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ABSTRACT

Modern machine learning problems are frequently formulated in federated learning
domain and incorporate inherently heterogeneous data. Weighting methods operate
efficiently in terms of iteration complexity and represent a common direction in
this setting. At the same time, they do not address directly one of the main obstacle
in federated and distributed learning – communication bottleneck. We tackle this
issue by incorporating compression into the weighting scheme. We establish the
convergence under a convexity assumption, considering both exact and stochastic
oracles. Finally, we evaluate the practical performance of the proposed method on
classification problems.

1 INTRODUCTION

Behind groundbreaking results achieved by new machine learning models lies a carefully constructed
optimization process. From the advent of Stochastic Gradient Descent (SGD) (Robbins
& Monro, 1951) to adaptive methods like Adam (Kingma & Ba, 2014) and beyond, new outputs of
optimization theory not only accelerated convergence but have, at times, redefined what is possible in
entire industries. Contemporary supervised machine learning approaches universally require large-
scale training data to reach state-of-the-art results on established benchmarks (Alzubaidi et al., 2021;
Hoffmann et al., 2022; Shoeybi et al., 2019). The primary way to process this volume of samples
is usage of multiple nodes for computations. This setting poses new challenges for the research
community, highlighting once again that the future of the entire field hinges on novel solutions.
To harness the full potential of such data, distributed learning (Verbraeken et al., 2020) has become a
domain paradigm, enabling cutting-edge results in computer vision (CV) (Goyal et al., 2017), natural
language processing (NLP) (Shoeybi et al., 2019), and recommendation systems (Covington et al.,
2016) by leveraging multiple machines working in parallel. Formally, this setting can be characterized
by the following formulation of an optimization problem:

min
θ∈Rd

[
f(θ) =

1

M

M∑
i=1

fi(θ)

]
, (1)

where fi(θ) represents the empirical risk (Shalev-Shwartz et al., 2010) for data at node i. A bottleneck
emerges in this distributed setting: communication. During the training process local model states
should be synchronized. This coordination steps can be prohibitively time-expensive and completely
offset advantage gained from a parallel processing.
Distributed learning offers several major approaches to address this issue: local steps techniques
(Stich, 2018; Gorbunov et al., 2021b), partial participation concept (Li et al., 2019b; Rizk et al.,
2021), data-similarity-based methods (Hendrikx et al., 2020; Kovalev et al., 2022; Lin et al., 2023).
Finally, in our work, we adopt compression. The first works in this field were dedicated to one-bit
quantization (Seide et al., 2014; Bernstein et al., 2018). Currently, the most widely used techniques
include quantization (Alistarh et al., 2017) and sparsification (Alistarh et al., 2018; Beznosikov et al.,
2023a) methods such as RandK and TopK. A key consideration in this context is that increasing
the number of nodes enhances the robustness of the training process to inaccuracies in aggregated
local gradients. This gives rise to a trade-off between transmission precision and communication cost,
which can be exploited by compressing gradients during aggregation. Formally, compression can be
described using unbiased and contractive compression operators. In our work, we utilize the former.
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Definition 1. We say that a map C : Rd −→ Rd is an unbiased compression operator, or simply
unbiased compressor, if there exist a constant ω such that holds:

E [Q(x)] = x, E
[
∥Q(x)∥2

]
≤ ω∥x∥2 for all x ∈ Rd. (2)

Contemporary problem formulations often additionally involve heterogeneity, which necessitates
the development of federated learning techniques (Konečnỳ et al., 2016; McMahan et al., 2017;
Smith et al., 2017; Li et al., 2020; Kairouz et al., 2021). The high cost of transmitting raw samples
often makes homogeneous redistribution infeasible. Moreover, settings exist in which observation
redistribution is impractical or fundamentally disallowed (Nishio & Yonetani, 2019; Zhang et al.,
2020; Diao et al., 2020; Mishchenko et al., 2023; Khirirat et al., 2023; Islamov et al., 2025).
Standard formulation (1) of the objective function treats all devices equally. However, since the data
across nodes may inherently differ, the effectiveness of this formulation becomes questionable. To
address this issue, various weighting strategies was proposed, alternating the optimization problem
into:

min
θ∈Rd

[
M∑
i=1

πifi(θ)

]
, (3)

where πi represent weights constrained to the simplex ∆M−1, provided by particular weighting
method. The idea here is to assign big weights to clients with clean representative or even unique
data, and small weights to ones with noisy inappropriate samples. If this is achieved by any means,
performance of the model can be improved by effectively training it on higher-quality observations.
Currently, a wide range of weighting methods has been developed (McMahan et al., 2017; Nishio
& Yonetani, 2019; Wang et al., 2020; Cao et al., 2020). Each technique offers its own advantages,
such as adaptivity or the absence of extra information communication. Agnostic reformulation of
optimization problem (Mohri et al., 2019; Namkoong & Duchi, 2016; Shalev-Shwartz & Ben-David,
2014; Hashimoto et al., 2018):

min
θ∈Rd

max
π∈Λ

{
M∑
i=1

πifi(θ)

}
, (4)

where Λ is a convex subset of ∆M−1, combines both of these advantages. The weights are selected
automatically during training, while the strategy requires only the local losses to be known by the
server. Communicating this information is inexpensive and does not exacerbate the communication
bottleneck. Intuitively, the method operates as follows: if certain nodes possess unique observations,
a brief training phase can lead to a rapid loss reduction on the remaining users’ samples. This, in turn,
assigns higher weights to the devices holding the unique data, thereby mitigating the problem of data
imbalance and reducing model bias.
However, while mitigating the issues of data heterogeneity across nodes, weighting methods do
not address the core challenge – the communication bottleneck – which makes them independently
nonviable in real-world applications. To address this fundamental problem and unlock the practical
potential of weighting methods we aim to investigate the following question.

Is it possible to effectively combine weighting-based approaches with communication compression
techniques?

2 OUR CONTRIBUTION

• We answer the posed question affirmatively by introducing ADI (Algorithm 1). It incorpo-
rates compression (1) into agnostic weighting scheme (4). Moreover, operating in the saddle
point problem setting, the proposed method never requires the transmission of full gradients,
which is further reinforce practical applicability.

• We establish theoretical guarantees under general assumptions for the weighting setup. Our
analysis additionally includes practically relevant settings of stochastic local oracles and
partial participation.
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• We validate ADI performance on the classification problems, including a large scale real
world task and an experimental study of the interplay between compression and weighting
techniques.

3 RELATED WORKS

In this section, we intend to survey both classical results and recent developments in the fields of
weighting methods, compression, and saddle point problems, with a particular focus on studies that
integrate the latter two. These directions are most relevant to our work.

3.1 WEIGHTING METHODS

First approach in this field FedAvg (McMahan et al., 2017) suggests to assign weights to clients
regarding the size of dataset mi: πi = mi

m , where m =
∑M

i=1mi. This approach enables weight
determination prior to training initiation, which precludes the need for additional inter-node commu-
nication and mitigates associated bottleneck. However, it only addresses data imbalance in terms of
quantity rather than quality. Subsequent approaches employ dynamic weight assignment. To estimate
client importance, they leverage such information as cross-client weight distribution divergence
(Wang et al., 2020), local-global gradient discrepancy (Cao et al., 2020; Nguyen et al., 2020), and
local loss (Mohri et al., 2019; Cho et al., 2022). Alternative approaches leverage hardware-aware
metrics, including node computation capacity and connection stability, to accelerate training. These
methods minimize participation of edge devices with significantly slower compute or communication
capabilities (Nishio & Yonetani, 2019; Li et al., 2022; Ribero et al., 2022).
Utilized in this paper technique (4) (Mohri et al., 2019; Namkoong & Duchi, 2016; Shalev-Shwartz &
Ben-David, 2014; Hashimoto et al., 2018) offers the benefit of adaptivity while introducing minimal
additional communication overhead, as it only requires transmitting local loss values – a single scalar
per device. The communication cost of aggregating this exact information is incomparably lower
than even that of compressed gradients. This feature is particularly crucial as we aim to address the
communication bottleneck. Finally, as can be observed, problem (4) is a saddle-point problem not a
classical minimization one. This introduces additional challenges to algorithm design and theoretical
analysis.

3.2 METHODS FOR SADDLE POINT PROBLEMS

The Gradient Descent method can be generalized to Descent-Ascent algorithm for saddle
point problems (SPP). However, this straightforward generalization may fail to converge even
for relatively simple objective functions (Beznosikov et al., 2023b). A more robust alternative,
the Extragradient method, was introduced in 1976 by Korpelevich and has since become a
fundamental paradigm for solving saddle point problems. The original Extragradient algorithm
requires two gradient evaluations per iteration, but there are modifications that reduce this to a single
one, for instance, optimistic approach (Popov, 1980). It is worth noting that alternative techniques for
solving SPP also exist (Tseng, 2000; Nesterov, 2007; Malitsky, 2015). At the same time, the research
community continues to actively adapt Extragradient method to various settings (Nemirovski,
2004; Alacaoglu & Malitsky, 2022), including distributed learning with communication compression
(Beznosikov et al., 2022).

3.3 COMPRESSION METHODS

QSGD (Alistarh et al., 2017) was one of the initial steps toward understanding compression techniques
applied to classical minimization problems. It examined the incorporation of quantized communica-
tion into SGD (Robbins & Monro, 1951). Authors used restrictive assumptions that all nodes have
identical functions, and the stochastic gradients have bounded second moment. These assumptions
were relaxed in subsequent studies (Khirirat et al., 2018; Mishchenko et al., 2024). Additionally,
QSGD suffered from an irreducible term in the theoretical convergence bound, caused by the stochas-
ticity of the compressor, even when full local gradients were computed. The next notable concept in
this field was the error feedback technique. Initially introduced as a successful heuristic (Seide et al.,
2014; Ström, 2015), later it obtained theoretical support in (Stich et al., 2018; Karimireddy et al.,
2019) and enabled the analysis of biased compression. Then, a significant advancement followed
with the idea of compressing the difference between successive local gradient estimators, instead of
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directly compressing the gradients. This concept was first introduced in the DIANA (Mishchenko
et al., 2024) and enabled vanishing irreducible compressor stochasticity term, improved theoretical
guarantees and extension of the analysis to new settings. Later, in (Richtárik et al., 2021), it was
shown that local state difference compression can be interpreted as a variant of the error feedback
technique, which led to the development of the EF21 algorithm. Subsequently, in MARINA (Gor-
bunov et al., 2021a) the PAGE (Li et al., 2021) variance reduction technique was utilized. Using
biased local gradient estimators MARINA reached state-of-the-art convergence rates. Finally, the
authors of DASHA (Tyurin & Richtárik, 2022) ultimately combined error feedback with the EF21
mechanism and achieved optimal oracle complexity while preserving the state-of-the-art communica-
tion performance of MARINA. Moreover, they eliminated the need for periodic transmission of full
gradients, which was required in MARINA.
Despite the fundamental importance of variational inequalities including saddle point problems,
and their extensive study, methods for them which incorporate the compression remains largely
unexplored. Only several algorithms operating in this setting was proposed. MASHA (Beznosikov
et al., 2022), integrates operator compression with the Extragradient concept. An extension of
this approach, Optimistic MASHA (Beznosikov & Gasnikov, 2022), incorporates the optimistic
principle and, through the use of permutation compressor, leverages data similarity to strengthen
theoretical guarantees. Finally, Three Pillars (Beznosikov et al., 2023c) combines compres-
sion, data similarity, and local steps, unifying all three concepts within a single framework and
achieving optimal theoretical guarantees. However, despite these theoretical advantages, the practical
applicability of Three Pillars remains limited. In particular, due to its strong reliance on data
similarity across all devices. Moreover, a key practical drawback of all three methods lies in the
requirement for periodic transmission of full operator values.

4 SETUP

The analysis in this work is conducted relying on further assumptions.

Assumption 1. For all i = 1, 2, . . . ,M , let fi be L̃i-Lipschitz, i.e., |fi(θ1)− fi(θ2)| ≤ L̃i∥θ1 − θ2∥
holds for all θ1, θ2 ∈ Rd. We denote L̃ = max

i
{L̃i}.

Assumption 2. For all i = 1, 2, . . . ,M , let fi be Li-smooth, i.e., ∥∇fi(θ1) − ∇fi(θ2)∥ ≤
Li∥θ1 − θ2∥ holds for all θ1, θ2 ∈ Rd. We denote L = max

i
{Li}.

Assumption 3. For all i = 1, 2, . . . ,M , let fi be convex, i.e., fi(θ1) ≥ fi(θ2) + ⟨∇fi(θ2), θ1 − θ2⟩
holds for all θ1, θ2 ∈ Rd.

5 ALGORITHMS AND THEORETICAL ANALYSIS

5.1 DESCRIPTION OF THE ALGORITHM

Now we are ready to present our Algorithm 1 ADI (Agnostic DIANA). In suggested approach each
iteration begins with the nodes computing weighted loss gradient f̃i, compressing the difference
with their local memory state, and sending the result to the server – Lines 5, 7 and 9, respectively.
Additionally, Lines 5 and 7 represents the modifications required in stochastic local oracle and partial
participation settings. The nodes then update their local states on Line 8.
All remaining operations are carried out on the server side. Firstly, it aggregate compressed local
differences and local losses – Line 11. Then, gradients estimators g and p with respect to θ and
π are computed on Lines 12 and 14. After that, the update of θ is performed using the optimistic
version ĝ of oracle g – Lines 16 and 13. At the same time, the weights πi are constrained to remain
within a subset Λ of the simplex. Hence, a Mirror Descent step on Line 17 is applied to update
them. Where the Kullback–Leibler divergence is used as the Bregman divergence. Additionally, we
point out that due to the maximization over πi in agnostic objective formulation (4), a positive sign
precedes the inner product. Finally, server updates the local state h and communicates θ and πi to
each node.
Thus, Lines 16 and 17 – considering Lines 13 and 15 – correspond to a step of Optimistic
Extragradient (Yudin, 1983) method (Popov, 1980). While Lines 7, 8, 11, 12, 18 reflect the idea
of difference compression introduced in DIANA (Mishchenko et al., 2024). This concept resembles
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the variance reduction technique (Johnson & Zhang, 2013) and similarly enables the elimination of
the irreducible term, caused by the stochasticity, in the convergence analysis. These methods are
driven by an intuitive idea: near the optimum of a smooth function, the full gradient tends to zero,
while local gradients may remain relatively large.

Algorithm 1 ADI

1: Input: Starting points θ0 ∈ Rd, π0 ∈ Λ,
{h0i }Mi=1, h0i ∈ Rd and h0 =

∑M
i=1 h

0
i , num-

ber of iterations K, number of nodes M , random
variables ηki ∼ Bern(p).

