 492 (w — 1) (wk +(1- B)2wk_1) + 42 (’Uk +(1- 6)2vk_1) V)]
Finally, we evaluate the sum:

K
2y° > E|g* - g*
k=1

K K
=492 [(w— Dk + 0" +49°(1 = 8)* D [(w — Dwh™! 4 o]

k=1 k

[

K K—1
= 44?2 Z [(w—D)wk + "] +492(1 - p)? [(w— 1)w* + "]
k=1 B k=0
=414 (1 - 6)?) lZ(w — Dw® 4 "
k=0
—47(1 = B)[(w — Dw’™ + "]
—49*[(w — Dw® +2°). (18)

Substituting (18), (14), (13) and @) into (),
2vKE|[Gap(Zg)] < E [mag{ (4D (7, 7') — 2D g (mr, 7 T1))
z€

+ (200" =07 — [lo" T —0]%)
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+(2’Y<F(zl) —F(2%), 2 =2 — 29(F (5 — F(25), 2z - zK+1>)}

—47%(1 = A)[(w — Dw® 4+ 5] — 49*[(w — Dw® + 27

K K
+722(wwk—v)+4'y Z w—lw +v]
k=2 k=
Koo
Jrz {7 §||7rk+1 - < —22MI > |ok+1 — 0k|| }
k=1
Using (TT)) as ww* — v¥ > 0and 0 < 8 < 1, and introducing
Ex = ma%{ (4DKL(7T,7T1)—2DKL(7T,7TK+1))
S

+ (200" = 01> = 0%+ - 0]1%)
+(29(F (") = F(2°),z — 2")
v — 27(?(2K+1) — F(ZK), z— zK+1>)}
—47*(1 = B)[(w = Dw'™ + "] = 49*[(w = D’ + 07, (19)
we can rewrite:
2KE|Gap(zx)] < E[Ex + (216 0> ~ 0%+ o))
F(AF(E) - F(),2 - 21)
—2y (PR = F (), 2 = 25)

K

+ Z [9w72wk + 7721)’“]

k

I
o

] >

1 1 -
+ {_ §||7Tk+1 _ ﬂ-kH% _ <2 _ 2’)/2ML2> ||9k+1 _ 91@2}] _(20)

k

Il
-

Now we estimate w"” and v*. Let us begin with w"*:

M M
wh = Y CENE R =) ENfF - R - AU — hi P
i=1

i=1

iﬁwum1>+<ﬁ1-hfl-ﬁg<ﬁl—hf1>>H2

@ (143" fik_lH2
St ot || @1
We estimate the first term:
M
-1 1H = S E|xbviieb) - mv et
i=1

< M 2
< 2> E|nfVi(0%) - afV A0

=1

+QZ]EH (nF — 7=V (0% 1)H
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M
= 2) Bt || VA6 - VHE)
1=1

M
+23 E|xf — x|V Ai0F )
=1

=
.
=

M M
< 23 B2 08 — 0|7 4 2B |wk — b P L2
i=1 i=1
M
= 2E|¢F — " P> wF L2 + 2L%E b — ok
i=1
M
< 2E|0F - 0PN AL 2R 1F - AT ()

=1

Where (i) holds due to Assumptions (I{and 2] We can bound Zf\il ]EWfQLf using condition ™ €
AM=EN QM where QY = {z e RM|0 < z; < &} anda € [1, M]:

M
Zﬂ'fz[/? < LQZWfQ <IL? max [l
i=1 ; r a

INA
t~
N

(
< 2|(
(

< I? —. (23)

Substitution of (23)) into 22)) gives

M
ZIE
i=1

2
I

M
FR = R AGS) - A
i=1

IN

al? 12 6 12
6 E[|0" = 0"+ 2L7E |[«* — = (24)
Then we evaluate the second term of (21)) RHS:

o Sy 1> e |

—E| /- hf‘1H2 + BB Qi - hi»“‘1>H2

o (- B0 - )

m ~ 2 ~ 2 ~
SE| 7= nb Y| g |7 | - 2By AR -

N 2
= (L+ fw —20)E | fi= - || 25)
Finally, combining (2T) with (24) and (23)) we obtain:

2
wh < T+ {GLL]@]E 6% — 051 ||* + 20%E ||x* — 41
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2
Fk—1 k—1
Pt -n|

M
(14 )1+ 2w —28)EY ’
=1

2 ~
= () [N — 0 2L ot
+(1 4 c2)(1 4 2w — 28)wr L. (26)

We proceed by estimating v*:
- 2 ?
* = wjpen -

M
f~k - hkfl _ 52 Q(f-lk—l _ h;c—l)
=1

2
E

M
(fk _ J?k71> 4 (fkl k1 ﬂz Q(]Eik—l _ hf‘1)>
i=1

D e

2

M
f~k71 _ hkfl o 52 Q(.flk_l o hf_l)

i=1

+(14+c)E

Then we examine first term on the (27) RHS.

