UNLOCKING THE POTENTIAL OF WEIGHTING METH-
ODS IN FEDERATED LEARNING THROUGH COMMUNI-
CATION COMPRESSION

Anonymous authors
Paper under double-blind review

ABSTRACT

Modern machine learning problems are frequently formulated in federated learning
domain and incorporate inherently heterogeneous data. Weighting methods operate
efficiently in terms of iteration complexity and represent a common direction in
this setting. At the same time, they do not address directly one of the main obstacle
in federated and distributed learning — communication bottleneck. We tackle this
issue by incorporating compression into the weighting scheme. We establish the
convergence under a convexity assumption, considering both exact and stochastic
oracles. Finally, we evaluate the practical performance of the proposed method on
classification problems.

1 INTRODUCTION

Behind groundbreaking results achieved by new machine learning models lies a carefully constructed
optimization process. From the advent of Stochastic Gradient Descent (SGD) (Robbins
& Monro, |1951) to adaptive methods like Adam (Kingma & Bal[2014) and beyond, new outputs of
optimization theory not only accelerated convergence but have, at times, redefined what is possible in
entire industries. Contemporary supervised machine learning approaches universally require large-
scale training data to reach state-of-the-art results on established benchmarks (Alzubaidi et al., 2021}
Hoffmann et al.| 2022} |Shoeybi et al., [2019). The primary way to process this volume of samples
is usage of multiple nodes for computations. This setting poses new challenges for the research
community, highlighting once again that the future of the entire field hinges on novel solutions.

To harness the full potential of such data, distributed learning (Verbraeken et al.,|2020) has become a
domain paradigm, enabling cutting-edge results in computer vision (CV) (Goyal et al,[2017), natural
language processing (NLP) (Shoeybi et al.,2019)), and recommendation systems (Covington et al.,
2016)) by leveraging multiple machines working in parallel. Formally, this setting can be characterized
by the following formulation of an optimization problem:
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where f;(6) represents the empirical risk (Shalev-Shwartz et al.,[2010) for data at node i. A bottleneck
emerges in this distributed setting: communication. During the training process local model states
should be synchronized. This coordination steps can be prohibitively time-expensive and completely
offset advantage gained from a parallel processing.

Distributed learning offers several major approaches to address this issue: local steps techniques
(Stich, 2018} |Gorbunov et al., 2021b), partial participation concept (Li et al., |2019bj Rizk et al.,
2021)), data-similarity-based methods (Hendrikx et al.l [2020; Kovalev et al., [2022; [Lin et al.| [2023)).
Finally, in our work, we adopt compression. The first works in this field were dedicated to one-bit
quantization (Seide et al., 2014} Bernstein et al., 2018)). Currently, the most widely used techniques
include quantization (Alistarh et al., |2017)) and sparsification (Alistarh et al.l 2018; [Beznosikov et al.|
2023a) methods such as RandK and TopK. A key consideration in this context is that increasing
the number of nodes enhances the robustness of the training process to inaccuracies in aggregated
local gradients. This gives rise to a trade-off between transmission precision and communication cost,
which can be exploited by compressing gradients during aggregation. Formally, compression can be
described using unbiased and contractive compression operators. In our work, we utilize the former.



Definition 1. We say that a map C : R? — R? is an unbiased compression operator, or simply
unbiased compressor, if there exist a constant w such that holds:

E[Q(z)] ==z, E [||Q(x)|\2} < w||x||2f0r all z € R, 2)

Contemporary problem formulations often additionally involve heterogeneity, which necessitates
the development of federated learning techniques (Konecny et al.l 2016; McMahan et al., 2017}
Smith et al.| 2017; L1 et al., 2020; |[Kairouz et al.,|2021). The high cost of transmitting raw samples
often makes homogeneous redistribution infeasible. Moreover, settings exist in which observation
redistribution is impractical or fundamentally disallowed (Nishio & Yonetani, 2019} |Zhang et al.,
20205 [D1ao et al., [2020; Mishchenko et al., [2023; | Khirirat et al., 2023; Islamov et al., 2025).

Standard formulation (T]) of the objective function treats all devices equally. However, since the data
across nodes may inherently differ, the effectiveness of this formulation becomes questionable. To
address this issue, various weighting strategies was proposed, alternating the optimization problem
into:

M
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where 7; represent weights constrained to the simplex A1, provided by particular weighting
method. The idea here is to assign big weights to clients with clean representative or even unique
data, and small weights to ones with noisy inappropriate samples. If this is achieved by any means,
performance of the model can be improved by effectively training it on higher-quality observations.

Currently, a wide range of weighting methods has been developed (McMahan et al.,|2017; Nishio
& Yonetani, [2019; Wang et al.,|2020; Cao et al., 2020). Each technique offers its own advantages,
such as adaptivity or the absence of extra information communication. Agnostic reformulation of
optimization problem (Mohri et al., 2019; Namkoong & Duchi, 2016} Shalev-Shwartz & Ben-David,
2014; Hashimoto et al., | 2018):

M
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where A is a convex subset of AM~1 combines both of these advantages. The weights are selected
automatically during training, while the strategy requires only the local losses to be known by the
server. Communicating this information is inexpensive and does not exacerbate the communication
bottleneck. Intuitively, the method operates as follows: if certain nodes possess unique observations,
a brief training phase can lead to a rapid loss reduction on the remaining users’ samples. This, in turn,
assigns higher weights to the devices holding the unique data, thereby mitigating the problem of data
imbalance and reducing model bias.

However, while mitigating the issues of data heterogeneity across nodes, weighting methods do
not address the core challenge — the communication bottleneck — which makes them independently
nonviable in real-world applications. To address this fundamental problem and unlock the practical
potential of weighting methods we aim to investigate the following question.

Is it possible to effectively combine weighting-based approaches with communication compression
techniques?

2 OUR CONTRIBUTION

* We answer the posed question affirmatively by introducing ADI (Algorithm([I). It incorpo-
rates compression (T)) into agnostic weighting scheme (@). Moreover, operating in the saddle
point problem setting, the proposed method never requires the transmission of full gradients,
which is further reinforce practical applicability.

* We establish theoretical guarantees under general assumptions for the weighting setup. Our
analysis additionally includes practically relevant settings of stochastic local oracles and
partial participation.



* We validate ADT performance on the classification problems, including a large scale real
world task and an experimental study of the interplay between compression and weighting
techniques.

3 RELATED WORKS

In this section, we intend to survey both classical results and recent developments in the fields of
weighting methods, compression, and saddle point problems, with a particular focus on studies that
integrate the latter two. These directions are most relevant to our work.

3.1 WEIGHTING METHODS

First approach in this field FedAvg (McMahan et al.| 2017) suggests to assign weights to clients
regarding the size of dataset m;: m; = “%, where m = Zf\il m,. This approach enables weight
determination prior to training initiation, which precludes the need for additional inter-node commu-
nication and mitigates associated bottleneck. However, it only addresses data imbalance in terms of
quantity rather than quality. Subsequent approaches employ dynamic weight assignment. To estimate
client importance, they leverage such information as cross-client weight distribution divergence
(Wang et al.| 2020), local-global gradient discrepancy (Cao et al., 2020; Nguyen et al.,[2020), and
local loss (Mohri et al., [2019; |Cho et al., 2022)). Alternative approaches leverage hardware-aware
metrics, including node computation capacity and connection stability, to accelerate training. These
methods minimize participation of edge devices with significantly slower compute or communication
capabilities (Nishio & Yonetani, [2019; |Li et al., [2022} Ribero et al., [ 2022)).