2: Parameters: α, β, γθ, γπ > 0; p ∈ (0, 1].
3: for k = 1, 2, 3, . . . ,K do
4: for all nodes i = 1, 2, . . . ,M in parallel do

5:

[
f̃ki = πk

i ∇fi(θk) exact local gradient
f̃ki = πk

i ∇fi,ξi(θk) stochastic oracle
6: ∆k

i = f̃ki − hki

7:

[
∆̂k

i = Q(∆k
i )

∆̂k
i =

ηk
i

p Q(∆k
i ) partial participation

8: hk+1
i = hki + β∆̂k

i

9: send ∆̂k
i , fi(θ

k) to server
10: end for
11: ∆̂k =

∑M
i=1 ∆̂

k
i

12: gk = hk + ∆̂k

13: ĝk = (1 + α)gk − αgk−1

14: pk =
(
fi(θ

k)
)M
i=1

15: p̂k = (1 + α)pk − αpk−1

16: θk+1 = θk − γθĝ
k

17: πk+1 = argmin
π∈Λ

{
−γπ⟨p̂k, π⟩+DKL(π, π

k)
}

18: hk+1 = hk + β∆̂k

19: server send πk+1
i , θk+1 to ith node for all i

20: end for

At the same time, according to Definition 1,
the distortion introduced by the compressor
scales with the norm of its input. As a re-
sult, near the optima compression of local
gradient introduce a significant noise and pre-
vent the aggregated estimator from converg-
ing to zero. This leads to erratic oscillations
near the solution θ∗ in practice and to an irre-
ducible variance term in theoretical analysis.
In contrast, the difference between local gra-
dients at nearby points is bounded due to the
smoothness of each local objective. Hence,
as the algorithm approaches the optimum and
the update steps diminish, it becomes neces-
sary to compress progressively finer differ-
ences. Consequently, the local estimators hki
tend to the local gradients ∇fi(θ∗). It ensure
that the aggregated estimator hk converges
to zero. This property allows the method to
converge to the optimum itself, rather than to
a neighborhood of it.
Let us now justify the choice of DIANA as the
compression foundation in our method. To
this end we consider alternative candidates.
Firstly, DASHA (Tyurin & Richtárik, 2022),
which demonstrates state-of-the-art results in
the classical minimization setting, offers the-
oretical guarantees under non-convex objec-
tive functions. At the same time, the theoret-
ical analysis of SPP in such setting remains
largely underdeveloped, making the exten-
sion of DASHA’s analysis to our scenario in-
tricated. MASHA (Beznosikov et al., 2022),
on the other hand, operates in the SPP setting and incorporates compression. However, it requires
periodic communication of full gradients, which significantly limits its practical applicability. By
establishing the analysis of DIANA within the SPP setup, we avoid such constraints while leveraging
its compression strategy.
Another detail we want to highlight is simplex regularization. In various problem settings, it may
be advantageous to impose additional constraints on the weights by restricting the feasible set to
a subset Λ of the simplex ∆M−1 (Mehta et al., 2024). Let us provide a reasoning, helpful for
understanding which regularization can be suitable in our case. Considering optimization problem
(4) with Λ = ∆M−1 at optimum point the weights take the form of πi0 = 1, πj = 0 for all j ̸= i0,
where i0 = argmax

i
fi(θ

∗). At the same time, some clients may possess noisy samples. The model

can not – and should not – learn patterns from such data. Even a single device with notable higher
noise level can cause an obstacle to effective training. Particularly, since its data is less representative,
it experiences a slower decrease in loss. As training progresses, this leads to the weight of that client
growing close to one. Further training will only lead to overfitting the model to the noise present
in the data of the given device. This potential issue can be mitigated by using Λ = ∆M−1 ∩QM

a ,
where QM

a =
{
x ∈ RM

∣∣0 ≤ xi ≤ a
M

}
and a ∈ [1,M ].The parameter a controls the trade-off

between full flexibility in weight assignment and stronger averaging. Specifically, setting a = 1
recovers formulation (1), while a =M imposes no additional constraints on the weights. We employ
regularization of the specified form and additionally highlight its role in the theoretical sectrion.
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Finally, let us follow all communications in the proposed algorithm. At each iteration, transmissions
of fi(θk), ∆̂k

i from the nodes to the server and πk
i , θk in the opposite direction are required. As fi(θk)

and πk
i are scalar values they do not pose major threat to communication efficiency. Then, both ∆̂k

i

and θk have dimensionality d. The vector θk is transmitted from the server to nodes, which poses
fewer challenges (Kairouz et al., 2021). In contrast, aggregation of ∆̂i on the server constitutes the
main obstacle to communication efficiency. ADI address this issue since ∆̂k

i is compressed version
of ∆k

i , which makes its transmission significantly cheaper than that of an general vector of dimension
d. We are now ready to proceed to the theoretical analysis. In the following sections, we provide
guaranties for the cases of exact local gradients, stochastic local oracles and partial participation. For
a comparison of the ADI rates with those of prior compression methods, we refer to Appendix A.

5.2 CONVERGENCE GUARANTIES IN EXACT LOCAL GRADIENT SETTING

We establish the convergence with respect to Gap function (Definition 2 in Section F). It is standard
for convex-concave SPP setup criteria. To initiate the analysis, we introduce the notation z = (θ, π)⊤

andF (zk) = (gk,−pk)⊤. Descent Lemma 3 (Section F) imposes conditions on operatorF evaluation
across iterations. Then Lemmas 1 and 2 (Section E) justify the transition to the Gap(z) function and
further analysis.

Finally, Theorem 1 represents our main theoretical result. We remind that the constants L and L̃ were
introduced in Assumptions 2 and 1 respectively.

Theorem 1. Let Assumptions 1, 2, 3 hold and α = 1, β = 1
ω , γπ = γθ = γ ≤ γ0 =

min

{
1
2L̃

√
1

96ω3+14Mω2 ,
√

1
2

1

4ML̃2+576 aω3

M L2+28ω2L2

}
, Λ = ∆M−1 ∩ QM

a , where QM
a = {x ∈

RM
∣∣0 ≤ xi ≤ a

M }. Then, after K iterations of Algorithm 1 with unbiased compressor 1 Q and exact
local gradients solving problem (4) the following holds:

E [Gap(zK)] ≤ V

2γK
,

where

V = E
[
max
z∈D

{
4DKL(π, π

1) + 2∥θ1 − θ∥2

+2γ⟨F (z1)− F (z0), z − z1⟩
}
+ 32γ2ω2

1∑
k=0

M∑
i=1

∥∥∥f̃ki − hki

∥∥∥2 + 7γ2ω

1∑
k=0

∥∥∥f̃k − hk
∥∥∥2 ]

and zK = 1
K

∑K
k=1 z

k.

This implies the following bounds on the number of communication rounds and the amount of
information transmitted from the clients to the server.

Corollary 1. In setting of Theorem 1 with γ = γ0, Algorithm 1 with exact local gradients needs

O

(
1

ε

[
L̃ω

3/2 + L̃M
1/2 + L

(√
aω3

M
+ ω

)])
iterations in order to reach ε-accuracy with respect to E [Gap(zK)]. Additionally, it requires

O
(
1

ε

[
L̃ω

1/2 + L̃
M 1/2

ω
+ L

(√
aω

M
+ 1

)])
bits communicated from nodes to the server.

The first term in both bounds in Corollary 1 originate from the recursion on ∥πk+1
i − πk

i ∥21. If
the weights are fixed, these terms vanish, and under condition ω ≤ M , compression leads to at
least no increase in communication complexity. Returning to the analysis of the full result, we
must acknowledge that weighting algorithms typically suffer from weak theoretical guarantees. For
instance, theoretically FedAvg enjoys only sublinear convergence rate in the strongly convex setting
(Li et al., 2019b). In our setup, the weighting-induced terms deteriorate the theoretical guarantees
monotonically with increasing compression rate. Finally, discussing the role of simplex regularization
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Λ in the theoretical analysis, we note that it enables an acceleration by a factor of 1
M in square-root

terms.

5.2.1 EXTENSION TO THE NON-CONVEX SETUP

In this section we present the convergence analysis under the relaxed convexity Assumption 3. We
introduce an additional Assumption 4 is inspired by the minty assumption, traditionally associated
with non-monotonicity (non-convexity) in the respective literature Dang & Lan (2015); Mertikopoulos
et al. (2018); Kannan & Shanbhag (2019).
Assumption 4. Let there exists a point θ∗ ∈ Rd such that:〈

M∑
i=1

πi∇fi(θ), θ − θ∗

〉
≥

M∑
i=1

πifi(θ)−
M∑
i=1

πifi(θ
∗), for all θ ∈ Rd, π ∈ ∆M−1.

For a more detailed discussion of the setting and the proofs for this section, please refer to Appendix
G.
Our setting is special, since the objective function

∑M
i=1 πifi(θ) is linear in the weights π by

construction. This is also reflected in the criterion presented in (5) below. Convergence with respect
to the weights π involves the same term as in the convex setting, whereas convergence with respect to
the parameter θ is now expressed through the mean squared norm of the gradients.

WK=Emax
π′∈Λ

〈
M∑
i=1

π′
ifi(θ

∗), πK − π′

〉
+

1

8γK

K∑
k=1

E∥πk+1 − πk∥2+ γ

32
E

∥∥∥∥∥
M∑
i=1

πK
i ∇f(θKi )

∥∥∥∥∥
2

, (5)

Where πK =
∑K

k=1
1
Kπ

k+1 and
∥∥∥∑M

i=1 π
K
i ∇fi(θ

K
)
∥∥∥2 = Ek∥f̃k∥2 = 1

K

∑K
k=1 ∥f̃k∥2.

The central result of this section, Corollary 2, provides convergence rates with respect to WK under
the relaxed assumptions. We remind that the constants L and L̃ were introduced in Assumptions 2
and 1 respectively.
Corollary 2. In setting of Theorem 3 with γ = γ1, Algorithm 1 with exact local gradients needs

O

(
1

ε

[
L̃ω

3/2 + L̃M
1/2 + L

(√
aω3

M
+ ω

)])
iterations in order to reach ε-accuracy with respect to WK . Additionally, it requires

O
(
1

ε

[
L̃ω

1/2 + L̃
M 1/2

ω
+ L

(√
aω

M
+ 1

)])
bits communicated from nodes to the server.

5.3 CONVERGENCE GUARANTIES IN STOCHASTIC LOCAL ORACLE SETTING

Despite introducing new challenges, federated learning is still subject to classical difficulties of
gradient-based optimization. In practice, computing the full even local gradient may be prohibitively
expensive, especially in the presence of devices with limited computational capabilities. This makes
stochastic optimization (Robbins & Monro, 1951; Bottou et al., 2018) particularly relevant in practical
applications, including the context of federated learning. We extend our analysis to cover this setting
as well.
Guaranties in this case are provided under assumption that all nodes have access to an unbiased oracle
∇fi,ξi(xk) with bounded variance, i.e., Assumption 5 holds.

Assumption 5. Let for all k = 1, 2, . . . ,K and i = 1, 2, . . . ,M ∇fi,ξi(θk) satisfies

i) E∇fi,ξi(θk) = ∇fi(θk)
ii) E∥∇fi,ξi(θk)−∇fi(θk)∥2 ≤ σ2.

ADI structure imposes minor modification in this setting. Particularly, Line 5 transforms into sample
f̃ki = πk

i ∇fi,ξi(θk). The theoretical analysis similarly remains largely unchanged, as stochasticity
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was already involved in the compression operator, and the oracle is assumed to be independent of
it. Thus, we can reformulate Theorem 1 for stochastic oracle setting as follows. We remind that the
constants L and L̃ were introduced in Assumptions 2 and 1 respectively.

Theorem 2. Let in setting of Theorem 1 additionally Assumption 5 holds. Then, it implies

E [Gap(zK)] ≤ V

2γK
+ γ

64a2ω2

M
σ2

for iterations of Algorithm 1 with stochastic local oracles.

Choosing γ = min
{
γ0,
√

VM
128a2ω2σ2K

}
we obtain the further guarantees.

Corollary 3. In setting of Theorem 2 with γ = min
{
γ0,
√

VM
128a2ω2σ2K

}
, Algorithm 1 with stochastic

local oracles needs

O

(
1

ε2

[
a2ω2σ2

M

]
+

1

ε

[
L̃ω

3/2 + L̃M
1/2 + L

(√
aω3

M
+ ω

)])
iterations in order to reach ε-accuracy with respect to E [Gap(zK)]. Additionally, it requires

O
(

1

ε2

[
a2ωσ2

M

]
+

1

ε

[
L̃ω

1/2 + L̃
M 1/2

ω
+ L

(√
aω

M
+ 1

)])
bits communicated from nodes to the server.

In this case, guaranties in Theorem 2 are affected by an additional irreducible term γ 64a2ω2

M σ2 induced
by the stochasticity of the local oracle. It is general term for analysis in stochastic oracle setup with

Assumption 5. In its presence, optimal stepsize γ transforms into γ = min
{
γ0,
√

VM
128a2ω2σ2K

}
and

communication complexity bounds include an additional term 1
ε2

[
ωσ2

M

]
.

5.4 CONVERGENCE GUARANTIES IN PARTIAL PARTICIPATION SETTING

Another classical direction in federated learning is partial participation (Li et al., 2019b; Rizk et al.,
2021). In its context only the subset of all nodes are involved in each computation and communication
round. This modification addresses several challenges inherent to federated setting, primarily the
periodic unavailability of some devices (Li et al., 2019b; Yang et al., 2021). We establish theoretical
guarantees for this setup as well.

Corollary 4. In setting of Theorem 1 with β = p
ω , H = 32γ2

(
ω
p

)2
, N = 7γ2 ω

p , γπ = γθ = γ ≤

γp = min

{
1
2L̃

√
1

96(ω
p )

3
+14M(ω

p )
2 ,
√

1
2

1

4ML̃2+576 a
M (ω

p )
3
L2+28(ω

p )
2
L2

}
it implies

E [Gap(zK)] ≤ V

2γK

for iterations of Algorithm 1 with partial participation.

According Corollary 4, we bound number of communication rounds and the volume of data sent
from the clients to the server.

Corollary 5. In setting of Corollary 4 with γ = γp, Algorithm 1 with partial participation needs

O

(
1

ε

[
L̃

(
ω

p

)3/2

+ L̃M
1/2 + L

(√
aω3

Mp3
+
ω

p

)])
iterations in order to reach ε-accuracy with respect to E [Gap(zK)]. Additionally, it requires

O

(
1

ε

[
L̃

(
ω

p

)1/2

+ L̃
M 1/2p

ω
+ L

(√
aω

Mp
+ 1

)])
bits communicated from nodes to the server.
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Analysis in this setting relies on the observation that multiplying the compression operator by the
η
p , with η ∼ Bern(p), yields another valid compression operator. It remains unbiased, while its
compression rate ω is scaled by a factor of p. Finally we note that our analysis in stochastic local
gradients and partial participation settings can be straightforwardly merged.

6 EXPERIMENTS

To validate the performance of our algorithm ADI on practical tasks, we compare it in experiments
against baseline methods that employ either weighting schemes or communication compression
techniques. Specifically, ADI with no compression and EF21(Richtárik et al., 2021), DIANA
(Mishchenko et al., 2024) serve as representatives respectively. Although weighting-based approaches
are specifically designed to improve performance in heterogeneous settings, we assess the generality of
ADI by conducting experiments under varying degrees of heterogeneity, including the homogeneous
case. It is also important to note that classical approaches and weighting-based methods formally
solve different optimization problems (1) and (3). Consequently, comparing them in terms of loss is
not valid, and we instead rely on model quality metrics such as accuracy.
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(a) Rand50% compressor.
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(b) Rand10% compressor.

Figure 1: Performance comparison for ADI across different
heterogeneity levels.

We conduct a comparative evalua-
tion on image classification tasks us-
ing CIFAR-10 (Krizhevsky et al.,
2009) dataset and RESNET-18 (Meng
et al., 2019) neural network architec-
ture, which is considered to be a stan-
dard benchmark for optimizers perfor-
mance. We set number of clients M
equal to 10 and evaluate optimizers
under 2 major data distribution setups:
i.i.d. distribution, where each client
has the same number of data sam-
ples, and class labels are uniformly
distributed across clients; and non-
i.i.d. distribution (namely Dirichlet
one with the parameter α = 0.5) with
different amount of data samples per
client.
The first set of experiments, presented
in Figure 1, compares ADI with
compression-based methods under dif-
ferent setups of data heterogeneity
and parameter K = 10%, 50% for
RandK compressor. To ensure a fair comparison, we run the experiments for 10k communica-
tion rounds with stochastic oracle for each method and tune theirs hyperparameters.
As illustrated in the plots presented in Figures 1a, 1b, the weighting mechanism plays a crucial role in
the convergence behavior of our method. By effectively mitigating the impact of data heterogeneity,
ADI demonstrates superior convergence properties compared to baseline approaches. Furthermore,
the accumulated weight adjustments significantly influence the later stages of training, contributing to
enhanced model accuracy and overall performance. With the identity compressor, ADI reduces to an
Optimistic Extragradient (Popov, 1980) method for problem (4), effectively representing
a standalone weighting-based optimization approach.

