
000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 UNLOCKING THE POTENTIAL OF WEIGHTING METHODS IN FEDERATED LEARNING THROUGH COMMUNICATION COMPRESSION

Anonymous authors

Paper under double-blind review

ABSTRACT

Modern machine learning problems are frequently formulated in federated learning domain and incorporate inherently heterogeneous data. Weighting methods operate efficiently in terms of iteration complexity and represent a common direction in this setting. At the same time, they do not address directly one of the main obstacle in federated and distributed learning – communication bottleneck. We tackle this issue by incorporating compression into the weighting scheme. We establish the convergence under a convexity assumption, considering both exact and stochastic oracles. Finally, we evaluate the practical performance of the proposed method on classification problems.

1 INTRODUCTION

Behind groundbreaking results achieved by new machine learning models lies a carefully constructed optimization process. From the advent of Stochastic Gradient Descent (SGD) (Robbins & Monro, 1951) to adaptive methods like Adam (Kingma & Ba, 2014) and beyond, new outputs of optimization theory not only accelerated convergence but have, at times, redefined what is possible in entire industries. Contemporary supervised machine learning approaches universally require large-scale training data to reach state-of-the-art results on established benchmarks (Alzubaidi et al., 2021; Hoffmann et al., 2022; Shoeybi et al., 2019). The primary way to process this volume of samples is usage of multiple nodes for computations. This setting poses new challenges for the research community, highlighting once again that the future of the entire field hinges on novel solutions.

To harness the full potential of such data, distributed learning (Verbraeken et al., 2020) has become a domain paradigm, enabling cutting-edge results in computer vision (CV) (Goyal et al., 2017), natural language processing (NLP) (Shoeybi et al., 2019), and recommendation systems (Covington et al., 2016) by leveraging multiple machines working in parallel. Formally, this setting can be characterized by the following formulation of an optimization problem:

$$\min_{\theta \in \mathbb{R}^d} \left[f(\theta) = \frac{1}{M} \sum_{i=1}^M f_i(\theta) \right], \quad (1)$$

where $f_i(\theta)$ represents the empirical risk (Shalev-Shwartz et al., 2010) for data at node i . A bottleneck emerges in this distributed setting: communication. During the training process local model states should be synchronized. This coordination steps can be prohibitively time-expensive and completely offset advantage gained from a parallel processing.

Distributed learning offers several major approaches to address this issue: *local steps* techniques (Stich, 2018; Gorbunov et al., 2021b), *partial participation* concept (Li et al., 2019b; Rizk et al., 2021), *data-similarity-based* methods (Hendrikx et al., 2020; Kovalev et al., 2022; Lin et al., 2023). Finally, in our work, we adopt *compression*. The first works in this field were dedicated to one-bit quantization (Seide et al., 2014; Bernstein et al., 2018). Currently, the most widely used techniques include quantization (Alistarh et al., 2017) and sparsification (Alistarh et al., 2018; Beznosikov et al., 2023a) methods such as *RandK* and *TopK*. A key consideration in this context is that increasing the number of nodes enhances the robustness of the training process to inaccuracies in aggregated local gradients. This gives rise to a trade-off between transmission precision and communication cost, which can be exploited by compressing gradients during aggregation. Formally, compression can be described using unbiased and contractive compression operators. In our work, we utilize the former.

Definition 1. We say that a map $\mathcal{C} : \mathbb{R}^d \rightarrow \mathbb{R}^d$ is an unbiased compression operator, or simply unbiased compressor, if there exist a constant ω such that holds:

$$\mathbb{E}[\mathcal{Q}(x)] = x, \mathbb{E}[\|\mathcal{Q}(x)\|^2] \leq \omega \|x\|^2 \text{ for all } x \in \mathbb{R}^d. \quad (2)$$

Contemporary problem formulations often additionally involve heterogeneity, which necessitates the development of federated learning techniques (Konečný et al., 2016; McMahan et al., 2017; Smith et al., 2017; Li et al., 2020; Kairouz et al., 2021). The high cost of transmitting raw samples often makes homogeneous redistribution infeasible. Moreover, settings exist in which observation redistribution is impractical or fundamentally disallowed (Nishio & Yonetani, 2019; Zhang et al., 2020; Diao et al., 2020; Mishchenko et al., 2023; Khrirat et al., 2023; Islamov et al., 2025).

Standard formulation (1) of the objective function treats all devices equally. However, since the data across nodes may inherently differ, the effectiveness of this formulation becomes questionable. To address this issue, various weighting strategies were proposed, alternating the optimization problem into:

$$\min_{\theta \in \mathbb{R}^d} \left[\sum_{i=1}^M \pi_i f_i(\theta) \right], \quad (3)$$

where π_i represent weights constrained to the simplex Δ^{M-1} , provided by particular weighting method. The idea here is to assign big weights to clients with clean representative or even unique data, and small weights to ones with noisy inappropriate samples. If this is achieved by any means, performance of the model can be improved by effectively training it on higher-quality observations.

Currently, a wide range of weighting methods has been developed (McMahan et al., 2017; Nishio & Yonetani, 2019; Wang et al., 2020; Cao et al., 2020). Each technique offers its own advantages, such as adaptivity or the absence of extra information communication. *Agnostic* reformulation of optimization problem (Mohri et al., 2019; Namkoong & Duchi, 2016; Shalev-Shwartz & Ben-David, 2014; Hashimoto et al., 2018):

$$\min_{\theta \in \mathbb{R}^d} \max_{\pi \in \Lambda} \left\{ \sum_{i=1}^M \pi_i f_i(\theta) \right\}, \quad (4)$$

where Λ is a convex subset of Δ^{M-1} , combines both of these advantages. The weights are selected automatically during training, while the strategy requires only the local losses to be known by the server. Communicating this information is inexpensive and does not exacerbate the communication bottleneck. Intuitively, the method operates as follows: if certain nodes possess unique observations, a brief training phase can lead to a rapid loss reduction on the remaining users' samples. This, in turn, assigns higher weights to the devices holding the unique data, thereby mitigating the problem of data imbalance and reducing model bias.

However, while mitigating the issues of data heterogeneity across nodes, weighting methods do not address the core challenge – the communication bottleneck – which makes them independently nonviable in real-world applications. To address this fundamental problem and unlock the practical potential of weighting methods we aim to investigate the following question.

Is it possible to effectively combine weighting-based approaches with communication compression techniques?

2 OUR CONTRIBUTION

- We answer the posed question affirmatively by introducing ADI (Algorithm 1). It incorporates compression (1) into agnostic weighting scheme (4). Moreover, operating in the saddle point problem setting, the proposed method never requires the transmission of full gradients, which is further reinforce practical applicability.
- We establish theoretical guarantees under general assumptions for the weighting setup. Our analysis additionally includes practically relevant settings of stochastic local oracles and partial participation.

108 • We validate ADI performance on the classification problems, including a large scale real
109 world task and an experimental study of the interplay between compression and weighting
110 techniques.

112 3 RELATED WORKS
113

114 In this section, we intend to survey both classical results and recent developments in the fields of
115 weighting methods, compression, and saddle point problems, with a particular focus on studies that
116 integrate the latter two. These directions are most relevant to our work.

117 3.1 WEIGHTING METHODS

118 First approach in this field FedAvg (McMahan et al., 2017) suggests to assign weights to clients
119 regarding the size of dataset m_i : $\pi_i = \frac{m_i}{m}$, where $m = \sum_{i=1}^M m_i$. This approach enables weight
120 determination prior to training initiation, which precludes the need for additional inter-node communica-
121 tion and mitigates associated bottleneck. However, it only addresses data imbalance in terms of
122 quantity rather than quality. Subsequent approaches employ dynamic weight assignment. To estimate
123 client importance, they leverage such information as cross-client weight distribution divergence
124 (Wang et al., 2020), local-global gradient discrepancy (Cao et al., 2020; Nguyen et al., 2020), and
125 local loss (Mohri et al., 2019; Cho et al., 2022). Alternative approaches leverage hardware-aware
126 metrics, including node computation capacity and connection stability, to accelerate training. These
127 methods minimize participation of edge devices with significantly slower compute or communication
128 capabilities (Nishio & Yonetani, 2019; Li et al., 2022; Ribeiro et al., 2022).

129 Utilized in this paper technique (4) (Mohri et al., 2019; Namkoong & Duchi, 2016; Shalev-Shwartz &
130 Ben-David, 2014; Hashimoto et al., 2018) offers the benefit of adaptivity while introducing minimal
131 additional communication overhead, as it only requires transmitting local loss values – a single scalar
132 per device. The communication cost of aggregating this exact information is incomparably lower
133 than even that of compressed gradients. This feature is particularly crucial as we aim to address the
134 communication bottleneck. Finally, as can be observed, problem (4) is a saddle-point problem not a
135 classical minimization one. This introduces additional challenges to algorithm design and theoretical
136 analysis.

137 3.2 METHODS FOR SADDLE POINT PROBLEMS

138 The Gradient Descent method can be generalized to Descent–Ascent algorithm for saddle
139 point problems (SPP). However, this straightforward generalization may fail to converge even
140 for relatively simple objective functions (Beznosikov et al., 2023b). A more robust alternative,
141 the Extragradient method, was introduced in 1976 by Korpelevich and has since become a
142 fundamental paradigm for solving saddle point problems. The original Extragradient algorithm
143 requires two gradient evaluations per iteration, but there are modifications that reduce this to a single
144 one, for instance, optimistic approach (Popov, 1980). It is worth noting that alternative techniques for
145 solving SPP also exist (Tseng, 2000; Nesterov, 2007; Malitsky, 2015). At the same time, the research
146 community continues to actively adapt Extragradient method to various settings (Nemirovski,
147 2004; Alacaoglu & Malitsky, 2022), including distributed learning with communication compression
148 (Beznosikov et al., 2022).

149 3.3 COMPRESSION METHODS

150 QSGD (Alistarh et al., 2017) was one of the initial steps toward understanding compression techniques
151 applied to classical minimization problems. It examined the incorporation of quantized communica-
152 tion into SGD (Robbins & Monro, 1951). Authors used restrictive assumptions that all nodes have
153 identical functions, and the stochastic gradients have bounded second moment. These assumptions
154 were relaxed in subsequent studies (Khirirat et al., 2018; Mishchenko et al., 2024). Additionally,
155 QSGD suffered from an irreducible term in the theoretical convergence bound, caused by the stochas-
156 ticity of the compressor, even when full local gradients were computed. The next notable concept in
157 this field was the error feedback technique. Initially introduced as a successful heuristic (Seide et al.,
158 2014; Ström, 2015), later it obtained theoretical support in (Stich et al., 2018; Karimireddy et al.,
159 2019) and enabled the analysis of biased compression. Then, a significant advancement followed
160 with the idea of compressing the difference between successive local gradient estimators, instead of

162 directly compressing the gradients. This concept was first introduced in the DIANA (Mishchenko
163 et al., 2024) and enabled vanishing irreducible compressor stochasticity term, improved theoretical
164 guarantees and extension of the analysis to new settings. Later, in (Richtárik et al., 2021), it was
165 shown that local state difference compression can be interpreted as a variant of the error feedback
166 technique, which led to the development of the EF21 algorithm. Subsequently, in MARINA (Gor-
167 bunov et al., 2021a) the PAGE (Li et al., 2021) variance reduction technique was utilized. Using
168 biased local gradient estimators MARINA reached state-of-the-art convergence rates. Finally, the
169 authors of DASHA (Tyurin & Richtárik, 2022) ultimately combined error feedback with the EF21
170 mechanism and achieved optimal oracle complexity while preserving the state-of-the-art communica-
171 tion performance of MARINA. Moreover, they eliminated the need for periodic transmission of full
172 gradients, which was required in MARINA.

173 Despite the fundamental importance of variational inequalities including saddle point problems,
174 and their extensive study, methods for them which incorporate the compression remains largely
175 unexplored. Only several algorithms operating in this setting was proposed. MASHA (Beznosikov
176 et al., 2022), integrates operator compression with the Extragradient concept. An extension of
177 this approach, Optimistic MASHA (Beznosikov & Gasnikov, 2022), incorporates the optimistic
178 principle and, through the use of permutation compressor, leverages data similarity to strengthen
179 theoretical guarantees. Finally, Three Pillars (Beznosikov et al., 2023c) combines compres-
180 sion, data similarity, and local steps, unifying all three concepts within a single framework and
181 achieving optimal theoretical guarantees. However, despite these theoretical advantages, the practical
182 applicability of Three Pillars remains limited. In particular, due to its strong reliance on data
183 similarity across all devices. Moreover, a key practical drawback of all three methods lies in the
184 requirement for periodic transmission of full operator values.

185 4 SETUP

187 The analysis in this work is conducted relying on further assumptions.

188 **Assumption 1.** For all $i = 1, 2, \dots, M$, let f_i be \tilde{L}_i -Lipschitz, i.e., $|f_i(\theta_1) - f_i(\theta_2)| \leq \tilde{L}_i \|\theta_1 - \theta_2\|$
189 holds for all $\theta_1, \theta_2 \in \mathbb{R}^d$. We denote $\tilde{L} = \max_i \{\tilde{L}_i\}$.

190 **Assumption 2.** For all $i = 1, 2, \dots, M$, let f_i be L_i -smooth, i.e., $\|\nabla f_i(\theta_1) - \nabla f_i(\theta_2)\| \leq L_i \|\theta_1 - \theta_2\|$ holds for all $\theta_1, \theta_2 \in \mathbb{R}^d$. We denote $L = \max_i \{L_i\}$.

191 **Assumption 3.** For all $i = 1, 2, \dots, M$, let f_i be convex, i.e., $f_i(\theta_1) \geq f_i(\theta_2) + \langle \nabla f_i(\theta_2), \theta_1 - \theta_2 \rangle$
192 holds for all $\theta_1, \theta_2 \in \mathbb{R}^d$.

196 5 ALGORITHMS AND THEORETICAL ANALYSIS

197 5.1 DESCRIPTION OF THE ALGORITHM

200 Now we are ready to present our Algorithm 1 ADI (Agnostic DIANA). In suggested approach each
201 iteration begins with the nodes computing weighted loss gradient \tilde{f}_i , compressing the difference
202 with their local memory state, and sending the result to the server – Lines 5, 7 and 9, respectively.
203 Additionally, Lines 5 and 7 represents the modifications required in stochastic local oracle and partial
204 participation settings. The nodes then update their local states on Line 8.

205 All remaining operations are carried out on the server side. Firstly, it aggregate compressed local
206 differences and local losses – Line 11. Then, gradients estimators g and p with respect to θ and
207 π are computed on Lines 12 and 14. After that, the update of θ is performed using the optimistic
208 version \hat{g} of oracle g – Lines 16 and 13. At the same time, the weights π_i are constrained to remain
209 within a subset Λ of the simplex. Hence, a Mirror Descent step on Line 17 is applied to update
210 them. Where the Kullback–Leibler divergence is used as the Bregman divergence. Additionally, we
211 point out that due to the maximization over π_i in agnostic objective formulation (4), a positive sign
212 precedes the inner product. Finally, server updates the local state h and communicates θ and π_i to
213 each node.

214 Thus, Lines 16 and 17 – considering Lines 13 and 15 – correspond to a step of Optimistic
215 Extragradient (Yudin, 1983) method (Popov, 1980). While Lines 7, 8, 11, 12, 18 reflect the idea
of difference compression introduced in DIANA (Mishchenko et al., 2024). This concept resembles

216 the variance reduction technique (Johnson & Zhang, 2013) and similarly enables the elimination of
 217 the irreducible term, caused by the stochasticity, in the convergence analysis. These methods are
 218 driven by an intuitive idea: near the optimum of a smooth function, the full gradient tends to zero,
 219 while local gradients may remain relatively large.

220 At the same time, according to Definition 1,
 221 the distortion introduced by the compressor
 222 scales with the norm of its input. As a re-
 223 sult, near the optima compression of local
 224 gradient introduce a significant noise and pre-
 225 vent the aggregated estimator from converging
 226 to zero. This leads to erratic oscillations
 227 near the solution θ^* in practice and to an irre-
 228 ducible variance term in theoretical analysis.
 229 In contrast, the difference between local
 230 gradients at nearby points is bounded due to the
 231 smoothness of each local objective. Hence,
 232 as the algorithm approaches the optimum and
 233 the update steps diminish, it becomes neces-
 234 sary to compress progressively finer differ-
 235 ences. Consequently, the local estimators h_i^k
 236 tend to the local gradients $\nabla f_i(\theta^*)$. It ensure
 237 that the aggregated estimator h^k converges
 238 to zero. This property allows the method to
 239 converge to the optimum itself, rather than to
 a neighborhood of it.

240 Let us now justify the choice of DIANA as the
 241 compression foundation in our method. To
 242 this end we consider alternative candidates.
 243 Firstly, DASHA (Tyurin & Richtárik, 2022),
 244 which demonstrates state-of-the-art results in
 245 the classical minimization setting, offers the-
 246 oretical guarantees under non-convex objec-
 247 tive functions. At the same time, the theore-
 248 tical analysis of SPP in such setting remains
 249 largely underdeveloped, making the exten-
 250 sion of DASHA’s analysis to our scenario in-
 251 tricated. MASHA (Beznosikov et al., 2022),
 252 on the other hand, operates in the SPP setting and incorporates compression. However, it requires
 253 periodic communication of full gradients, which significantly limits its practical applicability. By
 254 establishing the analysis of DIANA within the SPP setup, we avoid such constraints while leveraging
 its compression strategy.

255 Another detail we want to highlight is simplex regularization. In various problem settings, it may
 256 be advantageous to impose additional constraints on the weights by restricting the feasible set to
 257 a subset Λ of the simplex Δ^{M-1} (Mehta et al., 2024). Let us provide a reasoning, helpful for
 258 understanding which regularization can be suitable in our case. Considering optimization problem
 259 (4) with $\Lambda = \Delta^{M-1}$ at optimum point the weights take the form of $\pi_{i_0} = 1, \pi_j = 0$ for all $j \neq i_0$,
 260 where $i_0 = \operatorname{argmax}_i f_i(\theta^*)$. At the same time, some clients may possess noisy samples. The model
 261 can not – and should not – learn patterns from such data. Even a single device with notable higher
 262 noise level can cause an obstacle to effective training. Particularly, since its data is less representative,
 263 it experiences a slower decrease in loss. As training progresses, this leads to the weight of that client
 264 growing close to one. Further training will only lead to overfitting the model to the noise present
 265 in the data of the given device. This potential issue can be mitigated by using $\Lambda = \Delta^{M-1} \cap Q_a^M$,
 266 where $Q_a^M = \{x \in \mathbb{R}^M \mid 0 \leq x_i \leq \frac{a}{M}\}$ and $a \in [1, M]$. The parameter a controls the trade-off
 267 between full flexibility in weight assignment and stronger averaging. Specifically, setting $a = 1$
 268 recovers formulation (1), while $a = M$ imposes no additional constraints on the weights. We employ
 269 regularization of the specified form and additionally highlight its role in the theoretical section.

Algorithm 1 ADI

1: **Input:** Starting points $\theta^0 \in \mathbb{R}^d, \pi^0 \in \Lambda$, $\{h_i^0\}_{i=1}^M, h_i^0 \in \mathbb{R}^d$ and $h^0 = \sum_{i=1}^M h_i^0$, num-
 2: ber of iterations K , number of nodes M , random
 3: variables $\eta_i^k \sim \text{Bern}(p)$.
 4: **Parameters:** $\alpha, \beta, \gamma_\theta, \gamma_\pi > 0; p \in (0, 1]$.
 5: **for** $k = 1, 2, 3, \dots, K$ **do**
 6: **for all nodes** $i = 1, 2, \dots, M$ **in parallel do**
 7: $\tilde{f}_i^k = \pi_i^k \nabla f_i(\theta^k)$ exact local gradient
 8: $f_i^k = \pi_i^k \nabla f_i, \xi_i(\theta^k)$ stochastic oracle
 9: $\Delta_i^k = \tilde{f}_i^k - h_i^k$
 10: $\hat{\Delta}_i^k = \hat{Q}(\Delta_i^k)$
 11: $\hat{\Delta}_i^k = \frac{\eta_i^k}{p} \hat{Q}(\Delta_i^k)$ partial participation
 12: $h_i^{k+1} = h_i^k + \beta \hat{\Delta}_i^k$
 13: send $\hat{\Delta}_i^k, f_i(\theta^k)$ to server
 14: **end for**
 15: $\hat{\Delta}^k = \sum_{i=1}^M \hat{\Delta}_i^k$
 16: $g^k = h^k + \hat{\Delta}^k$
 17: $\hat{g}^k = (1 + \alpha)g^k - \alpha g^{k-1}$
 18: $p^k = (f_i(\theta^k))_{i=1}^M$
 19: $\hat{p}^k = (1 + \alpha)p^k - \alpha p^{k-1}$
 20: $\theta^{k+1} = \theta^k - \gamma_\theta \hat{g}^k$
 21: $\pi^{k+1} = \arg \min_{\pi \in \Lambda} \{ -\gamma_\pi \langle \hat{p}^k, \pi \rangle + D_{KL}(\pi, \pi^k) \}$
 22: $h^{k+1} = h^k + \beta \hat{\Delta}^k$
 23: server send $\pi_i^{k+1}, \theta^{k+1}$ to i^{th} node for all i
 24: **end for**

Finally, let us follow all communications in the proposed algorithm. At each iteration, transmissions of $f_i(\theta^k)$, $\hat{\Delta}_i^k$ from the nodes to the server and π_i^k , θ^k in the opposite direction are required. As $f_i(\theta^k)$ and π_i^k are scalar values they do not pose major threat to communication efficiency. Then, both $\hat{\Delta}_i^k$ and θ^k have dimensionality d . The vector θ^k is transmitted from the server to nodes, which poses fewer challenges (Kairouz et al., 2021). In contrast, aggregation of $\hat{\Delta}_i$ on the server constitutes the main obstacle to communication efficiency. ADI address this issue since $\hat{\Delta}_i^k$ is compressed version of Δ_i^k , which makes its transmission significantly cheaper than that of an general vector of dimension d . We are now ready to proceed to the theoretical analysis. In the following sections, we provide guaranties for the cases of exact local gradients, stochastic local oracles and partial participation. For a comparison of the ADI rates with those of prior compression methods, we refer to Appendix A.

5.2 CONVERGENCE GUARANTIES IN EXACT LOCAL GRADIENT SETTING

We establish the convergence with respect to **Gap** function (Definition 2 in Section F). It is standard for convex-concave SPP setup criteria. To initiate the analysis, we introduce the notation $z = (\theta, \pi)^\top$ and $F(z^k) = (g^k, -p^k)^\top$. Descent Lemma 3 (Section F) imposes conditions on operator F evaluation across iterations. Then Lemmas 1 and 2 (Section E) justify the transition to the **Gap**(z) function and further analysis.

Finally, Theorem 1 represents our main theoretical result. We remind that the constants L and \tilde{L} were introduced in Assumptions 2 and 1 respectively.

Theorem 1. *Let Assumptions 1, 2, 3 hold and $\alpha = 1$, $\beta = \frac{1}{\omega}$, $\gamma_\pi = \gamma_\theta = \gamma \leq \gamma_0 = \min \left\{ \frac{1}{2L} \sqrt{\frac{1}{96\omega^3 + 14M\omega^2}}, \sqrt{\frac{1}{2} \frac{1}{4M\tilde{L}^2 + 576\frac{a\omega^3}{M}L^2 + 28\omega^2L^2}} \right\}$, $\Lambda = \Delta^{M-1} \cap Q_a^M$, where $Q_a^M = \{x \in \mathbb{R}^M \mid 0 \leq x_i \leq \frac{a}{M}\}$. Then, after K iterations of Algorithm 1 with unbiased compressor 1 \mathcal{Q} and exact local gradients solving problem (4) the following holds:*

$$\mathbb{E}[\text{Gap}(\bar{z}_K)] \leq \frac{V}{2\gamma K},$$

where

$$\begin{aligned} V = & \mathbb{E} \left[\max_{z \in \mathcal{D}} \left\{ 4D_{KL}(\pi, \pi^1) + 2\|\theta^1 - \theta\|^2 \right. \right. \\ & \left. \left. + 2\gamma \langle F(z^1) - F(z^0), z - z^1 \rangle \right\} + 32\gamma^2 \omega^2 \sum_{k=0}^1 \sum_{i=1}^M \left\| \tilde{f}_i^k - h_i^k \right\|^2 + 7\gamma^2 \omega \sum_{k=0}^1 \left\| \tilde{f}^k - h^k \right\|^2 \right] \end{aligned}$$

and $\bar{z}_K = \frac{1}{K} \sum_{k=1}^K z^k$.

This implies the following bounds on the number of communication rounds and the amount of information transmitted from the clients to the server.