Utilized in this paper technique (@) (Mohri et al 2019; Namkoong & Duchil 2016} [Shalev-Shwartz &
Ben-David, |2014; |Hashimoto et al., 2018)) offers the benefit of adaptivity while introducing minimal
additional communication overhead, as it only requires transmitting local loss values — a single scalar
per device. The communication cost of aggregating this exact information is incomparably lower
than even that of compressed gradients. This feature is particularly crucial as we aim to address the
communication bottleneck. Finally, as can be observed, problem (@) is a saddle-point problem not a
classical minimization one. This introduces additional challenges to algorithm design and theoretical
analysis.

3.2 METHODS FOR SADDLE POINT PROBLEMS

The Gradient Descent method can be generalized to Descent-Ascent algorithm for saddle
point problems (SPP). However, this straightforward generalization may fail to converge even
for relatively simple objective functions (Beznosikov et al.| 2023b). A more robust alternative,
the Extragradient method, was introduced in 1976 by |[Korpelevich| and has since become a
fundamental paradigm for solving saddle point problems. The original Ext ragradient algorithm
requires two gradient evaluations per iteration, but there are modifications that reduce this to a single
one, for instance, optimistic approach (Popov, |1980). It is worth noting that alternative techniques for
solving SPP also exist (Tseng, |2000; Nesterov, [2007; Malitsky, 2015)). At the same time, the research
community continues to actively adapt Ext ragradient method to various settings (Nemirovski,
2004; |Alacaoglu & Malitsky, [2022), including distributed learning with communication compression
(Beznosikov et al., [2022).

3.3 COMPRESSION METHODS

0QSGD (Alistarh et al.,2017) was one of the initial steps toward understanding compression techniques
applied to classical minimization problems. It examined the incorporation of quantized communica-
tion into SGD (Robbins & Monro, [1951)). Authors used restrictive assumptions that all nodes have
identical functions, and the stochastic gradients have bounded second moment. These assumptions
were relaxed in subsequent studies (Khirirat et al., 2018; [Mishchenko et al., [2024)). Additionally,
QSGD suffered from an irreducible term in the theoretical convergence bound, caused by the stochas-
ticity of the compressor, even when full local gradients were computed. The next notable concept in
this field was the error feedback technique. Initially introduced as a successful heuristic (Seide et al.,
2014; [Stroml, 2015), later it obtained theoretical support in (Stich et al.| 2018 |Karimireddy et al.|
2019) and enabled the analysis of biased compression. Then, a significant advancement followed
with the idea of compressing the difference between successive local gradient estimators, instead of



directly compressing the gradients. This concept was first introduced in the DIANA (Mishchenko
et al.| 2024)) and enabled vanishing irreducible compressor stochasticity term, improved theoretical
guarantees and extension of the analysis to new settings. Later, in (Richtarik et al., 2021]), it was
shown that local state difference compression can be interpreted as a variant of the error feedback
technique, which led to the development of the EF21 algorithm. Subsequently, in MARINA (Gor
bunov et al., 2021a) the PAGE (L1 et al.| [2021) variance reduction technique was utilized. Using
biased local gradient estimators MARINA reached state-of-the-art convergence rates. Finally, the
authors of DASHA (Tyurin & Richtarik} [2022) ultimately combined error feedback with the EF21
mechanism and achieved optimal oracle complexity while preserving the state-of-the-art communica-
tion performance of MARINA. Moreover, they eliminated the need for periodic transmission of full
gradients, which was required in MARINA.

Despite the fundamental importance of variational inequalities including saddle point problems,
and their extensive study, methods for them which incorporate the compression remains largely
unexplored. Only several algorithms operating in this setting was proposed. MASHA (Beznosikov.
et al.| 2022), integrates operator compression with the Ext ragradient concept. An extension of
this approach, Optimistic MASHA (Beznosikov & Gasnikov,|2022), incorporates the optimistic
principle and, through the use of permutation compressor, leverages data similarity to strengthen
theoretical guarantees. Finally, Three Pillars (Beznosikov et al.|[2023c) combines compres-
sion, data similarity, and local steps, unifying all three concepts within a single framework and
achieving optimal theoretical guarantees. However, despite these theoretical advantages, the practical
applicability of Three Pillars remains limited. In particular, due to its strong reliance on data
similarity across all devices. Moreover, a key practical drawback of all three methods lies in the
requirement for periodic transmission of full operator values.

4 SETUP

The analysis in this work is conducted relying on further assumptions.

Assumption 1. Foralli=1,2,..., M, let f; be Li-Lipschitz, i.e., | fi(61) — fi(62)] < Li]|61 — 62|
holds for all 01,0, € R%. We denote L = max{L;}.

Assumption 2. For all i = 1,2,...,M, let f; be L;-smooth, i.e., ||Vf;i(01) — Vfi(62)| <
L;||01 — 02| holds for all 6,05 € R%. We denote L = max{L;}.

Assumption 3. Foralli=1,2,..., M, let f; be convex, i.e., fi(61) > fi(02) + (V f:(02),61 — 62)
holds for all 01,05 € RY.

5 ALGORITHMS AND THEORETICAL ANALYSIS

5.1 DESCRIPTION OF THE ALGORITHM

Now we are ready to present our Algorithm[[|ADT (Agnostic DIANA). In suggested approach each
iteration begins with the nodes computing weighted loss gradient f;, compressing the difference
with their local memory state, and sending the result to the server — Lines [5] [7]and [0] respectively.
Additionally, Lines 5] and [7| represents the modifications required in stochastic local oracle and partial
participation settings. The nodes then update their local states on Line[§]

All remaining operations are carried out on the server side. Firstly, it aggregate compressed local
differences and local losses — Line Then, gradients estimators g and p with respect to 6 and
« are computed on Lines [12|and fter that, the update of 6 is performed using the optimistic
version ¢ of oracle g — Lines[I6]and [I3] At the same time, the weights 7; are constrained to remain
within a subset A of the simplex. Hence, aMirror Descent step on Line[I7]is applied to update
them. Where the Kullback—Leibler divergence is used as the Bregman divergence. Additionally, we
point out that due to the maximization over 7; in agnostic objective formulation (4)), a positive sign
precedes the inner product. Finally, server updates the local state h and communicates # and 7; to
each node.

Thus, Lines [16] and [T7] - considering Lines [I3] and [T5] — correspond to a step of Optimistic
Extragradient (Yudin,[1983) method (Popov,|[1980). While Lines[7} 8] [[T} [12} [T8]reflect the idea
of difference compression introduced in DIANA (Mishchenko et al.||2024)). This concept resembles



the variance reduction technique (Johnson & Zhang}, [2013)) and similarly enables the elimination of
the irreducible term, caused by the stochasticity, in the convergence analysis. These methods are
driven by an intuitive idea: near the optimum of a smooth function, the full gradient tends to zero,
while local gradients may remain relatively large.