Ablation study. The second experiment (see Figure2) compares same methods, but we apply
weighting technique to all of them. We use RandK with K = 10% and non-i.i.d. data distribution,
we observe consistent improvements in convergence across all methods – demonstrating that the
weighting mechanism enhances robustness even in highly heterogeneous settings. This experimental
validation highlights the significant advantage of setup (4) over conventional distributed learning
approaches, particularly in challenging heterogeneous environments where traditional methods
exhibit poor performance. We further analyze the evolution of client weights under Algorithm 1 in a
heterogeneous setting, with full results shown in Figure 3. At initialization, all clients are assigned
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equal weights, reflecting no prior knowledge of their data quality or relevance. As training progresses,
the weights rapidly diverge, adapting to the statistical heterogeneity of local datasets. Over time, each
client’s weight converges to a distinct, stable plateau – indicating that the system learns a consistent,
data-driven importance score for every participant.
This convergence behavior reveals two key phases of the optimization process:

(i) an early exploration phase, during which substantial weight adjustments occur;
(ii) a later stabilization phase, where weights remain nearly constant once the global model

approaches an optimum.

0 2000 4000 6000 8000 10000
# communication rounds

10

20

30

40

50

60

70

80

90

Ac
cu

ra
cy

ADI (no comp.)
ADI
DIANA (weighted)
EF21 (weighted)

Figure 2: Weighting approach comparison.

Figure 3: Weights magnitudes for Algorithm 1 in
non-i.i.d. data distribution setup.

Notably, significant reweighting ceases once the
optimizer enters a neighborhood of a (local or
global) minimum, suggesting that the weighting
mechanism primarily acts during transient, high-
gradient stages of training — precisely when
client contributions are most discriminative.
Experimental setup details, additional experi-
ments, including large scale problems, and more
detailed weighting-compression interaction ex-
perimental study can be found in the Appendix
B and C.

7 DISCUSSION

This study has introduced a method for federated
learning, supported by comprehensive theoret-
ical analysis and empirical validation. Theoret-
ical guarantees were established for a range of
relevant scenarios, including setups with exact
local gradients, stochastic local oracles, and par-
tial client participation. Experimental results
demonstrated that the superiority of the pro-
posed method over the baselines becomes more
pronounced as the level of compression and data
heterogeneity increases. This allows it to be con-
cluded that two of the most important problems
in federated learning – the communication bot-
tleneck and heterogeneity – can be addressed
concurrently, offering new potential for specific
federated learning formulations. Additionally, the developed approach maintains performance com-
parable to baseline algorithms in homogeneous data settings and never requires the transmission of
full gradients, thus further supporting its practical utility.
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A ADDITIONAL COMPARISON WITH PRIOR WORKS

In this section we provide complexity comparison of ADI against baselines.
Note that while previous compression algorithms address Problem (1), ADI operates with the
objective function (4). The difference in objective functions makes a direct formal comparison
of the rates less transparent. Additional difficulties in theoretically comparing ADI with classical
compression methods arise from the distinct convergence criterion inherent to saddle-point problems,
which should be taken into consideration as well. Nevertheless, for completeness of presentation,
we provide the comparative Table 1 below. Comparison is conducted for a smooth nonconvex setup,
which in case of ADI and MASHA, corresponds to the minty assumption. For the sake of clarity,
constants specific to the problem have been omitted from the estimates.

Table 1: Comparison of complexity across algorithms with compression.

Algorithm Communication
rounds

Bits of
communication

ADI (this work) 1

ε

[
ω

3/2 +M
1/2 +

√
ω3
/M

]
1

ε

[
ω

1/2 + M
1/2
/ω +

√
ω/M

]
DIANA (Horvóth et al., 2022) 1

ε

[
1 + (1 + ω)

√
ω/M

]
1

ε

[
1/ω +

1 + ω√
ωM

]
DASHA (Tyurin & Richtárik,

2022)
1

ε
[1 + ω/

√
M]

1

ε
[1/ω + 1/

√
M]

EF21 (Richtárik et al., 2021) 1

εα

1

ε

MASHA (Beznosikov et al., 2022) 1

ε

[
ω2
/M + ω

] 1

ε
[ω/M + 1]

Notation: ε = accuracy of the solution, ω = compression rate introduced in Definition 1, M = number of
nodes, α = parameter of contractive compressor.

Additionally, we note that EF21 was originally designed to be used with a contractive compressor
with constant α. Since this is a well-known and practically significant method, we include it in our
experimental baselines and present its convergence rate for completeness.

B ADDITIONAL CLARIFICATION ON IMAGE CLASSIFICATION

Our experiments are conducted on the CIFAR-10 (Krizhevsky et al., 2009) dataset using a RESNET-
18 (Meng et al., 2019) architecture, with M = 10 clients for federated training. We evaluate each
sampling strategy under three representative data partitioning schemes: (homo) an i.i.d. homogeneous
split, where each client receives a statistically identical sample of the data; (hetero) a heterogeneous
configuration in which clients are assigned disjoint class subsets, simulating non-i.i.d. label distribu-
tions; and (pathological) a strongly heterogeneous regime, reflecting real-world imbalances through
uneven data quantities and skewed class distributions across clients. This controlled setup enables a
rigorous comparison of Algorithm 1 under increasingly realistic and challenging federated learning
conditions. In all experiments we do not use simplex regularization, i.e. Λ = ∆M−1.

B.1 HYPERPARAMETERS DETAILS

In our experiments, we employed the default partitioning utility provided by the Flower (flwr)
framework (Beutel et al., 2020) to generate a non-i.i.d. (heterogeneous) data distribution across
clients. To calibrate the hyperparameters of the ADI optimization method, we conducted a systematic
grid search over the following ranges:

• Learning rate for model parameters (γθ):
{1×10−4, 5×10−4, 1×10−3, 5×10−3, 1×10−2, 2×10−2}

• Learning rate for client weights (γπ):
{1×10−3, 5×10−3, 1×10−2, 5×10−2, 1×10−1}
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• Momentum decay coefficient for the model update (α):
{0.70, 0.75, 0.80, 0.85, 0.90, 0.95}

• Momentum decay coefficient for the weight adaptation (β):
{0.05, 0.10, 0.15, 0.20}

The optimal configuration (selected based on validation performance (e.g., final accuracy and conver-
gence stability)) was identified as:

γθ = 0.01, γπ = 0.01, α = 0.90, β = 0.10.

Furthermore, across all compared methods, we employed a staged learning rate decay schedule to
promote convergence stability. Specifically, the initial learning rate was reduced by a factor of 5 after
the 2000 communication rounds and subsequently by an additional factor of 10 (i.e., 50× relative to
the initial value) after the 7500th communication round. Formally, for an initial learning rate γθ, the
schedule is defined as:

γθ(k) =


γθ, k < 2000,

γθ/5, 2000 ≤ k < 7500,

γθ/50, k ≥ 7500,

where k denotes the round number.

C ADDITIONAL EXPERIMENTS

C.1 LINEAR REGRESSION

To evaluate the performance of proposed method under tightly controlled conditions, we conduct
additional experiments on the simplest task. We use the diabets_scaled (Chang & Lin, 2011)
dataset for linear regression task consisting of 768 samples with 8 features and two classes. As
baselines, we select the communication compression algorithm DIANA (Mishchenko et al., 2024);
for uncompressed weighting method, we use ADI with identical compressor as Optimistic
Extragradient (Popov, 1980) for formulation (4). Additionally, we compare ADI with MASHA
(Beznosikov et al., 2022) for problem (4), which is an analogous method combining both weighting
and compression. For all algorithms with compression we utilize RandK compressor.
To model different degrees of heterogeneity, we introduce parameter αh ∈ [0, 1]. While emulating
training on M = 4 devices, we distribute data across clients as follows: the first node receives
1
M + αh

M−1
M observations from the negative class and 1−αh

M positive observations. The remaining
data is distributed uniformly across the other M − 1 devices. Thus, αh = 1 corresponds to
complete heterogeneity where the negative class appears only on one device while the other devices
contain exclusively positive class observations. Accordingly, αh = 0 corresponds to complete data
homogeneity.
The first series of experiments (Figure 4) compares ADI with the specified baselines under different
levels of data heterogeneity (αh equal to 0, 0.5, and 1). For all compression methods, we use RandK
with K = 1. MASHA additionally transmits full gradients every 8 iterations. These experiments
confirm the superiority of weighting methods: while showing comparable performance on homoge-
neous data, ADI gains significant advantage over DIANA as heterogeneity increases. By comparing
Optimistic Extragradient with other methods, we demonstrate the effectiveness of com-
pression, particularly in combination with weighting approaches across varying heterogeneity levels.
Finally, we present the evolution of ADI algorithm’s weights across iterations. We observe that their
dynamics can be unpredictable, particularly in the homogeneous setup. Yet this does not lead to
performance degradation.
Experiments in Figure 5 compares ADI and DIANA at αh = 0.5 with different compressor constants
K (8, 5, 2, 1). This comparison highlights that the advantage of weighting remains independent of the
compression level even under aggressive compression as Rand1.
Finally, in Figure 6 we verified that ADI weights ultimately stabilize in both complete homogeneity
and heterogeneity cases. Notably, in the homogeneous scenario, their pre-stabilization evolution does
not affect performance.
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(b) Weight magnitude for ADI’s nodes.

Figure 4: Performance comparison for ADI across different heterogeneity levels.
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Figure 5: ADI and DIANA with RandK across different K with αh = 0.5.
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Figure 6: Weights stabilization in homogeneous and heterogeneous setups.

C.2 ADDITIONAL DATA PARTITIONING

For greater completeness of the experimental evaluation, we conducted an additional experiment
using an alternative heterogeneity modeling setup. Specifically, we evaluate the same RESNET-18
(Meng et al., 2019) backbone on the CIFAR-10 (Krizhevsky et al., 2009) dataset partitioned across
10 clients according to a Dirichlet distribution with parameter α = 0.3, introducing a stronger
degree of non-i.i.d. data heterogeneity. The corresponding results are presented in the Table 2 below.
These results report the maximum accuracy (mean ± standard deviation over three independent runs)
achieved by the methods under the same number of communication rounds and an equal compression
level.
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Table 2: Comparison of ADI with baselines under Dirichlet (α = 0.3) partition

Method Rand 50% Acc. Rand 10% Acc. Rand 5% Acc.

ADI 82.6± 0.24 81.9± 0.24 82.4± 0.28
DIANA 76.7± 0.26 77.1± 0.32 75.4± 0.40
EF21 64.5± 0.43 64.4± 0.41 61.6± 0.43
MASHA1 63.7± 0.20 63.4± 0.21 63.5± 0.21

This experimental validation demonstrates that even under highly heterogeneous data distribution and
a high power of compression (5%), our method achieves strong performance and delivers improved
results compared to the baselines.

C.3 WEIGHTS DISTRIBUTION ANALYSIS

To investigate the sensitivity of client-specific aggregation weights to the severity of model compres-
sion, we conduct an ablation study on RESNET-18 (Meng et al., 2019) as the backbone architecture
and the CIFAR-10 (Krizhevsky et al., 2009) dataset, partitioned across 10 clients using a Dirichlet
distribution with parameter α = 0.5 to induce data heterogeneity.
Three compression levels - Rand 50%, Rand 10%, and Rand 5% - are evaluated. For each setting,
we report the learned client aggregation weights (mean ± standard deviation over three independent
runs) in Table 3 below.

Table 3: Final client weights assigned by ADI under different compression levels

Client no. Weight (Rand 50%) Weight (Rand 10%) Weight (Rand 5%)

1 0.019± 0.005 0.019± 0.006 0.014± 0.005
2 0.026± 0.007 0.025± 0.007 0.027± 0.009
3 0.141± 0.007 0.139± 0.008 0.139± 0.007
4 0.248± 0.011 0.244± 0.012 0.247± 0.014
5 0.136± 0.007 0.137± 0.007 0.134± 0.007
6 0.054± 0.008 0.055± 0.007 0.057± 0.011
7 0.145± 0.011 0.143± 0.016 0.144± 0.013
8 0.047± 0.008 0.062± 0.013 0.056± 0.014
9 0.043± 0.009 0.052± 0.008 0.048± 0.011
10 0.147± 0.010 0.124± 0.013 0.134± 0.011

Let us briefly describe and interpret obtained results.

(i) For the majority of clients (e.g., Clients 3, 4, 5, 7), the assigned aggregation weights
remain remarkably stable across compression regimes, with variations typically within
the margin of statistical uncertainty. This suggests convergence toward a data-informed
equilibrium - consistent with theoretical expectations that optimal client weights reflect local
data representativeness and utility, rather than being artifacts of compression-induced noise.

(ii) Notably, Clients 8 and 9 exhibit non-monotonic weight adjustments under aggressive
compression with Rand 5%, diverging from their trends at 50% and 10% compression.
Post-hoc data inspection reveals that these clients possess highly skewed local distributions:
each holds samples from only three classes, with two dominant classes constituting over
93% of their local datasets. Under severe sparsification, the reduced model capacity likely
amplifies the impact of such distributional bias, leading the weight adaptation mechanism
to dynamically re-calibrate contribution levels—potentially to mitigate negative transfer or
overfitting on minority classes.

These findings underscore that while global aggregation weights are generally robust to moderate
compression, extreme compression intensifies sensitivity to local data pathology, highlighting the
interplay between model compression, client heterogeneity, and adaptive weighting strategies in
federated optimization.
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C.4 LARGE SCALE PROBLEM

To further validate the scalability and robustness of ADI, we conduct experiments on the CIFAR-100
(Krizhevsky et al., 2009) dataset, which presents a more challenging, large-scale classification task
with 100 classes. We evaluate the RESNET-34 (Koonce, 2021) backbone across 10 clients, with
data heterogeneity modeled using a Dirichlet distribution with parameter α = 0.5, under three
compression regimes: Rand 50%, Rand 10%, and Rand 5%.
In the table below, we report the final accuracy (mean ± standard deviation over three independent
runs with 104 communication rounds) for ADI and several prior approaches.

Table 4: Comparison of ADI with baselines on CIFAR-100 under different compression levels

Method Rand 50% Acc. Rand 10% Acc. Rand 5% Acc.

ADI 71.2± 0.21 71.7± 0.22 70.9± 0.26
DIANA 69.8± 0.19 70.1± 0.22 71.1± 0.27
EF21 62.2± 0.41 62.3± 0.38 59.2± 0.43
MASHA1 61.7± 0.22 63.2± 0.17 62.5± 0.21

These results demonstrate that ADI maintains stable and competitive performance even on a large-
scale, highly heterogeneous dataset, consistently outperforming prior approaches. The findings
underscore the effectiveness of ADI’s adaptive weighting mechanism in challenging, real-world
federated learning scenarios.

C.5 ADDITIONAL WEIGHTING BASELINES AND PARTIAL CLIENT PARTICIPATION

To assess the effectiveness of the selected compression strategy, we conduct additional experiments
incorporating direct compression of transmitted gradients (Alistarh et al., 2017) as naive baseline into
AFL (Mohri et al., 2019) and q-FFL (Li et al., 2019a) traditional weighting algorithms. To further
investigate the effects associated with partial client participation, we extended the experimental
setup to the corresponding setting. Table 5 presents comparison results on CIFAR-10 (Krizhevsky
et al., 2009) using the RESNET-18 (Meng et al., 2019) architecture, while Table 6 reports results
on CIFAR-100 (Krizhevsky et al., 2009) with the RESNET-34 (Koonce, 2021) architecture across
varying compression rates. Data heterogeneity is induced via a Dirichlet distribution with parameter
α = 0.5 across 10 clients, while client availability is sampled from a Bernoulli distribution with
parameters p = 0.5, 0.7, 1.0. For every setup 3 runs was conducted with 10000 communication
rounds.