Corollary 1. *In setting of Theorem 1 with $\gamma = \gamma_0$, Algorithm 1 with exact local gradients needs*

$$\mathcal{O} \left(\frac{1}{\varepsilon} \left[\tilde{L}\omega^{3/2} + \tilde{L}M^{1/2} + L \left(\sqrt{\frac{a\omega^3}{M}} + \omega \right) \right] \right)$$

iterations in order to reach ε -accuracy with respect to $\mathbb{E}[\text{Gap}(\bar{z}_K)]$. Additionally, it requires

$$\mathcal{O} \left(\frac{1}{\varepsilon} \left[\tilde{L}\omega^{1/2} + \tilde{L}\frac{M^{1/2}}{\omega} + L \left(\sqrt{\frac{a\omega}{M}} + 1 \right) \right] \right)$$

bits communicated from nodes to the server.

The first term in both bounds in Corollary 1 originate from the recursion on $\|\pi_i^{k+1} - \pi_i^k\|_1^2$. If the weights are fixed, these terms vanish, and under condition $\omega \leq M$, compression leads to at least no increase in communication complexity. Returning to the analysis of the full result, we must acknowledge that weighting algorithms typically suffer from weak theoretical guarantees. For instance, theoretically FedAvg enjoys only sublinear convergence rate in the strongly convex setting (Li et al., 2019b). In our setup, the weighting-induced terms deteriorate the theoretical guarantees monotonically with increasing compression rate. Finally, discussing the role of simplex regularization

324 Λ in the theoretical analysis, we note that it enables an acceleration by a factor of $\frac{1}{M}$ in square-root
 325 terms.

327 5.2.1 EXTENSION TO THE NON-CONVEX SETUP

328 In this section we present the convergence analysis under the relaxed convexity Assumption 3. We
 329 introduce an additional Assumption 4 is inspired by the *minty* assumption, traditionally associated
 330 with non-monotonicity (non-convexity) in the respective literature Dang & Lan (2015); Mertikopoulos
 331 et al. (2018); Kannan & Shanbhag (2019).

332 **Assumption 4.** *Let there exists a point $\theta^* \in \mathbb{R}^d$ such that:*

$$334 \quad \left\langle \sum_{i=1}^M \pi_i \nabla f_i(\theta), \theta - \theta^* \right\rangle \geq \sum_{i=1}^M \pi_i f_i(\theta) - \sum_{i=1}^M \pi_i f_i(\theta^*), \text{ for all } \theta \in \mathbb{R}^d, \pi \in \Delta^{M-1}.$$

335 For a more detailed discussion of the setting and the proofs for this section, please refer to Appendix
 336 G.

337 Our setting is special, since the objective function $\sum_{i=1}^M \pi_i f_i(\theta)$ is linear in the weights π by
 338 construction. This is also reflected in the criterion presented in (5) below. Convergence with respect
 339 to the weights π involves the same term as in the convex setting, whereas convergence with respect to
 340 the parameter θ is now expressed through the mean squared norm of the gradients.

$$341 \quad W^K = \mathbb{E} \max_{\pi' \in \Lambda} \left\langle \sum_{i=1}^M \pi'_i f_i(\theta^*), \bar{\pi}^K - \pi' \right\rangle + \frac{1}{8\gamma K} \sum_{k=1}^K \mathbb{E} \|\pi^{k+1} - \pi^k\|^2 + \frac{\gamma}{32} \mathbb{E} \left\| \sum_{i=1}^M \bar{\pi}_i^K \nabla f_i(\bar{\theta}_i^K) \right\|^2, \quad (5)$$

$$342 \quad \text{Where } \bar{\pi}^K = \sum_{k=1}^K \frac{1}{K} \pi^{k+1} \text{ and } \left\| \sum_{i=1}^M \bar{\pi}_i^K \nabla f_i(\bar{\theta}_i^K) \right\|^2 = \mathbb{E}_k \|\tilde{f}^k\|^2 = \frac{1}{K} \sum_{k=1}^K \|\tilde{f}^k\|^2.$$

343 The central result of this section, Corollary 2, provides convergence rates with respect to W^K under
 344 the relaxed assumptions. We remind that the constants L and \tilde{L} were introduced in Assumptions 2
 345 and 1 respectively.

346 **Corollary 2.** *In setting of Theorem 3 with $\gamma = \gamma_1$, Algorithm 1 with exact local gradients needs*

$$347 \quad \mathcal{O} \left(\frac{1}{\varepsilon} \left[\tilde{L} \omega^{3/2} + \tilde{L} M^{1/2} + L \left(\sqrt{\frac{a\omega^3}{M}} + \omega \right) \right] \right)$$

348 *iterations in order to reach ε -accuracy with respect to W^K . Additionally, it requires*

$$349 \quad \mathcal{O} \left(\frac{1}{\varepsilon} \left[\tilde{L} \omega^{1/2} + \tilde{L} \frac{M^{1/2}}{\omega} + L \left(\sqrt{\frac{a\omega}{M}} + 1 \right) \right] \right)$$

350 *bits communicated from nodes to the server.*

351 5.3 CONVERGENCE GUARANTIES IN STOCHASTIC LOCAL ORACLE SETTING

352 Despite introducing new challenges, federated learning is still subject to classical difficulties of
 353 gradient-based optimization. In practice, computing the full even local gradient may be prohibitively
 354 expensive, especially in the presence of devices with limited computational capabilities. This makes
 355 stochastic optimization (Robbins & Monro, 1951; Bottou et al., 2018) particularly relevant in practical
 356 applications, including the context of federated learning. We extend our analysis to cover this setting
 357 as well.

358 Guarantees in this case are provided under assumption that all nodes have access to an unbiased oracle
 359 $\nabla f_{i,\xi_i}(x^k)$ with bounded variance, i.e., Assumption 5 holds.

360 **Assumption 5.** *Let for all $k = 1, 2, \dots, K$ and $i = 1, 2, \dots, M$ $\nabla f_{i,\xi_i}(\theta^k)$ satisfies*

- 361 *i)* $\mathbb{E} \nabla f_{i,\xi_i}(\theta^k) = \nabla f_i(\theta^k)$
- 362 *ii)* $\mathbb{E} \|\nabla f_{i,\xi_i}(\theta^k) - \nabla f_i(\theta^k)\|^2 \leq \sigma^2$.

363 ADI structure imposes minor modification in this setting. Particularly, Line 5 transforms into *sample*
 364 $\tilde{f}_i^k = \pi_i^k \nabla f_{i,\xi_i}(\theta^k)$. The theoretical analysis similarly remains largely unchanged, as stochasticity

378 was already involved in the compression operator, and the oracle is assumed to be independent of
379 it. Thus, we can reformulate Theorem 1 for stochastic oracle setting as follows. **We remind that the**
380 **constants L and \tilde{L} were introduced in Assumptions 2 and 1 respectively.**

381 **Theorem 2.** *Let in setting of Theorem 1 additionally Assumption 5 holds. Then, it implies*

$$383 \mathbb{E}[\mathbf{Gap}(\bar{z}_K)] \leq \frac{V}{2\gamma K} + \gamma \frac{64a^2\omega^2}{M} \sigma^2$$

385 for iterations of Algorithm 1 with stochastic local oracles.

387 Choosing $\gamma = \min \left\{ \gamma_0, \sqrt{\frac{VM}{128a^2\omega^2\sigma^2K}} \right\}$ we obtain the further guarantees.

389 **Corollary 3.** *In setting of Theorem 2 with $\gamma = \min \left\{ \gamma_0, \sqrt{\frac{VM}{128a^2\omega^2\sigma^2K}} \right\}$, Algorithm 1 with stochastic*
390 *local oracles needs*

$$392 \mathcal{O} \left(\frac{1}{\varepsilon^2} \left[\frac{a^2\omega^2\sigma^2}{M} \right] + \frac{1}{\varepsilon} \left[\tilde{L}\omega^{3/2} + \tilde{L}M^{1/2} + L \left(\sqrt{\frac{a\omega^3}{M}} + \omega \right) \right] \right)$$

394 iterations in order to reach ε -accuracy with respect to $\mathbb{E}[\mathbf{Gap}(\bar{z}_K)]$. Additionally, it requires

$$396 \mathcal{O} \left(\frac{1}{\varepsilon^2} \left[\frac{a^2\omega\sigma^2}{M} \right] + \frac{1}{\varepsilon} \left[\tilde{L}\omega^{1/2} + \tilde{L}\frac{M^{1/2}}{\omega} + L \left(\sqrt{\frac{a\omega}{M}} + 1 \right) \right] \right)$$

398 bits communicated from nodes to the server.

400 In this case, guarantees in Theorem 2 are affected by an additional irreducible term $\gamma \frac{64a^2\omega^2}{M} \sigma^2$ induced
401 by the stochasticity of the local oracle. It is general term for analysis in stochastic oracle setup with
402 Assumption 5. In its presence, optimal stepsize γ transforms into $\gamma = \min \left\{ \gamma_0, \sqrt{\frac{VM}{128a^2\omega^2\sigma^2K}} \right\}$ and
403 communication complexity bounds include an additional term $\frac{1}{\varepsilon^2} \left[\frac{\omega\sigma^2}{M} \right]$.
404

406 5.4 CONVERGENCE GUARANTIES IN PARTIAL PARTICIPATION SETTING

408 Another classical direction in federated learning is partial participation (Li et al., 2019b; Rizk et al.,
409 2021). In its context only the subset of all nodes are involved in each computation and communication
410 round. This modification addresses several challenges inherent to federated setting, primarily the
411 periodic unavailability of some devices (Li et al., 2019b; Yang et al., 2021). We establish theoretical
412 guarantees for this setup as well.

413 **Corollary 4.** *In setting of Theorem 1 with $\beta = \frac{p}{\omega}$, $H = 32\gamma^2 \left(\frac{\omega}{p} \right)^2$, $N = 7\gamma^2 \frac{\omega}{p}$, $\gamma_\pi = \gamma_\theta = \gamma \leq$*

$$415 \gamma_p = \min \left\{ \frac{1}{2\tilde{L}} \sqrt{\frac{1}{96 \left(\frac{\omega}{p} \right)^3 + 14M \left(\frac{\omega}{p} \right)^2}}, \sqrt{\frac{1}{2} \frac{1}{4M\tilde{L}^2 + 576 \frac{a}{M} \left(\frac{\omega}{p} \right)^3 L^2 + 28 \left(\frac{\omega}{p} \right)^2 L^2}} \right\} \text{ it implies}$$

$$417 \mathbb{E}[\mathbf{Gap}(\bar{z}_K)] \leq \frac{V}{2\gamma K}$$

419 for iterations of Algorithm 1 with partial participation.

421 According Corollary 4, we bound number of communication rounds and the volume of data sent
422 from the clients to the server.

423 **Corollary 5.** *In setting of Corollary 4 with $\gamma = \gamma_p$, Algorithm 1 with partial participation needs*

$$425 \mathcal{O} \left(\frac{1}{\varepsilon} \left[\tilde{L} \left(\frac{\omega}{p} \right)^{3/2} + \tilde{L}M^{1/2} + L \left(\sqrt{\frac{a\omega^3}{Mp^3}} + \frac{\omega}{p} \right) \right] \right)$$

428 iterations in order to reach ε -accuracy with respect to $\mathbb{E}[\mathbf{Gap}(\bar{z}_K)]$. Additionally, it requires

$$429 \mathcal{O} \left(\frac{1}{\varepsilon} \left[\tilde{L} \left(\frac{\omega}{p} \right)^{1/2} + \tilde{L} \frac{M^{1/2}p}{\omega} + L \left(\sqrt{\frac{a\omega}{Mp}} + 1 \right) \right] \right)$$

431 bits communicated from nodes to the server.

Analysis in this setting relies on the observation that multiplying the compression operator by the $\frac{\eta}{p}$, with $\eta \sim \text{Bern}(p)$, yields another valid compression operator. It remains unbiased, while its compression rate ω is scaled by a factor of p . Finally we note that our analysis in stochastic local gradients and partial participation settings can be straightforwardly merged.

6 EXPERIMENTS

To validate the performance of our algorithm ADI on practical tasks, we compare it in experiments against baseline methods that employ either weighting schemes or communication compression techniques. Specifically, ADI with no compression and EF21(Richtárik et al., 2021), DIANA (Mishchenko et al., 2024) serve as representatives respectively. Although weighting-based approaches are specifically designed to improve performance in heterogeneous settings, we assess the generality of ADI by conducting experiments under varying degrees of heterogeneity, including the homogeneous case. It is also important to note that classical approaches and weighting-based methods formally solve different optimization problems (1) and (3). Consequently, comparing them in terms of loss is not valid, and we instead rely on model quality metrics such as accuracy.

We conduct a comparative evaluation on image classification tasks using CIFAR-10 (Krizhevsky et al., 2009) dataset and RESNET-18 (Meng et al., 2019) neural network architecture, which is considered to be a standard benchmark for optimizers performance. We set number of clients M equal to 10 and evaluate optimizers under 2 major data distribution setups: **i.i.d.** distribution, where each client has the same number of data samples, and class labels are uniformly distributed across clients; and **non-i.i.d.** distribution (namely Dirichlet one with the parameter $\alpha = 0.5$) with different amount of data samples per client.

The first set of experiments, presented in Figure 1, compares ADI with compression-based methods under different setups of data heterogeneity and parameter $K = 10\%, 50\%$ for RandK compressor. To ensure a fair comparison, we run the experiments for 10k communication rounds with stochastic oracle for each method and tune theirs hyperparameters.

As illustrated in the plots presented in Figures 1a, 1b, the weighting mechanism plays a crucial role in the convergence behavior of our method. By effectively mitigating the impact of data heterogeneity, ADI demonstrates superior convergence properties compared to baseline approaches. Furthermore, the accumulated weight adjustments significantly influence the later stages of training, contributing to enhanced model accuracy and overall performance. With the identity compressor, ADI reduces to an Optimistic Extragradient (Popov, 1980) method for problem (4), effectively representing a standalone weighting-based optimization approach.

Ablation study. The second experiment (see Figure2) compares same methods, but we apply weighting technique to all of them. We use RandK with $K = 10\%$ and **non-i.i.d.** data distribution, we observe consistent improvements in convergence across all methods – demonstrating that the weighting mechanism enhances robustness even in highly heterogeneous settings. This experimental validation highlights the significant advantage of setup (4) over conventional distributed learning approaches, particularly in challenging heterogeneous environments where traditional methods exhibit poor performance. We further analyze the evolution of client weights under Algorithm 1 in a heterogeneous setting, with full results shown in Figure 3. At initialization, all clients are assigned

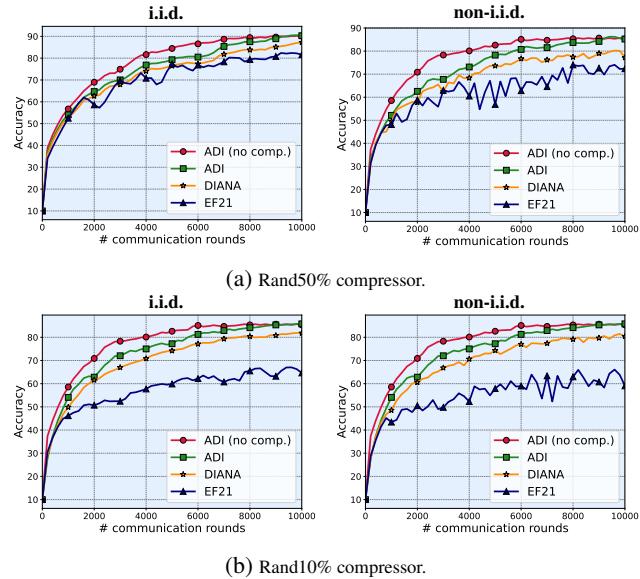


Figure 1: Performance comparison for ADI across different heterogeneity levels.

486 equal weights, reflecting no prior knowledge of their data quality or relevance. As training progresses,
 487 the weights rapidly diverge, adapting to the statistical heterogeneity of local datasets. Over time, each
 488 client's weight converges to a distinct, stable plateau – indicating that the system learns a consistent,
 489 data-driven importance score for every participant.

490 This convergence behavior reveals two key phases of the optimization process:
 491

- 492 (i) an early exploration phase, during which substantial weight adjustments occur;
- 493 (ii) a later stabilization phase, where weights remain nearly constant once the global model
 494 approaches an optimum.

495 Notably, significant reweighting ceases once the
 496 optimizer enters a neighborhood of a (local or
 497 global) minimum, suggesting that the weighting
 498 mechanism primarily acts during transient, high-
 499 gradient stages of training — precisely when
 500 client contributions are most discriminative.

501 Experimental setup details, additional experi-
 502 ments, including large scale problems, and more
 503 detailed weighting-compression interaction ex-
 504 perimental study can be found in the Appendix
 505 B and C.

506 7 DISCUSSION

507 This study has introduced a method for federated
 508 learning, supported by comprehensive theore-
 509 matical analysis and empirical validation. Theore-
 510 matical guarantees were established for a range of
 511 relevant scenarios, including setups with exact
 512 local gradients, stochastic local oracles, and par-
 513 tial client participation. Experimental results
 514 demonstrated that the superiority of the pro-
 515 posed method over the baselines becomes more
 516 pronounced as the level of compression and data
 517 heterogeneity increases. This allows it to be con-
 518 cluded that two of the most important problems
 519 in federated learning – the communication bot-
 520 tleneck and heterogeneity – can be addressed
 521 concurrently, offering new potential for specific
 522 federated learning formulations. Additionally, the developed approach maintains performance com-
 523 parable to baseline algorithms in homogeneous data settings and never requires the transmission of
 524 full gradients, thus further supporting its practical utility.

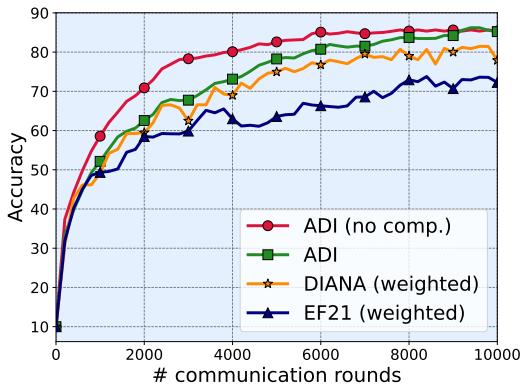
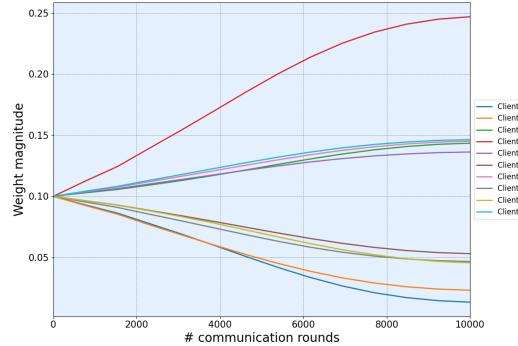
525 REFERENCES

526 Ahmet Alacaoglu and Yura Malitsky. Stochastic variance reduction for variational inequality methods.
 527 In *Conference on Learning Theory*, pp. 778–816. PMLR, 2022.

528 Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. Qsgd: Communi-
 529 cation-efficient sgd via gradient quantization and encoding. *Advances in neural information processing*
 530 systems, 30, 2017.

531 Dan Alistarh, Torsten Hoefer, Mikael Johansson, Nikola Konstantinov, Sarit Khirirat, and Cédric
 532 Renggli. The convergence of sparsified gradient methods. *Advances in Neural Information*
 533 *Processing Systems*, 31, 2018.

534 Laith Alzubaidi, Jinglan Zhang, Amjad J Humaidi, Ayad Al-Dujaili, Ye Duan, Omran Al-Shamma,
 535 José Santamaría, Mohammed A Fadhel, Muthana Al-Amidie, and Laith Farhan. Review of deep
 536 learning: concepts, cnn architectures, challenges, applications, future directions. *Journal of big*
 537 *Data*, 8:1–74, 2021.



538 Figure 3: Weights magnitudes for Algorithm 1 in
 539 non-i.i.d. data distribution setup.

540 Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzadenesheli, and Animashree Anandkumar. signsgd:
541 Compressed optimisation for non-convex problems. In *International Conference on Machine*
542 *Learning*, pp. 560–569. PMLR, 2018.

543 Daniel J Beutel, Taner Topal, Akhil Mathur, Xinchi Qiu, Javier Fernandez-Marques, Yan Gao,
544 Lorenzo Sani, Kwing Hei Li, Titouan Parcollet, Pedro Porto Buarque De Gusmão, et al. Flower: A
545 friendly federated learning research framework. *arXiv preprint arXiv:2007.14390*, 2020.

546 Aleksandr Beznosikov and Alexander Gasnikov. Compression and data similarity: Combination
547 of two techniques for communication-efficient solving of distributed variational inequalities. In
548 *International Conference on Optimization and Applications*, pp. 151–162. Springer, 2022.

549 Aleksandr Beznosikov, Peter Richtárik, Michael Diskin, Max Ryabinin, and Alexander Gasnikov.
550 Distributed methods with compressed communication for solving variational inequalities, with
551 theoretical guarantees. *Advances in Neural Information Processing Systems*, 35:14013–14029,
552 2022.

553 Aleksandr Beznosikov, Samuel Horváth, Peter Richtárik, and Mher Safaryan. On biased compression
554 for distributed learning. *Journal of Machine Learning Research*, 24(276):1–50, 2023a.

555 Aleksandr Beznosikov, Boris Polyak, Eduard Gorbunov, Dmitry Kovalev, and Alexander Gasnikov.
556 Smooth monotone stochastic variational inequalities and saddle point problems: A survey. *European*
557 *Mathematical Society Magazine*, (127):15–28, 2023b.

558 Aleksandr Beznosikov, Martin Takáč, and Alexander Gasnikov. Similarity, compression and local
559 steps: three pillars of efficient communications for distributed variational inequalities. *arXiv*
560 *preprint arXiv:2302.07615*, 2023c.

561 Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimization methods for large-scale machine
562 learning. *SIAM review*, 60(2):223–311, 2018.

563 Xiaoyu Cao, Minghong Fang, Jia Liu, and Neil Zhenqiang Gong. Fltrust: Byzantine-robust federated
564 learning via trust bootstrapping. *arXiv preprint arXiv:2012.13995*, 2020.

565 Chih-Chung Chang and Chih-Jen Lin. Diabetes dataset (scaled version). LIBSVM Data Repository,
566 2011. URL https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary/diabetes_scale. Original data from National Institute of Diabetes and Digestive
567 and Kidney Diseases (NIDDK), 1999.

568 Yae Jee Cho, Jianyu Wang, and Gauri Joshi. Towards understanding biased client selection in
569 federated learning. In *International Conference on Artificial Intelligence and Statistics*, pp. 10351–
570 10375. PMLR, 2022.

571 Paul Covington, Jay Adams, and Emre Sargin. Deep neural networks for youtube recommendations.
572 In *Proceedings of the 10th ACM conference on recommender systems*, pp. 191–198, 2016.

573 Cong D Dang and Guanghui Lan. On the convergence properties of non-euclidean extragradient meth-
574 ods for variational inequalities with generalized monotone operators. *Computational Optimization*
575 *and applications*, 60(2):277–310, 2015.

576 Enmao Diao, Jie Ding, and Vahid Tarokh. Heterofl: Computation and communication efficient
577 federated learning for heterogeneous clients. *arXiv preprint arXiv:2010.01264*, 2020.

578 Eduard Gorbunov, Konstantin P Burlachenko, Zhize Li, and Peter Richtárik. Marina: Faster non-
579 convex distributed learning with compression. In *International Conference on Machine Learning*,
580 pp. 3788–3798. PMLR, 2021a.

581 Eduard Gorbunov, Filip Hanzely, and Peter Richtárik. Local sgd: Unified theory and new efficient
582 methods. In *International Conference on Artificial Intelligence and Statistics*, pp. 3556–3564.
583 PMLR, 2021b.

584 Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola,
585 Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch sgd: Training imagenet
586 in 1 hour. *arXiv preprint arXiv:1706.02677*, 2017.

594 Tatsunori Hashimoto, Megha Srivastava, Hongseok Namkoong, and Percy Liang. Fairness without
595 demographics in repeated loss minimization. In *International Conference on Machine Learning*,
596 pp. 1929–1938. PMLR, 2018.

597 Hadrien Hendrikx, Lin Xiao, Sébastien Bubeck, Francis Bach, and Laurent Massoulié. Statisti-
598 cally preconditioned accelerated gradient method for distributed optimization. In *International*
599 *conference on machine learning*, pp. 4203–4227. PMLR, 2020.

600 Jordan Hoffmann, Sébastien Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
601 Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al.
602 Training compute-optimal large language models. *arXiv preprint arXiv:2203.15556*, 2022.

603 Samuel Horváth, Chen-Yu Ho, Ludovit Horvath, Atal Narayan Sahu, Marco Canini, and Peter
604 Richtárik. Natural compression for distributed deep learning. In *Mathematical and Scientific*
605 *Machine Learning*, pp. 129–141. PMLR, 2022.

606 Rustem Islamov, Samuel Horvath, Aurelien Lucchi, Peter Richtarik, and Eduard Gorbunov. Double
607 momentum and error feedback for clipping with fast rates and differential privacy. *arXiv preprint*
608 *arXiv:2502.11682*, 2025.

609 Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive variance
610 reduction. *Advances in neural information processing systems*, 26, 2013.

611 Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin
612 Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. Ad-
613 vances and open problems in federated learning. *Foundations and trends® in machine learning*,
614 14(1–2):1–210, 2021.