As all f; are L-Lipschitz continuous (Assumption [2)) the weighted sum Zf\il m; fi is L-Lipschitz
continuous as well. It justifies (7) in following inequality sequence.

2
~ ~ 2
s -

M
DAY ACHEE A T ()
i=1

M
= E|Y_F (VAO") = VHO) + (xf - 7f ) VO
(&) e :
< 2E|D af (VOF) - VEOF)

1:11\4 ,

+2E Z(ﬂf—ﬂ'?_l) V(0% 1)
(i) - M 2
R R SRR
) ’L]\:Jl ,
< 2L°E|j0F — 6" + 2 (Zwa—wflyi)
=1

< 2LE |05 — 0* " 4 2L°E ||xk — w12 @7)

Now we concentrate on the second term on the (27) RHS:
2

M
ka:—l _ hk—l _ 52 Q(fzkfl _ hffl)

i=1

E

2

~ 2
:Eka71 _hkflu +ﬁ2E

M
Do QU —hiTh
i=1

M
—QBE <fk—1 _ hk_17z Q(fzk71 _ h,lil)>

i=1
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&

R |
=vF 11 + B% - 28) + frwwh (28)
Plugging (28) and (27) into (27) yields:
o< (1) (2B |08 — 04| + 2M L2E || — 75
+(1+er) (VT B2 = 28) + fPut T H(w - 1)) (29)

The next step is summing 20) + ¢, [H - @8) + N - @9)):
K+1

2vKE [Gap(zk)] + Z (Hw"® + Nv*)
k=2

K K
[EK—FZ 9w72wk—|—77 +Z 1+ eo)( 1—|—52w—2ﬁ) }
k=0 k=1

+) [NA+er) (V1 + B2 —28) + BPuk(w - 1))]

R

+

) i )
[_ (2 —2HL*(14¢; ') —2NML*(1 + c11)> |+t — 12

ol
Il

1

1 . L?
- <2 - 29*ML* — H(1+ ;1)6‘;\4 ~N(1+¢h) 2L2) Jo* T — 9’“||2H.

By rearranging the terms, we obtain
K+1
2vKE [Gap(zk)| + Z (Hw"® + Nv*)
k=2

I_|

K
E|Zx+ Y [T+ N1 +c1)(1+ 8> —28)]v*
k=
p 0
+ [0y + H(1 4 ¢2)(1+ B°w — 28) + N(1 + ¢1) 8% (w — 1)] w”
k=0

K
5[ (5-2HE+ ) 2V ME @+ ) ) Ik - n¥ R

1 - 6al>
— = —22ML? - H(1 +¢;!

Considering the respective coefficients of ||[#¥T1 — 6% |2, ||7*+1 — 7%||2, w* and v*, we derive the
following restrictions:
% > 4P MI? + H(1+ et + N (1+ erl)2r?
5> 2HL*(1+c3")+2NML*(14 ¢ ") . G31)
H>9wy? + H(1+c2)(1+ f%w —28) + N(1 + ¢1)%*(w — 1)
N>T7y?+ N1 +e)(1+ 52 - 28)
We now turn to selecting the free coefficients to satisfy conditions (31). Beginning with the last
inequality on N, we set

— N1+t 2L2) |oF+T — ek||2]]. (30)

. . 772
c1 = B, which yields N = 7 (32)

is sufficient.
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With this selection the third restriction in (31)) transforms into

H(1—(14e)(1+ Bw—28)) > 9wy® + 722(1 + B)8%(w —1).

The choice
1 32v?
cy = é, 8 = — guarantees sufficiency of H = T
2 w 32
Then, utilizing (33) and (32) we rewrite the second inequality in (3T):
1 3292 - A2
522 BZ L2a+287Y) + 2%ML2(1 +87Y).

This poses constrain on y:

1 1 1 1
<4/z . . —
7= \/2 1920312 + 28Mw? L2 2L V 96w? + 14Mw?