Table 5: Comparison of methods on CIFAR-10 under partial client participation setting

Method (p) Rand 50% Acc. Rand 10% Acc. Rand 5% Acc.

ADI (p = 1.0) 85.2± 0.21 85.7± 0.22 84.9± 0.26
AFL (p = 1.0) 67.2± 0.37 52.3± 0.38 47.2± 0.43
q-FFL (p = 1.0) 68.7± 0.34 53.2± 0.37 46.5± 0.41
ADI (p = 0.7) 82.2± 0.20 81.6± 0.22 81.9± 0.22
AFL (p = 0.7) 65.7± 0.31 49.9± 0.35 44.2± 0.40
q-FFL (p = 0.7) 65.9± 0.32 50.2± 0.37 45.7± 0.41
ADI (p = 0.5) 79.6± 0.22 78.9± 0.21 79.3± 0.22
AFL (p = 0.5) 64.5± 0.31 48.1± 0.39 48.2± 0.41
q-FFL (p = 0.5) 65.7± 0.29 49.2± 0.34 45.5± 0.41

The table reveals several clear patterns. ADI is almost insensitive to the compression level, even
under extreme compression of 5%. However, a decrease in the client availability probability p leads
to a slight deterioration in performance. The opposite trend is observed for the baselines: they are
relatively insensitive to partial client participation, but their performance drops substantially as the
compression level increases.
Overall, the results demonstrate a significant advantage of ADI over the baselines: in the most
extreme setup (p = 0.5, Rand 5%), the algorithm maintains a substantial performance lead over
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Table 6: Comparison of methods on CIFAR-100 under partial client participation setting

Method (p) Rand 50% Acc. Rand 10% Acc. Rand 5% Acc.

ADI (p = 1.0) 71.2± 0.19 71.7± 0.19 70.9± 0.22
AFL (p = 1.0) 58.2± 0.32 46.3± 0.31 41.2± 0.33
q-FFL (p = 1.0) 59.7± 0.31 46.2± 0.30 41.5± 0.31
ADI (p = 0.7) 69.4± 0.20 68.9± 0.20 69.0± 0.19
AFL (p = 0.7) 58.2± 0.31 46.9± 0.32 41.4± 0.33
q-FFL (p = 0.7) 58.2± 0.32 46.2± 0.31 41.6± 0.31
ADI (p = 0.5) 66.9± 0.20 66.9± 0.20 66.2± 0.21
AFL (p = 0.5) 58.4± 0.30 45.7± 0.28 41.6± 0.30
q-FFL (p = 0.5) 59.5± 0.29 45.8± 0.29 41.3± 0.31

the baselines even under their most favorable conditions (p = 1, Rand 50%). This highlights the
effectiveness of the chosen compression strategy for achieving a strong performance in real-world
applications.

D GENERAL INEQUALITIES AND NOTATION

Suppose x, y ∈ Rd, π1, π2 ∈ ∆ andDKL is Kullback–Leibler divergence. Then, following inequality
holds:

⟨x, y⟩ ≤ β

2
∥x∥2 + 1

2β
∥y∥2 , (Fen)

∥x+ y∥2 ≤ (1 + α) ∥x∥2 +
(
1 + α−1

)
∥y∥2 , (CS)

DKL(π1, π2) ≥
1

2
∥π1 − π2∥21 ≥ 1

2
∥π1 − π2∥2. (Pi)

Definition 2. Let F : Rd → Rd and D be a compact subset of Rd. Then, for any z ∈ Rd we define

Gap(z) = max
z′∈D

{⟨F (z′), z − z′⟩} .

Definition 3. Let ∥z∥bits represents the amount of bits required to encode the vector z ∈ Rd, b
denotes the number of bits per floating point value, and d is the dimensionality of the problem (i.e.,
bd = ∥z∥bits). Then for compression operator Q we define the expected density of compressed vector

qω =
E∥Q(z)∥

bd
.

E AUXILIARY LEMMAS

Lemma 1 reflects the general fact from the theory of saddle point problems.

Lemma 1. If a function f(x, y) : X × Y → R is convex w.r.t. x and concave w.r.t. y, then target
operator F for the min-max problem minx∈X maxy∈Y{f(x, y)} of the form

F (z) =

(
∇xf(x, y)
−∇yf(x, y)

)
is monotone e.i.,

⟨F (z1)− F (z2), z1 − z2⟩ ≥ 0 for all z1, z2 ∈ Z = X × Y.

Proof. We start from the definition of monotonicity, given in the statement, and utilize the convexity
and concavity of f :

⟨F (z1)− F (z2), z1 − z2⟩ = ⟨∇xf(x1, y1)−∇xf(x2, y2), x1 − x2⟩
−⟨∇yf(x1, y1)−∇yf(x2, y2), y1 − y2⟩

= ⟨∇xf(x1, y1), x1 − x2⟩+ ⟨−∇yf(x1, y1), y1 − y2⟩
+⟨∇xf(x2, y2), x2 − x1⟩+ ⟨−∇yf(x2, y2), y2 − y1⟩

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

≥ f(x1, y1)− f(x2, y1) + f(x1, y2)− f(x1, y1)

+f(x2, y2)− f(x1, y2) + f(x2, y1)− f(x2, y2) = 0.

The following Lemma 2 (Lemma 3 in (Alacaoglu & Malitsky, 2022)) justifies the interchange of the
maximum and the expectation operators, which is crucial for transitioning from the descent lemma to
the actual convergence criterion in the main theorem.

Lemma 2. Let F = {Fk}k≥ be a filtration uk a stochastic process adopted to F with E [uk+1|Fk] =
0. Then for any K ∈ N, za ∈ Z and compact set D ⊂ Z the following holds:

E

[
max
z∈D

K−1∑
k=0

⟨uk+1, z⟩

]
≤ max

z∈D

(
1

2
∥za − z∥2 + 1

2

K−1∑
k=0

E∥uk+1∥2
)
. (6)

Proof. Let v0 = za, vk+1 = vk + uk+1. Since uk – F∥-measurable, vk – F∥-measurable as well.
Then we write

∥vk+1 − z∥2 = ∥vk − z∥2 + 2⟨uk+1, vk − z⟩+ ∥uk+1∥2.
Summing over k = 0, 1, . . . ,K − 1 we get

K−1∑
k=0

2⟨uk+1, z − vk⟩ ≤ ∥v0 − z∥2 +
K−1∑
k=0

∥uk+1∥2.

Maximizing and taking expectation we obtain

E

[
max
z∈D

K−1∑
k=0

⟨uk+1, z⟩ −
K−1∑
k=0

⟨uk+1, vk⟩

]
≤ 1

2
max
z∈D

∥v0 − z∥2 + E

[
1

2

K−1∑
k=0

∥uk+1∥2
]
.

Finally, due to F -measurability of vk and by the tower property of conditional expectation, the second
sum on the left-hand side vanishes. It concludes the proof.

F MISSING PROOFS

Now we are ready to start the main analysis. We proceed with the descent Lemma 3.

Lemma 3. Let γπ = γθ = γ. Then, after K iterations of Algorithm 1 solving problem (4) the
following holds:

2γ⟨F (zk+1), zk+1 − z⟩ ≤
(
2DKL(π, π

k)− 2DKL(π, π
k+1)

)
+
(
∥θk − θ∥2 − ∥θk+1 − θ∥2

)
+
(
2γα⟨F (zk)− F (zk−1), z − zk⟩

−2γ⟨F (zk+1)− F (zk), z − zk+1⟩
)

−1

2
∥πk+1 − πk∥2 − 1

2
∥θk+1 − θk∥2

+2γ2∥pk − pk−1∥2 + 2γ2∥gk − gk−1∥2,

where z =
(
θ
π

)
and F (zk) =

(
gk

−pk
)

.

Proof. We proceed with algorithm steps evaluation.
Mirror descent step provides:

0 ≤ ⟨−γp̂k +∇ψ(πk+1)−∇ψ(πk), π − πk+1⟩
= −γ⟨p̂k, π − πk+1⟩+DKL(π, π

k)−DKL(π, π
k+1)−DKL(π

k+1, πk).

Rearranging it we reach:

DKL(π, π
k+1) ≤ DKL(π, π

k)−DKL(π
k+1, πk)− γ⟨p̂k, π − πk+1⟩
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= DKL(π, π
k)−DKL(π

k+1, πk)− γ(1 + α)⟨pk, π − πk+1⟩
+γα⟨pk−1, π − πk+1⟩

= DKL(π, π
k)−DKL(π

k+1, πk)− γ⟨pk, π − πk+1⟩
−γα⟨pk − pk−1, π − πk+1⟩

= DKL(π, π
k)−DKL(π

k+1, πk)− γ⟨pk − pk+1, π − πk+1⟩
−γ⟨pk+1, π − πk+1⟩ − γα⟨pk − pk−1, π − πk⟩
−γα⟨pk − pk−1, πk − πk+1⟩. (7)

θ update rule implies:

∥θk+1 − θ∥2 ≤ ∥θk − θ∥2 + ∥θk+1 − θk∥2 + 2⟨θk+1 − θk, θk − θ⟩
= ∥θk − θ∥2 − ∥θk+1 − θk∥2 + 2⟨θk+1 − θk, θk+1 − θ⟩
= ∥θk − θ∥2 − ∥θk+1 − θk∥2 + 2γ⟨ĝk, θ − θk+1⟩
= ∥θk − θ∥2 − ∥θk+1 − θk∥2 + 2γ(1 + α)⟨gk, θ − θk+1⟩

−2γα⟨gk−1, θ − θk+1⟩
= ∥θk − θ∥2 − ∥θk+1 − θk∥2 + 2γ⟨gk, θ − θk+1⟩

+2γα⟨gk − gk−1, θ − θk+1⟩
= ∥θk − θ∥2 − ∥θk+1 − θk∥2 + 2γ⟨gk − gk+1, θ − θk+1⟩

+2γ⟨gk+1, θ − θk+1⟩+ 2γα⟨gk − gk−1, θ − θk⟩
+2γα⟨gk − gk−1, θk − θk+1⟩. (8)

Summing 2(7) and (8) we get:

2DKL(π, π
k+1) + ∥θk+1 − θ∥2

≤ 2DKL(π, π
k) + ∥θk − θ∥2 − 2DKL(π

k+1, πk)− ∥θk+1 − θk∥2

−2γ⟨pk − pk+1, π − πk+1⟩+ 2γ⟨gk − gk+1, θ − θk+1⟩
−2γ⟨pk+1, π − πk+1⟩+ 2γ⟨gk+1, θ − θk+1⟩
−2γα⟨pk − pk−1, π − πk⟩+ 2γα⟨gk − gk−1, θ − θk⟩
−2γα⟨pk − pk−1, πk − πk+1⟩+ 2γα⟨gk − gk−1, θk − θk+1⟩.

Now we rewrite last inequality using z =
(
θ
π

)
and F (zk) =

(
gk

−pk
)

.

2DKL(π, π
k+1) + ∥θk+1 − θ∥2

≤ 2DKL(π, π
k) + ∥θk − θ∥2 − 2DKL(π

k+1, πk)− ∥θk+1 − θk∥2

+2γ⟨F (zk)− F (zk+1), z − zk+1⟩+ 2γ⟨F (zk+1), z − zk+1⟩
+2γα⟨F (zk)− F (zk−1), z − zk⟩
−2γα⟨pk − pk−1, πk − πk+1⟩+ 2γα⟨gk − gk−1, θk − θk+1⟩.

Pinsker’s inequality (Pi) and (CS) with β = 2γ provides

2DKL(π, π
k+1) + ∥θk+1 − θ∥2

≤ 2DKL(π, π
k) + ∥θk − θ∥2 − ∥πk+1 − πk∥2 − ∥θk+1 − θk∥2

+2γ⟨F (zk)− F (zk+1), z − zk+1⟩+ 2γ⟨F (zk+1), z − zk+1⟩
+2γα⟨F (zk)− F (zk−1), z − zk⟩

+2αγ2∥pk − pk−1∥2 + α

2
∥πk − πk+1∥21

+2αγ2∥gk − gk−1∥2 + α

2
∥θk − θk+1∥2.

Finally, rearranging brings us to
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2γ⟨F (zk+1), zk+1 − z⟩
≤
(
2DKL(π, π

k)− 2DKL(π, π
k+1)

)
+
(
∥θk − θ∥2 − ∥θk+1 − θ∥2

)
+
(
2γα⟨F (zk)− F (zk−1), z − zk⟩ − 2γ⟨F (zk+1)− F (zk), z − zk+1⟩

)
−
(
1− α

2

)
∥πk+1 − πk∥21 −

(
1− α

2

)
∥θk+1 − θk∥2

+2αγ2∥pk − pk−1∥2 + 2αγ2∥gk − gk−1∥2.

F.1 ANALYSIS IN EXACT LOCAL GRADIENTS SETTING

For the subsequent analysis, we need recursive relations for the oracle distortion terms. For notational

convenience we introduce vk = E
∥∥∥f̃k − hk

∥∥∥2 , wk =
∑M

i=1 E
∥∥∥f̃ki − hki

∥∥∥2.