At the same time, according to Definition El,
the distortion introduced by the compressor
scales with the norm of its input. As a re-
sult, near the optima compression of local 1. Input: Starting points §° & Ré 70 e A,

Algorithm 1 ADI

gradient introduce a significant noise and pre- {hOIM  hY € R? and KO = Zl\f L h?, num-
vent the aggregated estimator from converg- ber of iterations K, number of nodes M, random
ing to zero. This leads to erratic oscillations variables ¥ ~ Bern(p).

near the solution 6* in practice and to an irre- 5. Paramete;s: o, B, v0, V= > 0;p € (0,1].
ducible variance term in theoretical analysis. 3. for & — 1,2,3,...,K do

In contrast, the difference between local gra- 4: for all nodes i = 1,2,..., M in parallel do
dients at nearby points is bounded due to the T ek &

smoothness of each local objective. Hence, 5. fz =V [i(07)

as the algorithm approaches the optimum and i fF=m f V fie (0 ")

the update steps diminish, it becomes neces- ¢, Ak — J?!c — Kk

sary to compress progressively finer differ- - Ak o o( Azk)

ences. Consequently, the local estimators hY 7. NAA

tend to the local gradients V f;(6*). It ensure i Af = % Q(A})

that the aggregated estimator h* converges  g. R = pk 4 A¥

to zero. This property alllows the method to 9: send A k. £,(6%) to server

converge to the optimum itself, rather than to 10- end for v

a neighborhood of it. 11; Ak — ZM Ak

Let us now justify the choice of DTANA asthe 5. gk = hk :Zk '

compression foundation in our method. To 5. 9F = (1+a)gk — agh?

this end we consider alternative candidates. & o M

Firstly, DASHA (Tyurin & Richtrik,2022). 14 P = (fi0").,

which demonstrates state-of-the-art results in ~ 15: "= (14 a)p® — ap™?

the classical minimization setting, offers the- 16: GF 1 = 6% — ypg"

oretical guarantees under non-convex objec- 17: 7t = arg 17}161}\1 {== (0", 7) + D p(m,7%)}

tive functions. At the same time, the theoret-
ical analysis of SPP in such setting remains
largely underdeveloped, making the exten-
sion of DASHA’s analysis to our scenario in-
tricated. MASHA (Beznosikov et al., [2022)),
on the other hand, operates in the SPP setting and incorporates compression. However, it requires
periodic communication of full gradients, which significantly limits its practical applicability. By
establishing the analysis of DIANA within the SPP setup, we avoid such constraints while leveraging
its compression strategy.

18 RFFL=nF 4+ BAF
19: server send 71 9%+ to 4" node for all i
20: end for

Another detail we want to highlight is simplex regularization. In various problem settings, it may
be advantageous to impose additional constraints on the weights by restricting the feasible set to
a subset A of the simplex AM~1 (Mehta et al., 2024). Let us provide a reasoning, helpful for
understanding which regularization can be suitable in our case. Considering optimization problem
with A = AM~1 at optimum point the weights take the form of 7;, = 1, 7; = 0 for all j # iy,
where ip = argmax f;(6*). At the same time, some clients may possess noisy samples. The model

can not — and should not — learn patterns from such data. Even a single device with notable higher
noise level can cause an obstacle to effective training. Particularly, since its data is less representative,
it experiences a slower decrease in loss. As training progresses, this leads to the weight of that client
growing close to one. Further training will only lead to overfitting the model to the noise present
in the data of the given device. This potential issue can be mitigated by using A = AM =10 QM,
where QM = {w eRM |() <x; < 47} and a € [1, M].The parameter a controls the trade-off
between full flexibility in weight assignment and stronger averaging. Specifically, setting a = 1
recovers formulation (IJ), while « = M imposes no additional constraints on the weights. We employ
regularization of the specified form and additionally highlight its role in the theoretical sectrion.



Finally, let us follow all communications in the proposed algorithm. At each iteration, transmissions
of f; (0’“) Ak from the nodes to the server and 7%, 0¥ in the opposite direction are required. As f;(6%)
and 7¥ are scalar values they do not pose major threat to communication efficiency. Then, both Af
and A% have dimensionality d. The vector * is transmitted from the server to nodes, which poses
fewer challenges (Kairouz et al.| [2021)). In contrast, aggregation of A, on the server constitutes the
main obstacle to communication efficiency. ADT address this issue since Af is compressed version
of A¥, which makes its transmission significantly cheaper than that of an general vector of dimension
d. We are now ready to proceed to the theoretical analysis. In the following sections, we provide
guaranties for the cases of exact local gradients, stochastic local oracles and partial participation. For
a comparison of the ADT rates with those of prior compression methods, we refer to Appendix [A]

5.2 CONVERGENCE GUARANTIES IN EXACT LOCAL GRADIENT SETTING

We establish the convergence with respect to Gap function (Definition 2]in Section[F). It is standard
for convex-concave SPP setup criteria. To initiate the analysis, we introduce the notation z = (0, )"
and F(zF) = (¢g*, —p*)T. Descent Lemma(SectionEI) imposes conditions on operator F' evaluation
across iterations. Then Lemmas |I| and (Section E[) justify the transition to the Gap(z) function and
further analysis.

Finally, Theoremrepresents our main theoretical result. We remind that the constants L and L were
introduced in Assumptions [2]and [T respectively.

Theorem 1. Let Assumptions I l I hold and a = 1, B = 2, 7» = = =

Yo =
: / M-—1 M
mln{ 96w3+14]V1'w2’ \/2 4ML2+576[1“" L2 1280212 } A A N Q 5 Where Q = {]’ S

RM |O < x; < 45 }. Then, after K iterations of Algorltthlth unbiased compresmr Q and exact
local gradients solving problem (@) the following holds:

E[Gap(Zk)] < K

where

vV o= E{mg{wm(w,wl)muel—9||2

2
+29(F(z') = F(2"), 2 — zl>} + 3272w — bk

]
=0

> 15Kk
andZg = % ) g1 2"

This implies the following bounds on the number of communication rounds and the amount of
information transmitted from the clients to the server.

Corollary 1. In setting of Theorem[I|with vy = ~yo, Algorithm[I|with exact local gradients needs

. . 3
O (1 leB/Q—FLMl/Q—i-L (\/au)-i-w) )
€ M

iterations in order to reach e-accuracy with respect to E [Gap(Zx )| Additionally, it requires

~ MY
o (1 [Lw1/2+LM+L (,/aw +1>D
€ w M

bits communicated from nodes to the server.

The first term in both bounds in Corollary I originate from the recursion on ||7rkJrl — k|2 It

the weights are fixed, these terms vanish, and under condition w < M, compression leads to at
least no increase in communication complexity. Returning to the analysis of the full result, we
must acknowledge that weighting algorithms typically suffer from weak theoretical guarantees. For
instance, theoretically FedAvg enjoys only sublinear convergence rate in the strongly convex setting
(L1 et al., 2019b). In our setup, the weighting-induced terms deteriorate the theoretical guarantees
monotonically with increasing compression rate. Finally, discussing the role of simplex regularization



A in the theoretical analysis, we note that it enables an acceleration by a factor of % in square-root
terms.

5.2.1 EXTENSION TO THE NON-CONVEX SETUP

In this section we present the convergence analysis under the relaxed convexity Assumption[3] We
introduce an additional Assumptiond]is inspired by the minty assumption, traditionally associated
with non-monotonicity (non-convexity) in the respective literature[Dang & Lan| (2013)); Mertikopoulos|
let al| (2018)); [Kannan & Shanbhag| (2019).

Assumption 4. Let there exists a point 8* € R? such that:

M M M

<va,ﬂ;(9), 6 — 9*> > mifi(0) = Y mifi(6%), forall 6 € R, we AMTY,
i=1 i=1

i=1

For a more detailed discussion of the setting and the proofs for this section, please refer to Appendix

Our setting is special, since the objective function Zf\il m; fi(0) is linear in the weights 7 by
construction. This is also reflected in the criterion presented in (3]) below. Convergence with respect
to the weights 7 involves the same term as in the convex setting, whereas convergence with respect to
the parameter 6 is now expressed through the mean squared norm of the gradients.

2

)

M K
1 ol
K Ie gy =K 1 k+1 _ k)2
%% _Eg}g&(<;—1 m fi(07), T T >+8,y l;,l]E”ﬁ | +32IE

_ K M _ —K . [|2 = K 7
Where 75 = 3,° | 27F+1 and Hzizl TEV f:(0 )H = Byl FF)2 = £ S5 17512

M

N w6

=1

The central result of this section, Corollary provides convergence rates with respect to W under
the relaxed assumptions. We remind that the constants L and L were introduced in Assumptions
and [T]respectively.