Finally, we examine the first inequality in (3T). Using (32) and (33) we derive:
1 =5 32792 6aL? 72 _
= >4y’ML? —(1 Yar?
5 =4 + 5 M+ﬂ(+6),

(1+2871)

1 1
< — =
To= \/2 AMI? + 576L23—3 & 1 28252

1 1
- \/2 AML? + 57652 12 4 284,212

By choosing

(33)

(34)

(35)

1 1 1 1
=min — I _ , 36
! { 2L V 96w? + 14Mw? \/2 AML? 4+ 576%2 [2 4 280,22 } (36)

and taking (34), (35) into account, we satisfy (31). Consequently, with the definition Zx (19)

substitution, (30) transforms into

27KE [Gap(Z)] + (HwH+! 4+ Nof+h)

< E[rzneaz))({ (ADgp(m, 7) — QDKL(TFJTK+1)>

+ (210" — 0] — (16" — 0[|*)

+(2’Y<F(z1) _ F(zo),z — Z1> _ 27<F(2K+1) _ F(ZK),Z _ ZK+1>)}

—47%(1 = B)[(w — D™ + 0] = 4y*[(w — 1w’ + "]
1 1 K
+HY wh 4+ N> of =2 ML2|0R ! — 6.
k=0 k=0 k=1

To proof the convergence we need to eliminate the —2y(F(25+1) — F(25), 2 — 2K+1) term.

oy (F(KH) - F(2K), 2 — 2541 2

(4) _
< 297 |[F(FHY) = FEEY2 + 29| F(z5HY) = FR)|P
+H9 - 0K+1H2 + ZDKL(ﬂ',TFK+1)

(i1) ~
S ”9 _ 9K+1H2 4 QDKL(ﬂ',TrKJrl) =+ 2L272H0K+1 _ 9K||2

26

n) —
VIFEEH) = FEEIP + e = 25

(37



+492(w = 1) (w5 + (1 = B)2w™) + 49% (v + (1 = B)20")
+2’72(JJU)K+1 _ 2,)/2 K+1 (38)

Where (4) holds by (CS)) and (Pi), and (i7) follows from (TT), (T4), and (17).
Then, the choice of H (33) and N (32) along with (38) provides

K
727<F(ZK+1) _ F(ZK),Z _ ZK+1> _ ZQ,Y2ME2H916+1 _ ok”
k=1
—(Hw® ! 4+ NoEt) — 2D (r, 75 — |05+ —9)1> < 0. (39)
The substitution of (39) into (37) concludes the proof. O

Theorem [I] yields further bounds on the number of communication rounds and the amount of
information transmitted from the clients to the server.
Remark 1. In our analysis we assume that compression does not reduce the size of A, below that of

the scalar f; (i.e., q, > é ). Hence, the cost of transmitting f; can be upper bounded by that of A,.
This allows us to ignore the communication of f; in the O notation.

Corollary [1) In setting of Theorem|I|with v = ~o, Algorithm[I|with exact local gradients needs

1= . 3 ]
o( Lw3/2+LM1/2+L<1/w+w> )
€ M

iterations in order to reach e-accuracy with respect to E [Gap(Zx )| Additionally, it requires

1= 4, =MV T
O( Lw’” + L +L<,/“+1>)
el w M |

bits communicated from nodes to the server.

Proof. The result of Theorem [I|directly provides the first bound.

Given Remark to obtain the second estimate from the first, we consider transmitting Af from the
nodes to the server for i = 1,2, ..., M. This corresponds to sending M dbq,, bits at every iteration.
We omit constants M, d and b under the O notation. As for g,,, we note that for practically relevant
compressors (Beznosikov et al.} [2023a) it holds g, < % It concludes the proof. O

D.2 ANALYSIS IN STOCHASTIC LOCAL ORACLES SETTING

The convergence proof in the stochastic setting largely mirrors that of Theorem[I} Nevertheless, for
the sake of completeness, we present it below.

Theorem 2| Let in setting of Theorem [l|additionally Assumption || holds. Then, it implies

64a%w?
E[Gap(zg)] < —— 2
(Gap(z)) < 5o+

for iterations of Algorithm([I\with stochastic local oracles.

Proof. For the sake of consistency with previous notation, we relabel the full weighted local gradient
fF = nFV f;(6%) and its stochastic estimator flk& = 7EV i (0%).