Lemma 4. Let Assumptions 1 and 2 hold. Then for iterations of Algorithm 1 with unbiased
compressor 1 Q and exact local gradients holds:

wk ≤ (1 + c−1
2 )

[
6
aL2

M
E
∥∥θk − θk−1

∥∥2 + 2L̃2E
∥∥πk − πk−1

∥∥2
1

]
+(1 + c2)(1 + β2ω − 2β)wk−1. (9)

Proof. We begin by using the explicit update rule of clients’ local state.

wk =

M∑
i=1

E∥f̃ki − hki ∥2 =

M∑
i=1

E∥f̃ki − hk−1
i − βQ(f̃k−1

i − hk−1
i )∥2

=

M∑
i=1

E
∥∥∥(f̃ki − f̃k−1

i

)
+
(
f̃k−1
i − hk−1

i − βQ(f̃k−1
i − hk−1

i )
)∥∥∥2

(CS)
≤ (1 + c−1

2 )

M∑
i=1

E
∥∥∥f̃ki − f̃k−1

i

∥∥∥2
+(1 + c2)

M∑
i=1

E
∥∥∥f̃k−1

i − hk−1
i − βQ(f̃k−1

i − hk−1
i )

∥∥∥2 . (10)

We estimate the first term:
M∑
i=1

E
∥∥∥f̃ki − f̃k−1

i

∥∥∥2 =

M∑
i=1

E
∥∥πk

i ∇fi(θk)− πk−1
i ∇fi(θk−1)

∥∥2
(CS)
≤ 2

M∑
i=1

E
∥∥πk

i ∇fi(θk)− πk
i ∇fi(θk−1)

∥∥2
+2

M∑
i=1

E
∥∥(πk

i − πk−1
i )∇fi(θk−1)

∥∥2
= 2

M∑
i=1

Eπk
i

2 ∥∥∇fi(θk)−∇fi(θk−1)
∥∥2

+2

M∑
i=1

E
∣∣πk

i − πk−1
i

∣∣2 ∥∥∇fi(θk−1)
∥∥2

(i)

≤ 2

M∑
i=1

Eπk
i

2
L2
i

∥∥θk − θk−1
∥∥2 + 2E

M∑
i=1

∣∣πk
i − πk−1

i

∣∣2 L̃2
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= 2E
∥∥θk − θk−1

∥∥2 M∑
i=1

πk
i

2
L2
i + 2L̃2E

∥∥πk − πk−1
∥∥2

≤ 2E
∥∥θk − θk−1

∥∥2 M∑
i=1

πk
i

2
L2
i + 2L̃2E

∥∥πk − πk−1
∥∥2
1
. (11)

Where (i) holds due to Assumptions 1 and 2. We can bound
∑M

i=1 Eπk
i
2
L2
i using condition π ∈

∆M−1 ∩QM
a , where QM

a =
{
x ∈ RM

∣∣0 ≤ xi ≤ a
M

}
and a ∈ [1,M ]:

M∑
i=1

πk
i

2
L2
i ≤ L2

M∑
i=1

πk
i

2 ≤ L2 max
x∈(∆M−1∩QM

a )
∥x∥2

= L2

[( a
M

)2 ⌈M
a

⌉
+

(
1− a

M

⌈
M

a

⌉)2
]

≤ L2

[( a
M

)2(⌈M
a

⌉
+ 1

)]
≤ L2

[( a
M

)2(M
a

+ 2

)]
≤ L2

[( a
M

)2 3M

a

]
= L2 3a

M
. (12)

Substitution of (12) into (11) gives
M∑
i=1

E
∥∥∥f̃ki − f̃k−1

i

∥∥∥2 =

M∑
i=1

E
∥∥πk

i ∇fi(xk)− πk−1
i ∇fi(xk−1)

∥∥2
≤ 6

aL2

M
E
∥∥θk − θk−1

∥∥2 + 2L̃2E
∥∥πk − πk−1

∥∥2
1
. (13)

Then we evaluate the second term of (10) RHS:

E
∥∥∥f̃k−1

i − hk−1
i − βQ(f̃k−1

i − hk−1
i )

∥∥∥2
= E

∥∥∥f̃k−1
i − hk−1

i

∥∥∥2 + β2E
∥∥∥Q(f̃k−1

i − hk−1
i )

∥∥∥2
−2E

〈
f̃k−1
i − hk−1

i , βQ(f̃k−1
i − hk−1

i )
〉

1
≤ E

∥∥∥f̃k−1
i − hk−1

i

∥∥∥2 + β2ωE
∥∥∥f̃k−1

i − hk−1
i

∥∥∥2 − 2βE∥f̃k−1
i − hk−1

i ∥2

= (1 + β2ω − 2β)E
∥∥∥f̃k−1

i − hk−1
i

∥∥∥2 . (14)

Finally, combining (10) with (13) and (14) we obtain:

wk ≤ (1 + c−1
2 )

[
6
aL2

M
E
∥∥θk − θk−1

∥∥2 + 2L̃2E
∥∥πk − πk−1

∥∥2
1

]
+(1 + c2)(1 + β2ω − 2β)E

M∑
i=1

∥∥∥f̃k−1
i − hk−1

i

∥∥∥2
= (1 + c−1

2 )

[
6
aL2

M
E
∥∥θk − θk−1

∥∥2 + 2L̃2E
∥∥πk − πk−1

∥∥2
1

]
+(1 + c2)(1 + β2ω − 2β)wk−1.

We continue by examining the global oracle distortion evolution.
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Lemma 5. Let Assumptions 1 and 2 hold. Then for iterations of Algorithm 1 with unbiased
compressor 1 Q and exact local gradients holds:

vk ≤
(
1 + c−1

1

) (
2L2E

∥∥θk − θk−1
∥∥2 + 2ML̃2E

∥∥πk − πk−1
∥∥2
1

)
+(1 + c1)

(
vk−1(1 + β2 − 2β) + β2wk−1(ω − 1)

)
. (15)

Proof. We begin with the explicit global estimator update rule.

vk = E
∥∥∥f̃k − hk

∥∥∥2 = E

∥∥∥∥∥f̃k − hk−1 − β

M∑
i=1

Q(f̃k−1
i − hk−1

i )

∥∥∥∥∥
2

= E

∥∥∥∥∥(f̃k − f̃k−1
)
+

(
f̃k−1 − hk−1 − β

M∑
i=1

Q(f̃k−1
i − hk−1

i )

)∥∥∥∥∥
2

(CS)
≤

(
1 + c−1

1

)
E
∥∥∥f̃k − f̃k−1

∥∥∥2
+(1 + c1)E

∥∥∥∥∥f̃k−1 − hk−1 − β

M∑
i=1

Q(f̃k−1
i − hk−1

i )

∥∥∥∥∥
2

.

Then we examine first term on the (16) RHS.

As all fi are L-Lipschitz continuous (Assumption 2) the weighted sum
∑M

i=1 πifi is L-Lipschitz
continuous as well. It justifies (i) in following inequality sequence.

E
∥∥∥f̃k − f̃k−1

∥∥∥2 = E

∥∥∥∥∥
M∑
i=1

πk
i ∇fi(θk)− πk−1

i ∇fi(θk−1)

∥∥∥∥∥
2

= E

∥∥∥∥∥
M∑
i=1

πk
i

(
∇fi(θk)−∇fi(θk−1)

)
+
(
πk
i − πk−1

i

)
∇fi(θk−1)

∥∥∥∥∥
2

(CS)
≤ 2E

∥∥∥∥∥
M∑
i=1

πk
i

(
∇fi(θk)−∇fi(θk−1)

)∥∥∥∥∥
2

+2E

∥∥∥∥∥
M∑
i=1

(
πk
i − πk−1

i

)
∇fi(θk−1)

∥∥∥∥∥
2

(i)

≤ 2L2E
∥∥θk − θk−1

∥∥2 + 2E

(
M∑
i=1

∣∣πk
i − πk−1

i

∣∣ ∥∥∇fi(θk−1)
∥∥)2

1
≤ 2L2E

∥∥θk − θk−1
∥∥2 + 2E

(
M∑
i=1

∣∣πk
i − πk−1

i

∣∣ L̃)2

≤ 2L2E
∥∥θk − θk−1

∥∥2 + 2L̃2E
∥∥πk − πk−1

∥∥2
1
. (16)

Now we concentrate on the second term on the (16) RHS:

E

∥∥∥∥∥f̃k−1 − hk−1 − β

M∑
i=1

Q(f̃k−1
i − hk−1

i )

∥∥∥∥∥
2

= E
∥∥∥f̃k−1 − hk−1

∥∥∥2 + β2E

∥∥∥∥∥
M∑
i=1

Q(f̃k−1
i − hk−1

i )

∥∥∥∥∥
2

−2βE

〈
f̃k−1 − hk−1,

M∑
i=1

Q(f̃k−1
i − hk−1

i )

〉
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(1)
(20)
≤ E

∥∥∥f̃k−1 − hk−1
∥∥∥2 + β2

(
vk−1 + ωwk−1

)
− 2βE

∥∥∥f̃k−1 − hk−1
∥∥∥2

= vk−1(1 + β2 − 2β) + β2ωwk−1. (17)

Plugging (17) and (16) into (16) yields:

vk ≤
(
1 + c−1

1

) (
2L2E

∥∥θk − θk−1
∥∥2 + 2ML̃2E

∥∥πk − πk−1
∥∥2
1

)
+(1 + c1)

(
vk−1(1 + β2 − 2β) + β2wk−1(ω − 1)

)
.

The last preparation before proceeding to the main theorem is evaluation of global state dynamics.

Lemma 6. For iterations of Algorithm 1 with unbiased compressor 1 Q, the following holds:

2γ2E∥gk − gk−1∥2 = 4γ2(ω − 1)
(
wk + (1− β)2wk−1

)
+ 4γ2

(
vk + (1− β)2vk−1

)
. (18)

Proof. Let us again begin with the explicit global estimator update rule.

2γ2E∥gk − gk−1∥2

= 2γ2E∥hk + ∆̂k − hk−1 − ∆̂k−1∥2

= 2γ2E

∥∥∥∥∥
M∑
i=1

(
hki − hk−1

i

)
+

M∑
i=1

Q
(
f̃ki − hki

)
−

M∑
i=1

Q
(
f̃k−1
i − hk−1

i

)∥∥∥∥∥
2

= 2γ2E

∥∥∥∥∥β
M∑
i=1

Q
(
f̃k−1
i − hk−1

i

)
+

M∑
i=1

Q
(
f̃ki − hki

)
−

M∑
i=1

Q
(
f̃k−1
i − hk−1

i

)∥∥∥∥∥
2

= 2γ2E

∥∥∥∥∥
M∑
i=1

Q
(
f̃ki − hki

)
− (1− β)

M∑
i=1

Q
(
f̃k−1
i − hk−1

i

)∥∥∥∥∥
2

(CS)
= 4γ2E

∥∥∥∥∥
M∑
i=1

Q
(
f̃ki − hki

)∥∥∥∥∥
2

+ 4γ2(1− β)2E

∥∥∥∥∥
M∑
i=1

Q
(
f̃k−1
i − hk−1

i

)∥∥∥∥∥
2

. (19)

Terms differ only in their indices, which makes it convenient to analyze them separately. Here we
utilize cross-device compressor independence and unbiasedness once again:

E

∥∥∥∥∥
M∑
i=1

Q
(
f̃ki − hki

)∥∥∥∥∥
2

=

M∑
i=1

E
∥∥∥Q(f̃ki − hki

)∥∥∥2 +∑
i ̸=j

E
〈
Q
(
f̃ki − hki

)
,Q
(
f̃kj − hkj

)〉

=

M∑
i=1

ωE
∥∥∥f̃ki − hki

∥∥∥2 +∑
i̸=j

E
〈
Q
(
f̃ki − hki

)
,Q
(
f̃kj − hkj

)〉

= ω

M∑
i=1

E
∥∥∥f̃ki − hki

∥∥∥2 +∑
i ̸=j

E
〈
f̃ki − hki , f̃

k
j − hkj

〉

= (ω − 1)

M∑
i=1

E
∥∥∥f̃ki − hki

∥∥∥2 + E
∥∥∥f̃k − hk

∥∥∥2
= (ω − 1)wk + vk. (20)

Substituting (20) into (19) we reach

2γ2E∥gk − gk−1∥2 = 4γ2(ω − 1)
(
wk + (1− β)2wk−1

)
+ 4γ2

(
vk + (1− β)2vk−1

)
.

Finally, let us introduce the convergence criterion. In saddle point problems under the convex-
concave setting convergence measures in term of the Gap function (Definition 2). Since ADI
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incorporates possibly randomized compression operator Q, the convergence guaranties for it is based
on E [Gap(z)]. This guaranties are provided by Theorem 1.
Theorem 1. Let Assumptions 1, 2, 3 hold and α = 1, β = 1

ω , H = 32γ2ω2, N = 7γ2ω,

γπ = γθ = γ ≤ γ0 = min

{
1
2L̃

√
1

96ω3+14Mω2 ,
√

1
2

1

4ML̃2+576 aω3

M L2+28ω2L2

}
, Λ = ∆M−1 ∩QM

a ,

where QM
a = {x ∈ RM

∣∣0 ≤ xi ≤ a
M }. Then, after K iterations of Algorithm 1 with unbiased

compressor 1 Q and exact local gradients solving problem (4) the following holds:

E [Gap(zK)] ≤ V

2γK
,

where

V = E
[
max
z∈D

{
4DKL(π, π

1) + 2∥θ1 − θ∥2 + 2γ⟨F (z1)− F (z0), z − z1⟩
}

+H

1∑
k=0

M∑
i=1

∥∥∥f̃ki − hki

∥∥∥2 +N

1∑
k=0

∥∥∥f̃k − hk
∥∥∥2 ] and zK =

1

K

K∑
k=1

zk.

Proof. We proceed with using the unbiasedness (2) of compressor Q:

E
[
F (zk)|zk

]
= E

[(
gk

pk

) ∣∣∣∣zk] = E
[(
hk +

∑M
i=1 Q(f̃ki − hki )
pk

) ∣∣∣∣zk] = (f̃kpk
)

def
= F (zk),

where f̃k =
∑M

i=1 f̃
k
i =

∑M
i=1 π

k
i ∇fi(θk). Considering f(θ, π) =

∑M
i=1 πifi(θ) we note that it

is convex with respect to θ due to convexity of all fi. At the same time, f is linear, and therefore

concave with respect to all πi. Then, noting that F (z) =
(

∇θf(θ, π)
−∇πf(θ, π)

)
, we invoke Lemma 1 to

establish its monotonicity.
Our objective is to obtain convergence with respect to Gap(z) = max

x∈D

{
⟨F (x), z − x⟩

}
. Hence, the

next step is conditioning the result of Lemma 3 on zk+1, using α = 1 and summing over k = 1 to K,

2γ

K∑
k=1

⟨F (zk+1), zk+1 − z⟩

≤
K∑

k=1

[ (
2DKL(π, π

k)− 2DKL(π, π
k+1)

)
+
(
∥θk − θ∥2 − ∥θk+1 − θ∥2

)
+
(
2γ⟨F (zk)− F (zk−1), z − zk⟩ − 2γ⟨F (zk+1)− F (zk), z − zk+1⟩

)
−1

2
∥πk+1 − πk∥21 −

1

2
∥θk+1 − θk∥2

+2γ2∥pk − pk−1∥2 + 2γ2∥gk − gk−1∥2
]

=
(
2DKL(π, π

1)− 2DKL(π, π
K+1)

)
+
(
∥θ1 − θ∥2 − ∥θK+1 − θ∥2

)
+
(
2γ⟨F (z1)− F (z0), z − z1⟩ − 2γ⟨F (zK+1)− F (zK), z − zK+1⟩

)
+

K−1∑
k=1

[
2γ⟨F (zk+1)− F (zk+1), z − zk+1⟩

]
+

K∑
k=1

[
− 1

2
∥πk+1 − πk∥21 −

1

2
∥θk+1 − θk∥2

+2γ2∥pk − pk−1∥2 + 2γ2∥gk − gk−1∥2
]
.

Maximizing obtained inequality over compact set z ∈ D and taking full expectation, we get

2γ E
[
max
z∈D

{ K∑
k=1

⟨F (zk+1), zk+1 − z⟩
}]

≤ E
[
max
z∈D

{(
2DKL(π, π

1)− 2DKL(π, π
K+1)

)
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+
(
∥θ1 − θ∥2 − ∥θK+1 − θ∥2

)
+
(
2γ⟨F (z1)− F (z0), z − z1⟩

−2γ⟨F (zK+1)− F (zK), z − zK+1⟩
)

+

K−1∑
k=1

2γ⟨F (zk+1)− F (zk+1), z − zk+1⟩
}

+

K∑
k=1

[
− 1

2
∥πk+1 − πk∥21 −

1

2
∥θk+1 − θk∥2

+2γ2∥pk − pk−1∥2 + 2γ2∥gk − gk−1∥2
]]
. (21)

Several next steps evaluate different terms of (21), starting with the LHS.
Due to monotonicity of F ,

Gap

(
K∑

k=1

zk

)
≤ max

z∈D

{
K∑

k=1

〈
F (zk), zk − z

〉}
.