Corollary 2. In setting of Theorem[B|with v = 1, Algorithm[I\with exact local gradients needs

- - 3
1) (1 le% + LM+ L (waw +w> )
€ M

iterations in order to reach e-accuracy with respect to W . Additionally, it requires

L= 4  =MY?
O([Lw/2+L +L<,/W+1>D
e w M

bits communicated from nodes to the server.

5.3 CONVERGENCE GUARANTIES IN STOCHASTIC LOCAL ORACLE SETTING

Despite introducing new challenges, federated learning is still subject to classical difficulties of
gradient-based optimization. In practice, computing the full even local gradient may be prohibitively
expensive, especially in the presence of devices with limited computational capabilities. This makes
stochastic optimization (Robbins & Monro, [1951} [Bottou et al.,[2018)) particularly relevant in practical
applications, including the context of federated learning. We extend our analysis to cover this setting
as well.

Guaranties in this case are provided under assumption that all nodes have access to an unbiased oracle
Vfie (x*) with bounded variance, i.e., Assumptionholds.

Assumption 5. Letforallk =1,2,..., K andi=1,2,...,M V f; ¢, (0%) satisfies

i) BV fie, (0%) = Vfi(6")

it) BV fie, (0%) = V£i(85)| < 0”.
ADT structure imposes minor modification in this setting. Particularly, Line 3] transforms into sample
fi’C = WfV fies (0’“). The theoretical analysis similarly remains largely unchanged, as stochasticity



was already involved in the compression operator, and the oracle is assumed to be independent of
it. Thus, we can reformulate Theorem [I] for stochastic oracle setting as follows. We remind that the

constants L and L were introduced in Assumptions andrespectively.

Theorem 2. Let in setting of Theorem|l|additionally Assumption |5|holds. Then, it implies
< V. 764a2w2
29K M

for iterations of Algorithm|l|with stochastic local oracles.

Choosing v = min {70, £/ %} we obtain the further guarantees.
Corollary 3. In setting of Theoremwith v = min {707 1/ % } Algorithmwith stochastic

local oracles needs
1 [a?w?0?] 1[- , =0 [ aw?
il L LMY? + L -
o <62 [ i + - |Lw + + i +w
iterations in order to reach e-accuracy with respect to E [Gap(Zx )| Additionally, it requires

1 [aPwe?] 1. . - MV? aw
|2 - /2 hated
0(62[ e L +L( MH)D

bits communicated from nodes to the server.

E [Gap(Zk)]

g

. . . o . . 2,2 .
In this case, guaranties in Theorem are affected by an additional irreducible term 5244~ 52 induced

by the stochasticity of the local oracle. It is general term for analysis in stochastic oracle setup with
Assumption In its presence, optimal stepsize ~y transforms into v = min {70, \/ %} and

. . . . . . 2
communication complexity bounds include an additional term 8% {%] .

5.4 CONVERGENCE GUARANTIES IN PARTIAL PARTICIPATION SETTING

Another classical direction in federated learning is partial participation (Li et al.l|2019b; [Rizk et al.,
2021)). In its context only the subset of all nodes are involved in each computation and communication
round. This modification addresses several challenges inherent to federated setting, primarily the
periodic unavailability of some devices (Li et al.| 2019b} |Yang et al.|, [2021)). We establish theoretical
guarantees for this setup as well.

2
Corollary 4. In setting ofTheoremwith ==L H= 32v2 (%) , N = 7’}/2%, Ve =7 =7 <

— i 1 1 1 1 e
Tp = MM 5F \/96(;)3+14M(;)2’ \/2 4ME2+576]\”4(;‘;)3L2+28(‘;)2L2} it implies
%
E|Gap(zZk)] < ——
[Gap(zk)] < K

for iterations of Algorithm|l|with partial participation.
According Corollary fi] we bound number of communication rounds and the volume of data sent
from the clients to the server.

Corollary 5. In setting of Corollary with v = 7y, Algorithm with partial participation needs

ol (N" i ((Jo e
€ D Mp® ~ p

iterations in order to reach e-accuracy with respect to E [Gap(Zx )| Additionally, it requires

_ 1/2 B 1/2
(9(1 L(w> M p+L(,/aw+1>>
€ P w Mp

bits communicated from nodes to the server.




Analysis in this setting relies on the observation that multiplying the compression operator by the
%, with  ~ Bern(p), yields another valid compression operator. It remains unbiased, while its
compression rate w is scaled by a factor of p. Finally we note that our analysis in stochastic local
gradients and partial participation settings can be straightforwardly merged.

6 EXPERIMENTS

To validate the performance of our algorithm ADT on practical tasks, we compare it in experiments
against baseline methods that employ either weighting schemes or communication compression
techniques. Specifically, ADI with no compression and EF21(Richtarik et al.| [2021), DIANA
(Mishchenko et al.l[2024) serve as representatives respectively. Although weighting-based approaches
are specifically designed to improve performance in heterogeneous settings, we assess the generality of
ADT by conducting experiments under varying degrees of heterogeneity, including the homogeneous
case. It is also important to note that classical approaches and weighting-based methods formally
solve different optimization problems (TJ) and (3. Consequently, comparing them in terms of loss is
not valid, and we instead rely on model quality metrics such as accuracy.

We conduct a comparative evalua- iid. non-i.i.d.
tion on image classification tasks us- —g—t—0 s —g—
ing CIFAR-10 (Krizhevsky et al| Y e aasl /__,/-/:J ﬂ;v‘vm
2009) dataset and RESNET-18 (Meng| a7 > /'-A/‘ vAx
et al., 2019) neural network architec- 5= / H A
ture, which is considered to be a stan- = "|f ~== A0l tracomp) <y - D110 com)
. . —a—
dard benchmark for optimizers perfor- -+ DiANA + DiANA
mance. We set number of clients M = =
. . 2000 4000 »6000 8000 10000 2000 4000 6000 8000 10000
equal to 10 and evaluate optimizers # communication founds # communication rounds
El{ldel' 2'ma'J or ('1ata distribution setups: (a) Rand50% compressor.
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The first set of experiments, presented
in Figure [I compares ADI with
compression-based methods under dif-
ferent setups of data heterogeneity
and parameter K = 10%, 50% for
RandK compressor. To ensure a fair comparison, we run the experiments for 10k communica-
tion rounds with stochastic oracle for each method and tune theirs hyperparameters.

(b) Rand10% compressor.

Figure 1: Performance comparison for ADT across different
heterogeneity levels.

As illustrated in the plots presented in Figures the weighting mechanism plays a crucial role in
the convergence behavior of our method. By effectively mitigating the impact of data heterogeneity,
ADT demonstrates superior convergence properties compared to baseline approaches. Furthermore,
the accumulated weight adjustments significantly influence the later stages of training, contributing to
enhanced model accuracy and overall performance. With the identity compressor, ADI reduces to an
Optimistic Extragradient (Popovl[1980) method for problem (@), effectively representing
a standalone weighting-based optimization approach.

Ablation study. The second experiment (see Figure2) compares same methods, but we apply
weighting technique to all of them. We use RandK with K = 10% and non-i.i.d. data distribution,
we observe consistent improvements in convergence across all methods — demonstrating that the
weighting mechanism enhances robustness even in highly heterogeneous settings. This experimental
validation highlights the significant advantage of setup over conventional distributed learning
approaches, particularly in challenging heterogeneous environments where traditional methods
exhibit poor performance. We further analyze the evolution of client weights under Algorithm[T]in a
heterogeneous setting, with full results shown in Figure[3] At initialization, all clients are assigned



equal weights, reflecting no prior knowledge of their data quality or relevance. As training progresses,
the weights rapidly diverge, adapting to the statistical heterogeneity of local datasets. Over time, each
client’s weight converges to a distinct, stable plateau — indicating that the system learns a consistent,
data-driven importance score for every participant.

This convergence behavior reveals two key phases of the optimization process:

(1) an early exploration phase, during which substantial weight adjustments occur;

(ii) a later stabilization phase, where weights remain nearly constant once the global model
approaches an optimum.