As in Theorem|[I] we proceed with using the unbiasedness (2)) of compressor Q:

s -a[ ()] (B R )

D p"
where f* = M k= S°M 7kG£,(0%). And Lemmaagain justifies the monotonicity of F.
The next step is condltlomng the result of Lemmaon 2#+1 using @ = 1 and summing over k = 1
to K'
K
272 PARR WP y< > [ (2Dk (7, 7") = 2Dgcr (7, 7T1)) + (]|60% — 0]1> — |05 — 0]1?)

k=1
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+ (29(F(2F) = F(2F71), 2 = 2F) — 29(F (M) — F(2F), 2 — 24F1)
1 1

—gHﬂkH - Wk”% - §||9chrl - 9k||2
+22 " = P2 + 292" -

= (QDKL(ﬂ',TI’l) — QDKL(ﬂ',ﬂ'KJrl)) + (||01 - 0”2 — HGKJrl — 0”2)
+(29(F(21) = F(2%), 2 — 21) — 29(F(5HY) — F(5), 2 — 2K F1)

K-1
+ 3 [2FE) = P, 2 = )
k=1
S 1
LTI R T e I L LI
I Lt a ] ||

e
I

1
27t = o2 4+ 292 g — 6.
Maximizing obtained inequality over compact set z € D and taking full expectation, we get
K
2 E { Fk+17k+1—}<1€ {2D 7Y — 2D, (, wKH
Y {mgg ;( (1), 254 —2) | < Ejmaxq (2Dgp (m,7') = 2Dger (m, 7))

+ (10" =01 — 110"+t —0]%)
+(27<F<z1> — F(:),2 - 1)

2y (F(H) — F(5), 2~ 25H))

-1

=

+

M

<F(zk+1) _ F(zk+1),z _ Zk+1>}

=
Il

1

1 1
+ 30 [ gl =R - Sl - 0t

] =

el
Il
—

F22 = P 4 2Pl - g | )

Several next steps evaluate different terms of (@0). Inequalities (9) and (I0) remain valid. We
continue with evaluating of the last term applying properties (2)) of unbiased compressor Q and its
independence from stochastic local oracles:

E|[F(4) - F)° = EH@) (1B e )H

p*

151 _hk (f _hk)

- ZEHQ(ﬂka —hy)

—QZE< Fhe = 1), P — 0¥

wZE‘
=1

e n

IN

e —ht Q—Eka—h’fHQ. (41)
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. . .. 0 . .
Finally, using (P), definition of z = (W) and choosing z, = z' — 2**1 we estimate

maX{ZDKL(ﬂ',ﬂl) +let — 9\\2} > max{||7r1 a2+ et - 9||2}
z€D z€D
_ _ 2
= a7 “

- 2 2
Slightly changing old notation v* = | ka — Rk H ,wh = Zf\il E ‘ and combining

(T0),@T) with @2) we derive
OF [max{ Z (y(F ) F(zk+1)) - Zk:+1> }]

fik:ft - h”f

K
< max{ZDKL(ﬂ,ﬂl) + 16" — 9”2} + 72 Z (ww® —vF). (43)
k=2

z€D

After that, we estimate 2v||p* — p*~1||? in (@0) via Assumption|l}
27" =PI < 292 MEP||0" — 02, (44)
Last term we want evaluate in (@0) is 2v2||g* — g*=1||%:
2v°Elg" — ¢" 1|
— 22E|WF 4 AR — pF1 — AR

2
:2’72E i(hk hk 1 +ZQ( Fe - ) ZQ( 151 hk) 1)
Z=1M M 2
= 2B (Y0 (g —hi 1)+ZQ( R EII (i
]V;:l Ny =1 ,
=2°B |3 Q(fl —mt) (19 o (it —hi )
=1 =1
M 2 2
& 4.2 ik gk — B)? k—1
) HQ( ke h) +49%(1 - B)%E ZQ( s, ) (45)

Terms differ only in their indices, which makes it convenient to analyze them separately. Here we
utilize cross-device compressors and stochastic oracles independence once again:

o (st
Sl )"+ S5 (o) 0 (f 1)

=1 i#]
M
:ZwE’ff& fhf 2+ZE<Q(~557 7hf)’Q(~Jlifj 7h§)>
i=1 i#£j
M
oY B fhg - ht] 4 (- - )
i=1 i#£j
M 9 ] 2
S T e T
i=1
= ww® + ok, (46)
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Substituting (@6) into [@3)) we reach

27E]lg* — g = 4w (wF + (1= )20 1) 4492 (0 + (1 - B)%0 ).