615 Aswin Kannan and Uday V Shanbhag. Optimal stochastic extragradient schemes for pseudomonotone
616 stochastic variational inequality problems and their variants. *Computational Optimization and*
617 *Applications*, 74(3):779–820, 2019.

618 Sai Praneeth Karimireddy, Quentin Rebjock, Sebastian Stich, and Martin Jaggi. Error feedback fixes
619 signs gd and other gradient compression schemes. In *International conference on machine learning*,
620 pp. 3252–3261. PMLR, 2019.

621 Sarit Khirirat, Hamid Reza Feyzmahdavian, and Mikael Johansson. Distributed learning with
622 compressed gradients. *arXiv preprint arXiv:1806.06573*, 2018.

623 Sarit Khirirat, Eduard Gorbunov, Samuel Horváth, Rustem Islamov, Fakhri Karray, and Peter
624 Richtárik. Clip21: Error feedback for gradient clipping. *arXiv preprint arXiv:2305.18929*,
625 2023.

626 Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. *arXiv preprint*
627 *arXiv:1412.6980*, 2014.

628 Jakub Konečný, H Brendan McMahan, Felix X Yu, Peter Richtárik, Ananda Theertha Suresh, and
629 Dave Bacon. Federated learning: Strategies for improving communication efficiency. *arXiv*
630 *preprint arXiv:1610.05492*, 2016.

631 Brett Koence. Resnet 34. In *Convolutional neural networks with swift for tensorflow: image*
632 *recognition and dataset categorization*, pp. 51–61. Springer, 2021.

633 Galina M Korpelevich. The extragradient method for finding saddle points and other problems.
634 *Matecon*, 12:747–756, 1976.

635 Dmitry Kovalev, Aleksandr Beznosikov, Ekaterina Borodich, Alexander Gasnikov, and Gesualdo
636 Scutari. Optimal gradient sliding and its application to optimal distributed optimization under
637 similarity. *Advances in Neural Information Processing Systems*, 35:33494–33507, 2022.

638 Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

639 Channing Li, Xiao Zeng, Mi Zhang, and Zhichao Cao. Pyramidfl: A fine-grained client selection
640 framework for efficient federated learning. In *Proceedings of the 28th annual international*
641 *conference on mobile computing and networking*, pp. 158–171, 2022.

648 Tian Li, Maziar Sanjabi, Ahmad Beirami, and Virginia Smith. Fair resource allocation in federated
649 learning. *arXiv preprint arXiv:1905.10497*, 2019a.
650

651 Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. Federated learning: Challenges,
652 methods, and future directions. *IEEE signal processing magazine*, 37(3):50–60, 2020.

653 Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and Zhihua Zhang. On the convergence of
654 fedavg on non-iid data. *arXiv preprint arXiv:1907.02189*, 2019b.
655

656 Zhize Li, Hongyan Bao, Xiangliang Zhang, and Peter Richtárik. Page: A simple and optimal
657 probabilistic gradient estimator for nonconvex optimization. In *International conference on
658 machine learning*, pp. 6286–6295. PMLR, 2021.

659 Dachao Lin, Yuze Han, Haishan Ye, and Zhihua Zhang. Stochastic distributed optimization under
660 average second-order similarity: Algorithms and analysis. *Advances in Neural Information
661 Processing Systems*, 36:1849–1862, 2023.

662

663 Yu Malitsky. Projected reflected gradient methods for monotone variational inequalities. *SIAM
664 Journal on Optimization*, 25(1):502–520, 2015.

665 Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
666 Communication-efficient learning of deep networks from decentralized data. In *Artificial intelligence
667 and statistics*, pp. 1273–1282. PMLR, 2017.

668

669 Ronak Mehta, Jelena Diakonikolas, and Zaid Harchaoui. Drago: Primal-dual coupled variance
670 reduction for faster distributionally robust optimization. In *The Thirty-eighth Annual Conference
671 on Neural Information Processing Systems*, 2024.

672 Debin Meng, Xiaojiang Peng, Kai Wang, and Yu Qiao. Frame attention networks for facial expression
673 recognition in videos. In *2019 IEEE international conference on image processing (ICIP)*, pp.
674 3866–3870. IEEE, 2019.

675

676 Panayotis Mertikopoulos, Bruno Lecouat, Houssam Zenati, Chuan-Sheng Foo, Vijay Chandrasekhar,
677 and Georgios Piliouras. Optimistic mirror descent in saddle-point problems: Going the extra
678 (gradient) mile. *arXiv preprint arXiv:1807.02629*, 2018.

679 Konstantin Mishchenko, Rustem Islamov, Eduard Gorbunov, and Samuel Horváth. Partially personal-
680 ized federated learning: Breaking the curse of data heterogeneity. *arXiv preprint arXiv:2305.18285*,
681 2023.

682

683 Konstantin Mishchenko, Eduard Gorbunov, Martin Takáč, and Peter Richtárik. Distributed learning
684 with compressed gradient differences. *Optimization Methods and Software*, pp. 1–16, 2024.

685 Mehryar Mohri, Gary Sivek, and Ananda Theertha Suresh. Agnostic federated learning. In *Inter-
686 national conference on machine learning*, pp. 4615–4625. PMLR, 2019.

687

688 Hongseok Namkoong and John C Duchi. Stochastic gradient methods for distributionally robust
689 optimization with f-divergences. *Advances in neural information processing systems*, 29, 2016.

690 Arkadi Nemirovski. Prox-method with rate of convergence $o(1/t)$ for variational inequalities with
691 lipschitz continuous monotone operators and smooth convex-concave saddle point problems. *SIAM
692 Journal on Optimization*, 15(1):229–251, 2004.

693

694 Yurii Nesterov. Dual extrapolation and its applications to solving variational inequalities and related
695 problems. *Mathematical Programming*, 109(2):319–344, 2007.

696

697 Hung T Nguyen, Vikash Sehwag, Seyyedali Hosseinalipour, Christopher G Brinton, Mung Chiang,
698 and H Vincent Poor. Fast-convergent federated learning. *IEEE Journal on Selected Areas in
699 Communications*, 39(1):201–218, 2020.

700

701 Takayuki Nishio and Ryo Yonetani. Client selection for federated learning with heterogeneous
resources in mobile edge. In *ICC 2019-2019 IEEE international conference on communications
(ICC)*, pp. 1–7. IEEE, 2019.

702 Leonid Denisovich Popov. A modification of the arrow-hurwitz method of search for saddle points.
703 *Mat. Zametki*, 28(5):777–784, 1980.
704

705 Mónica Ríbero, Haris Vikalo, and Gustavo De Veciana. Federated learning under intermittent client
706 availability and time-varying communication constraints. *IEEE Journal of Selected Topics in*
707 *Signal Processing*, 17(1):98–111, 2022.

708 Peter Richtárik, Igor Sokolov, and Ilyas Fatkhullin. Ef21: A new, simpler, theoretically better,
709 and practically faster error feedback. *Advances in Neural Information Processing Systems*, 34:
710 4384–4396, 2021.
711

712 Elsa Rizk, Stefan Vlaski, and Ali H Sayed. Optimal importance sampling for federated learning. In
713 *ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing*
714 (*ICASSP*), pp. 3095–3099. IEEE, 2021.

715 Herbert Robbins and Sutton Monro. A stochastic approximation method. *The annals of mathematical*
716 *statistics*, pp. 400–407, 1951.
717

718 Frank Seide, Hao Fu, Jasha Droppo, Gang Li, and Dong Yu. 1-bit stochastic gradient descent and its
719 application to data-parallel distributed training of speech dnns. In *Interspeech*, volume 2014, pp.
720 1058–1062. Singapore, 2014.

721 Shai Shalev-Shwartz and Shai Ben-David. *Understanding machine learning: From theory to*
722 *algorithms*. Cambridge university press, 2014.
723

724 Shai Shalev-Shwartz, Ohad Shamir, Nathan Srebro, and Karthik Sridharan. Learnability, stability
725 and uniform convergence. *The Journal of Machine Learning Research*, 11:2635–2670, 2010.
726

727 Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan Catan-
728 zaro. Megatron-lm: Training multi-billion parameter language models using model parallelism.
729 *arXiv preprint arXiv:1909.08053*, 2019.

730 Virginia Smith, Chao-Kai Chiang, Maziar Sanjabi, and Ameet S Talwalkar. Federated multi-task
731 learning. *Advances in neural information processing systems*, 30, 2017.
732

733 Sebastian U Stich. Local sgd converges fast and communicates little. *arXiv preprint arXiv:1805.09767*,
734 2018.
735

736 Sebastian U Stich, Jean-Baptiste Cordonnier, and Martin Jaggi. Sparsified sgd with memory. *Advances*
737 *in neural information processing systems*, 31, 2018.
738

739 Nikko Ström. Scalable distributed dnn training using commodity gpu cloud computing. 2015.
740

741 Paul Tseng. A modified forward-backward splitting method for maximal monotone mappings. *SIAM*
742 *Journal on Control and Optimization*, 38(2):431–446, 2000.
743

744 Alexander Tyurin and Peter Richtárik. Dasha: Distributed nonconvex optimization with commu-
745 nication compression, optimal oracle complexity, and no client synchronization. *arXiv preprint*
746 *arXiv:2202.01268*, 2022.
747

748 Joost Verbraeken, Matthijs Wolting, Jonathan Katzy, Jeroen Kloppenburg, Tim Verbelen, and Jan S
749 Rellermeyer. A survey on distributed machine learning. *Acm computing surveys (csur)*, 53(2):
750 1–33, 2020.
751

752 Hongyi Wang, Mikhail Yurochkin, Yuekai Sun, Dimitris Papailiopoulos, and Yasaman Khazaeni.
753 Federated learning with matched averaging. *arXiv preprint arXiv:2002.06440*, 2020.
754

755 Haibo Yang, Minghong Fang, and Jia Liu. Achieving linear speedup with partial worker participation
756 in non-iid federated learning. *arXiv preprint arXiv:2101.11203*, 2021.
757

758 David Borisovich Yudin. *Problem complexity and method efficiency in optimization*. Wiley, 1983.
759

760 Michael Zhang, Karan Sapra, Sanja Fidler, Serena Yeung, and Jose M Alvarez. Personalized federated
761 learning with first order model optimization. *arXiv preprint arXiv:2012.08565*, 2020.
762

756 A ADDITIONAL COMPARISON WITH PRIOR WORKS 757

758 In this section we provide complexity comparison of **ADI** against baselines.
759

760 Note that while previous compression algorithms address Problem (1), **ADI** operates with the
761 objective function (4). The difference in objective functions makes a direct formal comparison
762 of the rates less transparent. Additional difficulties in theoretically comparing **ADI** with classical
763 compression methods arise from the distinct convergence criterion inherent to saddle-point problems,
764 which should be taken into consideration as well. Nevertheless, for completeness of presentation,
765 we provide the comparative Table 1 below. Comparison is conducted for a smooth nonconvex setup,
766 which in case of **ADI** and **MASHA**, corresponds to the minty assumption. For the sake of clarity,
767 constants specific to the problem have been omitted from the estimates.
768

769 Table 1: Comparison of complexity across algorithms with compression.
770

771 Algorithm	772 Communication rounds	773 Bits of communication
772 ADI (this work)	$\frac{1}{\varepsilon} \left[\omega^{3/2} + M^{1/2} + \sqrt{\omega^3/M} \right]$	$\frac{1}{\varepsilon} \left[\omega^{1/2} + M^{1/2}/\omega + \sqrt{\omega/M} \right]$
774 DIANA (Horvóth et al., 2022)	$\frac{1}{\varepsilon} \left[1 + (1 + \omega) \sqrt{\omega/M} \right]$	$\frac{1}{\varepsilon} \left[1/\omega + \frac{1 + \omega}{\sqrt{\omega M}} \right]$
775 DASHA (Tyurin & Richtárik, 2022)	$\frac{1}{\varepsilon} [1 + \omega/\sqrt{M}]$	$\frac{1}{\varepsilon} [1/\omega + 1/\sqrt{M}]$
776 EF21 (Richtárik et al., 2021)	$\frac{1}{\varepsilon \alpha}$	$\frac{1}{\varepsilon}$
777 MASHA (Beznosikov et al., 2022)	$\frac{1}{\varepsilon} [\omega^2/M + \omega]$	$\frac{1}{\varepsilon} [\omega/M + 1]$

783 *Notation:* ε = accuracy of the solution, ω = compression rate introduced in Definition 1, M = number of
784 nodes, α = parameter of contractive compressor.

785 Additionally, we note that **EF21** was originally designed to be used with a contractive compressor
786 with constant α . Since this is a well-known and practically significant method, we include it in our
787 experimental baselines and present its convergence rate for completeness.
788

789 B ADDITIONAL CLARIFICATION ON IMAGE CLASSIFICATION 790

791 Our experiments are conducted on the CIFAR-10 (Krizhevsky et al., 2009) dataset using a RESNET-
792 18 (Meng et al., 2019) architecture, with $M = 10$ clients for federated training. We evaluate each
793 sampling strategy under three representative data partitioning schemes: **(homo)** an *i.i.d.* homogeneous
794 split, where each client receives a statistically identical sample of the data; **(hetero)** a heterogeneous
795 configuration in which clients are assigned disjoint class subsets, simulating non-*i.i.d.* label distributions;
796 and **(pathological)** a strongly heterogeneous regime, reflecting real-world imbalances through
797 uneven data quantities and skewed class distributions across clients. This controlled setup enables a
798 rigorous comparison of Algorithm 1 under increasingly realistic and challenging federated learning
799 conditions. In all experiments we do not use simplex regularization, i.e. $\Lambda = \Delta^{M-1}$.
800

801 B.1 HYPERPARAMETERS DETAILS

802 In our experiments, we employed the default partitioning utility provided by the **Flower** (`flwr`)
803 framework (Beutel et al., 2020) to generate a non-*i.i.d.* (heterogeneous) data distribution across
804 clients. To calibrate the hyperparameters of the **ADI** optimization method, we conducted a systematic
805 grid search over the following ranges:
806

- 807 • Learning rate for model parameters (γ_θ):
808 $\{1 \times 10^{-4}, 5 \times 10^{-4}, 1 \times 10^{-3}, 5 \times 10^{-3}, 1 \times 10^{-2}, 2 \times 10^{-2}\}$
809
- Learning rate for client weights (γ_π):
810 $\{1 \times 10^{-3}, 5 \times 10^{-3}, 1 \times 10^{-2}, 5 \times 10^{-2}, 1 \times 10^{-1}\}$

810 • Momentum decay coefficient for the model update (α):
 811 {0.70, 0.75, 0.80, 0.85, 0.90, 0.95}
 812
 813 • Momentum decay coefficient for the weight adaptation (β):
 814 {0.05, 0.10, 0.15, 0.20}

815 The optimal configuration (selected based on validation performance (e.g., final accuracy and convergence stability)) was identified as:

$$816 \quad \gamma_\theta = 0.01, \quad \gamma_\pi = 0.01, \quad \alpha = 0.90, \quad \beta = 0.10.$$

817 Furthermore, across all compared methods, we employed a staged learning rate decay schedule to
 818 promote convergence stability. Specifically, the initial learning rate was reduced by a factor of 5 after
 819 the 2000 communication rounds and subsequently by an additional factor of 10 (i.e., 50 \times relative to
 820 the initial value) after the 7500th communication round. Formally, for an initial learning rate γ_θ , the
 821 schedule is defined as:

$$822 \quad \gamma_\theta(k) = \begin{cases} \gamma_\theta, & k < 2000, \\ \gamma_\theta/5, & 2000 \leq k < 7500, \\ \gamma_\theta/50, & k \geq 7500, \end{cases}$$

823 where k denotes the round number.

824 C ADDITIONAL EXPERIMENTS

825 C.1 LINEAR REGRESSION

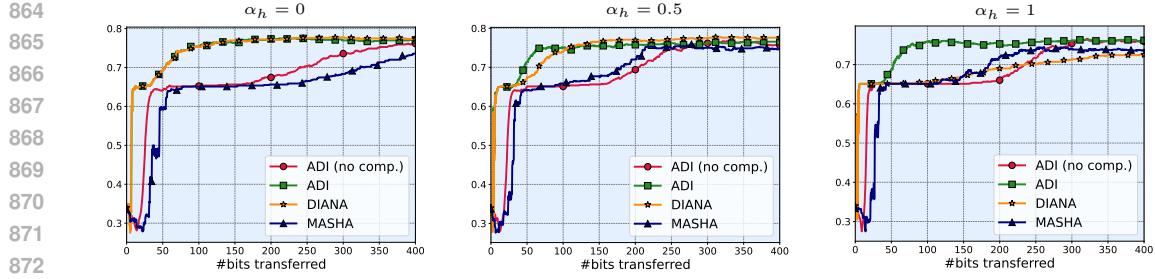
826 To evaluate the performance of proposed method under tightly controlled conditions, we conduct
 827 additional experiments on the simplest task. We use the `diabets_scaled` (Chang & Lin, 2011)
 828 dataset for linear regression task consisting of 768 samples with 8 features and two classes. As
 829 baselines, we select the communication compression algorithm `DIANA` (Mishchenko et al., 2024);
 830 for uncompressed weighting method, we use `ADI` with identical compressor as `Optimistic`
 831 `Extragradient` (Popov, 1980) for formulation (4). Additionally, we compare `ADI` with `MASHA`
 832 (Beznosikov et al., 2022) for problem (4), which is an analogous method combining both weighting
 833 and compression. For all algorithms with compression we utilize `RandK` compressor.

834 To model different degrees of heterogeneity, we introduce parameter $\alpha_h \in [0, 1]$. While emulating
 835 training on $M = 4$ devices, we distribute data across clients as follows: the first node receives
 836 $\frac{1}{M} + \alpha_h \frac{M-1}{M}$ observations from the negative class and $\frac{1-\alpha_h}{M}$ positive observations. The remaining
 837 data is distributed uniformly across the other $M - 1$ devices. Thus, $\alpha_h = 1$ corresponds to
 838 complete heterogeneity where the negative class appears only on one device while the other devices
 839 contain exclusively positive class observations. Accordingly, $\alpha_h = 0$ corresponds to complete data
 840 homogeneity.

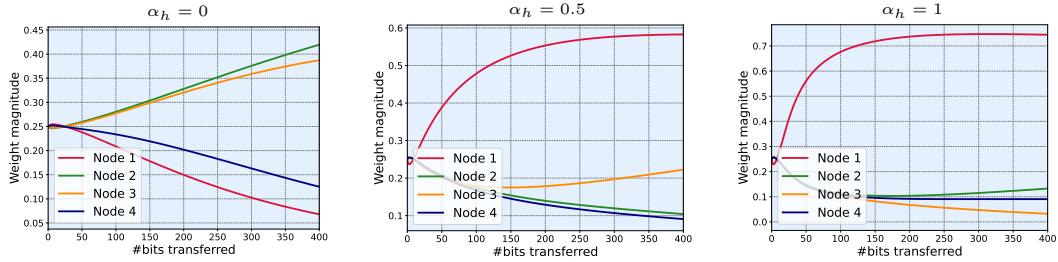
841 The first series of experiments (Figure 4) compares `ADI` with the specified baselines under different
 842 levels of data heterogeneity (α_h equal to 0, 0.5, and 1). For all compression methods, we use `RandK`
 843 with $K = 1$. `MASHA` additionally transmits full gradients every 8 iterations. These experiments
 844 confirm the superiority of weighting methods: while showing comparable performance on homoge-
 845 neous data, `ADI` gains significant advantage over `DIANA` as heterogeneity increases. By comparing
 846 `Optimistic` `Extragradient` with other methods, we demonstrate the effectiveness of com-
 847 pression, particularly in combination with weighting approaches across varying heterogeneity levels.
 848 Finally, we present the evolution of `ADI` algorithm's weights across iterations. We observe that their
 849 dynamics can be unpredictable, particularly in the homogeneous setup. Yet this does not lead to
 850 performance degradation.

851 Experiments in Figure 5 compares `ADI` and `DIANA` at $\alpha_h = 0.5$ with different compressor constants
 852 K (8, 5, 2, 1). This comparison highlights that the advantage of weighting remains independent of the
 853 compression level even under aggressive compression as `Rand1`.

854 Finally, in Figure 6 we verified that `ADI` weights ultimately stabilize in both complete homogeneity
 855 and heterogeneity cases. Notably, in the homogeneous scenario, their pre-stabilization evolution does
 856 not affect performance.



(a) Convergence comparison.



(b) Weight magnitude for ADI's nodes.

Figure 4: Performance comparison for ADI across different heterogeneity levels.

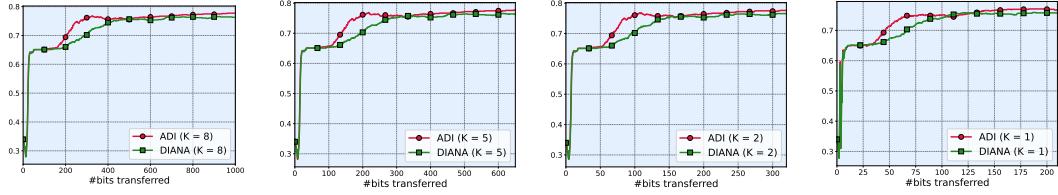


Figure 5: ADI and DIANA with RandK across different K with $\alpha_h = 0.5$.

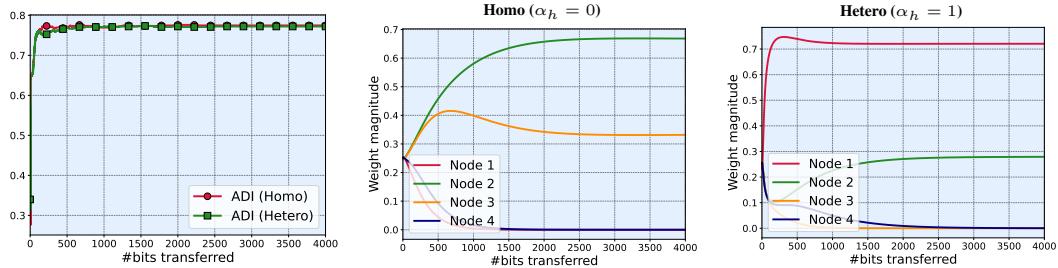


Figure 6: Weights stabilization in homogeneous and heterogeneous setups.

C.2 ADDITIONAL DATA PARTITIONING

For greater completeness of the experimental evaluation, we conducted an additional experiment using an alternative heterogeneity modeling setup. Specifically, we evaluate the same RESNET-18 (Meng et al., 2019) backbone on the CIFAR-10 (Krizhevsky et al., 2009) dataset partitioned across 10 clients according to a Dirichlet distribution with parameter $\alpha = 0.3$, introducing a stronger degree of non-i.i.d. data heterogeneity. The corresponding results are presented in the Table 2 below. These results report the maximum accuracy (mean \pm standard deviation over three independent runs) achieved by the methods under the same number of communication rounds and an equal compression level.

Table 2: Comparison of ADI with baselines under Dirichlet ($\alpha = 0.3$) partition

Method	Rand 50% Acc.	Rand 10% Acc.	Rand 5% Acc.
ADI	82.6 ± 0.24	81.9 ± 0.24	82.4 ± 0.28
DIANA	76.7 ± 0.26	77.1 ± 0.32	75.4 ± 0.40
EF21	64.5 ± 0.43	64.4 ± 0.41	61.6 ± 0.43
MASHA1	63.7 ± 0.20	63.4 ± 0.21	63.5 ± 0.21

This experimental validation demonstrates that even under highly heterogeneous data distribution and a high power of compression (5%), our method achieves strong performance and delivers improved results compared to the baselines.

C.3 WEIGHTS DISTRIBUTION ANALYSIS

To investigate the sensitivity of client-specific aggregation weights to the severity of model compression, we conduct an ablation study on RESNET-18 (Meng et al., 2019) as the backbone architecture and the CIFAR-10 (Krizhevsky et al., 2009) dataset, partitioned across 10 clients using a Dirichlet distribution with parameter $\alpha = 0.5$ to induce data heterogeneity.

Three compression levels - Rand 50%, Rand 10%, and Rand 5% - are evaluated. For each setting, we report the learned client aggregation weights (mean \pm standard deviation over three independent runs) in Table 3 below.

Table 3: Final client weights assigned by ADI under different compression levels

Client no.	Weight (Rand 50%)	Weight (Rand 10%)	Weight (Rand 5%)
1	0.019 ± 0.005	0.019 ± 0.006	0.014 ± 0.005
2	0.026 ± 0.007	0.025 ± 0.007	0.027 ± 0.009
3	0.141 ± 0.007	0.139 ± 0.008	0.139 ± 0.007
4	0.248 ± 0.011	0.244 ± 0.012	0.247 ± 0.014
5	0.136 ± 0.007	0.137 ± 0.007	0.134 ± 0.007
6	0.054 ± 0.008	0.055 ± 0.007	0.057 ± 0.011
7	0.145 ± 0.011	0.143 ± 0.016	0.144 ± 0.013
8	0.047 ± 0.008	0.062 ± 0.013	0.056 ± 0.014
9	0.043 ± 0.009	0.052 ± 0.008	0.048 ± 0.011
10	0.147 ± 0.010	0.124 ± 0.013	0.134 ± 0.011

Let us briefly describe and interpret obtained results.