Notably, significant reweighting ceases once the
optimizer enters a neighborhood of a (local or 80 . =0 T
global) minimum, suggesting that the weighting 70 p ~ * ._/‘V/m
mechanism primarily acts during transient, high-

. p y act g tran g 60 VS0 e et
gradient stages of training — precisely when 2 /P_‘
client contributions are most discriminative. Ss0| /&
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7 DISCUSSION

This study has introduced a method for federated
learning, supported by comprehensive theoret-
ical analysis and empirical validation. Theoret-
ical guarantees were established for a range of
relevant scenarios, including setups with exact
local gradients, stochastic local oracles, and par-
tial client participation. Experimental results
demonstrated that the superiority of the pro-
posed method over the baselines becomes more
pronounced as the level of compression and data
heterogeneity increases. This allows it to be con- 2000 w0 oo 5000 10000
cluded that two of the most important problems # communication raunds

in federated learning — the communication bot- Figure 3: Weights magnitudes for Algorithmin
tleneck and heterqgenelty — can be addressed non-i.i.d. data distribution setup.

concurrently, offering new potential for specific

federated learning formulations. Additionally, the developed approach maintains performance com-
parable to baseline algorithms in homogeneous data settings and never requires the transmission of
full gradients, thus further supporting its practical utility.

Weight magnitude
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A ADDITIONAL COMPARISON WITH PRIOR WORKS

In this section we provide complexity comparison of ADTI against baselines.

Note that while previous compression algorithms address Problem (1)), ADT operates with the
objective function (@). The difference in objective functions makes a direct formal comparison
of the rates less transparent. Additional difficulties in theoretically comparing ADT with classical
compression methods arise from the distinct convergence criterion inherent to saddle-point problems,
which should be taken into consideration as well. Nevertheless, for completeness of presentation,
we provide the comparative Table[T|below. Comparison is conducted for a smooth nonconvex setup,
which in case of ADT and MASHA, corresponds to the minty assumption. For the sake of clarity,
constants specific to the problem have been omitted from the estimates.

Table 1: Comparison of complexity across algorithms with compression.

Algorithm Communication Bits of
rounds communication
ADI (this work) 1PW+MW+<W4 %PW+WWH_@?
€
= 1 1 14w
DIANA (Horvéth et al,[2022) 1 [1 (1 + W)t M} L {1 o+ }
e ( W/ € / VwM
DASHA (Tyurin & Richtarik} 1 1
2027) S/ V] 21w+ 1/Va]
EF21 (Richtarik et al.| 2021) 1 1
EQ g
MASHA (Beznosikov et al| [2022) 1 /31 + ] Lo/ 1]
13 )

Notation: e = accuracy of the solution, w = compression rate introduced in Definition[T} M = number of
nodes, o = parameter of contractive compressor.

Additionally, we note that EF21 was originally designed to be used with a contractive compressor
with constant «. Since this is a well-known and practically significant method, we include it in our
experimental baselines and present its convergence rate for completeness.

B ADDITIONAL CLARIFICATION ON IMAGE CLASSIFICATION

Our experiments are conducted on the CIFAR-10 (Krizhevsky et al., |2009)) dataset using a RESNET-
18 (Meng et al.,|2019) architecture, with M = 10 clients for federated training. We evaluate each
sampling strategy under three representative data partitioning schemes: (homo) an i.i.d. homogeneous
split, where each client receives a statistically identical sample of the data; (hetero) a heterogeneous
configuration in which clients are assigned disjoint class subsets, simulating non-i.i.d. label distribu-
tions; and (pathological) a strongly heterogeneous regime, reflecting real-world imbalances through
uneven data quantities and skewed class distributions across clients. This controlled setup enables a
rigorous comparison of Algorithm T|under increasingly realistic and challenging federated learning
conditions. In all experiments we do not use simplex regularization, i.e. A = AM~1,

B.1 HYPERPARAMETERS DETAILS

In our experiments, we employed the default partitioning utility provided by the Flower (flwr)
framework (Beutel et al., 2020) to generate a non-i.i.d. (heterogeneous) data distribution across
clients. To calibrate the hyperparameters of the ADT optimization method, we conducted a systematic
grid search over the following ranges:

* Learning rate for model parameters (7):
{1x107%, 5x107%, 1x1073, 5x 1073, 1x 1072, 2x 1072}

* Learning rate for client weights (v, ):
{1x1073,5%x1073, 1x1072, 5x 1072, 1x 1071}
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* Momentum decay coefficient for the model update (a):
{0.70, 0.75, 0.80, 0.85, 0.90, 0.95}

e Momentum decay coefficient for the weight adaptation (53):
{0.05, 0.10, 0.15, 0.20}

The optimal configuration (selected based on validation performance (e.g., final accuracy and conver-
gence stability)) was identified as:

79 =0.01, ~,=0.01, a=090, B=0.10.

Furthermore, across all compared methods, we employed a staged learning rate decay schedule to
promote convergence stability. Specifically, the initial learning rate was reduced by a factor of 5 after
the 2000 communication rounds and subsequently by an additional factor of 10 (i.e., 50X relative to
the initial value) after the 7500th communication round. Formally, for an initial learning rate 4, the
schedule is defined as:

Yo, l: < 2000,
vo(k) = v/5, 2000 < k < 7500,
v9/50, k> 7500,

where k denotes the round number.

C ADDITIONAL EXPERIMENTS

C.1 LINEAR REGRESSION

To evaluate the performance of proposed method under tightly controlled conditions, we conduct
additional experiments on the simplest task. We use the diabets_scaled (Chang & Lin, 2011}
dataset for linear regression task consisting of 768 samples with 8 features and two classes. As
baselines, we select the communication compression algorithm DIANA (Mishchenko et al., [2024);
for uncompressed weighting method, we use ADI with identical compressor as Optimistic
Extragradient (Popov,|1980) for formulation (E[) Additionally, we compare ADI with MASHA
(Beznosikov et all} [2022) for problem (), which is an analogous method combining both weighting
and compression. For all algorithms with compression we utilize RandK compressor.

To model different degrees of heterogeneity, we introduce parameter v, € [0, 1]. While emulating
training on M = 4 devices, we distribute data across clients as follows: the first node receives

ﬁ + ah% observations from the negative class and % positive observations. The remaining
data is distributed uniformly across the other M — 1 devices. Thus, aj = 1 corresponds to

complete heterogeneity where the negative class appears only on one device while the other devices
contain exclusively positive class observations. Accordingly, o, = 0 corresponds to complete data
homogeneity.

The first series of experiments (Figure ) compares ADI with the specified baselines under different
levels of data heterogeneity (o, equal to 0, 0.5, and 1). For all compression methods, we use RandK
with K = 1. MASHA additionally transmits full gradients every 8 iterations. These experiments
confirm the superiority of weighting methods: while showing comparable performance on homoge-
neous data, ADT gains significant advantage over DIANA as heterogeneity increases. By comparing
Optimistic Extragradient with other methods, we demonstrate the effectiveness of com-
pression, particularly in combination with weighting approaches across varying heterogeneity levels.
Finally, we present the evolution of ADT algorithm’s weights across iterations. We observe that their
dynamics can be unpredictable, particularly in the homogeneous setup. Yet this does not lead to
performance degradation.

Experiments in Figure [5]compares ADT and DIANA at aj, = 0.5 with different compressor constants
K (8,5,2,1). This comparison highlights that the advantage of weighting remains independent of the
compression level even under aggressive compression as Randl.

Finally, in Figure [6] we verified that ADT weights ultimately stabilize in both complete homogeneity
and heterogeneity cases. Notably, in the homogeneous scenario, their pre-stabilization evolution does
not affect performance.
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Figure 6: Weights stabilization in homogeneous and heterogeneous setups.