Combined with the positive homogeneity of the Gap function, for zK = 1
K

∑K
k=1 z

k it yields

KGap (zK) ≤ max
z∈D

{
K∑

k=1

〈
F (zk), zk − z

〉}
. (22)

We apply Lemma 2 to bound the first sum on the RHS of (21):

2E
[
max
z∈D

{K−1∑
k=1

〈
γ
(
F (zk+1)− F (zk+1)

)
, z − zk+1

〉}]

= 2E
[
max
z∈D

{K−1∑
k=1

〈
γ
(
F (zk+1)− F (zk+1)

)
, z
〉}]

−
K−1∑
k=1

E
〈
γ
(
F (zk+1)− F (zk+1)

)
, zk+1

〉
= 2E

[
max
z∈D

{K−1∑
k=1

〈
γ
(
F (zk+1)− F (zk+1)

)
, z
〉}]

− 0

≤ max
z∈D

(
∥za − z∥2

)
+ γ2

K−1∑
k=1

E
∥∥F (zk+1)− F (zk+1)

∥∥2 . (23)

We continue with evaluating of the last term applying properties (2) of unbiased compressor Q:

E
∥∥F (zk)− F (zk)

∥∥2 = E
∥∥∥∥(f̃kpk

)
−
(
hk +

∑M
i=1 Q(f̃ki − hki )
pk

)∥∥∥∥2

= E

∥∥∥∥∥
M∑
i=1

Q(f̃ki − hki )− (f̃k − hk)

∥∥∥∥∥
2

=

M∑
i=1

E
∥∥∥Q(f̃ki − hki )

∥∥∥2 + E
∥∥∥f̃k − hk

∥∥∥2
−2

M∑
i=1

E
〈
Q(f̃ki − hki ), f̃

k − hk
〉

≤ ω

M∑
i=1

E
∥∥∥f̃ki − hki

∥∥∥2 − E
∥∥∥f̃k − hk

∥∥∥2 . (24)
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Finally, using (Pi), the definition of z =
(
θ
π

)
and choosing za = z1 − zk+1, we estimate

max
z∈D

{
2DKL(π, π

1) + ∥θ1 − θ∥2
}

≥ max
z∈D

{
∥π1 − π∥2 + ∥θ1 − θ∥2

}
= max

z∈D

{
∥za − z∥2

}
. (25)

Using notation vk = E
∥∥∥f̃k − hk

∥∥∥2 , wk =
∑M

i=1 E
∥∥∥f̃ki − hki

∥∥∥2 and combining (23),(24) with (25)
we derive:

2E
[
max
z∈D

{K−1∑
k=1

〈
γ
(
F (zk+1)− F (zk+1)

)
, z − zk+1

〉}]

≤ max
z∈D

{
2DKL(π, π

1) + ∥θ1 − θ∥2
}
+ γ2

K∑
k=2

(
ωwk − vk

)
. (26)

After that, we estimate 2γ2∥pk − pk−1∥2 in (21) via Assumption 1:

2γ2∥pk − pk−1∥2 ≤ 2γ2ML̃2∥θk − θk−1∥2. (27)

Finally, we use (18) to evaluate the sum:

2γ2
K∑

k=1

E∥gk − gk−1∥2

= 4γ2
K∑

k=1

[
(ω − 1)wk + vk

]
+ 4γ2(1− β)2

K∑
k=1

[
(ω − 1)wk−1 + vk−1

]
= 4γ2

K∑
k=1

[
(ω − 1)wk + vk

]
+ 4γ2(1− β)2

K−1∑
k=0

[
(ω − 1)wk + vk

]
= 4γ2(1 + (1− β)2)

[
K∑

k=0

(ω − 1)wk + vk

]
−4γ2(1− β)[(ω − 1)wK + vK ]

−4γ2[(ω − 1)w0 + v0]. (28)
Substituting (28), (27), (26) and (22) into (21) we get

2γKE [Gap(zK)] ≤ E
[
max
z∈D

{(
4DKL(π, π

1)− 2DKL(π, π
K+1)

)
+
(
2∥θ1 − θ∥2 − ∥θK+1 − θ∥2

)
+
(
2γ⟨F (z1)− F (z0), z − z1⟩ − 2γ⟨F (zK+1)− F (zK), z − zK+1⟩

)}
−4γ2(1− β)[(ω − 1)wK + vK ]− 4γ2[(ω − 1)w0 + v0]

+γ2
K∑

k=2

(
ωwk − vk

)
+ 4γ2(1 + (1− β)2)

K∑
k=0

[
(ω − 1)wk + vk

]
+

K∑
k=1

[
− 1

2
∥πk+1 − πk∥21 −

(
1

2
− 2γ2ML̃2

)
∥θk+1 − θk∥2

]]
.

Using (24) as ωwk − vk ≥ 0 and 0 < β < 1, and introducing

ΞK = max
z∈D

{(
4DKL(π, π

1)− 2DKL(π, π
K+1)

)
+
(
2∥θ1 − θ∥2 − ∥θK+1 − θ∥2

)
+
(
2γ⟨F (z1)− F (z0), z − z1⟩
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v − 2γ⟨F (zK+1)− F (zK), z − zK+1⟩
)}

−4γ2(1− β)[(ω − 1)wK + vK ]− 4γ2[(ω − 1)w0 + v0], (29)

we can rewrite:

2γKE [Gap(zK)] ≤ E
[
ΞK +

(
2∥θ1 − θ∥2 − ∥θK+1 − θ∥2

)
+
(
2γ⟨F (z1)− F (z0), z − z1⟩

−2γ⟨F (zK+1)− F (zK), z − zK+1⟩
)]

+

K∑
k=0

[
9ωγ2wk + 7γ2vk

]
+

K∑
k=1

[
− 1

2
∥πk+1 − πk∥21 −

(
1

2
− 2γ2ML̃2

)
∥θk+1 − θk∥2

]]
.(30)

The next step is summing (30) +
∑K+1

k=2 [H · (9) +N · (15)]:

2γKE [Gap(zK)] +

K+1∑
k=2

(Hwk +Nvk)

≤ E
[
ΞK +

K∑
k=0

[
9ωγ2wk + 7γ2vk

]
+

K∑
k=1

[
H(1 + c2)(1 + β2ω − 2β)wk

]
+

K∑
k=1

[
N(1 + c1)

(
vk(1 + β2 − 2β) + β2wk(ω − 1)

)]
+

K∑
k=1

[
−
(
1

2
− 2HL̃2(1 + c−1

2 )− 2NML̃2(1 + c−1
1 )

)
∥πk+1 − πk∥21

−
(
1

2
− 2γ2ML̃2 −H(1 + c−1

2 )
6aL2

M
−N

(
1 + c−1

1

)
2L2

)
∥θk+1 − θk∥2

]]
.

By rearranging the terms, we obtain

2γKE [Gap(zK)] +

K+1∑
k=2

(Hwk +Nvk)

≤ E
[
ΞK +

K∑
k=0

[
7γ2 +N(1 + c1)(1 + β2 − 2β)

]
vk

+

K∑
k=0

[
9ωγ2 +H(1 + c2)(1 + β2ω − 2β) +N(1 + c1)β

2(ω − 1)
]
wk

+

K∑
k=1

[
−
(
1

2
− 2HL̃2(1 + c−1

2 )− 2NML̃2(1 + c−1
1 )

)
∥πk+1 − πk∥21

−
(
1

2
− 2γ2ML̃2 −H(1 + c−1

2 )
6aL2

M
−N

(
1 + c−1

1

)
2L2

)
∥θk+1 − θk∥2

]]
. (31)

Considering the respective coefficients of ∥θk+1 − θk∥2, ∥πk+1 − πk∥21, wk and vk, we derive the
following restrictions:

1
2 ≥ 4γ2ML̃2 +H(1 + c−1

2 ) 6aL
2

M +N
(
1 + c−1

1

)
2L2

1
2 ≥ 2HL̃2(1 + c−1

2 ) + 2NML̃2(1 + c−1
1 )

H ≥ 9ωγ2 +H(1 + c2)(1 + β2ω − 2β) +N(1 + c1)β
2(ω − 1)

N ≥ 7γ2 +N(1 + c1)(1 + β2 − 2β)

. (32)
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We now turn to selecting the free coefficients to satisfy conditions (32). Beginning with the last
inequality on N , we set

c1 = β, which yields N =
7γ2

β
(33)

is sufficient.
With this selection the third restriction in (32) transforms into

H
(
1− (1 + c2)(1 + β2ω − 2β)

)
≥ 9ωγ2 +

7γ2

β
(1 + β)β2(ω − 1).

The choice

c2 =
β

2
, β =

1

ω
guarantees sufficiency of H =

32γ2

β2
. (34)

Then, utilizing (34) and (33) we rewrite the second inequality in (32):

1

2
≥ 2

32γ2

β2
L̃2(1 + 2β−1) + 2

7γ2

β
ML̃2(1 + β−1).

This poses constrain on γ:

γ ≤

√
1

2

1

192ω3L̃2 + 28Mω2L̃2
=

1

2L̃

√
1

96ω3 + 14Mω2
. (35)

Finally, we examine the first inequality in (32). Using (33) and (34) we derive:

1

2
≥ 4γ2ML̃2 +

32γ2

β2
(1 + 2β−1)

6aL2

M
+

7γ2

β

(
1 + β−1

)
2L2,

γ ≤
√

1

2

1

4ML̃2 + 576L2β−3 a
M + 28L2β−2

=

√
1

2

1

4ML̃2 + 576aω3

M L2 + 28ω2L2
. (36)

By choosing

γ = min

{
1

2L̃

√
1

96ω3 + 14Mω2
,

√
1

2

1

4ML̃2 + 576aω3

M L2 + 28ω2L2

}
, (37)

and taking (35), (36) into account, we satisfy (32). Consequently, with the definition ΞK (29)
substitution, (31) transforms into

2γKE [Gap(zK)] + (HwK+1 +NvK+1)

≤ E
[
max
z∈D

{(
4DKL(π, π

1)− 2DKL(π, π
K+1)

)
+
(
2∥θ1 − θ∥2 − ∥θK+1 − θ∥2

)
+
(
2γ⟨F (z1)− F (z0), z − z1⟩ − 2γ⟨F (zK+1)− F (zK), z − zK+1⟩

)}
−4γ2(1− β)[(ω − 1)wK + vK ]− 4γ2[(ω − 1)w0 + v0]

+H

1∑
k=0

wk +N

1∑
k=0

vk −
K∑

k=1

2γ2ML̃2∥θk+1 − θk∥. (38)

To proof the convergence we need to eliminate the −2γ⟨F (zK+1)− F (zK), z − zK+1⟩ term.

−2γ⟨F (zK+1)− F (zK), z − zK+1⟩
(Fen)
≤ γ2∥F (zK+1)− F (zK)∥2 + ∥z − zK+1∥2
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(i)

≤ 2γ2∥F (zK+1)− F (zK+1)∥2 + 2γ2∥F (zK+1)− F (zK)∥2

+∥θ − θK+1∥2 + 2DKL(π, π
K+1)

(ii)

≤ ∥θ − θK+1∥2 + 2DKL(π, π
K+1) + 2L̃2γ2∥θK+1 − θK∥2

+4γ2(ω − 1)
(
wK+1 + (1− β)2wK

)
+ 4γ2

(
vK+1 + (1− β)2vK

)
+2γ2ωwK+1 − 2γ2vK+1 (39)

Where (i) holds by (CS) and (Pi), and (ii) follows from (24), (27), and (18).
Then, the choice of H (34) and N (33) along with (39) provides

−2γ⟨F (zK+1)− F (zK), z − zK+1⟩ −
K∑

k=1

2γ2ML̃2∥θk+1 − θk∥2

−(HwK+1 +NvK+1)− 2DKL(π, π
K+1)− ∥θK+1 − θ∥2 ≤ 0. (40)

The substitution of (40) into (38) concludes the proof.

Theorem 1 yields further bounds on the number of communication rounds and the amount of
information transmitted from the clients to the server.

Remark 1. In our analysis we assume that compression does not reduce the size of ∆̂i below that of
the scalar fi (i.e., qω ≥ 1

d ). Hence, the cost of transmitting fi can be upper bounded by that of ∆̂i.
This allows us to ignore the communication of fi in the O notation.

Corollary 1 In setting of Theorem 1 with γ = γ0, Algorithm 1 with exact local gradients needs

O

(
1

ε

[
L̃ω

3/2 + L̃M
1/2 + L

(√
aω3

M
+ ω

)])
iterations in order to reach ε-accuracy with respect to E [Gap(zK)]. Additionally, it requires

O
(
1

ε

[
L̃ω

1/2 + L̃
M 1/2

ω
+ L

(√
aω

M
+ 1

)])
bits communicated from nodes to the server.

Proof. The result of Theorem 1 directly provides the first bound.

Given Remark 1, to obtain the second estimate from the first, we consider transmitting ∆̂k
i from the

nodes to the server for i = 1, 2, . . . ,M . This corresponds to sending Mdbqω bits at every iteration.
We omit constants M,d and b under the O notation. As for qω, we note that for practically relevant
compressors (Beznosikov et al., 2023a) it holds qω ≤ 1

ω . It concludes the proof.

F.2 ANALYSIS IN STOCHASTIC LOCAL ORACLES SETTING

The convergence proof in the stochastic setting largely mirrors that of Theorem 1. Nevertheless, for
the sake of completeness, we present it below.

To streamline the exposition, we slightly modify the notation: vk = E
∥∥∥f̃k − hk

∥∥∥2 , wk =∑M
i=1 E

∥∥∥f̃ki,ξi − hki

∥∥∥2. Lemma 6 remains unchanged under the new notation. Lemma 5 under-
goes only minor modifications in the proof and takes the following form.

Lemma 7. Let Assumptions 1 and 2 hold. Then for iterations of Algorithm 1 with unbiased
compressor 1 Q and stochastic local gradients holds:

wk ≤ (1 + c−1
2 )

[
6
aL2

M
E
∥∥θk − θk−1

∥∥2 + 2L̃2E
∥∥πk − πk−1

∥∥2
1

]
+(1 + c2)(1 + β2ω − 2β)wk−1 +

4a2

M
σ2. (41)

Proof. We begin by using the explicit update rule of clients’ local state.
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wk =

M∑
i=1

E∥f̃ki,ξi − hki ∥2 =

M∑
i=1

E∥f̃ki,ξi − hk−1
i − βQ(f̃k−1

i,ξi
− hk−1

i )∥2

=

M∑
i=1

E
∥∥∥(f̃ki,ξi − f̃k−1

i,ξi

)
+
(
f̃k−1
i,ξi

− hk−1
i − βQ(f̃k−1

i,ξi
− hk−1

i )
)∥∥∥2

(CS)
≤ (1 + c−1

2 )

M∑
i=1

E
∥∥∥f̃ki,ξi − f̃k−1

i,ξi

∥∥∥2
+(1 + c2)

M∑
i=1

E
∥∥∥f̃k−1

i,ξi
− hk−1

i − βQ(f̃k−1
i,ξi

− hk−1
i )

∥∥∥2 . (42)

We now estimate the first term:
M∑
i=1

E
∥∥∥f̃ki,ξi − f̃k−1

i,ξi

∥∥∥2 =

M∑
i=1

E
∥∥πk

i ∇fi,ξi(θk)− πk−1
i ∇fi,ξi(θk−1)

∥∥2
=

M∑
i=1

E
∥∥∥ (πk

i ∇fi,ξi(θk)− πk
i ∇fi(θk)

)
−
(
πk−1
i ∇fi,ξi(θk−1)− πk−1

i ∇fi(θk−1)
)

+
(
πk
i ∇fi(θk)− πk−1

i ∇fi(θk−1)
) ∥∥∥2

=

M∑
i=1

E
∥∥∥ (πk

i ∇fi,ξi(θk)− πk
i ∇fi(θk)

)
−
(
πk−1
i ∇fi,ξi(θk−1)− πk−1

i ∇fi(θk−1)
) ∥∥∥2

+

M∑
i=1

E
∥∥∥ (πk

i ∇fi(θk)− πk−1
i ∇fi(θk−1)

) ∥∥∥2. (43)

The second sum of (43) was evaluated in (11), (12) and (12). We proceed with estimating the first
term of 43.