- (i) For the majority of clients (e.g., Clients 3, 4, 5, 7), the assigned aggregation weights remain remarkably stable across compression regimes, with variations typically within the margin of statistical uncertainty. This suggests convergence toward a data-informed equilibrium - consistent with theoretical expectations that optimal client weights reflect local data representativeness and utility, rather than being artifacts of compression-induced noise.
- (ii) Notably, Clients 8 and 9 exhibit non-monotonic weight adjustments under aggressive compression with Rand 5%, diverging from their trends at 50% and 10% compression. Post-hoc data inspection reveals that these clients possess highly skewed local distributions: each holds samples from only three classes, with two dominant classes constituting over 93% of their local datasets. Under severe sparsification, the reduced model capacity likely amplifies the impact of such distributional bias, leading the weight adaptation mechanism to dynamically re-calibrate contribution levels—potentially to mitigate negative transfer or overfitting on minority classes.

These findings underscore that while global aggregation weights are generally robust to moderate compression, extreme compression intensifies sensitivity to local data pathology, highlighting the interplay between model compression, client heterogeneity, and adaptive weighting strategies in federated optimization.

972 **C.4 LARGE SCALE PROBLEM**
973

974 To further validate the scalability and robustness of **ADI**, we conduct experiments on the CIFAR-100
975 (Krizhevsky et al., 2009) dataset, which presents a more challenging, large-scale classification task
976 with 100 classes. We evaluate the RESNET-34 (Koonce, 2021) backbone across 10 clients, with
977 data heterogeneity modeled using a Dirichlet distribution with parameter $\alpha = 0.5$, under three
978 compression regimes: Rand 50%, Rand 10%, and Rand 5%.

979 In the table below, we report the final accuracy (mean \pm standard deviation over three independent
980 runs with 10^4 communication rounds) for **ADI** and several prior approaches.

981 Table 4: Comparison of **ADI** with baselines on CIFAR-100 under different compression levels
982

983

Method	Rand 50% Acc.	Rand 10% Acc.	Rand 5% Acc.
ADI	71.2 ± 0.21	71.7 ± 0.22	70.9 ± 0.26
DIANA	69.8 ± 0.19	70.1 ± 0.22	71.1 ± 0.27
EF21	62.2 ± 0.41	62.3 ± 0.38	59.2 ± 0.43
MASHA1	61.7 ± 0.22	63.2 ± 0.17	62.5 ± 0.21

990 These results demonstrate that **ADI** maintains stable and competitive performance even on a large-
991 scale, highly heterogeneous dataset, consistently outperforming prior approaches. The findings
992 underscore the effectiveness of **ADI**'s adaptive weighting mechanism in challenging, real-world
993 federated learning scenarios.

994 **C.5 ADDITIONAL WEIGHTING BASELINES AND PARTIAL CLIENT PARTICIPATION**
995

996 To assess the effectiveness of the selected compression strategy, we conduct additional experiments
997 incorporating direct compression of transmitted gradients (Alistarh et al., 2017) as naive baseline into
998 AFL (Mohri et al., 2019) and q-FFL (Li et al., 2019a) traditional weighting algorithms. To further
999 investigate the effects associated with partial client participation, we extended the experimental
1000 setup to the corresponding setting. Table 5 presents comparison results on CIFAR-10 (Krizhevsky
1001 et al., 2009) using the RESNET-18 (Meng et al., 2019) architecture, while Table 6 reports results
1002 on CIFAR-100 (Krizhevsky et al., 2009) with the RESNET-34 (Koonce, 2021) architecture across
1003 varying compression rates. Data heterogeneity is induced via a Dirichlet distribution with parameter
1004 $\alpha = 0.5$ across 10 clients, while client availability is sampled from a Bernoulli distribution with
1005 parameters $p = 0.5, 0.7, 1.0$. For every setup 3 runs was conducted with 10000 communication
1006 rounds.

1007 Table 5: Comparison of methods on CIFAR-10 under partial client participation setting
1008

1009

Method (p)	Rand 50% Acc.	Rand 10% Acc.	Rand 5% Acc.
ADI ($p = 1.0$)	85.2 ± 0.21	85.7 ± 0.22	84.9 ± 0.26
AFL ($p = 1.0$)	67.2 ± 0.37	52.3 ± 0.38	47.2 ± 0.43
q-FFL ($p = 1.0$)	68.7 ± 0.34	53.2 ± 0.37	46.5 ± 0.41
ADI ($p = 0.7$)	82.2 ± 0.20	81.6 ± 0.22	81.9 ± 0.22
AFL ($p = 0.7$)	65.7 ± 0.31	49.9 ± 0.35	44.2 ± 0.40
q-FFL ($p = 0.7$)	65.9 ± 0.32	50.2 ± 0.37	45.7 ± 0.41
ADI ($p = 0.5$)	79.6 ± 0.22	78.9 ± 0.21	79.3 ± 0.22
AFL ($p = 0.5$)	64.5 ± 0.31	48.1 ± 0.39	48.2 ± 0.41
q-FFL ($p = 0.5$)	65.7 ± 0.29	49.2 ± 0.34	45.5 ± 0.41

1019 The table reveals several clear patterns. **ADI** is almost insensitive to the compression level, even
1020 under extreme compression of 5%. However, a decrease in the client availability probability p leads
1021 to a slight deterioration in performance. The opposite trend is observed for the baselines: they are
1022 relatively insensitive to partial client participation, but their performance drops substantially as the
1023 compression level increases.

1024 Overall, the results demonstrate a significant advantage of **ADI** over the baselines: in the most
1025 extreme setup ($p = 0.5$, Rand 5%), the algorithm maintains a substantial performance lead over

1026 Table 6: Comparison of methods on CIFAR-100 under partial client participation setting
1027

Method (p)	Rand 50% Acc.	Rand 10% Acc.	Rand 5% Acc.
ADI ($p = 1.0$)	71.2 ± 0.19	71.7 ± 0.19	70.9 ± 0.22
AFL ($p = 1.0$)	58.2 ± 0.32	46.3 ± 0.31	41.2 ± 0.33
q-FFL ($p = 1.0$)	59.7 ± 0.31	46.2 ± 0.30	41.5 ± 0.31
ADI ($p = 0.7$)	69.4 ± 0.20	68.9 ± 0.20	69.0 ± 0.19
AFL ($p = 0.7$)	58.2 ± 0.31	46.9 ± 0.32	41.4 ± 0.33
q-FFL ($p = 0.7$)	58.2 ± 0.32	46.2 ± 0.31	41.6 ± 0.31
ADI ($p = 0.5$)	66.9 ± 0.20	66.9 ± 0.20	66.2 ± 0.21
AFL ($p = 0.5$)	58.4 ± 0.30	45.7 ± 0.28	41.6 ± 0.30
q-FFL ($p = 0.5$)	59.5 ± 0.29	45.8 ± 0.29	41.3 ± 0.31

1038
1039
1040 the baselines even under their most favorable conditions ($p = 1$, Rand 50%). This highlights the
1041 effectiveness of the chosen compression strategy for achieving a strong performance in real-world
1042 applications.

1044 D GENERAL INEQUALITIES AND NOTATION

1045 Suppose $x, y \in \mathbb{R}^d$, $\pi_1, \pi_2 \in \Delta$ and D_{KL} is Kullback–Leibler divergence. Then, following inequality
1046 holds:

$$1048 \quad \langle x, y \rangle \leq \frac{\beta}{2} \|x\|^2 + \frac{1}{2\beta} \|y\|^2, \quad (\text{Fen})$$

$$1050 \quad \|x + y\|^2 \leq (1 + \alpha) \|x\|^2 + (1 + \alpha^{-1}) \|y\|^2, \quad (\text{CS})$$

$$1052 \quad D_{KL}(\pi_1, \pi_2) \geq \frac{1}{2} \|\pi_1 - \pi_2\|_1^2 \geq \frac{1}{2} \|\pi_1 - \pi_2\|^2. \quad (\text{Pi})$$

1054 **Definition 2.** Let $F : \mathbb{R}^d \rightarrow \mathbb{R}^d$ and \mathcal{D} be a compact subset of \mathbb{R}^d . Then, for any $z \in \mathbb{R}^d$ we define

$$1055 \quad \mathbf{Gap}(z) = \max_{z' \in \mathcal{D}} \{\langle F(z'), z - z' \rangle\}.$$

1057 **Definition 3.** Let $\|z\|_{\text{bits}}$ represents the amount of bits required to encode the vector $z \in \mathbb{R}^d$, b
1058 denotes the number of bits per floating point value, and d is the dimensionality of the problem (i.e.,
1059 $bd = \|z\|_{\text{bits}}$). Then for compression operator \mathcal{Q} we define the expected density of compressed vector

$$1060 \quad q_\omega = \frac{\mathbb{E} \|\mathcal{Q}(z)\|}{bd}.$$

1062 E AUXILIARY LEMMAS

1064 Lemma 1 reflects the general fact from the theory of saddle point problems.

1066 **Lemma 1.** If a function $f(x, y) : \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R}$ is convex w.r.t. x and concave w.r.t. y , then target
1067 operator F for the min-max problem $\min_{x \in \mathcal{X}} \max_{y \in \mathcal{Y}} \{f(x, y)\}$ of the form

$$1069 \quad F(z) = \begin{pmatrix} \nabla_x f(x, y) \\ -\nabla_y f(x, y) \end{pmatrix}$$

1071 is monotone e.i.,

$$1072 \quad \langle F(z_1) - F(z_2), z_1 - z_2 \rangle \geq 0 \text{ for all } z_1, z_2 \in \mathcal{Z} = \mathcal{X} \times \mathcal{Y}.$$

1074 *Proof.* We start from the definition of monotonicity, given in the statement, and utilize the convexity
1075 and concavity of f :

$$\begin{aligned}
1076 \quad \langle F(z_1) - F(z_2), z_1 - z_2 \rangle &= \langle \nabla_x f(x_1, y_1) - \nabla_x f(x_2, y_2), x_1 - x_2 \rangle \\
1077 &\quad - \langle \nabla_y f(x_1, y_1) - \nabla_y f(x_2, y_2), y_1 - y_2 \rangle \\
1078 &= \langle \nabla_x f(x_1, y_1), x_1 - x_2 \rangle + \langle -\nabla_y f(x_1, y_1), y_1 - y_2 \rangle \\
1079 &\quad + \langle \nabla_x f(x_2, y_2), x_2 - x_1 \rangle + \langle -\nabla_y f(x_2, y_2), y_2 - y_1 \rangle
\end{aligned}$$

$$\begin{aligned} &\geq f(x_1, y_1) - f(x_2, y_1) + f(x_1, y_2) - f(x_1, y_1) \\ &\quad + f(x_2, y_2) - f(x_1, y_2) + f(x_2, y_1) - f(x_2, y_2) = 0. \end{aligned}$$

The following Lemma 2 (Lemma 3 in (Alacaoglu & Malitsky, 2022)) justifies the interchange of the maximum and the expectation operators, which is crucial for transitioning from the descent lemma to the actual convergence criterion in the main theorem.

Lemma 2. Let $\mathcal{F} = \{\mathcal{F}_k\}_{k \geq 1}$ be a filtration u_k a stochastic process adopted to \mathcal{F} with $\mathbb{E}[u_{k+1} | \mathcal{F}_k] = 0$. Then for any $K \in \mathbb{N}$, $z_a \in \mathcal{Z}$ and compact set $\mathcal{D} \subset \mathcal{Z}$ the following holds:

$$\mathbb{E} \left[\max_{z \in \mathcal{D}} \sum_{k=0}^{K-1} \langle u_{k+1}, z \rangle \right] \leq \max_{z \in \mathcal{D}} \left(\frac{1}{2} \|z_a - z\|^2 + \frac{1}{2} \sum_{k=0}^{K-1} \mathbb{E} \|u_{k+1}\|^2 \right). \quad (6)$$

Proof. Let $v_0 = z_a$, $v_{k+1} = v_k + u_{k+1}$. Since $u_k - \mathcal{F}_{\parallel}$ -measurable, $v_k - \mathcal{F}_{\parallel}$ -measurable as well.

Then we write

$$\|v_{k+1} - z\|^2 = \|v_k - z\|^2 + 2\langle u_{k+1}, v_k - z \rangle + \|u_{k+1}\|^2.$$

Summing over $k = 0, 1, \dots, K - 1$ we get

$$\sum_{k=0}^{K-1} 2\langle u_{k+1}, z - v_k \rangle \leq \|v_0 - z\|^2 + \sum_{k=0}^{K-1} \|u_{k+1}\|^2.$$

Maximizing and taking expectation we obtain

$$\mathbb{E} \left[\max_{z \in \mathcal{D}} \sum_{k=0}^{K-1} \langle u_{k+1}, z \rangle - \sum_{k=0}^{K-1} \langle u_{k+1}, v_k \rangle \right] \leq \frac{1}{2} \max_{z \in \mathcal{D}} \|v_0 - z\|^2 + \mathbb{E} \left[\frac{1}{2} \sum_{k=0}^{K-1} \|u_{k+1}\|^2 \right].$$

Finally, due to \mathcal{F} -measurability of v_k and by the tower property of conditional expectation, the second sum on the left-hand side vanishes. It concludes the proof. \square

F MISSING PROOFS

Now we are ready to start the main analysis. We proceed with the descent Lemma 3.

Lemma 3. Let $\gamma_\pi = \gamma_\theta = \gamma$. Then, after K iterations of Algorithm 1 solving problem (4) the following holds:

$$\begin{aligned}
2\gamma\langle F(z^{k+1}), z^{k+1} - z \rangle &\leq (2D_{KL}(\pi, \pi^k) - 2D_{KL}(\pi, \pi^{k+1})) \\
&\quad + (\|\theta^k - \theta\|^2 - \|\theta^{k+1} - \theta\|^2) \\
&\quad + \left(2\gamma\alpha\langle F(z^k) - F(z^{k-1}), z - z^k \rangle \right. \\
&\quad \left. - 2\gamma\langle F(z^{k+1}) - F(z^k), z - z^{k+1} \rangle \right) \\
&\quad - \frac{1}{2}\|\pi^{k+1} - \pi^k\|^2 - \frac{1}{2}\|\theta^{k+1} - \theta^k\|^2 \\
&\quad + 2\gamma^2\|p^k - p^{k-1}\|^2 + 2\gamma^2\|g^k - g^{k-1}\|^2,
\end{aligned}$$

where $z = \begin{pmatrix} \theta \\ \pi \end{pmatrix}$ and $F(z^k) = \begin{pmatrix} g^k \\ -p^k \end{pmatrix}$.

Proof. We proceed with algorithm steps evaluation.

Mirror descent step provides:

$$\begin{aligned}
0 &\leq \langle -\gamma \hat{p}^k + \nabla \psi(\pi^{k+1}) - \nabla \psi(\pi^k), \pi - \pi^{k+1} \rangle \\
&\equiv -\gamma \langle \hat{p}^k, \pi - \pi^{k+1} \rangle + D_{KL}(\pi, \pi^k) - D_{KL}(\pi, \pi^{k+1}) - D_{KL}(\pi^{k+1}, \pi^k).
\end{aligned}$$

Rearranging it we reach:

$$D_{\mathcal{K}^I}(\pi, \pi^{k+1}) \leq D_{\mathcal{K}^I}(\pi, \pi^k) - D_{\mathcal{K}^I}(\pi^{k+1}, \pi^k) - \gamma \langle \hat{p}^k, \pi - \pi^{k+1} \rangle$$

1134 $= D_{KL}(\pi, \pi^k) - D_{KL}(\pi^{k+1}, \pi^k) - \gamma(1 + \alpha)\langle p^k, \pi - \pi^{k+1} \rangle$
 1135 $+ \gamma\alpha\langle p^{k-1}, \pi - \pi^{k+1} \rangle$
 1136 $= D_{KL}(\pi, \pi^k) - D_{KL}(\pi^{k+1}, \pi^k) - \gamma\langle p^k, \pi - \pi^{k+1} \rangle$
 1137 $- \gamma\alpha\langle p^k - p^{k-1}, \pi - \pi^{k+1} \rangle$
 1138 $= D_{KL}(\pi, \pi^k) - D_{KL}(\pi^{k+1}, \pi^k) - \gamma\langle p^k - p^{k+1}, \pi - \pi^{k+1} \rangle$
 1139 $- \gamma\langle p^{k+1}, \pi - \pi^{k+1} \rangle - \gamma\alpha\langle p^k - p^{k-1}, \pi - \pi^k \rangle$
 1140 $- \gamma\alpha\langle p^k - p^{k-1}, \pi^k - \pi^{k+1} \rangle.$ (7)
 1141
 1142
 1143

θ update rule implies:

1144 $\|\theta^{k+1} - \theta\|^2 \leq \|\theta^k - \theta\|^2 + \|\theta^{k+1} - \theta^k\|^2 + 2\langle \theta^{k+1} - \theta^k, \theta^k - \theta \rangle$
 1145 $= \|\theta^k - \theta\|^2 - \|\theta^{k+1} - \theta^k\|^2 + 2\langle \theta^{k+1} - \theta^k, \theta^{k+1} - \theta \rangle$
 1146 $= \|\theta^k - \theta\|^2 - \|\theta^{k+1} - \theta^k\|^2 + 2\gamma\langle \hat{g}^k, \theta - \theta^{k+1} \rangle$
 1147 $= \|\theta^k - \theta\|^2 - \|\theta^{k+1} - \theta^k\|^2 + 2\gamma(1 + \alpha)\langle g^k, \theta - \theta^{k+1} \rangle$
 1148 $- 2\gamma\alpha\langle g^{k-1}, \theta - \theta^{k+1} \rangle$
 1149 $= \|\theta^k - \theta\|^2 - \|\theta^{k+1} - \theta^k\|^2 + 2\gamma\langle g^k, \theta - \theta^{k+1} \rangle$
 1150 $+ 2\gamma\alpha\langle g^k - g^{k-1}, \theta - \theta^{k+1} \rangle$
 1151 $= \|\theta^k - \theta\|^2 - \|\theta^{k+1} - \theta^k\|^2 + 2\gamma\langle g^k - g^{k+1}, \theta - \theta^{k+1} \rangle$
 1152 $+ 2\gamma\langle g^{k+1}, \theta - \theta^{k+1} \rangle + 2\gamma\alpha\langle g^k - g^{k-1}, \theta - \theta^k \rangle$
 1153 $+ 2\gamma\alpha\langle g^k - g^{k-1}, \theta^k - \theta^{k+1} \rangle.$ (8)
 1154
 1155
 1156
 1157

1158 Summing 2(7) and (8) we get:

1159 $2D_{KL}(\pi, \pi^{k+1}) + \|\theta^{k+1} - \theta\|^2$
 1160 $\leq 2D_{KL}(\pi, \pi^k) + \|\theta^k - \theta\|^2 - 2D_{KL}(\pi^{k+1}, \pi^k) - \|\theta^{k+1} - \theta^k\|^2$
 1161 $- 2\gamma\langle p^k - p^{k+1}, \pi - \pi^{k+1} \rangle + 2\gamma\langle g^k - g^{k+1}, \theta - \theta^{k+1} \rangle$
 1162 $- 2\gamma\langle p^{k+1}, \pi - \pi^{k+1} \rangle + 2\gamma\langle g^{k+1}, \theta - \theta^{k+1} \rangle$
 1163 $- 2\gamma\alpha\langle p^k - p^{k-1}, \pi - \pi^k \rangle + 2\gamma\alpha\langle g^k - g^{k-1}, \theta - \theta^k \rangle$
 1164 $- 2\gamma\alpha\langle p^k - p^{k-1}, \pi^k - \pi^{k+1} \rangle + 2\gamma\alpha\langle g^k - g^{k-1}, \theta^k - \theta^{k+1} \rangle.$
 1165
 1166
 1167

1168 Now we rewrite last inequality using $z = \begin{pmatrix} \theta \\ \pi \end{pmatrix}$ and $F(z^k) = \begin{pmatrix} g^k \\ -p^k \end{pmatrix}.$

1169 $2D_{KL}(\pi, \pi^{k+1}) + \|\theta^{k+1} - \theta\|^2$
 1170 $\leq 2D_{KL}(\pi, \pi^k) + \|\theta^k - \theta\|^2 - 2D_{KL}(\pi^{k+1}, \pi^k) - \|\theta^{k+1} - \theta^k\|^2$
 1171 $+ 2\gamma\langle F(z^k) - F(z^{k+1}), z - z^{k+1} \rangle + 2\gamma\langle F(z^{k+1}), z - z^{k+1} \rangle$
 1172 $+ 2\gamma\alpha\langle F(z^k) - F(z^{k-1}), z - z^k \rangle$
 1173 $- 2\gamma\alpha\langle p^k - p^{k-1}, \pi^k - \pi^{k+1} \rangle + 2\gamma\alpha\langle g^k - g^{k-1}, \theta^k - \theta^{k+1} \rangle.$
 1174
 1175
 1176

1177 Pinsker's inequality (Pi) and (CS) with $\beta = 2\gamma$ provides

1178 $2D_{KL}(\pi, \pi^{k+1}) + \|\theta^{k+1} - \theta\|^2$
 1179 $\leq 2D_{KL}(\pi, \pi^k) + \|\theta^k - \theta\|^2 - \|\pi^{k+1} - \pi^k\|^2 - \|\theta^{k+1} - \theta^k\|^2$
 1180 $+ 2\gamma\langle F(z^k) - F(z^{k+1}), z - z^{k+1} \rangle + 2\gamma\langle F(z^{k+1}), z - z^{k+1} \rangle$
 1181 $+ 2\gamma\alpha\langle F(z^k) - F(z^{k-1}), z - z^k \rangle$
 1182 $+ 2\alpha\gamma^2\|p^k - p^{k-1}\|^2 + \frac{\alpha}{2}\|\pi^k - \pi^{k+1}\|_1^2$
 1183 $+ 2\alpha\gamma^2\|g^k - g^{k-1}\|^2 + \frac{\alpha}{2}\|\theta^k - \theta^{k+1}\|^2.$
 1184
 1185
 1186

1187 Finally, rearranging brings us to

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199

$$\begin{aligned}
& 2\gamma\langle F(z^{k+1}), z^{k+1} - z \rangle \\
& \leq (2D_{KL}(\pi, \pi^k) - 2D_{KL}(\pi, \pi^{k+1})) + (\|\theta^k - \theta\|^2 - \|\theta^{k+1} - \theta\|^2) \\
& \quad + (2\gamma\alpha\langle F(z^k) - F(z^{k-1}), z - z^k \rangle - 2\gamma\langle F(z^{k+1}) - F(z^k), z - z^{k+1} \rangle) \\
& \quad - \left(1 - \frac{\alpha}{2}\right) \|\pi^{k+1} - \pi^k\|_1^2 - \left(1 - \frac{\alpha}{2}\right) \|\theta^{k+1} - \theta^k\|^2 \\
& \quad + 2\alpha\gamma^2\|p^k - p^{k-1}\|^2 + 2\alpha\gamma^2\|g^k - g^{k-1}\|^2.
\end{aligned}$$

□

F.1 ANALYSIS IN EXACT LOCAL GRADIENTS SETTING

For the subsequent analysis, we need recursive relations for the oracle distortion terms. For notational convenience we introduce $v^k = \mathbb{E} \|\tilde{f}^k - h^k\|^2$, $w^k = \sum_{i=1}^M \mathbb{E} \|\tilde{f}_i^k - h_i^k\|^2$.

Lemma 4. *Let Assumptions 1 and 2 hold. Then for iterations of Algorithm 1 with unbiased compressor 1 \mathcal{Q} and exact local gradients holds:*

1206
1207
1208
1209

$$\begin{aligned}
w^k & \leq (1 + c_2^{-1}) \left[6 \frac{aL^2}{M} \mathbb{E} \|\theta^k - \theta^{k-1}\|^2 + 2\tilde{L}^2 \mathbb{E} \|\pi^k - \pi^{k-1}\|_1^2 \right] \\
& \quad + (1 + c_2)(1 + \beta^2\omega - 2\beta)w^{k-1}.
\end{aligned} \tag{9}$$

1210 *Proof.* We begin by using the explicit update rule of clients' local state.