C.2 ADDITIONAL DATA PARTITIONING

For greater completeness of the experimental evaluation, we conducted an additional experiment
using an alternative heterogeneity modeling setup. Specifically, we evaluate the same RESNET-18
(Meng et al backbone on the CIFAR-10 (Krizhevsky et al} [2009) dataset partitioned across
10 clients according to a Dirichlet distribution with parameter o« = 0.3, introducing a stronger
degree of non-i.i.d. data heterogeneity. The corresponding results are presented in the Table 2] below.
These results report the maximum accuracy (mean =+ standard deviation over three independent runs)
achieved by the methods under the same number of communication rounds and an equal compression
level.
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Table 2: Comparison of ADI with baselines under Dirichlet (o« = 0.3) partition

Method Rand 50% Acc. Rand 10% Acc. Rand 5% Acc.
ADI 82.6 £0.24 81.94+0.24 82.4 +0.28
DIANA 76.7 +0.26 77.140.32 75.4 4+ 0.40
EF21 64.5 +0.43 64.4 4+ 0.41 61.6 +0.43
MASHA1 63.7 = 0.20 63.4 +0.21 63.5+0.21

This experimental validation demonstrates that even under highly heterogeneous data distribution and
a high power of compression (5%), our method achieves strong performance and delivers improved
results compared to the baselines.

C.3 WEIGHTS DISTRIBUTION ANALYSIS

To investigate the sensitivity of client-specific aggregation weights to the severity of model compres-
sion, we conduct an ablation study on RESNET-18 as the backbone architecture
and the CIFAR-10 (Krizhevsky et al.l[2009) dataset, partitioned across 10 clients using a Dirichlet
distribution with parameter o = 0.5 to induce data heterogeneity.

Three compression levels - Rand 50%, Rand 10%, and Rand 5% - are evaluated. For each setting,
we report the learned client aggregation weights (mean + standard deviation over three independent
runs) in Table [3 below.

Table 3: Final client weights assigned by ADT under different compression levels

Client no. Weight (Rand 50%) Weight (Rand 10%) Weight (Rand 5%)
1 0.019 4+ 0.005 0.019 4+ 0.006 0.014 + 0.005
2 0.026 4+ 0.007 0.025 &= 0.007 0.027 + 0.009
3 0.141 + 0.007 0.139 4+ 0.008 0.139 + 0.007
4 0.248 +0.011 0.244 +0.012 0.247 +0.014
5 0.136 = 0.007 0.137 &= 0.007 0.134 4+ 0.007
6 0.054 + 0.008 0.055 + 0.007 0.057 £ 0.011
7 0.145 4+ 0.011 0.143 +0.016 0.144 +0.013
8 0.047 + 0.008 0.062 £+ 0.013 0.056 4+ 0.014
9 0.043 + 0.009 0.052 4+ 0.008 0.048 +0.011
10 0.147 4+ 0.010 0.124 +0.013 0.134 +0.011

Let us briefly describe and interpret obtained results.

(i) For the majority of clients (e.g., Clients 3, 4, 5, 7), the assigned aggregation weights
remain remarkably stable across compression regimes, with variations typically within
the margin of statistical uncertainty. This suggests convergence toward a data-informed
equilibrium - consistent with theoretical expectations that optimal client weights reflect local
data representativeness and utility, rather than being artifacts of compression-induced noise.

(i1) Notably, Clients 8 and 9 exhibit non-monotonic weight adjustments under aggressive
compression with Rand 5%, diverging from their trends at 50% and 10% compression.
Post-hoc data inspection reveals that these clients possess highly skewed local distributions:
each holds samples from only three classes, with two dominant classes constituting over
93% of their local datasets. Under severe sparsification, the reduced model capacity likely
amplifies the impact of such distributional bias, leading the weight adaptation mechanism
to dynamically re-calibrate contribution levels—potentially to mitigate negative transfer or
overfitting on minority classes.

These findings underscore that while global aggregation weights are generally robust to moderate
compression, extreme compression intensifies sensitivity to local data pathology, highlighting the
interplay between model compression, client heterogeneity, and adaptive weighting strategies in
federated optimization.
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C.4 LARGE SCALE PROBLEM

To further validate the scalability and robustness of AD I, we conduct experiments on the CIFAR-100
(Krizhevsky et al [2009) dataset, which presents a more challenging, large-scale classification task
with 100 classes. We evaluate the RESNET-34 backbone across 10 clients, with
data heterogeneity modeled using a Dirichlet distribution with parameter o = 0.5, under three
compression regimes: Rand 50%, Rand 10%, and Rand 5%.

In the table below, we report the final accuracy (mean =+ standard deviation over three independent
runs with 10 communication rounds) for ADT and several prior approaches.

Table 4: Comparison of ADI with baselines on CIFAR-100 under different compression levels

Method Rand 50% Acc. Rand 10% Acc. Rand 5% Acc.

ADI 71.2+£0.21 71.7£0.22 70.9 £ 0.26
DIANA 69.8£0.19 70.1£0.22 71.1+£0.27
EF21 62.2 £ 041 62.3 £0.38 99.2+£0.43
MASHA1 61.7£0.22 63.2 £0.17 62.5£0.21

These results demonstrate that AD T maintains stable and competitive performance even on a large-
scale, highly heterogeneous dataset, consistently outperforming prior approaches. The findings
underscore the effectiveness of ADI’s adaptive weighting mechanism in challenging, real-world
federated learning scenarios.

C.5 ADDITIONAL WEIGHTING BASELINES AND PARTIAL CLIENT PARTICIPATION

To assess the effectiveness of the selected compression strategy, we conduct additional experiments
incorporating direct compression of transmitted gradients (Alistarh et all,[2017) as naive baseline into
AFL (Mohri et all 2019) and g-FFL traditional weighting algorithms. To further
investigate the effects associated with partial client participation, we extended the experimental
setup to the corresponding setting. Table 5| presents comparison results on CIFAR-10

2009) using the RESNET-18 (Meng et al [2019) architecture, while Table [6]reports results
on CIFAR-100 (Krizhevsky et al} [2009) with the RESNET-34 (Kooncel [2021) architecture across

varying compression rates. Data heterogeneity is induced via a Dirichlet distribution with parameter
a = 0.5 across 10 clients, while client availability is sampled from a Bernoulli distribution with
parameters p = 0.5,0.7,1.0. For every setup 3 runs was conducted with 10000 communication
rounds.

Table 5: Comparison of methods on CIFAR-10 under partial client participation setting

Method (p) Rand 50% Acc. Rand 10% Acc. Rand 5% Acc.
ADI (p = 1.0) 85.2+0.21 85.7 +£0.22 84.9 +0.26
AFL (p = 1.0) 67.2 +0.37 52.3 £0.38 47.24+0.43
q-FFL (p = 1.0) 68.7 +0.34 53.2 +£0.37 46.5 +0.41
ADI (p =0.7) 82.2+0.20 81.6 £0.22 81.9 £0.22
AFL (p = 0.7) 65.7 £0.31 49.94+0.35 44.2 +0.40
q-FFL (p = 0.7) 65.9 +0.32 50.2 +£0.37 45.7+0.41
ADI (p =0.5) 79.6 +£0.22 78.9 +£0.21 79.3 £0.22
AFL (p = 0.5) 64.5 +0.31 48.1 +0.39 48.24+0.41
q-FFL (p = 0.5) 65.7 +0.29 49.24+0.34 45.5+0.41

The table reveals several clear patterns. ADT is almost insensitive to the compression level, even
under extreme compression of 5%. However, a decrease in the client availability probability p leads
to a slight deterioration in performance. The opposite trend is observed for the baselines: they are
relatively insensitive to partial client participation, but their performance drops substantially as the
compression level increases.