Finally, we evaluate the sum:

K
27° ) "Ellg" —g* |7
k=1

M=

K
= 44? Z wwk + vk] +4~%(1 — B)? [wwk_l + vk_l]

k=1 k=

T

K
= 4722 ww + k] + 497 (1 - B)? [ww" + 0]
k=1

=
Il
o

= 41+ (-

2) wak-i-’l)k
k=0

—472(1 = B)[ww® + v¥]
—49? [ww® 4+ 2°].

Substituting @8)), (@4)), (3] and (9) into (@0,

297KE [Gap(Zk)] < E[meag{ (4D p (7, 7') — 2Dy (mr, 7 T1))

+ (200" - 0> — [lo"+" —0])

(47)

(48)

+(2’Y<F(zl) _ F(ZO),Z — 21> _ 27<F(ZK+1) _ F(ZK),Z B ZK+1>)}

—47%(1 = B)ww® + v&] — 4y ww® 4 1)
K

+? (wwk - vk) +492(1 4 (1 = B)%)
=2 k

] >

[wwk + ’Uk]

Il
=]

k
K
Jrz{il k+1 k||2<2 2ML2>||9k+1 ak” }
2 1
=1

Using (@T)) as ww* — v*¥ > 0and 0 < B < 1, and introducing

K = IZHG?%({ (4DKL(7T,7T1)—QDKL(T(,TFK—H))
+ (216" —0)* — [|% " —0]1%)
+(29(F(z") = F(2°),2 — ")
v = 2y(F(N) = F(z5),z = 251 |

—49*(1 = B)[ww™ + "] — 49?[ww’ + 7],

[1]

we can rewrite:
2KE[Gap(zx)] < E[Ex + (26" - 6|2 - 0%+ — 0]?)
+(2v(F (") = F(2°),2z — 2")
~2y(F(zK+1) = F(2X), 2 - 2541))]

+ Z [9w72wk + 77211’“]

(49)

1 ~
+Z { TR k2 (2 - 272ML2> o+t — QHH (50)
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Now our objective is recursion for w* and v*. Let us begin with w*:

M
wh = ZEnfzf&—h?HQ ZEHfzkgL_hkl BO(fF — W17

= Sre (- )+ -t et -t

2

d%gb (I4+¢") ZIE

251 251

— hE - O h?‘l)HQ- (51)

‘We now estimate the first term:

ZEHvr’“m (0%) = 7tV fre, (05|

757 151
= ZEH (AEV F6,(0%) = TEV1(0)) — (nF 71V fie, (0571 — 71V £(051)
=1
+ (w8 - o) |
N ZEH PV i (08) = mEVL(08)) — (7] TV i, (0571 = MV A(00) H2

+ZEH (ThV£,(0%) — 7E IV £ (08 ) H2 (52)
=1

The second sum of (52)) was evaluated in (22)), (23) and (23). We proceed with estimating the first
term of

M
SB[ (15V i, (6) — mEV ) (1 S (07 - w00 ) |
i=1

€S ) 2
< mEV fi6(0%) = iV £(6")|
2
IV i (657 - wf—lwi(ek*)u
i=1
B on, 2 2 M a?
< 22(”5 k 1 Z 2 2 (53)
i=1 ]
Substitution of (Z3) and (33) into (32) gives
al? k_ pgk—1|2 72 k_ k=1 da® ,
Z]E e~ Jie' || < 657 E[0" 0"+ 2L%E ||7* — ||1+ﬁ - (54

Then we evaluate the second term of (31)) RHS:
2
— - O h’."—l)H

hk 1)H

= E

hk 1” +52E‘

Zf 7/57
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—21E<f WL BT W)

m
< o 1” + BE| f 1& ~pke 1” — 28R fE - hE2
= (1+p%w—2B)E | frF- fhf‘l (55)
Finally, combining (3T)) with (54) and (53)) we obtain
C o< (1t [69EE (68 — 01 + 202 |t — mt1 |
T ] a1 e R 2o
2 -1, 4a®
+(14+e) (14 2w —28)w" " + S (56)

We proceed by estimating v*:

~ 2
= E| o =B |- BZQ fel—hh

2

(fk_fk71> <fk1 pE-1 _ ﬂZQ ,£L hf‘l)>

SRl |

2

+(L+e) B f -t - 629 e —hiTh)

For the first term on the (37) RHS (27) remains unchanged and we concentrate on the second term on
the (57) RHS:

2

fk 1 hk 1 6ZQ 151 h;c—l)