1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223

$$\begin{aligned}
w^k & = \sum_{i=1}^M \mathbb{E} \|\tilde{f}_i^k - h_i^k\|^2 = \sum_{i=1}^M \mathbb{E} \|\tilde{f}_i^k - h_i^{k-1} - \beta\mathcal{Q}(\tilde{f}_i^{k-1} - h_i^{k-1})\|^2 \\
& = \sum_{i=1}^M \mathbb{E} \left\| \left(\tilde{f}_i^k - \tilde{f}_i^{k-1} \right) + \left(\tilde{f}_i^{k-1} - h_i^{k-1} - \beta\mathcal{Q}(\tilde{f}_i^{k-1} - h_i^{k-1}) \right) \right\|^2 \\
& \stackrel{(CS)}{\leq} (1 + c_2^{-1}) \sum_{i=1}^M \mathbb{E} \|\tilde{f}_i^k - \tilde{f}_i^{k-1}\|^2 \\
& \quad + (1 + c_2) \sum_{i=1}^M \mathbb{E} \left\| \tilde{f}_i^{k-1} - h_i^{k-1} - \beta\mathcal{Q}(\tilde{f}_i^{k-1} - h_i^{k-1}) \right\|^2.
\end{aligned} \tag{10}$$

1224 We estimate the first term:

1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

$$\begin{aligned}
\sum_{i=1}^M \mathbb{E} \|\tilde{f}_i^k - \tilde{f}_i^{k-1}\|^2 & = \sum_{i=1}^M \mathbb{E} \|\pi_i^k \nabla f_i(\theta^k) - \pi_i^{k-1} \nabla f_i(\theta^{k-1})\|^2 \\
& \stackrel{(CS)}{\leq} 2 \sum_{i=1}^M \mathbb{E} \|\pi_i^k \nabla f_i(\theta^k) - \pi_i^k \nabla f_i(\theta^{k-1})\|^2 \\
& \quad + 2 \sum_{i=1}^M \mathbb{E} \|(\pi_i^k - \pi_i^{k-1}) \nabla f_i(\theta^{k-1})\|^2 \\
& = 2 \sum_{i=1}^M \mathbb{E} \pi_i^{k^2} \|\nabla f_i(\theta^k) - \nabla f_i(\theta^{k-1})\|^2 \\
& \quad + 2 \sum_{i=1}^M \mathbb{E} |\pi_i^k - \pi_i^{k-1}|^2 \|\nabla f_i(\theta^{k-1})\|^2 \\
& \stackrel{(i)}{\leq} 2 \sum_{i=1}^M \mathbb{E} \pi_i^{k^2} L_i^2 \|\theta^k - \theta^{k-1}\|^2 + 2 \mathbb{E} \sum_{i=1}^M |\pi_i^k - \pi_i^{k-1}|^2 \tilde{L}^2
\end{aligned}$$

$$\begin{aligned}
&= 2\mathbb{E} \left\| \theta^k - \theta^{k-1} \right\|^2 \sum_{i=1}^M \pi_i^{k^2} L_i^2 + 2\tilde{L}^2 \mathbb{E} \left\| \pi^k - \pi^{k-1} \right\|^2 \\
&\leq 2\mathbb{E} \left\| \theta^k - \theta^{k-1} \right\|^2 \sum_{i=1}^M \pi_i^{k^2} L_i^2 + 2\tilde{L}^2 \mathbb{E} \left\| \pi^k - \pi^{k-1} \right\|_1^2. \quad (11)
\end{aligned}$$

Where (i) holds due to Assumptions 1 and 2. We can bound $\sum_{i=1}^M \mathbb{E} \pi_i^k L_i^2$ using condition $\pi \in \Delta^{M-1} \cap Q_a^M$, where $Q_a^M = \{x \in \mathbb{R}^M \mid 0 \leq x_i \leq \frac{a}{M}\}$ and $a \in [1, M]$:

$$\begin{aligned}
\sum_{i=1}^M \pi_i^k L_i^2 &\leq L^2 \sum_{i=1}^M \pi_i^k \leq L^2 \max_{x \in (\Delta^{M-1} \cap Q_a^M)} \|x\|^2 \\
&= L^2 \left[\left(\frac{a}{M} \right)^2 \left\lceil \frac{M}{a} \right\rceil + \left(1 - \frac{a}{M} \left\lceil \frac{M}{a} \right\rceil \right)^2 \right] \\
&\leq L^2 \left[\left(\frac{a}{M} \right)^2 \left(\left\lceil \frac{M}{a} \right\rceil + 1 \right) \right] \\
&\leq L^2 \left[\left(\frac{a}{M} \right)^2 \left(\frac{M}{a} + 2 \right) \right] \\
&\leq L^2 \left[\left(\frac{a}{M} \right)^2 \frac{3M}{a} \right] = L^2 \frac{3a}{M}.
\end{aligned} \tag{12}$$

Substitution of (12) into (11) gives

$$\begin{aligned} \sum_{i=1}^M \mathbb{E} \left\| \tilde{f}_i^k - \tilde{f}_i^{k-1} \right\|^2 &= \sum_{i=1}^M \mathbb{E} \left\| \pi_i^k \nabla f_i(x^k) - \pi_i^{k-1} \nabla f_i(x^{k-1}) \right\|^2 \\ &\leq 6 \frac{aL^2}{M} \mathbb{E} \left\| \theta^k - \theta^{k-1} \right\|^2 + 2\tilde{L}^2 \mathbb{E} \left\| \pi^k - \pi^{k-1} \right\|_1^2. \end{aligned} \quad (13)$$

Then we evaluate the second term of (10) RHS:

$$\begin{aligned}
& \mathbb{E} \left\| \tilde{f}_i^{k-1} - h_i^{k-1} - \beta \mathcal{Q}(\tilde{f}_i^{k-1} - h_i^{k-1}) \right\|^2 \\
&= \mathbb{E} \left\| \tilde{f}_i^{k-1} - h_i^{k-1} \right\|^2 + \beta^2 \mathbb{E} \left\| \mathcal{Q}(\tilde{f}_i^{k-1} - h_i^{k-1}) \right\|^2 \\
&\quad - 2\mathbb{E} \left\langle \tilde{f}_i^{k-1} - h_i^{k-1}, \beta \mathcal{Q}(\tilde{f}_i^{k-1} - h_i^{k-1}) \right\rangle \\
&\stackrel{1}{\leq} \mathbb{E} \left\| \tilde{f}_i^{k-1} - h_i^{k-1} \right\|^2 + \beta^2 \omega \mathbb{E} \left\| \tilde{f}_i^{k-1} - h_i^{k-1} \right\|^2 - 2\beta \mathbb{E} \left\| \tilde{f}_i^{k-1} - h_i^{k-1} \right\|^2 \\
&= (1 + \beta^2 \omega - 2\beta) \mathbb{E} \left\| \tilde{f}_i^{k-1} - h_i^{k-1} \right\|^2. \tag{14}
\end{aligned}$$

Finally, combining (10) with (13) and (14) we obtain:

$$\begin{aligned}
w^k &\leq (1 + c_2^{-1}) \left[6 \frac{aL^2}{M} \mathbb{E} \left\| \theta^k - \theta^{k-1} \right\|^2 + 2\tilde{L}^2 \mathbb{E} \left\| \pi^k - \pi^{k-1} \right\|_1^2 \right] \\
&\quad + (1 + c_2)(1 + \beta^2 \omega - 2\beta) \mathbb{E} \sum_{i=1}^M \left\| \tilde{f}_i^{k-1} - h_i^{k-1} \right\|^2 \\
&= (1 + c_2^{-1}) \left[6 \frac{aL^2}{M} \mathbb{E} \left\| \theta^k - \theta^{k-1} \right\|^2 + 2\tilde{L}^2 \mathbb{E} \left\| \pi^k - \pi^{k-1} \right\|_1^2 \right] \\
&\quad + (1 + c_2)(1 + \beta^2 \omega - 2\beta) w^{k-1}.
\end{aligned}$$

We continue by examining the global oracle distortion evolution

1296 **Lemma 5.** Let Assumptions 1 and 2 hold. Then for iterations of Algorithm 1 with unbiased
1297 compressor 1 \mathcal{Q} and exact local gradients holds:

$$\begin{aligned} v^k &\leq (1 + c_1^{-1}) \left(2L^2 \mathbb{E} \|\theta^k - \theta^{k-1}\|^2 + 2M\tilde{L}^2 \mathbb{E} \|\pi^k - \pi^{k-1}\|_1^2 \right) \\ &\quad + (1 + c_1) (v^{k-1}(1 + \beta^2 - 2\beta) + \beta^2 w^{k-1}(\omega - 1)). \end{aligned} \quad (15)$$

1302
1303
1304 *Proof.* We begin with the explicit global estimator update rule.
1305

$$\begin{aligned} v^k &= \mathbb{E} \|\tilde{f}^k - h^k\|^2 = \mathbb{E} \left\| \tilde{f}^k - h^{k-1} - \beta \sum_{i=1}^M \mathcal{Q}(\tilde{f}_i^{k-1} - h_i^{k-1}) \right\|^2 \\ &= \mathbb{E} \left\| (\tilde{f}^k - \tilde{f}^{k-1}) + \left(\tilde{f}^{k-1} - h^{k-1} - \beta \sum_{i=1}^M \mathcal{Q}(\tilde{f}_i^{k-1} - h_i^{k-1}) \right) \right\|^2 \\ &\stackrel{(CS)}{\leq} (1 + c_1^{-1}) \mathbb{E} \|\tilde{f}^k - \tilde{f}^{k-1}\|^2 \\ &\quad + (1 + c_1) \mathbb{E} \left\| \tilde{f}^{k-1} - h^{k-1} - \beta \sum_{i=1}^M \mathcal{Q}(\tilde{f}_i^{k-1} - h_i^{k-1}) \right\|^2. \end{aligned}$$

1317 Then we examine first term on the (16) RHS.

1318 As all f_i are L -Lipschitz continuous (Assumption 2) the weighted sum $\sum_{i=1}^M \pi_i f_i$ is L -Lipschitz
1319 continuous as well. It justifies (i) in following inequality sequence.

$$\begin{aligned} \mathbb{E} \|\tilde{f}^k - \tilde{f}^{k-1}\|^2 &= \mathbb{E} \left\| \sum_{i=1}^M \pi_i^k \nabla f_i(\theta^k) - \pi_i^{k-1} \nabla f_i(\theta^{k-1}) \right\|^2 \\ &= \mathbb{E} \left\| \sum_{i=1}^M \pi_i^k (\nabla f_i(\theta^k) - \nabla f_i(\theta^{k-1})) + (\pi_i^k - \pi_i^{k-1}) \nabla f_i(\theta^{k-1}) \right\|^2 \\ &\stackrel{(CS)}{\leq} 2\mathbb{E} \left\| \sum_{i=1}^M \pi_i^k (\nabla f_i(\theta^k) - \nabla f_i(\theta^{k-1})) \right\|^2 \\ &\quad + 2\mathbb{E} \left\| \sum_{i=1}^M (\pi_i^k - \pi_i^{k-1}) \nabla f_i(\theta^{k-1}) \right\|^2 \\ &\stackrel{(i)}{\leq} 2L^2 \mathbb{E} \|\theta^k - \theta^{k-1}\|^2 + 2\mathbb{E} \left(\sum_{i=1}^M |\pi_i^k - \pi_i^{k-1}| \|\nabla f_i(\theta^{k-1})\| \right)^2 \\ &\stackrel{1}{\leq} 2L^2 \mathbb{E} \|\theta^k - \theta^{k-1}\|^2 + 2\mathbb{E} \left(\sum_{i=1}^M |\pi_i^k - \pi_i^{k-1}| \tilde{L} \right)^2 \\ &\leq 2L^2 \mathbb{E} \|\theta^k - \theta^{k-1}\|^2 + 2\tilde{L}^2 \mathbb{E} \|\pi^k - \pi^{k-1}\|_1^2. \end{aligned} \quad (16)$$

1341 Now we concentrate on the second term on the (16) RHS:

$$\begin{aligned} \mathbb{E} \left\| \tilde{f}^{k-1} - h^{k-1} - \beta \sum_{i=1}^M \mathcal{Q}(\tilde{f}_i^{k-1} - h_i^{k-1}) \right\|^2 \\ = \mathbb{E} \|\tilde{f}^{k-1} - h^{k-1}\|^2 + \beta^2 \mathbb{E} \left\| \sum_{i=1}^M \mathcal{Q}(\tilde{f}_i^{k-1} - h_i^{k-1}) \right\|^2 \\ - 2\beta \mathbb{E} \left\langle \tilde{f}^{k-1} - h^{k-1}, \sum_{i=1}^M \mathcal{Q}(\tilde{f}_i^{k-1} - h_i^{k-1}) \right\rangle \end{aligned}$$

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381

$$\begin{aligned} & \stackrel{(1)}{\leq} \mathbb{E} \left\| \tilde{f}^{k-1} - h^{k-1} \right\|^2 + \beta^2 (v^{k-1} + \omega w^{k-1}) - 2\beta \mathbb{E} \left\| \tilde{f}^{k-1} - h^{k-1} \right\|^2 \\ & = v^{k-1} (1 + \beta^2 - 2\beta) + \beta^2 \omega w^{k-1}. \end{aligned} \quad (17)$$

Plugging (17) and (16) into (16) yields:

1356 $v^k \leq (1 + c_1^{-1}) \left(2L^2 \mathbb{E} \left\| \theta^k - \theta^{k-1} \right\|^2 + 2M\tilde{L}^2 \mathbb{E} \left\| \pi^k - \pi^{k-1} \right\|_1^2 \right)$
1357 $+ (1 + c_1) (v^{k-1} (1 + \beta^2 - 2\beta) + \beta^2 w^{k-1} (\omega - 1)).$

□

The last preparation before proceeding to the main theorem is evaluation of global state dynamics.

Lemma 6. *For iterations of Algorithm 1 with unbiased compressor 1 \mathcal{Q} , the following holds:*

1363 $2\gamma^2 \mathbb{E} \|g^k - g^{k-1}\|^2 = 4\gamma^2 (\omega - 1) (w^k + (1 - \beta)^2 w^{k-1}) + 4\gamma^2 (v^k + (1 - \beta)^2 v^{k-1}). \quad (18)$
1364

Proof. Let us again begin with the explicit global estimator update rule.

1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381

$$\begin{aligned} & 2\gamma^2 \mathbb{E} \|g^k - g^{k-1}\|^2 \\ & = 2\gamma^2 \mathbb{E} \|h^k + \hat{\Delta}^k - h^{k-1} - \hat{\Delta}^{k-1}\|^2 \\ & = 2\gamma^2 \mathbb{E} \left\| \sum_{i=1}^M (h_i^k - h_i^{k-1}) + \sum_{i=1}^M \mathcal{Q}(\tilde{f}_i^k - h_i^k) - \sum_{i=1}^M \mathcal{Q}(\tilde{f}_i^{k-1} - h_i^{k-1}) \right\|^2 \\ & = 2\gamma^2 \mathbb{E} \left\| \beta \sum_{i=1}^M \mathcal{Q}(\tilde{f}_i^{k-1} - h_i^{k-1}) + \sum_{i=1}^M \mathcal{Q}(\tilde{f}_i^k - h_i^k) - \sum_{i=1}^M \mathcal{Q}(\tilde{f}_i^{k-1} - h_i^{k-1}) \right\|^2 \\ & = 2\gamma^2 \mathbb{E} \left\| \sum_{i=1}^M \mathcal{Q}(\tilde{f}_i^k - h_i^k) - (1 - \beta) \sum_{i=1}^M \mathcal{Q}(\tilde{f}_i^{k-1} - h_i^{k-1}) \right\|^2 \\ & \stackrel{(CS)}{=} 4\gamma^2 \mathbb{E} \left\| \sum_{i=1}^M \mathcal{Q}(\tilde{f}_i^k - h_i^k) \right\|^2 + 4\gamma^2 (1 - \beta)^2 \mathbb{E} \left\| \sum_{i=1}^M \mathcal{Q}(\tilde{f}_i^{k-1} - h_i^{k-1}) \right\|^2. \end{aligned} \quad (19)$$

Terms differ only in their indices, which makes it convenient to analyze them separately. Here we utilize cross-device compressor independence and unbiasedness once again:

1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397

$$\begin{aligned} \mathbb{E} \left\| \sum_{i=1}^M \mathcal{Q}(\tilde{f}_i^k - h_i^k) \right\|^2 & = \sum_{i=1}^M \mathbb{E} \left\| \mathcal{Q}(\tilde{f}_i^k - h_i^k) \right\|^2 + \sum_{i \neq j} \mathbb{E} \left\langle \mathcal{Q}(\tilde{f}_i^k - h_i^k), \mathcal{Q}(\tilde{f}_j^k - h_j^k) \right\rangle \\ & = \sum_{i=1}^M \omega \mathbb{E} \left\| \tilde{f}_i^k - h_i^k \right\|^2 + \sum_{i \neq j} \mathbb{E} \left\langle \mathcal{Q}(\tilde{f}_i^k - h_i^k), \mathcal{Q}(\tilde{f}_j^k - h_j^k) \right\rangle \\ & = \omega \sum_{i=1}^M \mathbb{E} \left\| \tilde{f}_i^k - h_i^k \right\|^2 + \sum_{i \neq j} \mathbb{E} \left\langle \tilde{f}_i^k - h_i^k, \tilde{f}_j^k - h_j^k \right\rangle \\ & = (\omega - 1) \sum_{i=1}^M \mathbb{E} \left\| \tilde{f}_i^k - h_i^k \right\|^2 + \mathbb{E} \left\| \tilde{f}^k - h^k \right\|^2 \\ & = (\omega - 1) w^k + v^k. \end{aligned} \quad (20)$$

Substituting (20) into (19) we reach

1398
1399
1400

$$2\gamma^2 \mathbb{E} \|g^k - g^{k-1}\|^2 = 4\gamma^2 (\omega - 1) (w^k + (1 - \beta)^2 w^{k-1}) + 4\gamma^2 (v^k + (1 - \beta)^2 v^{k-1}).$$

□

Finally, let us introduce the convergence criterion. In saddle point problems under the convex-concave setting convergence measures in term of the **Gap** function (Definition 2). Since ADI

1404 incorporates possibly randomized compression operator \mathcal{Q} , the convergence guarantees for it is based
 1405 on $\mathbb{E}[\mathbf{Gap}(z)]$. This guarantees are provided by Theorem 1.

1406 **Theorem 1.** *Let Assumptions 1, 2, 3 hold and $\alpha = 1$, $\beta = \frac{1}{\omega}$, $H = 32\gamma^2\omega^2$, $N = 7\gamma^2\omega$,
 1407 $\gamma_\pi = \gamma_\theta = \gamma \leq \gamma_0 = \min \left\{ \frac{1}{2\bar{L}} \sqrt{\frac{1}{96\omega^3 + 14M\omega^2}}, \sqrt{\frac{1}{2} \frac{1}{4M\bar{L}^2 + 576\frac{\alpha\omega^3}{M}L^2 + 28\omega^2L^2}} \right\}$, $\Lambda = \Delta^{M-1} \cap Q_a^M$,
 1408 where $Q_a^M = \{x \in \mathbb{R}^M \mid 0 \leq x_i \leq \frac{a}{M}\}$. Then, after K iterations of Algorithm 1 with unbiased
 1409 compressor 1 \mathcal{Q} and exact local gradients solving problem (4) the following holds:*

$$1412 \mathbb{E}[\mathbf{Gap}(\bar{z}_K)] \leq \frac{V}{2\gamma K},$$

1413 where

$$1415 V = \mathbb{E} \left[\max_{z \in \mathcal{D}} \left\{ 4D_{KL}(\pi, \pi^1) + 2\|\theta^1 - \theta\|^2 + 2\gamma \langle F(z^1) - F(z^0), z - z^1 \rangle \right\} \right. \\ 1416 \left. + H \sum_{k=0}^1 \sum_{i=1}^M \|\tilde{f}_i^k - h_i^k\|^2 + N \sum_{k=0}^1 \|\tilde{f}^k - h^k\|^2 \right] \quad \text{and} \quad \bar{z}_K = \frac{1}{K} \sum_{k=1}^K z^k.$$

1421 *Proof.* We proceed with using the unbiasedness (2) of compressor \mathcal{Q} :

$$1423 \mathbb{E}[F(z^k)|z^k] = \mathbb{E} \left[\begin{pmatrix} g^k \\ p^k \end{pmatrix} \middle| z^k \right] = \mathbb{E} \left[\begin{pmatrix} h^k + \sum_{i=1}^M \mathcal{Q}(\tilde{f}_i^k - h_i^k) \\ p^k \end{pmatrix} \middle| z^k \right] = \begin{pmatrix} \tilde{f}^k \\ p^k \end{pmatrix} \stackrel{\text{def}}{=} \bar{F}(z^k),$$

1425 where $\tilde{f}^k = \sum_{i=1}^M \tilde{f}_i^k = \sum_{i=1}^M \pi_i^k \nabla f_i(\theta^k)$. Considering $f(\theta, \pi) = \sum_{i=1}^M \pi_i f_i(\theta)$ we note that it
 1426 is convex with respect to θ due to convexity of all f_i . At the same time, f is linear, and therefore
 1427 concave with respect to all π_i . Then, noting that $\bar{F}(z) = \begin{pmatrix} \nabla_\theta f(\theta, \pi) \\ -\nabla_\pi f(\theta, \pi) \end{pmatrix}$, we invoke Lemma 1 to
 1428 establish its monotonicity.

1430 Our objective is to obtain convergence with respect to $\mathbf{Gap}(z) = \max_{x \in \mathcal{D}} \{\langle \bar{F}(x), z - x \rangle\}$. Hence, the
 1431 next step is conditioning the result of Lemma 3 on z^{k+1} , using $\alpha = 1$ and summing over $k = 1$ to K ,

$$1433 2\gamma \sum_{k=1}^K \langle \bar{F}(z^{k+1}), z^{k+1} - z \rangle \\ 1434 \leq \sum_{k=1}^K \left[(2D_{KL}(\pi, \pi^k) - 2D_{KL}(\pi, \pi^{k+1})) + (\|\theta^k - \theta\|^2 - \|\theta^{k+1} - \theta\|^2) \right. \\ 1435 \left. + (2\gamma \langle F(z^k) - F(z^{k-1}), z - z^k \rangle - 2\gamma \langle \bar{F}(z^{k+1}) - F(z^k), z - z^{k+1} \rangle) \right. \\ 1436 \left. - \frac{1}{2} \|\pi^{k+1} - \pi^k\|_1^2 - \frac{1}{2} \|\theta^{k+1} - \theta^k\|^2 \right. \\ 1437 \left. + 2\gamma^2 \|p^k - p^{k-1}\|^2 + 2\gamma^2 \|g^k - g^{k-1}\|^2 \right] \\ 1438 = (2D_{KL}(\pi, \pi^1) - 2D_{KL}(\pi, \pi^{K+1})) + (\|\theta^1 - \theta\|^2 - \|\theta^{K+1} - \theta\|^2) \\ 1439 + (2\gamma \langle F(z^1) - F(z^0), z - z^1 \rangle - 2\gamma \langle \bar{F}(z^{K+1}) - F(z^K), z - z^{K+1} \rangle) \\ 1440 + \sum_{k=1}^{K-1} \left[2\gamma \langle \bar{F}(z^{k+1}) - F(z^{k+1}), z - z^{k+1} \rangle \right] \\ 1441 + \sum_{k=1}^K \left[-\frac{1}{2} \|\pi^{k+1} - \pi^k\|_1^2 - \frac{1}{2} \|\theta^{k+1} - \theta^k\|^2 \right. \\ 1442 \left. + 2\gamma^2 \|p^k - p^{k-1}\|^2 + 2\gamma^2 \|g^k - g^{k-1}\|^2 \right].$$

1443 Maximizing obtained inequality over compact set $z \in \mathcal{D}$ and taking full expectation, we get

$$1444 2\gamma \mathbb{E} \left[\max_{z \in \mathcal{D}} \left\{ \sum_{k=1}^K \langle \bar{F}(z^{k+1}), z^{k+1} - z \rangle \right\} \right] \leq \mathbb{E} \left[\max_{z \in \mathcal{D}} \left\{ (2D_{KL}(\pi, \pi^1) - 2D_{KL}(\pi, \pi^{K+1})) \right. \right.$$

1458 $+ (\|\theta^1 - \theta\|^2 - \|\theta^{K+1} - \theta\|^2)$
 1459 $+ (2\gamma \langle F(z^1) - F(z^0), z - z^1 \rangle$
 1460 $- 2\gamma \langle \bar{F}(z^{K+1}) - F(z^K), z - z^{K+1} \rangle)$
 1461 $+ \sum_{k=1}^{K-1} 2\gamma \langle \bar{F}(z^{k+1}) - F(z^{k+1}), z - z^{k+1} \rangle \}$
 1462 $+ \sum_{k=1}^K \left[-\frac{1}{2} \|\pi^{k+1} - \pi^k\|_1^2 - \frac{1}{2} \|\theta^{k+1} - \theta^k\|^2 \right.$
 1463 $\left. + 2\gamma^2 \|p^k - p^{k-1}\|^2 + 2\gamma^2 \|g^k - g^{k-1}\|^2 \right]. \quad (21)$
 1464
 1465
 1466
 1467
 1468
 1469
 1470

Several next steps evaluate different terms of (21), starting with the LHS.