Overall, the results demonstrate a significant advantage of ADI over the baselines: in the most
extreme setup (p = 0.5, Rand 5%), the algorithm maintains a substantial performance lead over
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Table 6: Comparison of methods on CIFAR-100 under partial client participation setting

Method (p) Rand 50% Acc. Rand 10% Acc. Rand 5% Acc.
ADI (p =1.0) 71.2+£0.19 71.7+0.19 70.9 +£0.22
AFL (p = 1.0) 58.2 +£0.32 46.3 +0.31 41.24+0.33
q-FFL (p = 1.0) 59.7 £0.31 46.2 + 0.30 41.5 4+ 0.31
ADI (p =0.7) 69.4 +0.20 68.9 +0.20 69.0 £0.19
AFL (p = 0.7) 58.2 +£0.31 46.9 4+ 0.32 41.44+0.33
q-FFL (p = 0.7) 58.2 +£0.32 46.2 +0.31 41.6 +0.31
ADI (p = 0.5) 66.9 4+ 0.20 66.9 + 0.20 66.2 +£0.21
AFL (p = 0.5) 58.4 +0.30 45.7 +0.28 41.6 = 0.30
g-FFL (p = 0.5) 59.5 £0.29 45.8 +0.29 41.3 +0.31

the baselines even under their most favorable conditions (p = 1, Rand 50%). This highlights the
effectiveness of the chosen compression strategy for achieving a strong performance in real-world
applications.

D GENERAL INEQUALITIES AND NOTATION

Suppose z, y € R, 71,15 € A and D, is Kullback—Leibler divergence. Then, following inequality
holds:

1
(@) < 5 ol + 55 1ol (Fen)
o+l < @ +a) ||zl + (1+a7) [y, (CS)
1 1 .
DKL(W177T2)Z§||771—7T2||%2 §H7T1—7T2H2- (Pi)

Definition 2. Let F' : R? — R? and D be a compact subset of R%. Then, for any z € R? we define
Gap(z) = max {(F(2'),z — 2)}.
z'eD
Definition 3. Let ||z|pits represents the amount of bits required to encode the vector z € RY, b

denotes the number of bits per floating point value, and d is the dimensionality of the problem (i.e.,
bd = ||z||pits)- Then for compression operator Q we define the expected density of compressed vector

El[Q()ll

G b
E AUXILIARY LEMMAS

Lemma [T|reflects the general fact from the theory of saddle point problems.

Lemma 1. If a function f(z,y) : X x Y — R is convex w.r.t. © and concave w.r.t. y, then target
operator F for the min-max problem mingc x maxyey{ f(z,y)} of the form

rer= ()

(F(z1) — F(22),21 — 22) > 0forall z1,20 € 2 =X x ).

is monotone e.i.,

Proof. We start from the definition of monotonicity, given in the statement, and utilize the convexity
and concavity of f:

(F(z1) = F(22),21 — 22) = (Vof(w1,91) — Vaf(x2,y2), 11 — 22)
—(Vyf(x1,91) — Vyf(22,92), 91 — ¥2)
= (Vof(zi,y1), 21 — 22) + (= Vy f(z1,91), 11 — 2)
(Vo f(22,92), 22 — 1) + (=Vy f(22,92), y2 — y1)
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> flzi,m1) — f(z2,01) + f(21,92) — f(21,91)
+f(w2,y2) — f(@1,92) + f(22, 1) — f(22,92) = 0.
O

The following Lemma 2] (Lemma 3 in (Alacaoglu & Malitskyl [2022)) justifies the interchange of the
maximum and the expectation operators, which is crucial for transitioning from the descent lemma to
the actual convergence criterion in the main theorem.

Lemma 2. Let F = {F}, } ;> be a filtration uy, a stochastic process adopted to F with E [uy+1|Fi] =
0. Then for any K € N, z, € Z and compact set D C Z the following holds:

K-—1 K-—1
1 1
E [mef% ;_O <Uk+1,2>1 < max (2% —AP+ 5D I[‘3||u19+1||2> : ©)

k=0

Proof. Letvy = 24, V41 = Uk + Ugy1. Since ug — .7-"”-measurable, Vg — .7-'H-measurable as well.

Then we write

o1 — 2)1° = lloe — 201* 4 2(upgr, vk — 2) + [Jupga [|*

Summing over k = 0,1,..., K — 1 we get

K—1 K—1

S 2wk z —vw) < oo — 2l + 3 s

k=0 k=0
Maximizing and taking expectation we obtain

K—1 K—1 1 ) = ,
E |max 2 (Ut1,2) — l;)<uk+17vk> < gmaxllvo —2|" +E | 5 ;:;) [[wktal ] :

Finally, due to F-measurability of v, and by the tower property of conditional expectation, the second
sum on the left-hand side vanishes. It concludes the proof. O

F MISSING PROOFS

Now we are ready to start the main analysis. We proceed with the descent Lemma 3]

Lemma 3. Let v, = v9 = . Then, after K iterations of Algorithm [l solving problem @) the
following holds:

27<F(Zk+1),zk+l —Z> S (QDKL(TFﬂTk)—2DKL(W,7Tk+1))
+ (16" — 6112 — [|6"+" — 0])
+ (20l (F) = PR, 2 = 25)

—29(F (") — F(2F), 2 — zk+1>)

1
—*H’]Tlﬁ_l—ﬂ'kHz— |0k+1_0k”2

g
2
+292(p* — p* 12 4+ 292 gF — g%,

k
where z = (0) and F(z*) = ( g k).
™ —-p

Proof. We proceed with algorithm steps evaluation.

Mirror descent step provides:
0 < (=" + Vy(r*th) — Vyp(ak), 7 — ok FL)
_ ke k+1 Ey _ k+1y _ k+1 .k
= —y@", 7 —7""") + Dgp(m,7") — Dxp(m, 7" ) — Dg (7", 7).
Rearranging it we reach:

DKL(Tryﬂ-k+1) < DKL(7T77Tk)_DKL(Fk+177Tk)_7<ﬁk7ﬂ-_ﬂ-k+1>
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= DKL(,]Tvﬂ—k)_DKL(Wk+117Tk)_7(1+a)<pk77r_7rk+1>

+yalp*t, - okt

= DKL(7T,7Tk) — DKL(T&'k—H 7Tk) — ’y(pk,ﬂ' - 7Tk+1>

—7a<pk —pk_l,ﬂ _ 7Tk+1>

_ DKL(TF,’/Tk) . DKL(,R_k+1’ ,/Tk) . ,Y<pk . karl,’/T o ,/Tk+1>
—y (" — ) —yalph - pP - b
—’70[<pk —pk_l,ﬂk—ﬂk+1>. (7

0 update rule implies:
1051 — g2 < (0% — 0] + [|9FTT — 0F|12 + 2(0%+ — 6%, 0" — )
16% — 02 — |0+ — 0¥ || 4 2051 — 0%, ¥+ — )
= [|6% —OI* — [16FF — 0%)|* + 29(5",6 — 0"+
= (10" =01 — 6*T — 61 + 27(1 + a)(g*, 6 — 6*F1)
“2ya(gh 0 — 0
= [16F — 01> — 16" — 6¥||* + 24(g", 6 — 61
ovalgh — bt 6 — gF
— 6% = O|J2 — [[05T — 6F|| + 24(gF — gFF, 0 — 08y
F29(g 0 — 05N 4 2yalgh — gF 1,0 — 0%
+2ya(gh — gF71, ok — okt (8)
Summing 2(7) and (8) we get:
2Dgcr,(m, ") + [|0" 1 — 0]
< 2Dy () + 0% = 017 — 2Dy (7, 7) — [0 — 0%
—2y(p* — p" = Pt 4 29(g" — gF T 0 — 6T
o (pF Y — 7Y 42 (gh L g — g
—2ya(p* —p" =) + 2valg" — "1, 0 — 6%)
“2yalpt — pF Lk Y o 2yalg — gF T 6% — gL,

N

k
Now we rewrite last inequality using z = (i) and F(zF) = ( _gpk).