M∑
i=1

E
∥∥∥ (πk

i ∇fi,ξi(θk)− πk
i ∇fi(θk)

)
−
(
πk−1
i ∇fi,ξi(θk−1)− πk−1

i ∇fi(θk−1)
) ∥∥∥2

(CS)
≤ 2

M∑
i=1

E
∥∥∥πk

i ∇fi,ξi(θk)− πk
i ∇fi(θk)

∥∥∥2
+2

M∑
i=1

E
∥∥∥πk−1

i ∇fi,ξi(θk−1)− πk−1
i ∇fi(θk−1)

∥∥∥2
5
≤ 2

M∑
i=1

(πk
i

2
+ πk−1

i

2
)σ2 ≤

M∑
i=1

4a2

M2
σ2 =

4a2

M
σ2. (44)

Substitution of (12) and (44) into (43) gives
M∑
i=1

E
∥∥∥f̃ki,ξi − f̃k−1

i,ξi

∥∥∥2 ≤ 6
aL2

M
E
∥∥θk − θk−1

∥∥2 + 2L̃2E
∥∥πk − πk−1

∥∥2
1
+

4a2

M
σ2. (45)

Then we evaluate the second term of (42) RHS:

E
∥∥∥f̃k−1

i,ξi
− hk−1

i − βQ(f̃k−1
i,ξi

− hk−1
i )

∥∥∥2
= E

∥∥∥f̃k−1
i,ξi

− hk−1
i

∥∥∥2 + β2E
∥∥∥Q(f̃k−1

i,ξi
− hk−1

i )
∥∥∥2
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−2E
〈
f̃k−1
i,ξi

− hk−1
i , βQ(f̃k−1

i,ξi
− hk−1

i )
〉

1
≤ E

∥∥∥f̃k−1
i,ξi

− hk−1
i

∥∥∥2 + β2ωE
∥∥∥f̃k−1

i,ξi
− hk−1

i

∥∥∥2 − 2βE∥f̃k−1
i,ξi

− hk−1
i ∥2

= (1 + β2ω − 2β)E
∥∥∥f̃k−1

i,ξi
− hk−1

i

∥∥∥2 . (46)

Finally, combining (42) with (45) and (46) we obtain

wk ≤ (1 + c−1
2 )

[
6
aL2

M
E
∥∥θk − θk−1

∥∥2 + 2L̃2E
∥∥πk − πk−1

∥∥2
1

]
+(1 + c2)(1 + β2ω − 2β)wk−1 +

4a2

M
σ2.

Lemma 5 likewise undergoes a minor modifications.

Lemma 8. Let Assumptions 1 and 2 hold. Then for iterations of Algorithm 1 with unbiased
compressor 1 Q and stochastic local gradients holds:

vk ≤
(
1 + c−1

1

) (
2L2E

∥∥θk − θk−1
∥∥2 + 2ML̃2E

∥∥πk − πk−1
∥∥2
1

)
+(1 + c1)

(
vk−1(1 + β2 − 2β) + β2ωwk−1

)
. (47)

Proof. We begin with the explicit global estimator update rule.

vk = E
∥∥∥f̃k − hk

∥∥∥2 = E

∥∥∥∥∥f̃k − hk−1 − β

M∑
i=1

Q(f̃k−1
i,ξi

− hk−1
i )

∥∥∥∥∥
2

= E

∥∥∥∥∥(f̃k − f̃k−1
)
+

(
f̃k−1 − hk−1 − β

M∑
i=1

Q(f̃k−1
i,ξi

− hk−1
i )

)∥∥∥∥∥
2

(CS)
≤

(
1 + c−1

1

)
E
∥∥∥f̃k − f̃k−1

∥∥∥2
+(1 + c1)E

∥∥∥∥∥f̃k−1 − hk−1 − β

M∑
i=1

Q(f̃k−1
i,ξi

− hk−1
i )

∥∥∥∥∥
2

.

For the first term on the (48) RHS (16) remains unchanged and we concentrate on the second term of
the (48) RHS:

E

∥∥∥∥∥f̃k−1 − hk−1 − β

M∑
i=1

Q(f̃k−1
i,ξi

− hk−1
i )

∥∥∥∥∥
2

= E
∥∥∥f̃k−1 − hk−1

∥∥∥2 + β2E

∥∥∥∥∥
M∑
i=1

Q(f̃k−1
i,ξi

− hk−1
i )

∥∥∥∥∥
2

−2βE

〈
f̃k−1 − hk−1,

M∑
i=1

Q(f̃k−1
i,ξi

− hk−1
i )

〉
1

(20)
≤ E

∥∥∥f̃k−1 − hk−1
∥∥∥2 + β2

(
vk−1 + (ω − 1)wk−1

)
− 2βE

∥∥∥f̃k−1 − hk−1
∥∥∥2

= vk−1(1 + β2 − 2β) + β2wk−1(ω − 1). (48)
Plugging (48) and (16) into (48) yields

vk ≤
(
1 + c−1

1

) (
2L2E

∥∥θk − θk−1
∥∥2 + 2ML̃2E

∥∥πk − πk−1
∥∥2
1

)
+(1 + c1)

(
vk−1(1 + β2 − 2β) + β2ωwk−1

)
.
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We are now ready to proceed to the proof of Theorem 2, which is the main result for the stochastic
local oracles case. The structure of the reasoning remains the same as in the proof of Theorem 1.
Theorem 2 Let in setting of Theorem 1 additionally Assumption 5 holds. Then, it implies

E [Gap(zK)] ≤ V

2γK
+ γ

64a2ω2

M
σ2

for iterations of Algorithm 1 with stochastic local oracles.

Proof. For the sake of consistency with previous notation, we relabel the full weighted local gradient
f̃ki := πk

i ∇fi(θk) and its stochastic estimator f̃ki,ξi = πk
i ∇fi,ξi(θk).

As in Theorem 1 we proceed with using the unbiasedness (2) of compressor Q:

E
[
F (zk)|zk

]
= E

[(
gk

pk

) ∣∣∣∣zk] = E
[(
hk +

∑M
i=1 Q(f̃ki,ξi − hki )

pk

) ∣∣∣∣zk] = (f̃kpk
)

def
= F (zk),

where f̃k =
∑M

i=1 f̃
k
i =

∑M
i=1 π

k
i ∇fi(θk). And Lemma 1 again justifies the monotonicity of F .

The next step is conditioning the result of Lemma 3 on zk+1, using α = 1 and summing over k = 1
to K:

2γ

K∑
k=1

⟨F (zk+1), zk+1 − z⟩ ≤
K∑

k=1

[ (
2DKL(π, π

k)− 2DKL(π, π
k+1)

)
+
(
∥θk − θ∥2 − ∥θk+1 − θ∥2

)
+
(
2γ⟨F (zk)− F (zk−1), z − zk⟩ − 2γ⟨F (zk+1)− F (zk), z − zk+1⟩

)
−1

2
∥πk+1 − πk∥21 −

1

2
∥θk+1 − θk∥2

+2γ2∥pk − pk−1∥2 + 2γ2∥gk − gk−1∥2
]

=
(
2DKL(π, π

1)− 2DKL(π, π
K+1)

)
+
(
∥θ1 − θ∥2 − ∥θK+1 − θ∥2

)
+
(
2γ⟨F (z1)− F (z0), z − z1⟩ − 2γ⟨F (zK+1)− F (zK), z − zK+1⟩

)
+

K−1∑
k=1

[
2γ⟨F (zk+1)− F (zk+1), z − zk+1⟩

]
+

K∑
k=1

[
− 1

2
∥πk+1 − πk∥21 −

1

2
∥θk+1 − θk∥2

+2γ2∥pk − pk−1∥2 + 2γ2∥gk − gk−1∥2
]
.

Maximizing obtained inequality over compact set z ∈ D and taking full expectation, we get

2γ E
[
max
z∈D

{ K∑
k=1

⟨F (zk+1), zk+1 − z⟩
}]

≤ E
[
max
z∈D

{(
2DKL(π, π

1)− 2DKL(π, π
K+1)

)
+
(
∥θ1 − θ∥2 − ∥θK+1 − θ∥2

)
+
(
2γ⟨F (z1)− F (z0), z − z1⟩

−2γ⟨F (zK+1)− F (zK), z − zK+1⟩
)

+

K−1∑
k=1

2γ⟨F (zk+1)− F (zk+1), z − zk+1⟩
}

+

K∑
k=1

[
− 1

2
∥πk+1 − πk∥21 −

1

2
∥θk+1 − θk∥2

+2γ2∥pk − pk−1∥2 + 2γ2∥gk − gk−1∥2
]]
. (49)
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Several next steps evaluate different terms of (49). Inequalities (22) and (23) remain valid. We
continue with evaluating of the last term applying properties (2) of unbiased compressor Q and its
independence from stochastic local oracles:

E
∥∥F (zk)− F (zk)

∥∥2 = E
∥∥∥∥(f̃kpk

)
−
(
hk +

∑M
i=1 Q(f̃ki,ξi − hki )

pk

)∥∥∥∥2

= E

∥∥∥∥∥
M∑
i=1

Q(f̃ki,ξi − hki )− (f̃k − hk)

∥∥∥∥∥
2

=

M∑
i=1

E
∥∥∥Q(f̃ki,ξi − hki )

∥∥∥2 + E
∥∥∥f̃k − hk

∥∥∥2
−2

M∑
i=1

E
〈
Q(f̃ki,ξi − hki ), f̃

k − hk
〉

≤ ω

M∑
i=1

E
∥∥∥f̃ki,ξi − hki

∥∥∥2 − E
∥∥∥f̃k − hk

∥∥∥2 . (50)

Finally, using (Pi), definition of z =
(
θ
π

)
and choosing za = z1 − zk+1 we estimate

max
z∈D

{
2DKL(π, π

1) + ∥θ1 − θ∥2
}

≥ max
z∈D

{
∥π1 − π∥2 + ∥θ1 − θ∥2

}
= max

z∈D

{
∥za − z∥2

}
. (51)

Slightly changing old notation vk = E
∥∥∥f̃k − hk

∥∥∥2 , wk =
∑M

i=1 E
∥∥∥f̃ki,ξi − hki

∥∥∥2 and combining
(23),(50) with (51) we derive

2E
[
max
z∈D

{K−1∑
k=1

〈
γ
(
F (zk+1)− F (zk+1)

)
, z − zk+1

〉}]

≤ max
z∈D

{
2DKL(π, π

1) + ∥θ1 − θ∥2
}
+ γ2

K∑
k=2

(
ωwk − vk

)
. (52)

After that, we estimate 2γ2∥pk − pk−1∥2 in (49) via Assumption 1:

2γ2∥pk − pk−1∥2 ≤ 2γ2ML̃2∥θk − θk−1∥2. (53)

Finally, we use (18) to evaluate the sum:

2γ2
K∑

k=1

E∥gk − gk−1∥2

= 4γ2
K∑

k=1

[
ωwk + vk

]
+ 4γ2(1− β)2

K∑
k=1

[
ωwk−1 + vk−1

]
= 4γ2

K∑
k=1

[
ωwk + vk

]
+ 4γ2(1− β)2

K−1∑
k=0

[
ωwk + vk

]
= 4γ2(1 + (1− β)2)

[
K∑

k=0

ωwk + vk

]
−4γ2(1− β)[ωwK + vK ]

−4γ2[ωw0 + v0]. (54)
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Substituting (54), (53), (52) and (22) into (49),

2γKE [Gap(zK)] ≤ E
[
max
z∈D

{(
4DKL(π, π

1)− 2DKL(π, π
K+1)

)
+
(
2∥θ1 − θ∥2 − ∥θK+1 − θ∥2

)
+
(
2γ⟨F (z1)− F (z0), z − z1⟩ − 2γ⟨F (zK+1)− F (zK), z − zK+1⟩

)}
−4γ2(1− β)[ωwK + vK ]− 4γ2[ωw0 + v0]

+γ2
K∑

k=2

(
ωwk − vk

)
+ 4γ2(1 + (1− β)2)

K∑
k=0

[
ωwk + vk

]
+

K∑
k=1

[
− 1

2
∥πk+1 − πk∥21 −

(
1

2
− 2γ2ML̃2

)
∥θk+1 − θk∥2

]]
.

Using (50) as ωwk − vk ≥ 0 and 0 < β < 1, and introducing

ΞK = max
z∈D

{(
4DKL(π, π

1)− 2DKL(π, π
K+1)

)
+
(
2∥θ1 − θ∥2 − ∥θK+1 − θ∥2

)
+
(
2γ⟨F (z1)− F (z0), z − z1⟩

v − 2γ⟨F (zK+1)− F (zK), z − zK+1⟩
)}

−4γ2(1− β)[ωwK + vK ]− 4γ2[ωw0 + v0], (55)

we can rewrite:

2γKE [Gap(zK)] ≤ E
[
ΞK +

(
2∥θ1 − θ∥2 − ∥θK+1 − θ∥2

)
+
(
2γ⟨F (z1)− F (z0), z − z1⟩

−2γ⟨F (zK+1)− F (zK), z − zK+1⟩
)]

+

K∑
k=0

[
9ωγ2wk + 7γ2vk

]
+

K∑
k=1

[
− 1

2
∥πk+1 − πk∥21 −

(
1

2
− 2γ2ML̃2

)
∥θk+1 − θk∥2

]]
.(56)

The next step is summing (56) +
∑K+1

k=2 [H · (41) +N · (47)]:

2γKE [Gap(zK)] +

K+1∑
k=2

(Hwk +Nvk)

≤ E
[
ΞK +

K∑
k=0

[
9ωγ2wk + 7γ2vk

]
+

K∑
k=1

[
H(1 + c2)(1 + β2ω − 2β)wk

]
+

K∑
k=1

[
N(1 + c1)

(
vk(1 + β2 − 2β) + β2ωwk

)]
+

K∑
k=1

[
−
(
1

2
− 2HL̃2(1 + c−1

2 )− 2NML̃2(1 + c−1
1 )

)
∥πk+1 − πk∥21

−
(
1

2
− 2γ2ML̃2 −H(1 + c−1

2 )
6aL2

M
−N

(
1 + c−1

1

)
2L2

)
∥θk+1 − θk∥2

]]
+
4KHa2

M
σ2.
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The subsequent analysis is unaffected by the additive term 4KHa2

M σ2 introduced in the stochastic
setting and fully mirrors the reasoning of Theorem 1 starting from Equation (31).

Corollary 3 provides bounds on number of communication rounds and transmitted from nodes to the
server information in stochastic local oracles setup.

Corollary 3 In setting of Theorem 2 with γ = min
{
γ0,
√

VM
128a2ω2σ2K

}
, Algorithm 1 with stochastic

local oracles needs

O

(
1

ε2

[
a2ω2σ2

M

]
+

1

ε

[
L̃ω

3/2 + L̃M
1/2 + L

(√
aω3

M
+ ω

)])
iterations in order to reach ε-accuracy with respect to E [Gap(zK)]. Additionally, it requires

O
(

1

ε2

[
a2ωσ2

M

]
+

1

ε

[
L̃ω

1/2 + L̃
M 1/2

ω
+ L

(√
aω

M
+ 1

)])
bits communicated from nodes to the server.

Proof. In stochastic local oracles case, guaranties in the Theorem 2 are affected by an addi-
tional irreducible term γ 64a2ω2

M σ2. In its presence, optimal stepsize γ transforms into γ =

min
{
γ0,
√

VM
128a2ω2σ2K

}
. This choice yields V

2γK ≥ γ 64a2ω2

M σ2 and makes further analysis similar
to the proof of Corollary 1.

F.3 ANALYSIS IN PARTIAL PARTICIPATION SETTING

We reduce this case to analysis in exact local oracles settings in Section F.1 by claiming that
multiplying the compression operator by the η

p , with η ∼ Bern(p), yields another valid compression
operator. It remains unbiased, while its compression rate ω is scaled by a factor of p.