Due to monotonicity of \bar{F} ,

$$\mathbf{Gap} \left(\sum_{k=1}^K z^k \right) \leq \max_{z \in \mathcal{D}} \left\{ \sum_{k=1}^K \langle \bar{F}(z^k), z^k - z \rangle \right\}.$$

Combined with the positive homogeneity of the **Gap** function, for $\bar{z}_K = \frac{1}{K} \sum_{k=1}^K z^k$ it yields

$$K \mathbf{Gap}(\bar{z}_K) \leq \max_{z \in \mathcal{D}} \left\{ \sum_{k=1}^K \langle \bar{F}(z^k), z^k - z \rangle \right\}. \quad (22)$$

We apply Lemma 2 to bound the first sum on the RHS of (21).

$$\begin{aligned}
& 2\mathbb{E}\left[\max_{z \in \mathcal{D}} \left\{ \sum_{k=1}^{K-1} \langle \gamma (\bar{F}(z^{k+1}) - F(z^{k+1})), z - z^{k+1} \rangle \right\}\right] \\
&= 2\mathbb{E}\left[\max_{z \in \mathcal{D}} \left\{ \sum_{k=1}^{K-1} \langle \gamma (\bar{F}(z^{k+1}) - F(z^{k+1})), z \rangle \right\}\right] \\
&\quad - \sum_{k=1}^{K-1} \mathbb{E} \langle \gamma (\bar{F}(z^{k+1}) - F(z^{k+1})), z^{k+1} \rangle \\
&= 2\mathbb{E}\left[\max_{z \in \mathcal{D}} \left\{ \sum_{k=1}^{K-1} \langle \gamma (\bar{F}(z^{k+1}) - F(z^{k+1})), z \rangle \right\}\right] - 0 \\
&\leq \max_{z \in \mathcal{D}} (\|z_a - z\|^2) + \gamma^2 \sum_{k=1}^{K-1} \mathbb{E} \|\bar{F}(z^{k+1}) - F(z^{k+1})\|^2. \tag{23}
\end{aligned}$$

We continue with evaluating of the last term applying properties (2) of unbiased compressor \mathcal{Q} :

$$\begin{aligned}
\mathbb{E} \left\| \bar{F}(z^k) - F(z^k) \right\|^2 &= \mathbb{E} \left\| \binom{\tilde{f}^k}{p^k} - \binom{h^k + \sum_{i=1}^M \mathcal{Q}(\tilde{f}_i^k - h_i^k)}{p^k} \right\|^2 \\
&= \mathbb{E} \left\| \sum_{i=1}^M \mathcal{Q}(\tilde{f}_i^k - h_i^k) - (\tilde{f}^k - h^k) \right\|^2 \\
&= \sum_{i=1}^M \mathbb{E} \left\| \mathcal{Q}(\tilde{f}_i^k - h_i^k) \right\|^2 + \mathbb{E} \left\| \tilde{f}^k - h^k \right\|^2 \\
&\quad - 2 \sum_{i=1}^M \mathbb{E} \left\langle \mathcal{Q}(\tilde{f}_i^k - h_i^k), \tilde{f}^k - h^k \right\rangle \\
&\leq \omega \sum_{i=1}^M \mathbb{E} \left\| \tilde{f}_i^k - h_i^k \right\|^2 - \mathbb{E} \left\| \tilde{f}^k - h^k \right\|^2. \tag{24}
\end{aligned}$$

1512 Finally, using (Pi), the definition of $z = \begin{pmatrix} \theta \\ \pi \end{pmatrix}$ and choosing $z_a = z^1 - z^{k+1}$, we estimate
 1513
 1514
 1515

$$\begin{aligned} \max_{z \in \mathcal{D}} \left\{ 2D_{KL}(\pi, \pi^1) + \|\theta^1 - \theta\|^2 \right\} &\geq \max_{z \in \mathcal{D}} \left\{ \|\pi^1 - \pi\|^2 + \|\theta^1 - \theta\|^2 \right\} \\ &= \max_{z \in \mathcal{D}} \left\{ \|z_a - z\|^2 \right\}. \end{aligned} \quad (25)$$

1519 Using notation $v^k = \mathbb{E} \left\| \tilde{f}^k - h^k \right\|^2$, $w^k = \sum_{i=1}^M \mathbb{E} \left\| \tilde{f}_i^k - h_i^k \right\|^2$ and combining (23),(24) with (25)
 1520 we derive:
 1521

$$\begin{aligned} &2\mathbb{E} \left[\max_{z \in \mathcal{D}} \left\{ \sum_{k=1}^{K-1} \langle \gamma (\bar{F}(z^{k+1}) - F(z^{k+1})), z - z^{k+1} \rangle \right\} \right] \\ &\leq \max_{z \in \mathcal{D}} \left\{ 2D_{KL}(\pi, \pi^1) + \|\theta^1 - \theta\|^2 \right\} + \gamma^2 \sum_{k=2}^K (\omega w^k - v^k). \end{aligned} \quad (26)$$

1522 After that, we estimate $2\gamma^2 \|p^k - p^{k-1}\|^2$ in (21) via Assumption 1:
 1523
 1524

$$2\gamma^2 \|p^k - p^{k-1}\|^2 \leq 2\gamma^2 M \tilde{L}^2 \|\theta^k - \theta^{k-1}\|^2. \quad (27)$$

1525 Finally, we use (18) to evaluate the sum:
 1526
 1527

$$\begin{aligned} &2\gamma^2 \sum_{k=1}^K \mathbb{E} \|g^k - g^{k-1}\|^2 \\ &= 4\gamma^2 \sum_{k=1}^K [(\omega - 1)w^k + v^k] + 4\gamma^2(1 - \beta)^2 \sum_{k=1}^K [(\omega - 1)w^{k-1} + v^{k-1}] \\ &= 4\gamma^2 \sum_{k=1}^K [(\omega - 1)w^k + v^k] + 4\gamma^2(1 - \beta)^2 \sum_{k=0}^{K-1} [(\omega - 1)w^k + v^k] \\ &= 4\gamma^2(1 + (1 - \beta)^2) \left[\sum_{k=0}^K (\omega - 1)w^k + v^k \right] \\ &\quad - 4\gamma^2(1 - \beta)[(\omega - 1)w^K + v^K] \\ &\quad - 4\gamma^2[(\omega - 1)w^0 + v^0]. \end{aligned} \quad (28)$$

1528 Substituting (28), (27), (26) and (22) into (21) we get
 1529
 1530

$$\begin{aligned} 2\gamma K \mathbb{E} [\mathbf{Gap}(\bar{z}_K)] &\leq \mathbb{E} \left[\max_{z \in \mathcal{D}} \left\{ (4D_{KL}(\pi, \pi^1) - 2D_{KL}(\pi, \pi^{K+1})) \right. \right. \\ &\quad + (2\|\theta^1 - \theta\|^2 - \|\theta^{K+1} - \theta\|^2) \\ &\quad + (2\gamma \langle F(z^1) - F(z^0), z - z^1 \rangle - 2\gamma \langle \bar{F}(z^{K+1}) - F(z^K), z - z^{K+1} \rangle) \left. \right\} \\ &\quad - 4\gamma^2(1 - \beta)[(\omega - 1)w^K + v^K] - 4\gamma^2[(\omega - 1)w^0 + v^0] \\ &\quad + \gamma^2 \sum_{k=2}^K (\omega w^k - v^k) + 4\gamma^2(1 + (1 - \beta)^2) \sum_{k=0}^K [(\omega - 1)w^k + v^k] \\ &\quad \left. \left. + \sum_{k=1}^K \left[-\frac{1}{2} \|\pi^{k+1} - \pi^k\|_1^2 - \left(\frac{1}{2} - 2\gamma^2 M \tilde{L}^2 \right) \|\theta^{k+1} - \theta^k\|^2 \right] \right]. \right] \end{aligned}$$

1531 Using (24) as $\omega w^k - v^k \geq 0$ and $0 < \beta < 1$, and introducing
 1532
 1533

$$\begin{aligned} \Xi_K &= \max_{z \in \mathcal{D}} \left\{ (4D_{KL}(\pi, \pi^1) - 2D_{KL}(\pi, \pi^{K+1})) \right. \\ &\quad + (2\|\theta^1 - \theta\|^2 - \|\theta^{K+1} - \theta\|^2) \\ &\quad \left. + (2\gamma \langle F(z^1) - F(z^0), z - z^1 \rangle \right. \end{aligned}$$

1566 $v - 2\gamma \langle \bar{F}(z^{K+1}) - F(z^K), z - z^{K+1} \rangle \Big\}$
 1567
 1568 $- 4\gamma^2(1 - \beta)[(\omega - 1)w^K + v^K] - 4\gamma^2[(\omega - 1)w^0 + v^0],$
 1569

1570 we can rewrite:

1571 $2\gamma K \mathbb{E} [\mathbf{Gap}(\bar{z}_K)] \leq \mathbb{E} \left[\Xi_K + (2\|\theta^1 - \theta\|^2 - \|\theta^{K+1} - \theta\|^2) \right.$
 1572 $+ (2\gamma \langle F(z^1) - F(z^0), z - z^1 \rangle$
 1573 $- 2\gamma \langle \bar{F}(z^{K+1}) - F(z^K), z - z^{K+1} \rangle) \right]$
 1574
 1575 $+ \sum_{k=0}^K [9\omega\gamma^2 w^k + 7\gamma^2 v^k]$
 1576
 1577 $+ \sum_{k=1}^K \left[-\frac{1}{2} \|\pi^{k+1} - \pi^k\|_1^2 - \left(\frac{1}{2} - 2\gamma^2 M \tilde{L}^2 \right) \|\theta^{k+1} - \theta^k\|^2 \right]. \quad (30)$
 1578
 1579
 1580
 1581

1582 The next step is summing (30) + $\sum_{k=2}^{K+1} [H \cdot (9) + N \cdot (15)]$:

1583
 1584 $2\gamma K \mathbb{E} [\mathbf{Gap}(\bar{z}_K)] + \sum_{k=2}^{K+1} (H w^k + N v^k)$
 1585
 1586
 1587 $\leq \mathbb{E} \left[\Xi_K + \sum_{k=0}^K [9\omega\gamma^2 w^k + 7\gamma^2 v^k] + \sum_{k=1}^K [H(1 + c_2)(1 + \beta^2\omega - 2\beta) w^k] \right.$
 1588
 1589
 1590 $+ \sum_{k=1}^K [N(1 + c_1)(v^k(1 + \beta^2 - 2\beta) + \beta^2 w^k(\omega - 1))] \right]$
 1591
 1592
 1593 $+ \sum_{k=1}^K \left[- \left(\frac{1}{2} - 2H\tilde{L}^2(1 + c_2^{-1}) - 2NM\tilde{L}^2(1 + c_1^{-1}) \right) \|\pi^{k+1} - \pi^k\|_1^2 \right.$
 1594
 1595
 1596 $- \left. \left(\frac{1}{2} - 2\gamma^2 M \tilde{L}^2 - H(1 + c_2^{-1}) \frac{6aL^2}{M} - N(1 + c_1^{-1}) 2L^2 \right) \|\theta^{k+1} - \theta^k\|^2 \right]. \quad (30)$
 1597

1598 By rearranging the terms, we obtain

1599
 1600 $2\gamma K \mathbb{E} [\mathbf{Gap}(\bar{z}_K)] + \sum_{k=2}^{K+1} (H w^k + N v^k)$
 1601
 1602
 1603 $\leq \mathbb{E} \left[\Xi_K + \sum_{k=0}^K [7\gamma^2 + N(1 + c_1)(1 + \beta^2 - 2\beta)] v^k \right.$
 1604
 1605
 1606 $+ \sum_{k=0}^K [9\omega\gamma^2 + H(1 + c_2)(1 + \beta^2\omega - 2\beta) + N(1 + c_1)\beta^2(\omega - 1)] w^k \right]$
 1607
 1608
 1609 $+ \sum_{k=1}^K \left[- \left(\frac{1}{2} - 2H\tilde{L}^2(1 + c_2^{-1}) - 2NM\tilde{L}^2(1 + c_1^{-1}) \right) \|\pi^{k+1} - \pi^k\|_1^2 \right.$
 1610
 1611
 1612 $- \left. \left(\frac{1}{2} - 2\gamma^2 M \tilde{L}^2 - H(1 + c_2^{-1}) \frac{6aL^2}{M} - N(1 + c_1^{-1}) 2L^2 \right) \|\theta^{k+1} - \theta^k\|^2 \right]. \quad (31)$

1613 Considering the respective coefficients of $\|\theta^{k+1} - \theta^k\|^2$, $\|\pi^{k+1} - \pi^k\|_1^2$, w^k and v^k , we derive the
 1614 following restrictions:

1615
 1616
$$\begin{cases} \frac{1}{2} \geq 4\gamma^2 M \tilde{L}^2 + H(1 + c_2^{-1}) \frac{6aL^2}{M} + N(1 + c_1^{-1}) 2L^2 \\ \frac{1}{2} \geq 2H\tilde{L}^2(1 + c_2^{-1}) + 2NM\tilde{L}^2(1 + c_1^{-1}) \\ H \geq 9\omega\gamma^2 + H(1 + c_2)(1 + \beta^2\omega - 2\beta) + N(1 + c_1)\beta^2(\omega - 1) \\ N \geq 7\gamma^2 + N(1 + c_1)(1 + \beta^2 - 2\beta) \end{cases} \quad (32)$$

 1617
 1618
 1619

We now turn to selecting the free coefficients to satisfy conditions (32). Beginning with the last inequality on N , we set

$$c_1 = \beta, \text{ which yields } N = \frac{7\gamma^2}{\beta} \quad (33)$$

is sufficient.

With this selection the third restriction in (32) transforms into

$$H(1 - (1 + c_2)(1 + \beta^2\omega - 2\beta)) \geq 9\omega\gamma^2 + \frac{7\gamma^2}{\beta}(1 + \beta)\beta^2(\omega - 1).$$

The choice

$$c_2 = \frac{\beta}{2}, \beta = \frac{1}{\omega} \text{ guarantees sufficiency of } H = \frac{32\gamma^2}{\beta^2}. \quad (34)$$

Then, utilizing (34) and (33) we rewrite the second inequality in (32):

$$\frac{1}{2} \geq 2\frac{32\gamma^2}{\beta^2}\tilde{L}^2(1 + 2\beta^{-1}) + 2\frac{7\gamma^2}{\beta}M\tilde{L}^2(1 + \beta^{-1}).$$

This poses constrain on γ :

$$\gamma \leq \sqrt{\frac{1}{2} \frac{1}{192\omega^3\tilde{L}^2 + 28M\omega^2\tilde{L}^2}} = \frac{1}{2\tilde{L}} \sqrt{\frac{1}{96\omega^3 + 14M\omega^2}}. \quad (35)$$

Finally, we examine the first inequality in (32). Using (33) and (34) we derive:

$$\begin{aligned} \frac{1}{2} &\geq 4\gamma^2M\tilde{L}^2 + \frac{32\gamma^2}{\beta^2}(1 + 2\beta^{-1})\frac{6aL^2}{M} + \frac{7\gamma^2}{\beta}(1 + \beta^{-1})2L^2, \\ \gamma &\leq \sqrt{\frac{1}{2} \frac{1}{4M\tilde{L}^2 + 576L^2\beta^{-3}\frac{a}{M} + 28L^2\beta^{-2}}} \\ &= \sqrt{\frac{1}{2} \frac{1}{4M\tilde{L}^2 + 576\frac{a\omega^3}{M}L^2 + 28\omega^2L^2}}. \end{aligned} \quad (36)$$

By choosing

$$\gamma = \min \left\{ \frac{1}{2\tilde{L}} \sqrt{\frac{1}{96\omega^3 + 14M\omega^2}}, \sqrt{\frac{1}{2} \frac{1}{4M\tilde{L}^2 + 576\frac{a\omega^3}{M}L^2 + 28\omega^2L^2}} \right\}, \quad (37)$$

and taking (35), (36) into account, we satisfy (32). Consequently, with the definition Ξ_K (29) substitution, (31) transforms into

$$\begin{aligned} &2\gamma K \mathbb{E}[\mathbf{Gap}(\bar{z}_K)] + (Hw^{K+1} + Nv^{K+1}) \\ &\leq \mathbb{E} \left[\max_{z \in \mathcal{D}} \left\{ (4D_{KL}(\pi, \pi^1) - 2D_{KL}(\pi, \pi^{K+1})) \right. \right. \\ &\quad \left. \left. + (2\|\theta^1 - \theta\|^2 - \|\theta^{K+1} - \theta\|^2) \right. \right. \\ &\quad \left. \left. + (2\gamma \langle F(z^1) - F(z^0), z - z^1 \rangle - 2\gamma \langle \bar{F}(z^{K+1}) - F(z^K), z - z^{K+1} \rangle) \right\} \right. \\ &\quad \left. - 4\gamma^2(1 - \beta)[(\omega - 1)w^K + v^K] - 4\gamma^2[(\omega - 1)w^0 + v^0] \right. \\ &\quad \left. + H \sum_{k=0}^1 w^k + N \sum_{k=0}^1 v^k - \sum_{k=1}^K 2\gamma^2 M\tilde{L}^2 \|\theta^{k+1} - \theta^k\| \right]. \end{aligned} \quad (38)$$

To proof the convergence we need to eliminate the $-2\gamma \langle \bar{F}(z^{K+1}) - F(z^K), z - z^{K+1} \rangle$ term.

$$-2\gamma \langle \bar{F}(z^{K+1}) - F(z^K), z - z^{K+1} \rangle \stackrel{(Fen)}{\leq} \gamma^2 \|\bar{F}(z^{K+1}) - F(z^K)\|^2 + \|z - z^{K+1}\|^2$$

$$\begin{aligned}
& \stackrel{(i)}{\leq} 2\gamma^2 \|\bar{F}(z^{K+1}) - F(z^{K+1})\|^2 + 2\gamma^2 \|F(z^{K+1}) - F(z^K)\|^2 \\
& \quad + \|\theta - \theta^{K+1}\|^2 + 2D_{KL}(\pi, \pi^{K+1}) \\
& \stackrel{(ii)}{\leq} \|\theta - \theta^{K+1}\|^2 + 2D_{KL}(\pi, \pi^{K+1}) + 2\tilde{L}^2\gamma^2 \|\theta^{K+1} - \theta^K\|^2 \\
& \quad + 4\gamma^2(\omega - 1)(w^{K+1} + (1 - \beta)^2 w^K) + 4\gamma^2(v^{K+1} + (1 - \beta)^2 v^K) \\
& \quad + 2\gamma^2\omega w^{K+1} - 2\gamma^2 v^{K+1}
\end{aligned} \tag{39}$$

Where (i) holds by (CS) and (Pi), and (ii) follows from (24), (27), and (18).

Then, the choice of H (34) and N (33) along with (39) provides

$$\begin{aligned}
& -2\gamma \langle \bar{F}(z^{K+1}) - F(z^K), z - z^{K+1} \rangle - \sum_{k=1}^K 2\gamma^2 M \tilde{L}^2 \|\theta^{k+1} - \theta^k\|^2 \\
& - (Hw^{K+1} + Nv^{K+1}) - 2D_{KL}(\pi, \pi^{K+1}) - \|\theta^{K+1} - \theta\|^2 \leq 0. \tag{40}
\end{aligned}$$

The substitution of (40) into (38) concludes the proof. \square

Theorem 1 yields further bounds on the number of communication rounds and the amount of information transmitted from the clients to the server.

Remark 1. In our analysis we assume that compression does not reduce the size of $\hat{\Delta}_i$ below that of the scalar f_i (i.e., $q_\omega \geq \frac{1}{d}$). Hence, the cost of transmitting f_i can be upper bounded by that of $\hat{\Delta}_i$. This allows us to ignore the communication of f_i in the \mathcal{O} notation.

Corollary 1 In setting of Theorem 1 with $\gamma = \gamma_0$, Algorithm 1 with exact local gradients needs

$$\mathcal{O}\left(\frac{1}{\varepsilon}\left[\tilde{L}\omega^{3/2} + \tilde{L}M^{1/2} + L\left(\sqrt{\frac{\textcolor{blue}{a}\omega^3}{M}} + \omega\right)\right]\right)$$

iterations in order to reach ε -accuracy with respect to $\mathbb{E}[\text{Gap}(\bar{z}_K)]$. Additionally, it requires

$$\mathcal{O}\left(\frac{1}{\varepsilon}\left[\tilde{L}\omega^{1/2} + \tilde{L}\frac{M^{1/2}}{\omega} + L\left(\sqrt{\frac{a\omega}{M}} + 1\right)\right]\right)$$

bits communicated from nodes to the server.

Proof. The result of Theorem 1 directly provides the first bound.

Given Remark 1, to obtain the second estimate from the first, we consider transmitting $\hat{\Delta}_i^k$ from the nodes to the server for $i = 1, 2, \dots, M$. This corresponds to sending $Mdbq_\omega$ bits at every iteration. We omit constants M, d and b under the \mathcal{O} notation. As for q_ω , we note that for practically relevant compressors (Beznosikov et al., 2023a) it holds $q_\omega \leq \frac{1}{\omega}$. It concludes the proof. \square

E.2 ANALYSIS IN STOCHASTIC LOCAL ORACLES SETTING

The convergence proof in the stochastic setting largely mirrors that of Theorem 1. Nevertheless, for the sake of completeness, we present it below.

To streamline the exposition, we slightly modify the notation: $v^k = \mathbb{E} \left\| \tilde{f}^k - h^k \right\|^2$, $w^k = \sum_{i=1}^M \mathbb{E} \left\| \tilde{f}_{i,\xi_i}^k - h_i^k \right\|^2$. Lemma 6 remains unchanged under the new notation. Lemma 5 undergoes only minor modifications in the proof and takes the following form.

Lemma 7. *Let Assumptions 1 and 2 hold. Then for iterations of Algorithm 1 with unbiased compressor 1 \mathcal{Q} and stochastic local gradients holds:*

$$\begin{aligned}
w^k &\leq (1 + c_2^{-1}) \left[6 \frac{aL^2}{M} \mathbb{E} \left\| \theta^k - \theta^{k-1} \right\|^2 + 2\tilde{L}^2 \mathbb{E} \left\| \pi^k - \pi^{k-1} \right\|_1^2 \right] \\
&\quad + (1 + c_2)(1 + \beta^2 \omega - 2\beta) w^{k-1} + \frac{4a^2}{M} \sigma^2. \tag{41}
\end{aligned}$$

Proof. We begin by using the explicit update rule of clients' local state.