=1

—F kafl _ hkfluz +ﬁ2E -1 hf‘l)

_26E<fk 1 hk 1 ZQ 151 hf—1)>

=1

@ E Hf’f—l . h’“—lH2 + B2 (0P 4 (w— Dwh ) — 28R ka—l _ h’HHQ
1+ B2 = 28) + Bt (w - D). (57)
Plugging (57) and (27) into (57) yields
o< (1) (2B |08 — 01| + 2ML2E |7 — 7+ )
+(L4c) (VP11 + 82 = 28) + Brww® ). (58)

The next step is summing (50) + >4 [H - (56) + N - G3)):
K41

2vKE [Gap(zk)] + Z (Hw* + Nv*)
k=2

K K
]E[EK + Z [9w72wk + Ty20F 1+ Z (14 co)(1 + f*w — Qﬂ)wk]
k=0 k=1
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K
+ 30 [N(L+ 1) (0 (1 + B2 — 28) + fPww®)]

K
1 ~ _ =~ —
+>[- (2 —2HL (1 +¢;") —2NML*(1+ ¢ 1)) [+t — =1

(Y 5272 _16aL2_ -1 2 k+1 k|2

5~ 2PME — H( 4" ) 5 =N (14" 2L ) o 0|
AKHa? |
M7

4K Ha?

The subsequent analysis is unaffected by the additive term o? introduced in the stochastic
setting and fully mirrors the reasoning of Theorem |I|starting from Equation (30). O

Corollary 2| provides bounds on number of communication rounds and transmitted from nodes to the
server information in stochastic local oracles setup.

Corollary In setting of Theoremwith v = min {70, \/ % }, Algorithmwith stochastic

local oracles needs
1 [w?e?] 1|z 5, = [3
— AL LMY+ L ntll
(@) (82 [ i ] + o + + i +w

iterations in order to reach e-accuracy with respect to E [Gap(Zx )| Additionally, it requires

1 [wo? 1= - MV? w
il Bl - 1/2 [l
0(62{M]+€{Lw + L o +L( M+1>l>

bits communicated from nodes to the server.

Proof. In stochastic local oracles case, guaranties in the Theorem [] are affected by an addi-

. . . 2 2 . . . .
tional irreducible term 764‘17“02. In its presence, optimal stepsize ~ transforms into v =

min {’yo, A/ m} This choice yields QWLK > 7%02 and makes further analysis similar
to the proof of Corollary O

D.3 ANALYSIS IN PARTIAL PARTICIPATION SETTING

We reduce this case to analysis in exact local oracles settings in Section [D.I] by claiming that
multiplying the compression operator by the g, with n ~ Bern(p), yields another valid compression

operator. It remains unbiased, while its compression rate w is scaled by a factor of p.

2
Corollary In setting ofTheoremwith B=2L H=32y ( ) , N = 772%, Yo =70 =7 <

w
P

P P %
v
— < o

for iterations of Algorithm[I|with partial participation.

_ . L 1 1 1 .. .
Tp = N oF \/96(“)3+14M(W)2 ’ \/2 AME2+576 & (2) L2 +28(2) L2 it implies

Proof. We consider Q' = %Q and utilize independence of 7 and Q to write

" ’ n)* 2 7\’ 2@ 1
E|Zew)| =&(2) 1ot =& (1) ElowiR € Sl 59
p p p p
Independence along with (2 guaranties the unbiasedness of Q' as well:

E’0(z) =E"EQ(2) 2 .. (60)
P P
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The established properties implies that operator Q' is unbiased compressor with compression rate
w' = %. This enables the application of Theoremand finishing the proof. O

Given Corollary [3|in partial participation setting we establish the following bounds.
Corollary [ In setting of Corollary[S|\with ~y = ~y,, Algorithm[I|with partial participation needs

1 ~ w 3/2 =~ 1/ w3 w
ol=|L(Z IM7yp | =2
£ (p> - * Mp3+p

iterations in order to reach e-accuracy with respect to E [Gap(Zx)|. Additionally, it requires
1/2 1
1. - M2
O(lL<w> +L p+L<1/“’+1> )
€ p w Mp

bits communicated from nodes to the server.
Proof. Proof in this setting completely coincide with the proof of Corollary [T} O

E LLM USAGE

Beyond aiding in the editing process, no large language models (LLMs) were employed in this
work. The entire intellectual content — including all facts, claims, arguments, and proofs — remained
unaffected by LLM influence.
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