Corollary 4 In setting of Theorem 1 with β = p
ω , H = 32γ2

(
ω
p

)2
, N = 7γ2 ω

p , γπ = γθ = γ ≤

γp = min

{
1
2L̃

√
1

96(ω
p )

3
+14M(ω

p )
2 ,
√

1
2

1

4ML̃2+576 a
M (ω

p )
3
L2+28(ω

p )
2
L2

}
it implies

E [Gap(zK)] ≤ V

2γK

for iterations of Algorithm 1 with partial participation.

Proof. We consider Q′ = η
pQ and utilize independence of η and Q to write

E
∥∥∥∥ηpQ(z)

∥∥∥∥2 = E
(
η

p

)2

∥Q(z)∥2 = E
(
η

p

)2

E ∥Q(z)∥2
(2)
≤ 1

p
ω∥z∥2. (57)

Independence along with (2) guaranties the unbiasedness of Q′ as well:

E
η

p
Q(z) = E

η

p
EQ(z)

(2)
= z. (58)

The established properties implies that operator Q′ is unbiased compressor with compression rate
ω′ = ω

p . This enables the application of Theorem 1 and finishing the proof.

Given Corollary 4 in partial participation setting we establish the following bounds.
Corollary 5 In setting of Corollary 4 with γ = γp, Algorithm 1 with partial participation needs

O

(
1

ε

[
L̃

(
ω

p

)3/2

+ L̃M
1/2 + L

(√
aω3

Mp3
+
ω

p

)])
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iterations in order to reach ε-accuracy with respect to E [Gap(zK)]. Additionally, it requires

O

(
1

ε

[
L̃

(
ω

p

)1/2

+ L̃
M 1/2p

ω
+ L

(√
aω

Mp
+ 1

)])
bits communicated from nodes to the server.

Proof. Proof in this setting completely coincide with the proof of Corollary 1.

G ANALYSIS IN NON-CONVEX SETUP

In this section we conduct the convergence analysis under relaxed convexity Assumption 3. Introduced
further Assumption 4 is inspired by the minty assumption (i.e. existence of such θ∗ ∈ Rd that
⟨F (θ), θ − θ∗⟩ ≥ 0 for all θ ∈ Rd), traditionally associated with non-monotonicity in respective
literature Dang & Lan (2015); Mertikopoulos et al. (2018); Kannan & Shanbhag (2019).
Assumption 4. Let there exists a point θ∗ ∈ Rd such that:〈

M∑
i=1

πi∇fi(θ), θ − θ∗

〉
≥

M∑
i=1

πifi(θ)−
M∑
i=1

πifi(θ
∗), for all θ ∈ Rd, π ∈ ∆M−1.

We note that in our setting due to the linearity of objective
∑M

i=1 πifi(θ) with respect to weights π
transition to the minty assumption is complicated. Instead of it we use Lemma 9.

Lemma 9. Let Assumption 4 holds, then for operator F (z) = F (θ, π) =
(∑M

i=1 πi∇fi(θ), p
)⊤

,
the following holds:〈

F (z)− F (z′∗), z − z′∗
〉
≥ 0, for all z ∈ Rd and π′ ∈ ∆M−1, (59)

where z′∗ = (θ∗, π′)⊤.

Proof. We explicitly expand the expression ⟨F (z)− F (z′∗), z − z′∗⟩.

⟨F (z)− F (z′∗), z − z′∗⟩ = ⟨
M∑
i=1

πi∇fi(θ), θ − θ∗⟩ −
M∑
i=1

(fi(θ)− fi(θ
∗)) (πi − π′

i)

(4)
≥

M∑
i=1

fi(θ)πi −
M∑
i=1

fi(θ
∗)πi −

M∑
i=1

(fi(θ)− fi(θ
∗)) (πi − π′

i)

=
M∑
i=1

(fi(θ)− fi(θ
∗))π′

i ≥ 0

Lemma 9 allows to pass to the analysis with non-convex function f(θ) and consequently a non-
monotone operator F . Moreover, it enables to take into account naturally convex structure of
the objective function

∑M
i=1 πifi(θ) with respect to the weights π, which is also reflected in the

convergence criterion presented in (5) and written below. In (5) we recognize the part of the Gap
operator corresponding to π, while with respect to the parameter θ the criterion involves an averaged
gradient norm.

WK = Emax
π′∈Λ

〈
M∑
i=1

π′
ifi(θ

∗), πK − π′

〉
+

1

8γK

K∑
k=1

E∥πk+1 − πk∥2 + γ

32
E

∥∥∥∥∥
M∑
i=1

πK
i ∇f(θKi )

∥∥∥∥∥
2

,

Where πK =
∑K

k=1
1
Kπ

k+1 and
∥∥∥∑M

i=1 π
K
i ∇fi(θ

K
)
∥∥∥2 = Ek∥f̃k∥2 = 1

K

∑K
k=1 ∥f̃k∥2.

Theorem 3 provides convergence guaranties with respect to WK under relaxed convexity Assumption
4.
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Theorem 3. Let Assumptions 1, 2, 4 hold and α = 1, β = 1
ω , γπ = γθ = γ ≤ γ1 =

min

{
L̃−1

(
48(17ω3 − 2Mω2)

)− 1
2 ,
(
2448 a

M ω3L2 + 96ω2L2 + 16ML̃2
)− 1

2

}
, Λ = ∆M−1 ∩

QM
a , where QM

a = {x ∈ RM
∣∣0 ≤ xi ≤ a

M }. Then, after K iterations of Algorithm 1 with
unbiased compressor 1 Q and exact local gradients solving problem (4) the following holds:

WK ≤ E
1

2γK

[
max
π′∈Λ

(
2DKL(π

′, π1) + 2γ⟨F (z1)− F (z0), z′∗ − z1⟩
)
+ ∥θ1 − θ∗∥2

+

1∑
k=0

[
30γ2ω

∥∥∥f̃k − hk
∥∥∥2 + 85γ2ω2

M∑
i=1

E
∥∥∥f̃ki − hki

∥∥∥2 ]].

Proof. We begin with the result of Lemma 3.

2γ⟨F (zk+1), zk+1 − z⟩ ≤
(
2DKL(π, π

k)− 2DKL(π, π
k+1)

)
+
(
∥θk − θ∥2 − ∥θk+1 − θ∥2

)
+
(
2γ⟨F (zk)− F (zk−1), z − zk⟩

−2γ⟨F (zk+1)− F (zk), z − zk+1⟩
)

−1

2
∥πk+1 − πk∥2 − 1

2
∥θk+1 − θk∥2

+2γ2∥pk − pk−1∥2 + 2γ2∥gk − gk−1∥2.

We proceed by conditioning on zk+1.

2γ⟨F (zk+1), zk+1 − z⟩
≤
(
2DKL(π, π

k)− 2DKL(π, π
k+1)

)
+
(
∥θk − θ∥2 − ∥θk+1 − θ∥2

)
+
(
2γ⟨F (zk)− F (zk−1), z − zk⟩ − 2γ⟨F (zk+1)− F (zk), z − zk+1⟩

)
− 1

2
∥πk+1 − πk∥2 − 1

2
∥θk+1 − θk∥2

+ 2γ2∥pk − pk−1∥2 + 2γ2∥gk − gk−1∥2. (60)

We choose z = z′∗ in order to apply Lemma 9.

⟨F (zk+1), zk+1 − z⟩ ≥ ⟨F (z′∗), zk+1 − z′∗⟩ = ⟨p′, πk+1 − π′⟩. (61)

Then we substitute (61) into (60) and summing over k = 1 to K.

2γK

〈
p′,

K∑
k=1

1

K
πk+1 − π′

〉
≤
(
2DKL(π

′, π1)− 2DKL(π
′, πK+1)

)
+
(
∥θ1 − θ∗∥2 − ∥θK+1 − θ∗∥2

)
+

K∑
k=1

[(
2γ⟨F (zk)− F (zk−1), z′∗ − zk⟩ − 2γ⟨F (zk+1)− F (zk), z′∗ − zk+1⟩

)
− 1

2
∥πk+1 − πk∥2 − 1

2
∥θk+1 − θk∥2

+ 2γ2∥pk − pk−1∥2 + 2γ2∥gk − gk−1∥2
]
. (62)

40



2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

At the next step we evaluate ∥θk+1 − θk∥2 to extract the term for convergence criterion. We utilize
(CS) inequality several times.

∥θk+1 − θk∥2 16
= γ2∥2gk − gk−1∥2

(CS)
≥ γ2

[
1

2
∥gk∥2 − ∥gk − gk−1∥2

]
(CS)
≥ γ2

[
1

4
∥f̃k∥2 − 1

2
∥f̃k − gk∥2 − ∥gk − gk−1∥2

]
(63)

After that we splitting the 1
2∥θ

k+1 − θk∥ in (62) into 2 terms with factors 1
4 and substitute (63) into

the one of them.

2γK

〈
p′,

K∑
k=1

1

K
πk+1 − π′

〉
+

K∑
k=1

[
1

4
∥πk+1 − πk∥2 + γ2

16
∥f̃k∥2

]
≤
(
2DKL(π

′, π1)− 2DKL(π
′, πK+1)

)
+
(
∥θ1 − θ∗∥2 − ∥θK+1 − θ∗∥2

)
+

K∑
k=1

[(
2γ⟨F (zk)− F (zk−1), z′∗ − zk⟩ − 2γ⟨F (zk+1)− F (zk), z′∗ − zk+1⟩

)
− 1

4
∥πk+1 − πk∥2 − 1

4
∥θk+1 − θk∥2

+
γ2

8
∥f̃k − gk∥2 + γ2

4
∥gk − gk−1∥2

+ 2γ2∥pk − pk−1∥2 + 2γ2∥gk − gk−1∥2
]
. (64)

Then we maximize (64) over π′ ∈ Λ and take full expectation. Additionally we note, that

E

[
K∑

k=1

max
π′∈Λ

⟨F (zk)− F (zk−1), z′∗ − zk⟩

]

= E
[ K∑
k=1

⟨gk − gk−1, θ∗ − θk⟩+max
π′∈Λ

K∑
k=1

⟨pk − pk−1, π′ − πk⟩
]

= E
[ K∑
k=1

E
[
⟨gk − gk−1, θ∗ − θk⟩|zk] + max

π′∈Λ

K∑
k=1

⟨pk − pk−1, π′ − πk⟩
]

= E
[ K∑
k=1

⟨f̃k − gk−1, θ∗ − θk⟩+max
π′∈Λ

K∑
k=1

⟨pk − pk−1, π′ − πk⟩
]
,

which enable us to recover the telescopic structure of inner products sum.

E

[
2γKmax

π′∈Λ

〈
p′,

K∑
k=1

1

K
πk+1 − π′

〉
+

K∑
k=1

[
1

4
∥πk+1 − πk∥2 + γ2

16
∥f̃k∥2

]]

≤ E

[
max
π′∈Λ

(
2DKL(π

′, π1)− 2DKL(π
′, πK+1)

)
+
(
∥θ1 − θ∗∥2 − ∥θK+1 − θ∗∥2

)
+ max

π′∈Λ

(
2γ⟨F (z1)− F (z0), z′∗ − z1⟩ − 2γ⟨F (zK+1)− F (zK), z′∗ − zK+1⟩

)
+

K∑
k=1

[
− 1

4
∥πk+1 − πk∥2 − 1

4
∥θk+1 − θk∥2
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+
γ2

8
vk +

9γ2

4
∥gk − gk−1∥2 + 2γ2∥pk − pk−1∥2

]]
. (65)

We proceed by summing (65) +
∑K

k=1 (27) +
∑K

k=1
9
8 (18) +

∑K+1
k=2 N (15) +

∑K+1
k=2 H(9) + (40)

E

[
2γKmax

π′∈Λ

〈
p′,

K∑
k=1

1

K
πk+1 − π′

〉
+

K∑
k=1

[
1

4
∥πk+1 − πk∥2 + γ2

16
∥f̃k∥2

]]

+

K−1∑
k=1

Nvk+1 +

K−1∑
k=1

Hwk+1

≤ E

[
max
π′∈Λ

(
2DKL(π

′, π1) + 2γ⟨F (z1)− F (z0), z′∗ − z1⟩
)
+ ∥θ1 − θ∗∥2

+

K∑
k=1

[(
2H(1 + c−1

2 )L̃2 + 2N(1 + c−1
1 )ML̃2 − 1

4

)
∥πk+1 − πk∥2

+

(
6H(1 + c−1

2 )
aL2

M
+ 2N(1 + c−1

1 )L2 + 4γ2ML̃2 − 1

4

)
∥θk+1 − θk∥2

+

(
γ2

8
+

9γ2

4
N(1 + c1)(1 + β2 − 2β)

)
vk +

9(1− β2)γ2

4
vk−1

+

(
9γ2

4
(ω − 1) +N(1 + c1)β

2(ω − 1) +H(1 + c2)(1 + β2ω − 2β)

)
wk

+
9γ2

4
(ω − 1)(1− β2)wk−1

]]
. (66)

Considering the respective coefficients of ∥θk+1 − θk∥2, ∥πk+1 − πk∥21, wk and vk, we derive the
following restrictions:

1
4 ≥ 6H(1 + c−1

2 )aL
2

M + 2N(1 + c−1
1 )L2 + 4γ2ML̃2

1
4 ≥ 2H(1 + c−1

2 )L̃2 + 2N(1 + c−1
1 )ML̃2

H ≥ 9γ2

4 (ω − 1) +N(1 + c1)β
2(ω − 1) +H(1 + c2)(1 + β2ω − 2β)

+ 9γ2

4 (ω − 1)(1− β2)

N ≥ γ2

8 + 9γ2

4 +N(1 + c1)(1 + β2 − 2β) + 9(1−β2)γ2

4

. (67)

We now turn to selecting the free coefficients to satisfy conditions (67). Beginning with the last
inequality on N , we set

c1 = β, β ≤ 1, N = 6
γ2

β
. (68)

Then the choice

c2 =
β

2
, β =

1

ω
guarantees sufficiency of H =

34γ2

β2
. (69)

to satisfy third restriction in (67).
Finally, we evaluate the first two inequalities in (67) and obtaining

γ ≤ L̃−1
(
48(17ω3 − 2Mω2)

)− 1
2 (70)

and

γ ≤
(
2448

a

M
ω3L2 + 96ω2L2 + 16ML̃2

)− 1
2

(71)

respectively.
By satisfying constraint (67) via choices (68)-(71), we transform (66) into
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Emax
π′∈Λ

〈
p′,

K∑
k=1

1

K
πk+1 − π′

〉
+

1

8γK

K∑
k=1

E∥πk+1 − πk∥2 + γ

32

K∑
k=1

1

K
E∥f̃k∥2

≤ E
1

2γK

[
max
π′∈Λ

(
2DKL(π

′, π1) + 2γ⟨F (z1)− F (z0), z′∗ − z1⟩
)
+ ∥θ1 − θ∗∥2

+

1∑
k=0

[
30γ2ωvk + 85γ2ω2wk

]]
.

It finishes the proof.

Proceeding similarly to Corollary 1, we obtain the following bounds on the required number of
iterations and the total amount of communicated information.
Corollary 2. In setting of Theorem 3 with γ = γ1, Algorithm 1 with exact local gradients needs

O

(
1

ε

[
L̃ω

3/2 + L̃M
1/2 + L

(√
aω3

M
+ ω

)])
iterations in order to reach ε-accuracy with respect to WK . Additionally, it requires

O
(
1

ε

[
L̃ω

1/2 + L̃
M 1/2

ω
+ L

(√
aω

M
+ 1

)])
bits communicated from nodes to the server.

H LLM USAGE

Beyond aiding in the editing process, no large language models (LLMs) were employed in this
work. The entire intellectual content – including all facts, claims, arguments, and proofs – remained
unaffected by LLM influence.
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