1728
1729
1730 $w^k = \sum_{i=1}^M \mathbb{E} \|\tilde{f}_{i,\xi_i}^k - h_i^k\|^2 = \sum_{i=1}^M \mathbb{E} \|\tilde{f}_{i,\xi_i}^k - h_i^{k-1} - \beta \mathcal{Q}(\tilde{f}_{i,\xi_i}^{k-1} - h_i^{k-1})\|^2$
1731
1732
1733 $= \sum_{i=1}^M \mathbb{E} \left\| \left(\tilde{f}_{i,\xi_i}^k - \tilde{f}_{i,\xi_i}^{k-1} \right) + \left(\tilde{f}_{i,\xi_i}^{k-1} - h_i^{k-1} - \beta \mathcal{Q}(\tilde{f}_{i,\xi_i}^{k-1} - h_i^{k-1}) \right) \right\|^2$
1734
1735 $\stackrel{(CS)}{\leq} (1 + c_2^{-1}) \sum_{i=1}^M \mathbb{E} \left\| \tilde{f}_{i,\xi_i}^k - \tilde{f}_{i,\xi_i}^{k-1} \right\|^2$
1736
1737
1738 $+ (1 + c_2) \sum_{i=1}^M \mathbb{E} \left\| \tilde{f}_{i,\xi_i}^{k-1} - h_i^{k-1} - \beta \mathcal{Q}(\tilde{f}_{i,\xi_i}^{k-1} - h_i^{k-1}) \right\|^2. \quad (42)$
1739
1740

1741 We now estimate the first term:

1742
1743 $\sum_{i=1}^M \mathbb{E} \left\| \tilde{f}_{i,\xi_i}^k - \tilde{f}_{i,\xi_i}^{k-1} \right\|^2 = \sum_{i=1}^M \mathbb{E} \left\| \pi_i^k \nabla f_{i,\xi_i}(\theta^k) - \pi_i^{k-1} \nabla f_{i,\xi_i}(\theta^{k-1}) \right\|^2$
1744
1745
1746 $= \sum_{i=1}^M \mathbb{E} \left\| \left(\pi_i^k \nabla f_{i,\xi_i}(\theta^k) - \pi_i^k \nabla f_i(\theta^k) \right) - \left(\pi_i^{k-1} \nabla f_{i,\xi_i}(\theta^{k-1}) - \pi_i^{k-1} \nabla f_i(\theta^{k-1}) \right) \right.$
1747
1748 $\left. + \left(\pi_i^k \nabla f_i(\theta^k) - \pi_i^{k-1} \nabla f_i(\theta^{k-1}) \right) \right\|^2$
1749
1750
1751 $= \sum_{i=1}^M \mathbb{E} \left\| \left(\pi_i^k \nabla f_{i,\xi_i}(\theta^k) - \pi_i^k \nabla f_i(\theta^k) \right) - \left(\pi_i^{k-1} \nabla f_{i,\xi_i}(\theta^{k-1}) - \pi_i^{k-1} \nabla f_i(\theta^{k-1}) \right) \right\|^2$
1752
1753
1754 $+ \sum_{i=1}^M \mathbb{E} \left\| \left(\pi_i^k \nabla f_i(\theta^k) - \pi_i^{k-1} \nabla f_i(\theta^{k-1}) \right) \right\|^2. \quad (43)$
1755

1756 The second sum of (43) was evaluated in (11), (12) and (12). We proceed with estimating the first
1757 term of 43.

1758
1759
1760 $\sum_{i=1}^M \mathbb{E} \left\| \left(\pi_i^k \nabla f_{i,\xi_i}(\theta^k) - \pi_i^k \nabla f_i(\theta^k) \right) - \left(\pi_i^{k-1} \nabla f_{i,\xi_i}(\theta^{k-1}) - \pi_i^{k-1} \nabla f_i(\theta^{k-1}) \right) \right\|^2$
1761
1762
1763 $\stackrel{(CS)}{\leq} 2 \sum_{i=1}^M \mathbb{E} \left\| \pi_i^k \nabla f_{i,\xi_i}(\theta^k) - \pi_i^k \nabla f_i(\theta^k) \right\|^2$
1764
1765
1766 $+ 2 \sum_{i=1}^M \mathbb{E} \left\| \pi_i^{k-1} \nabla f_{i,\xi_i}(\theta^{k-1}) - \pi_i^{k-1} \nabla f_i(\theta^{k-1}) \right\|^2$
1767
1768
1769 $\stackrel{5}{\leq} 2 \sum_{i=1}^M (\pi_i^k + \pi_i^{k-1}) \sigma^2 \leq \sum_{i=1}^M \frac{4a^2}{M^2} \sigma^2 = \frac{4a^2}{M} \sigma^2. \quad (44)$
1770
1771

1772 Substitution of (12) and (44) into (43) gives

1773
1774 $\sum_{i=1}^M \mathbb{E} \left\| \tilde{f}_{i,\xi_i}^k - \tilde{f}_{i,\xi_i}^{k-1} \right\|^2 \leq 6 \frac{aL^2}{M} \mathbb{E} \|\theta^k - \theta^{k-1}\|^2 + 2\tilde{L}^2 \mathbb{E} \|\pi^k - \pi^{k-1}\|_1^2 + \frac{4a^2}{M} \sigma^2. \quad (45)$
1775

1776 Then we evaluate the second term of (42) RHS:

1777
1778 $\mathbb{E} \left\| \tilde{f}_{i,\xi_i}^{k-1} - h_i^{k-1} - \beta \mathcal{Q}(\tilde{f}_{i,\xi_i}^{k-1} - h_i^{k-1}) \right\|^2$
1779
1780 $= \mathbb{E} \left\| \tilde{f}_{i,\xi_i}^{k-1} - h_i^{k-1} \right\|^2 + \beta^2 \mathbb{E} \left\| \mathcal{Q}(\tilde{f}_{i,\xi_i}^{k-1} - h_i^{k-1}) \right\|^2$
1781

$$\begin{aligned}
& -2\mathbb{E} \left\langle \tilde{f}_{i,\xi_i}^{k-1} - h_i^{k-1}, \beta \mathcal{Q}(\tilde{f}_{i,\xi_i}^{k-1} - h_i^{k-1}) \right\rangle \\
& \stackrel{1784}{\leq} \mathbb{E} \left\| \tilde{f}_{i,\xi_i}^{k-1} - h_i^{k-1} \right\|^2 + \beta^2 \omega \mathbb{E} \left\| \tilde{f}_{i,\xi_i}^{k-1} - h_i^{k-1} \right\|^2 - 2\beta \mathbb{E} \left\| \tilde{f}_{i,\xi_i}^{k-1} - h_i^{k-1} \right\|^2 \\
& \stackrel{1786}{=} (1 + \beta^2 \omega - 2\beta) \mathbb{E} \left\| \tilde{f}_{i,\xi_i}^{k-1} - h_i^{k-1} \right\|^2. \tag{46}
\end{aligned}$$

Finally, combining (42) with (45) and (46) we obtain

$$\begin{aligned} w^k &\leq (1 + c_2^{-1}) \left[6 \frac{aL^2}{M} \mathbb{E} \left\| \theta^k - \theta^{k-1} \right\|^2 + 2\tilde{L}^2 \mathbb{E} \left\| \pi^k - \pi^{k-1} \right\|_1^2 \right] \\ &\quad + (1 + c_2)(1 + \beta^2 \omega - 2\beta) w^{k-1} + \frac{4a^2}{M} \sigma^2. \end{aligned}$$

Lemma 5 likewise undergoes a minor modifications

Lemma 8. *Let Assumptions 1 and 2 hold. Then for iterations of Algorithm 1 with unbiased compressor 1 Q and stochastic local gradients holds:*

$$\begin{aligned} v^k &\leq (1 + c_1^{-1}) \left(2L^2 \mathbb{E} \left\| \theta^k - \theta^{k-1} \right\|^2 + 2M\tilde{L}^2 \mathbb{E} \left\| \pi^k - \pi^{k-1} \right\|_1^2 \right) \\ &\quad + (1 + c_1) (v^{k-1}(1 + \beta^2 - 2\beta) + \beta^2 \omega w^{k-1}). \end{aligned} \quad (47)$$

Proof. We begin with the explicit global estimator update rule

$$\begin{aligned}
v^k &= \mathbb{E} \left\| \tilde{f}^k - h^k \right\|^2 = \mathbb{E} \left\| \tilde{f}^k - h^{k-1} - \beta \sum_{i=1}^M \mathcal{Q}(\tilde{f}_{i,\xi_i}^{k-1} - h_i^{k-1}) \right\|^2 \\
&= \mathbb{E} \left\| \left(\tilde{f}^k - \tilde{f}^{k-1} \right) + \left(\tilde{f}^{k-1} - h^{k-1} - \beta \sum_{i=1}^M \mathcal{Q}(\tilde{f}_{i,\xi_i}^{k-1} - h_i^{k-1}) \right) \right\|^2 \\
&\stackrel{(\text{CS})}{\leq} (1 + c_1^{-1}) \mathbb{E} \left\| \tilde{f}^k - \tilde{f}^{k-1} \right\|^2 \\
&\quad + (1 + c_1) \mathbb{E} \left\| \tilde{f}^{k-1} - h^{k-1} - \beta \sum_{i=1}^M \mathcal{Q}(\tilde{f}_{i,\xi_i}^{k-1} - h_i^{k-1}) \right\|^2.
\end{aligned}$$

For the first term on the (48) RHS (16) remains unchanged and we concentrate on the second term of the (48) RHS:

$$\begin{aligned}
& \mathbb{E} \left\| \tilde{f}^{k-1} - h^{k-1} - \beta \sum_{i=1}^M \mathcal{Q}(\tilde{f}_{i,\xi_i}^{k-1} - h_i^{k-1}) \right\|^2 \\
&= \mathbb{E} \left\| \tilde{f}^{k-1} - h^{k-1} \right\|^2 + \beta^2 \mathbb{E} \left\| \sum_{i=1}^M \mathcal{Q}(\tilde{f}_{i,\xi_i}^{k-1} - h_i^{k-1}) \right\|^2 \\
&\quad - 2\beta \mathbb{E} \left\langle \tilde{f}^{k-1} - h^{k-1}, \sum_{i=1}^M \mathcal{Q}(\tilde{f}_{i,\xi_i}^{k-1} - h_i^{k-1}) \right\rangle \\
&\stackrel{(20)}{\leq} \mathbb{E} \left\| \tilde{f}^{k-1} - h^{k-1} \right\|^2 + \beta^2 (v^{k-1} + (\omega - 1)w^{k-1}) - 2\beta \mathbb{E} \left\| \tilde{f}^{k-1} - h^{k-1} \right\|^2 \\
&= v^{k-1}(1 + \beta^2 - 2\beta) + \beta^2 w^{k-1}(\omega - 1). \tag{48}
\end{aligned}$$

Plugging (48) and (16) into (48) yields

$$\begin{aligned} v^k &\leq (1 + c_1^{-1}) \left(2L^2 \mathbb{E} \left\| \theta^k - \theta^{k-1} \right\|^2 + 2M\tilde{L}^2 \mathbb{E} \left\| \pi^k - \pi^{k-1} \right\|_1^2 \right) \\ &\quad + (1 + c_1) \left(v^{k-1} (1 + \beta^2 - 2\beta) + \beta^2 \omega w^{k-1} \right). \end{aligned}$$

We are now ready to proceed to the proof of Theorem 2, which is the main result for the stochastic local oracles case. The structure of the reasoning remains the same as in the proof of Theorem 1.

Theorem 2 *Let in setting of Theorem 1 additionally Assumption 5 holds. Then, it implies*

$$\mathbb{E}[\mathbf{Gap}(\bar{z}_K)] \leq \frac{V}{2\gamma K} + \gamma \frac{64a^2\omega^2}{M} \sigma^2$$

for iterations of Algorithm 1 with stochastic local oracles.

Proof. For the sake of consistency with previous notation, we relabel the full weighted local gradient $\tilde{f}_i^k := \pi_i^k \nabla f_i(\theta^k)$ and its stochastic estimator $\tilde{f}_{i,\xi_i}^k = \pi_i^k \nabla f_{i,\xi_i}(\theta^k)$.

As in Theorem 1 we proceed with using the unbiasedness (2) of compressor \mathcal{Q} :

$$\mathbb{E}[F(z^k)|z^k] = \mathbb{E}\left[\left(\begin{array}{c} g^k \\ p^k \end{array}\right) \middle| z^k\right] = \mathbb{E}\left[\left(\begin{array}{c} h^k + \sum_{i=1}^M \mathcal{Q}(\tilde{f}_{i,\xi_i}^k - h_i^k) \\ p^k \end{array}\right) \middle| z^k\right] = \left(\begin{array}{c} \tilde{f}^k \\ p^k \end{array}\right) \stackrel{\text{def}}{=} \bar{F}(z^k),$$

where $\tilde{f}^k = \sum_{i=1}^M \tilde{f}_i^k = \sum_{i=1}^M \pi_i^k \nabla f_i(\theta^k)$. And Lemma 1 again justifies the monotonicity of \bar{F} .

The next step is conditioning the result of Lemma 3 on z^{k+1} , using $\alpha = 1$ and summing over $k = 1$ to K :

$$\begin{aligned} 2\gamma \sum_{k=1}^K \langle \bar{F}(z^{k+1}), z^{k+1} - z \rangle &\leq \sum_{k=1}^K \left[(2D_{KL}(\pi, \pi^k) - 2D_{KL}(\pi, \pi^{k+1})) + (\|\theta^k - \theta\|^2 - \|\theta^{k+1} - \theta\|^2) \right. \\ &\quad + (2\gamma \langle F(z^k) - F(z^{k-1}), z - z^k \rangle - 2\gamma \langle \bar{F}(z^{k+1}) - F(z^k), z - z^{k+1} \rangle) \\ &\quad - \frac{1}{2} \|\pi^{k+1} - \pi^k\|_1^2 - \frac{1}{2} \|\theta^{k+1} - \theta^k\|^2 \\ &\quad \left. + 2\gamma^2 \|p^k - p^{k-1}\|^2 + 2\gamma^2 \|g^k - g^{k-1}\|^2 \right] \\ &= (2D_{KL}(\pi, \pi^1) - 2D_{KL}(\pi, \pi^{K+1})) + (\|\theta^1 - \theta\|^2 - \|\theta^{K+1} - \theta\|^2) \\ &\quad + (2\gamma \langle F(z^1) - F(z^0), z - z^1 \rangle - 2\gamma \langle \bar{F}(z^{K+1}) - F(z^K), z - z^{K+1} \rangle) \\ &\quad + \sum_{k=1}^{K-1} \left[2\gamma \langle \bar{F}(z^{k+1}) - F(z^{k+1}), z - z^{k+1} \rangle \right] \\ &\quad + \sum_{k=1}^K \left[-\frac{1}{2} \|\pi^{k+1} - \pi^k\|_1^2 - \frac{1}{2} \|\theta^{k+1} - \theta^k\|^2 \right. \\ &\quad \left. + 2\gamma^2 \|p^k - p^{k-1}\|^2 + 2\gamma^2 \|g^k - g^{k-1}\|^2 \right]. \end{aligned}$$

Maximizing obtained inequality over compact set $z \in \mathcal{D}$ and taking full expectation, we get

$$\begin{aligned} 2\gamma \mathbb{E}\left[\max_{z \in \mathcal{D}} \left\{ \sum_{k=1}^K \langle \bar{F}(z^{k+1}), z^{k+1} - z \rangle \right\}\right] &\leq \mathbb{E}\left[\max_{z \in \mathcal{D}} \left\{ (2D_{KL}(\pi, \pi^1) - 2D_{KL}(\pi, \pi^{K+1})) \right. \right. \\ &\quad + (\|\theta^1 - \theta\|^2 - \|\theta^{K+1} - \theta\|^2) \\ &\quad + (2\gamma \langle F(z^1) - F(z^0), z - z^1 \rangle \\ &\quad - 2\gamma \langle \bar{F}(z^{K+1}) - F(z^K), z - z^{K+1} \rangle) \\ &\quad + \sum_{k=1}^{K-1} 2\gamma \langle \bar{F}(z^{k+1}) - F(z^{k+1}), z - z^{k+1} \rangle \left. \right\} \\ &\quad + \sum_{k=1}^K \left[-\frac{1}{2} \|\pi^{k+1} - \pi^k\|_1^2 - \frac{1}{2} \|\theta^{k+1} - \theta^k\|^2 \right. \\ &\quad \left. + 2\gamma^2 \|p^k - p^{k-1}\|^2 + 2\gamma^2 \|g^k - g^{k-1}\|^2 \right] \right]. \quad (49) \end{aligned}$$

Several next steps evaluate different terms of (49). Inequalities (22) and (23) remain valid. We continue with evaluating of the last term applying properties (2) of unbiased compressor \mathcal{Q} and its independence from stochastic local oracles:

$$\begin{aligned}
\mathbb{E} \|\bar{F}(z^k) - F(z^k)\|^2 &= \mathbb{E} \left\| \begin{pmatrix} \tilde{f}^k \\ p^k \end{pmatrix} - \left(h^k + \sum_{i=1}^M \frac{\mathcal{Q}(\tilde{f}_{i,\xi_i}^k - h_i^k)}{p^k} \right) \right\|^2 \\
&= \mathbb{E} \left\| \sum_{i=1}^M \mathcal{Q}(\tilde{f}_{i,\xi_i}^k - h_i^k) - (\tilde{f}^k - h^k) \right\|^2 \\
&= \sum_{i=1}^M \mathbb{E} \left\| \mathcal{Q}(\tilde{f}_{i,\xi_i}^k - h_i^k) \right\|^2 + \mathbb{E} \left\| \tilde{f}^k - h^k \right\|^2 \\
&\quad - 2 \sum_{i=1}^M \mathbb{E} \left\langle \mathcal{Q}(\tilde{f}_{i,\xi_i}^k - h_i^k), \tilde{f}^k - h^k \right\rangle \\
&\leq \omega \sum_{i=1}^M \mathbb{E} \left\| \tilde{f}_{i,\xi_i}^k - h_i^k \right\|^2 - \mathbb{E} \left\| \tilde{f}^k - h^k \right\|^2. \tag{50}
\end{aligned}$$

Finally, using (Pi), definition of $z = \begin{pmatrix} \theta \\ \pi \end{pmatrix}$ and choosing $z_a = z^1 - z^{k+1}$ we estimate

$$\begin{aligned}
\max_{z \in \mathcal{D}} \left\{ 2D_{KL}(\pi, \pi^1) + \|\theta^1 - \theta\|^2 \right\} &\geq \max_{z \in \mathcal{D}} \left\{ \|\pi^1 - \pi\|^2 + \|\theta^1 - \theta\|^2 \right\} \\
&= \max_{z \in \mathcal{D}} \left\{ \|z_a - z\|^2 \right\}. \tag{51}
\end{aligned}$$

Slightly changing old notation $v^k = \mathbb{E} \left\| \tilde{f}^k - h^k \right\|^2$, $w^k = \sum_{i=1}^M \mathbb{E} \left\| \tilde{f}_{i,\xi_i}^k - h_i^k \right\|^2$ and combining (23),(50) with (51) we derive

$$\begin{aligned}
2\mathbb{E} \left[\max_{z \in \mathcal{D}} \left\{ \sum_{k=1}^{K-1} \left\langle \gamma (\bar{F}(z^{k+1}) - F(z^{k+1})), z - z^{k+1} \right\rangle \right\} \right] \\
\leq \max_{z \in \mathcal{D}} \left\{ 2D_{KL}(\pi, \pi^1) + \|\theta^1 - \theta\|^2 \right\} + \gamma^2 \sum_{k=2}^K (\omega w^k - v^k). \tag{52}
\end{aligned}$$

After that, we estimate $2\gamma^2 \|p^k - p^{k-1}\|^2$ in (49) via Assumption 1:

$$2\gamma^2 \|p^k - p^{k-1}\|^2 \leq 2\gamma^2 M \tilde{L}^2 \|\theta^k - \theta^{k-1}\|^2. \tag{53}$$

Finally, we use (18) to evaluate the sum:

$$\begin{aligned}
&2\gamma^2 \sum_{k=1}^K \mathbb{E} \|g^k - g^{k-1}\|^2 \\
&= 4\gamma^2 \sum_{k=1}^K [\omega w^k + v^k] + 4\gamma^2 (1-\beta)^2 \sum_{k=1}^K [\omega w^{k-1} + v^{k-1}] \\
&= 4\gamma^2 \sum_{k=1}^K [\omega w^k + v^k] + 4\gamma^2 (1-\beta)^2 \sum_{k=0}^{K-1} [\omega w^k + v^k] \\
&= 4\gamma^2 (1 + (1-\beta)^2) \left[\sum_{k=0}^K \omega w^k + v^k \right] \\
&\quad - 4\gamma^2 (1-\beta) [\omega w^K + v^K] \\
&\quad - 4\gamma^2 [\omega w^0 + v^0]. \tag{54}
\end{aligned}$$

1944 Substituting (54), (53), (52) and (22) into (49),
1945

$$\begin{aligned}
2\gamma K \mathbb{E} [\mathbf{Gap}(\bar{z}_K)] &\leq \mathbb{E} \left[\max_{z \in \mathcal{D}} \left\{ (4D_{KL}(\pi, \pi^1) - 2D_{KL}(\pi, \pi^{K+1})) \right. \right. \\
&\quad + (2\|\theta^1 - \theta\|^2 - \|\theta^{K+1} - \theta\|^2) \\
&\quad + (2\gamma \langle F(z^1) - F(z^0), z - z^1 \rangle - 2\gamma \langle \bar{F}(z^{K+1}) - F(z^K), z - z^{K+1} \rangle) \Big\} \\
&\quad - 4\gamma^2(1 - \beta)[\omega w^K + v^K] - 4\gamma^2[\omega w^0 + v^0] \\
&\quad + \gamma^2 \sum_{k=2}^K (\omega w^k - v^k) + 4\gamma^2(1 + (1 - \beta)^2) \sum_{k=0}^K [\omega w^k + v^k] \\
&\quad \left. \left. + \sum_{k=1}^K \left[-\frac{1}{2} \|\pi^{k+1} - \pi^k\|_1^2 - \left(\frac{1}{2} - 2\gamma^2 M \tilde{L}^2 \right) \|\theta^{k+1} - \theta^k\|^2 \right] \right] .
\end{aligned}$$

1958 Using (50) as $\omega w^k - v^k \geq 0$ and $0 < \beta < 1$, and introducing
1959

$$\begin{aligned}
\Xi_K &= \max_{z \in \mathcal{D}} \left\{ (4D_{KL}(\pi, \pi^1) - 2D_{KL}(\pi, \pi^{K+1})) \right. \\
&\quad + (2\|\theta^1 - \theta\|^2 - \|\theta^{K+1} - \theta\|^2) \\
&\quad + (2\gamma \langle F(z^1) - F(z^0), z - z^1 \rangle \\
&\quad v - 2\gamma \langle \bar{F}(z^{K+1}) - F(z^K), z - z^{K+1} \rangle) \Big\} \\
&\quad - 4\gamma^2(1 - \beta)[\omega w^K + v^K] - 4\gamma^2[\omega w^0 + v^0], \tag{55}
\end{aligned}$$

1968 we can rewrite:
1969

$$\begin{aligned}
2\gamma K \mathbb{E} [\mathbf{Gap}(\bar{z}_K)] &\leq \mathbb{E} \left[\Xi_K + (2\|\theta^1 - \theta\|^2 - \|\theta^{K+1} - \theta\|^2) \right. \\
&\quad + (2\gamma \langle F(z^1) - F(z^0), z - z^1 \rangle \\
&\quad - 2\gamma \langle \bar{F}(z^{K+1}) - F(z^K), z - z^{K+1} \rangle) \Big] \\
&\quad + \sum_{k=0}^K [9\omega\gamma^2 w^k + 7\gamma^2 v^k] \\
&\quad \left. + \sum_{k=1}^K \left[-\frac{1}{2} \|\pi^{k+1} - \pi^k\|_1^2 - \left(\frac{1}{2} - 2\gamma^2 M \tilde{L}^2 \right) \|\theta^{k+1} - \theta^k\|^2 \right] \right]. \tag{56}
\end{aligned}$$

1980 The next step is summing (56) + $\sum_{k=2}^{K+1} [H \cdot (41) + N \cdot (47)]$:
1981

$$\begin{aligned}
2\gamma K \mathbb{E} [\mathbf{Gap}(\bar{z}_K)] &+ \sum_{k=2}^{K+1} (H w^k + N v^k) \\
&\leq \mathbb{E} \left[\Xi_K + \sum_{k=0}^K [9\omega\gamma^2 w^k + 7\gamma^2 v^k] + \sum_{k=1}^K [H(1 + c_2)(1 + \beta^2\omega - 2\beta)w^k] \right. \\
&\quad + \sum_{k=1}^K [N(1 + c_1)(v^k(1 + \beta^2 - 2\beta) + \beta^2\omega w^k)] \\
&\quad \left. + \sum_{k=1}^K \left[-\left(\frac{1}{2} - 2H\tilde{L}^2(1 + c_2^{-1}) - 2NM\tilde{L}^2(1 + c_1^{-1}) \right) \|\pi^{k+1} - \pi^k\|_1^2 \right. \right. \\
&\quad - \left(\frac{1}{2} - 2\gamma^2 M \tilde{L}^2 - H(1 + c_2^{-1}) \frac{6aL^2}{M} - N(1 + c_1^{-1}) 2L^2 \right) \|\theta^{k+1} - \theta^k\|^2 \Big] \\
&\quad \left. + \frac{4KHa^2}{M} \sigma^2 \right].
\end{aligned}$$

1998 The subsequent analysis is unaffected by the additive term $\frac{4KHa^2}{M}\sigma^2$ introduced in the stochastic
 1999 setting and fully mirrors the reasoning of Theorem 1 starting from Equation (31). \square
 2000

2001 Corollary 3 provides bounds on number of communication rounds and transmitted from nodes to the
 2002 server information in stochastic local oracles setup.
 2003

2004 **Corollary 3** *In setting of Theorem 2 with $\gamma = \min\left\{\gamma_0, \sqrt{\frac{VM}{128a^2\omega^2\sigma^2K}}\right\}$, Algorithm 1 with stochastic
 2005 local oracles needs*

$$2007 \mathcal{O}\left(\frac{1}{\varepsilon^2}\left[\frac{a^2\omega^2\sigma^2}{M}\right] + \frac{1}{\varepsilon}\left[\tilde{L}\omega^{3/2} + \tilde{L}M^{1/2} + L\left(\sqrt{\frac{a\omega^3}{M}} + \omega\right)\right]\right)$$

2008 iterations in order to reach ε -accuracy with respect to $\mathbb{E}[\mathbf{Gap}(\bar{z}_K)]$. Additionally, it requires

$$2011 \mathcal{O}\left(\frac{1}{\varepsilon^2}\left[\frac{a^2\omega\sigma^2}{M}\right] + \frac{1}{\varepsilon}\left[\tilde{L}\omega^{1/2} + \tilde{L}\frac{M^{1/2}}{\omega} + L\left(\sqrt{\frac{a\omega}{M}} + 1\right)\right]\right)$$

2012 bits communicated from nodes to the server.
 2013

2014 *Proof.* In stochastic local oracles case, guaranties in the Theorem 2 are affected by an additional
 2015 irreducible term $\gamma\frac{64a^2\omega^2}{M}\sigma^2$. In its presence, optimal stepsize γ transforms into $\gamma = \min\left\{\gamma_0, \sqrt{\frac{VM}{128a^2\omega^2\sigma^2K}}\right\}$. This choice yields $\frac{V}{2\gamma K} \geq \gamma\frac{64a^2\omega^2}{M}\sigma^2$ and makes further analysis similar
 2016 to the proof of Corollary 1. \square
 2017

2018 F.3 ANALYSIS IN PARTIAL PARTICIPATION SETTING

2019 We reduce this case to analysis in exact local oracles settings in Section F.1 by claiming that
 2020 multiplying the compression operator by the $\frac{\eta}{p}$, with $\eta \sim \text{Bern}(p)$, yields another valid compression
 2021 operator. It remains unbiased, while its compression rate ω is scaled by a factor of p .
 2022

2023 **Corollary 4** *In setting of Theorem 1 with $\beta = \frac{p}{\omega}$, $H = 32\gamma^2\left(\frac{\omega}{p}\right)^2$, $N = 7\gamma^2\frac{\omega}{p}$, $\gamma_\pi = \gamma_\theta = \gamma \leq$*

$$2024 \gamma_p = \min\left\{\frac{1}{2\tilde{L}}\sqrt{\frac{1}{96\left(\frac{\omega}{p}\right)^3 + 14M\left(\frac{\omega}{p}\right)^2}}, \sqrt{\frac{1}{2}\frac{1}{4M\tilde{L}^2 + 576\frac{a}{M}\left(\frac{\omega}{p}\right)^3L^2 + 28\left(\frac{\omega}{p}\right)^2L^2}}\right\} \text{ it implies}$$

$$2025 \mathbb{E}[\mathbf{Gap}(\bar{z}_K)] \leq \frac{V}{2\gamma K}$$

2026 for iterations of Algorithm 1 with partial participation.
 2027

2028 *Proof.* We consider $\mathcal{Q}' = \frac{\eta}{p}\mathcal{Q}$ and utilize independence of η and \mathcal{Q} to write
 2029

$$2030 \mathbb{E}\left\|\frac{\eta}{p}\mathcal{Q}(z)\right\|^2 = \mathbb{E}\left(\frac{\eta}{p}\right)^2\|\mathcal{Q}(z)\|^2 = \mathbb{E}\left(\frac{\eta}{p}\right)^2\mathbb{E}\|\mathcal{Q}(z)\|^2 \stackrel{(2)}{\leq} \frac{1}{p}\omega\|z\|^2. \quad (57)$$

2031 Independence along with (2) guarantees the unbiasedness of \mathcal{Q}' as well:
 2032

$$2033 \mathbb{E}\frac{\eta}{p}\mathcal{Q}(z) = \mathbb{E}\frac{\eta}{p}\mathbb{E}\mathcal{Q}(z) \stackrel{(2)}{=} z. \quad (58)$$

2034 The established properties implies that operator \mathcal{Q}' is unbiased compressor with compression rate
 2035 $\omega' = \frac{\omega}{p}$. This enables the application of Theorem 1 and finishing the proof. \square
 2036

2037 Given Corollary 4 in partial participation setting we establish the following bounds.
 2038

2039 **Corollary 5** *In setting of Corollary 4 with $\gamma = \gamma_p$, Algorithm 1 with partial participation needs*

$$2040 \mathcal{O}\left(\frac{1}{\varepsilon}\left[\tilde{L}\left(\frac{\omega}{p}\right)^{3/2} + \tilde{L}M^{1/2} + L\left(\sqrt{\frac{a\omega^3}{Mp^3}} + \frac{\omega}{p}\right)\right]\right)$$

2052 iterations in order to reach ε -accuracy with respect to $\mathbb{E}[\text{Gap}(\bar{z}_K)]$. Additionally, it requires

$$2054 \quad \mathcal{O}\left(\frac{1}{\varepsilon}\left[\tilde{L}\left(\frac{\omega}{p}\right)^{1/2} + \tilde{L}\frac{M^{1/2}p}{\omega} + L\left(\sqrt{\frac{a\omega}{Mp}} + 1\right)\right]\right)$$

2055 bits communicated from nodes to the server.

2056 *Proof.* Proof in this setting completely coincide with the proof of Corollary 1. \square

2060 G ANALYSIS IN NON-CONVEX SETUP

2063 In this section we conduct the convergence analysis under relaxed convexity Assumption 3. Introduced
2064 further Assumption 4 is inspired by the *minty* assumption (i.e. existence of such $\theta^* \in \mathbb{R}^d$ that
2065 $\langle F(\theta), \theta - \theta^* \rangle \geq 0$ for all $\theta \in \mathbb{R}^d$), traditionally associated with non-monotonicity in respective
2066 literature Dang & Lan (2015); Mertikopoulos et al. (2018); Kannan & Shanbhag (2019).

2067 **Assumption 4.** *Let there exists a point $\theta^* \in \mathbb{R}^d$ such that:*

$$2068 \quad \left\langle \sum_{i=1}^M \pi_i \nabla f_i(\theta), \theta - \theta^* \right\rangle \geq \sum_{i=1}^M \pi_i f_i(\theta) - \sum_{i=1}^M \pi_i f_i(\theta^*), \text{ for all } \theta \in \mathbb{R}^d, \pi \in \Delta^{M-1}.$$

2071 We note that in our setting due to the linearity of objective $\sum_{i=1}^M \pi_i f_i(\theta)$ with respect to weights π
2072 transition to the minty assumption is complicated. Instead of it we use Lemma 9.

2074 **Lemma 9.** *Let Assumption 4 holds, then for operator $\bar{F}(z) = \bar{F}(\theta, \pi) = \left(\sum_{i=1}^M \pi_i \nabla f_i(\theta), p\right)^\top$,
2075 the following holds:*

$$2077 \quad \langle \bar{F}(z) - \bar{F}(z'^*), z - z'^* \rangle \geq 0, \text{ for all } z \in \mathbb{R}^d \text{ and } \pi' \in \Delta^{M-1}, \quad (59)$$

2078 where $z'^* = (\theta^*, \pi')^\top$.

2080 *Proof.* We explicitly expand the expression $\langle F(z) - F(z'^*), z - z'^* \rangle$.

$$\begin{aligned} 2082 \quad \langle F(z) - F(z'^*), z - z'^* \rangle &= \left\langle \sum_{i=1}^M \pi_i \nabla f_i(\theta), \theta - \theta^* \right\rangle - \sum_{i=1}^M (f_i(\theta) - f_i(\theta^*)) (\pi_i - \pi'_i) \\ 2083 &\stackrel{(4)}{\geq} \sum_{i=1}^M f_i(\theta) \pi_i - \sum_{i=1}^M f_i(\theta^*) \pi_i - \sum_{i=1}^M (f_i(\theta) - f_i(\theta^*)) (\pi_i - \pi'_i) \\ 2084 &= \sum_{i=1}^M (f_i(\theta) - f_i(\theta^*)) \pi'_i \geq 0 \end{aligned}$$

2090 \square

2092 Lemma 9 allows to pass to the analysis with non-convex function $f(\theta)$ and consequently a non-
2093 monotone operator \bar{F} . Moreover, it enables to take into account naturally convex structure of
2094 the objective function $\sum_{i=1}^M \pi_i f_i(\theta)$ with respect to the weights π , which is also reflected in the
2095 convergence criterion presented in (5) and written below. In (5) we recognize the part of the **Gap**
2096 operator corresponding to π , while with respect to the parameter θ the criterion involves an averaged
2097 gradient norm.

$$2099 \quad W^K = \mathbb{E} \max_{\pi' \in \Lambda} \left\langle \sum_{i=1}^M \pi'_i f_i(\theta^*), \bar{\pi}^K - \pi' \right\rangle + \frac{1}{8\gamma K} \sum_{k=1}^K \mathbb{E} \|\pi^{k+1} - \pi^k\|^2 + \frac{\gamma}{32} \mathbb{E} \left\| \sum_{i=1}^M \bar{\pi}_i^K \nabla f(\bar{\theta}_i^K) \right\|^2,$$

2103 Where $\bar{\pi}^K = \sum_{k=1}^K \frac{1}{K} \pi^{k+1}$ and $\left\| \sum_{i=1}^M \bar{\pi}_i^K \nabla f_i(\bar{\theta}_i^K) \right\|^2 = \mathbb{E}_k \|\tilde{f}^k\|^2 = \frac{1}{K} \sum_{k=1}^K \|\tilde{f}^k\|^2$.

2105 Theorem 3 provides convergence guaranties with respect to W^K under relaxed convexity Assumption
2106 4.

2106 **Theorem 3.** *Let Assumptions 1, 2, 4 hold and $\alpha = 1$, $\beta = \frac{1}{\omega}$, $\gamma_\pi = \gamma_\theta = \gamma \leq \gamma_1 =$
2107 $\min \left\{ \tilde{L}^{-1} (48(17\omega^3 - 2M\omega^2))^{-\frac{1}{2}}, \left(2448 \frac{a}{M} \omega^3 L^2 + 96\omega^2 L^2 + 16M\tilde{L}^2 \right)^{-\frac{1}{2}} \right\}$, $\Lambda = \Delta^{M-1} \cap$
2108 Q_a^M , where $Q_a^M = \{x \in \mathbb{R}^M \mid 0 \leq x_i \leq \frac{a}{M}\}$. Then, after K iterations of Algorithm 1 with
2109 *unbiased compressor 1* \mathcal{Q} and exact local gradients solving problem (4) the following holds:*
2110

2112
$$W^K \leq \mathbb{E} \frac{1}{2\gamma K} \left[\max_{\pi' \in \Lambda} \left(2D_{KL}(\pi', \pi^1) + 2\gamma \langle \bar{F}(z^1) - F(z^0), z'^* - z^1 \rangle \right) + \|\theta^1 - \theta^*\|^2 \right. \\ 2113 \left. + \sum_{k=0}^1 \left[30\gamma^2 \omega \left\| \tilde{f}^k - h^k \right\|^2 + 85\gamma^2 \omega^2 \sum_{i=1}^M \mathbb{E} \left\| \tilde{f}_i^k - h_i^k \right\|^2 \right] \right].$$

2114
2115
2116
2117

2118 *Proof.* We begin with the result of Lemma 3.
2119
2120

2122
$$2\gamma \langle F(z^{k+1}), z^{k+1} - z \rangle \leq (2D_{KL}(\pi, \pi^k) - 2D_{KL}(\pi, \pi^{k+1})) \\ 2123 + (\|\theta^k - \theta\|^2 - \|\theta^{k+1} - \theta\|^2) \\ 2124 + (2\gamma \langle F(z^k) - F(z^{k-1}), z - z^k \rangle \\ 2125 - 2\gamma \langle F(z^{k+1}) - F(z^k), z - z^{k+1} \rangle) \\ 2126 - \frac{1}{2} \|\pi^{k+1} - \pi^k\|^2 - \frac{1}{2} \|\theta^{k+1} - \theta^k\|^2 \\ 2127 + 2\gamma^2 \|p^k - p^{k-1}\|^2 + 2\gamma^2 \|g^k - g^{k-1}\|^2.$$

2128
2129
2130
2131

2132 We proceed by conditioning on z^{k+1} .
2133

2134
$$2\gamma \langle \bar{F}(z^{k+1}), z^{k+1} - z \rangle \\ 2135 \leq (2D_{KL}(\pi, \pi^k) - 2D_{KL}(\pi, \pi^{k+1})) + (\|\theta^k - \theta\|^2 - \|\theta^{k+1} - \theta\|^2) \\ 2136 + (2\gamma \langle F(z^k) - F(z^{k-1}), z - z^k \rangle - 2\gamma \langle \bar{F}(z^{k+1}) - F(z^k), z - z^{k+1} \rangle) \\ 2137 - \frac{1}{2} \|\pi^{k+1} - \pi^k\|^2 - \frac{1}{2} \|\theta^{k+1} - \theta^k\|^2 \\ 2138 + 2\gamma^2 \|p^k - p^{k-1}\|^2 + 2\gamma^2 \|g^k - g^{k-1}\|^2. \tag{60}$$

2139
2140
2141
2142

2143 We choose $z = z'^*$ in order to apply Lemma 9.
2144

2145
$$\langle \bar{F}(z^{k+1}), z^{k+1} - z \rangle \geq \langle \bar{F}(z'^*), z^{k+1} - z'^* \rangle = \langle p', \pi^{k+1} - \pi' \rangle. \tag{61}$$

2146

2147 Then we substitute (61) into (60) and summing over $k = 1$ to K .
2148

2149
$$2\gamma K \left\langle p', \sum_{k=1}^K \frac{1}{K} \pi^{k+1} - \pi' \right\rangle \\ 2150 \leq (2D_{KL}(\pi', \pi^1) - 2D_{KL}(\pi', \pi^{K+1})) + (\|\theta^1 - \theta^*\|^2 - \|\theta^{K+1} - \theta^*\|^2) \\ 2151 + \sum_{k=1}^K \left[(2\gamma \langle F(z^k) - F(z^{k-1}), z'^* - z^k \rangle - 2\gamma \langle \bar{F}(z^{k+1}) - F(z^k), z'^* - z^{k+1} \rangle) \right. \\ 2152 - \frac{1}{2} \|\pi^{k+1} - \pi^k\|^2 - \frac{1}{2} \|\theta^{k+1} - \theta^k\|^2 \\ 2153 \left. + 2\gamma^2 \|p^k - p^{k-1}\|^2 + 2\gamma^2 \|g^k - g^{k-1}\|^2 \right]. \tag{62}$$

2154
2155
2156
2157
2158
2159

2160 At the next step we evaluate $\|\theta^{k+1} - \theta^k\|^2$ to extract the term for convergence criterion. We utilize
 2161 (CS) inequality several times.
 2162

$$\begin{aligned}
 2163 \quad \|\theta^{k+1} - \theta^k\|^2 &\stackrel{16}{=} \gamma^2 \|2g^k - g^{k-1}\|^2 \\
 2164 \quad &\stackrel{(CS)}{\geq} \gamma^2 \left[\frac{1}{2} \|g^k\|^2 - \|g^k - g^{k-1}\|^2 \right] \\
 2165 \quad &\stackrel{(CS)}{\geq} \gamma^2 \left[\frac{1}{4} \|\tilde{f}^k\|^2 - \frac{1}{2} \|\tilde{f}^k - g^k\|^2 - \|g^k - g^{k-1}\|^2 \right]
 \end{aligned} \tag{63}$$

2170 After that we splitting the $\frac{1}{2}\|\theta^{k+1} - \theta^k\|$ in (62) into 2 terms with factors $\frac{1}{4}$ and substitute (63) into
 2171 the one of them.
 2172

$$\begin{aligned}
 2173 \quad &2\gamma K \left\langle p', \sum_{k=1}^K \frac{1}{K} \pi^{k+1} - \pi' \right\rangle + \sum_{k=1}^K \left[\frac{1}{4} \|\pi^{k+1} - \pi^k\|^2 + \frac{\gamma^2}{16} \|\tilde{f}^k\|^2 \right] \\
 2174 \quad &\leq (2D_{KL}(\pi', \pi^1) - 2D_{KL}(\pi', \pi^{K+1})) + (\|\theta^1 - \theta^*\|^2 - \|\theta^{K+1} - \theta^*\|^2) \\
 2175 \quad &+ \sum_{k=1}^K \left[\left(2\gamma \langle F(z^k) - F(z^{k-1}), z'^* - z^k \rangle - 2\gamma \langle \bar{F}(z^{k+1}) - F(z^k), z'^* - z^{k+1} \rangle \right) \right. \\
 2176 \quad &- \frac{1}{4} \|\pi^{k+1} - \pi^k\|^2 - \frac{1}{4} \|\theta^{k+1} - \theta^k\|^2 \\
 2177 \quad &+ \frac{\gamma^2}{8} \|\tilde{f}^k - g^k\|^2 + \frac{\gamma^2}{4} \|g^k - g^{k-1}\|^2 \\
 2178 \quad &\left. + 2\gamma^2 \|p^k - p^{k-1}\|^2 + 2\gamma^2 \|g^k - g^{k-1}\|^2 \right].
 \end{aligned} \tag{64}$$

2187 Then we maximize (64) over $\pi' \in \Lambda$ and take full expectation. Additionally we note, that
 2188

$$\begin{aligned}
 2189 \quad &\mathbb{E} \left[\sum_{k=1}^K \max_{\pi' \in \Lambda} \langle F(z^k) - F(z^{k-1}), z'^* - z^k \rangle \right] \\
 2190 \quad &= \mathbb{E} \left[\sum_{k=1}^K \langle g^k - g^{k-1}, \theta^* - \theta^k \rangle + \max_{\pi' \in \Lambda} \sum_{k=1}^K \langle p^k - p^{k-1}, \pi' - \pi^k \rangle \right] \\
 2191 \quad &= \mathbb{E} \left[\sum_{k=1}^K \mathbb{E} [\langle g^k - g^{k-1}, \theta^* - \theta^k \rangle | z^k] + \max_{\pi' \in \Lambda} \sum_{k=1}^K \langle p^k - p^{k-1}, \pi' - \pi^k \rangle \right] \\
 2192 \quad &= \mathbb{E} \left[\sum_{k=1}^K \langle \tilde{f}^k - g^{k-1}, \theta^* - \theta^k \rangle + \max_{\pi' \in \Lambda} \sum_{k=1}^K \langle p^k - p^{k-1}, \pi' - \pi^k \rangle \right],
 \end{aligned}$$

2200 which enable us to recover the telescopic structure of inner products sum.
 2201

$$\begin{aligned}
 2202 \quad &\mathbb{E} \left[2\gamma K \max_{\pi' \in \Lambda} \left\langle p', \sum_{k=1}^K \frac{1}{K} \pi^{k+1} - \pi' \right\rangle + \sum_{k=1}^K \left[\frac{1}{4} \|\pi^{k+1} - \pi^k\|^2 + \frac{\gamma^2}{16} \|\tilde{f}^k\|^2 \right] \right] \\
 2203 \quad &\leq \mathbb{E} \left[\max_{\pi' \in \Lambda} (2D_{KL}(\pi', \pi^1) - 2D_{KL}(\pi', \pi^{K+1})) + (\|\theta^1 - \theta^*\|^2 - \|\theta^{K+1} - \theta^*\|^2) \right. \\
 2204 \quad &+ \max_{\pi' \in \Lambda} \left(2\gamma \langle \bar{F}(z^1) - F(z^0), z'^* - z^1 \rangle - 2\gamma \langle \bar{F}(z^{K+1}) - F(z^K), z'^* - z^{K+1} \rangle \right) \\
 2205 \quad &\left. + \sum_{k=1}^K \left[-\frac{1}{4} \|\pi^{k+1} - \pi^k\|^2 - \frac{1}{4} \|\theta^{k+1} - \theta^k\|^2 \right] \right]
 \end{aligned}$$

2214
2215
2216

$$+ \frac{\gamma^2}{8} v^k + \frac{9\gamma^2}{4} \|g^k - g^{k-1}\|^2 + 2\gamma^2 \|p^k - p^{k-1}\|^2 \Big]. \quad (65)$$

2217 We proceed by summing (65) + $\sum_{k=1}^K$ (27) + $\sum_{k=1}^K \frac{9}{8}$ (18) + $\sum_{k=2}^{K+1} N(15) + \sum_{k=2}^{K+1} H(9) + (40)$

2218

2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240

$$\begin{aligned} & \mathbb{E} \left[2\gamma K \max_{\pi' \in \Lambda} \left\langle p', \sum_{k=1}^K \frac{1}{K} \pi^{k+1} - \pi' \right\rangle + \sum_{k=1}^K \left[\frac{1}{4} \|\pi^{k+1} - \pi^k\|^2 + \frac{\gamma^2}{16} \|\tilde{f}^k\|^2 \right] \right. \\ & + \sum_{k=1}^{K-1} N v^{k+1} + \sum_{k=1}^{K-1} H w^{k+1} \\ & \leq \mathbb{E} \left[\max_{\pi' \in \Lambda} \left(2D_{KL}(\pi', \pi^1) + 2\gamma \langle \bar{F}(z^1) - F(z^0), z'^* - z^1 \rangle \right) + \|\theta^1 - \theta^*\|^2 \right. \\ & + \sum_{k=1}^K \left[\left(2H(1 + c_2^{-1})\tilde{L}^2 + 2N(1 + c_1^{-1})M\tilde{L}^2 - \frac{1}{4} \right) \|\pi^{k+1} - \pi^k\|^2 \right. \\ & + \left(6H(1 + c_2^{-1})\frac{aL^2}{M} + 2N(1 + c_1^{-1})L^2 + 4\gamma^2 M\tilde{L}^2 - \frac{1}{4} \right) \|\theta^{k+1} - \theta^k\|^2 \\ & + \left(\frac{\gamma^2}{8} + \frac{9\gamma^2}{4} N(1 + c_1)(1 + \beta^2 - 2\beta) \right) v^k + \frac{9(1 - \beta^2)\gamma^2}{4} v^{k-1} \\ & + \left(\frac{9\gamma^2}{4} (\omega - 1) + N(1 + c_1)\beta^2(\omega - 1) + H(1 + c_2)(1 + \beta^2\omega - 2\beta) \right) w^k \\ & \left. \left. + \frac{9\gamma^2}{4} (\omega - 1)(1 - \beta^2)w^{k-1} \right] \right]. \quad (66) \end{aligned}$$

2242 Considering the respective coefficients of $\|\theta^{k+1} - \theta^k\|^2$, $\|\pi^{k+1} - \pi^k\|_1^2$, w^k and v^k , we derive the
2243 following restrictions:

2244
2245
2246
2247
2248
2249
2250

$$\left\{ \begin{array}{l} \frac{1}{4} \geq 6H(1 + c_2^{-1})\frac{aL^2}{M} + 2N(1 + c_1^{-1})L^2 + 4\gamma^2 M\tilde{L}^2 \\ \frac{1}{4} \geq 2H(1 + c_2^{-1})\tilde{L}^2 + 2N(1 + c_1^{-1})M\tilde{L}^2 \\ H \geq \frac{9\gamma^2}{4}(\omega - 1) + N(1 + c_1)\beta^2(\omega - 1) + H(1 + c_2)(1 + \beta^2\omega - 2\beta) \\ \quad + \frac{9\gamma^2}{4}(\omega - 1)(1 - \beta^2) \\ N \geq \frac{\gamma^2}{8} + \frac{9\gamma^2}{4} + N(1 + c_1)(1 + \beta^2 - 2\beta) + \frac{9(1 - \beta^2)\gamma^2}{4} \end{array} \right. \quad (67)$$

2251 We now turn to selecting the free coefficients to satisfy conditions (67). Beginning with the last
2252 inequality on N , we set

2253
2254

$$c_1 = \beta, \beta \leq 1, N = 6 \frac{\gamma^2}{\beta}. \quad (68)$$

2255 Then the choice

2256
2257
2258

$$c_2 = \frac{\beta}{2}, \beta = \frac{1}{\omega} \text{ guarantees sufficiency of } H = \frac{34\gamma^2}{\beta^2}. \quad (69)$$

2259 to satisfy third restriction in (67).

2260 Finally, we evaluate the first two inequalities in (67) and obtaining

2261
2262

$$\gamma \leq \tilde{L}^{-1} (48(17\omega^3 - 2M\omega^2))^{-\frac{1}{2}} \quad (70)$$

2263 and

2264
2265

$$\gamma \leq \left(2448 \frac{a}{M} \omega^3 L^2 + 96\omega^2 L^2 + 16M\tilde{L}^2 \right)^{-\frac{1}{2}} \quad (71)$$

2266 respectively.

2267 By satisfying constraint (67) via choices (68)-(71), we transform (66) into

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277

$$\begin{aligned} & \mathbb{E} \max_{\pi' \in \Lambda} \left\langle p', \sum_{k=1}^K \frac{1}{K} \pi^{k+1} - \pi' \right\rangle + \frac{1}{8\gamma K} \sum_{k=1}^K \mathbb{E} \|\pi^{k+1} - \pi^k\|^2 + \frac{\gamma}{32} \sum_{k=1}^K \frac{1}{K} \mathbb{E} \|\tilde{f}^k\|^2 \\ & \leq \mathbb{E} \frac{1}{2\gamma K} \left[\max_{\pi' \in \Lambda} \left(2D_{KL}(\pi', \pi^1) + 2\gamma \langle \bar{F}(z^1) - F(z^0), z'^* - z^1 \rangle \right) + \|\theta^1 - \theta^*\|^2 \right. \\ & \quad \left. + \sum_{k=0}^1 \left[30\gamma^2 \omega v^k + 85\gamma^2 \omega^2 w^k \right] \right]. \end{aligned}$$

2278 It finishes the proof. □
2279

2280 Proceeding similarly to Corollary 1, we obtain the following bounds on the required number of
2281 iterations and the total amount of communicated information.

2282 **Corollary 2.** *In setting of Theorem 3 with $\gamma = \gamma_1$, Algorithm 1 with exact local gradients needs*

$$\mathcal{O} \left(\frac{1}{\varepsilon} \left[\tilde{L} \omega^{3/2} + \tilde{L} M^{1/2} + L \left(\sqrt{\frac{a\omega^3}{M}} + \omega \right) \right] \right)$$

2283 *iterations in order to reach ε -accuracy with respect to W^K . Additionally, it requires*

$$\mathcal{O} \left(\frac{1}{\varepsilon} \left[\tilde{L} \omega^{1/2} + \tilde{L} \frac{M^{1/2}}{\omega} + L \left(\sqrt{\frac{a\omega}{M}} + 1 \right) \right] \right)$$

2284 *bits communicated from nodes to the server.*

2285 H LLM USAGE

2286 Beyond aiding in the editing process, no large language models (LLMs) were employed in this
2287 work. The entire intellectual content – including all facts, claims, arguments, and proofs – remained
2288 unaffected by LLM influence.

2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321