2Dgcr(m, ) 4 [|0" 1 — 0]
< 2DKL(7T,7Tk) + Hek _ 9H2 _ QDKL(Wk+1,7Tk) _ ||9k+1 _ 9k||2
F29(F(2%) — F(2FTY), 2 — 2FHL) 4 2y (F (2P, 2 — 2P D)
+2ya(F(2%) — F(2*71), 2 — 2%)
“oyalpt — pFL kR LY 4 9nalgh — gRL gk — gy,
Pinsker’s inequality (Pi) and (CS) with 8 = 2+ provides
QDKL(W,WIC+1) + ||9k+1 _ 9H2
< 2Dgep(m, 7))+ [|0F — 0] — || — 7|2 — [loF T — 6F |2
F29(F(2F) — F(2*1), 2 — 28y 4 29(F(2FT1), 2 — 2FFL)
+2va(F(2F) — F(2*1), 2 — 2F)

_ «
+209?p* = p" T+ St - AR
+207%|g* — g2 4 S110% — 012

Finally, rearranging brings us to
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2y(F(2FTh), 281 — 2)
< (2Dgp(m,7*) = 2Dgep (m, 7)) + (16 — 6> — |6 — 0]|)
+ (2'ya<F(zk) — F(2* Y, 2 = 28 — 29(F (M) — F(2%), 2 — zk+1>)

«
= (1= ) I =t - (1= ) et — 6

FIR 4 2097 g* — g1

2 k
+2ay%|[p" —p
F.1 ANALYSIS IN EXACT LOCAL GRADIENTS SETTING

For the subsequent analysis, we need recursive relations for the oracle distortion terms. For notational

wk =

i=1

_ 2
convenience we introduce v* = E H e — Rk,

Lemma 4. Let Assumptions [I| and [2] hold. Then for iterations of Algorithm [I| with unbiased
compressor[I] Q and exact local gradients holds:

B al? 2 - 2
< (+gY [GM]EHek_ek P 4 2B%E |t — M
+(1+ )1 4 2w — 2B)wh L. )

Proof. We begin by using the explicit update rule of clients’ local state.

M M
wh = Y BIFE - REP = YR A - g - )
=1 =1

S (7 ) (1 e i)
i=1

~ ~ 2
2w E|r -
e G ] (10)
We estimate the first term:
M
P = Y EIRAEY - aEh)
i=1
M
d%gb ZZEHTFfoi(Qk)—Terfi(ek_l)Hz
=1
+2Z]E|| A v A
— QZwaQHVfi(O’“)—Vfi(Hk"l)HQ
=1
+2Z]E|7r 2
(%) 2 2 M 2 -
< 22wa LZ||0F — 0* " + 2B |f — af T L2

i=1 =1
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M
= 2E||0% — 01N aF L2 202 ok — 21
i=1
2 M 2 = 2
2B [|0% — 0K |7 b TLE 4+ 2L%E || 7F — 2F |1 aD
i=1

Where (i) holds due to Assumptions [l|and[2} We can bound Zf‘il EWfQL? using condition ™ €
AM=L N QM where QY = {z e RM|0<x; < &} and a € [1, M]:

IN

Mo Mo
Zﬂ'f L? < LQZWf <IL? max [l
, w€(AM=1NQA)
=1 1=1
[ a2 [M a [MT)?
= 2(5) |+ (- |5

L2

IN

< I? =17, (12)

(
< 2|
(

Substitution of (12)) into (TT) gives

M
> E|
i=1

M
B = SEIVAE - AV AEEY)
i=1

[y 2y [N E)
Then we evaluate the second term of (I0) RHS:
B[ - i - po(it - ni)|
L e
2B (fET - BETL BQUFETT - BEY)
2 B[ - hf*luz + B |75 - hQHHQ — 28E||fF1 — EY2
= (14 2w —2B)E || f —hf*HZ). (14)
Finally, combining (T0) with (T3) and (14) we obtain:
W< (14 [a“ﬁmuek 0 4 2L%E ||+ _wk—1||j
(1 eo)(1+ B — 25)1@% ‘ s hi.HH2
i=1
- e (o5 R - 20 - ]
+(1 + e2)(1 4 BPw — 2B)wh L.
O

We continue by examining the global oracle distortion evolution.
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Lemma 5. Let Assumptions [I| and [2] hold. Then for iterations of Algorithm [I| with unbiased
compressor[l] Q and exact local gradients holds:

o< (1) (2B |08 — 05| + 2M 2B ||k — 7+ )
+(1+c) (P A+ B2 —28) + Bt w — 1)) (15)

Proof. We begin with the explicit global estimator update rule.

) M
o — EHf'k_th ) f'k_hk—1_ﬁzg(ﬁ_k—1_h§—1)
i=1

2

(J;k _ fk—l) n (fk—l _pk-1 ﬁi/[: Q(J;Z_H _ hfl)>
=1

S 1+ E ka - f’HHQ

2

M
+(1+e)E||fF =t =gy o(fF - nE Y
=1

Then we examine first term on the (T6) RHS.

As all f; are L-Lipschitz continuous (Assumption the weighted sum Zﬁl m; fi is L-Lipschitz
continuous as well. It justifies (i ) in following inequality sequence.
2

Bl - = BV F(0%) — 7L f(04 )

(%) = V£ (0F) + (xf —af ) VEEOF)

2

NG

E wa (Vfi(8F) = V fi(651))

2

M
+2E Z T —mE ) VE(0FTY

M 2
T (Z e\

i=1
| 2 M = ’
< 2LPE||0F — 0P |T 2B (> |nf - af L
i=1
< 2L°E||6F — 05| + 2B%E || — . (16)

Now we concentrate on the second term on the (I6) RHS:

E fkfl _ hkfl _ BZ Q(fzk_l _ h?—l)

=1

2

—F kaﬂ _ hk71H2 + B°E (f-ik—l _ hf_l)

M
—25E <fk1 o hkrfl,z Q(ﬂk71 _ hfl)>

=1

25



&

A R R |
=" (14 8% - 2B) + BPwu (17)
Plugging and (T6) into (TI6) yields:
o< (1) (2B )08 - 04| + 2M 2B |7t — =5
+(L+e) (VP11 + B2 = 28) + B (w - 1)).
O

The last preparation before proceeding to the main theorem is evaluation of global state dynamics.
Lemma 6. For iterations of Algorithm[I)with unbiased compressor[I] Q, the following holds:

2°E|lg* — ¢" P = 4% (w = 1) (w" + (1= Bt Th) + 497 (08 + (1= BT (18)
Proof. Let us again begin with the explicit global estimator update rule.
29°E|lg" — ¢* |2
— 272EHhk + Ak _ pET Ak71”2

M M M
oSSt a3 () - She (i)
z=1M - M - M 2
— 272K ,BZQ(fkl hk 1)+ZQ< )_Zg(fkl hl'cfl)
1\/[7,:1 z:]lw i=1 ,
— 2¢°E ZQ( ) Zg(fkl Bh- 1)
Z:]L 2 = 2
D, 2 k 201 _ 32 Fh—1 _ pk—1
4°E > Q( e, ) Y421 - B (fz hh ) (19)

Terms differ only in their indices, which makes it convenient to analyze them separately. Here we
utilize cross-device compressor independence and unbiasedness once again:

(e-m)| = @HQ@_h;.c)”awg@k_hf),QM»

- - (e (it - nt) o (5 - 0t))
- S DI RN iy

- sl

= (w—1w"+o" (20)

Substituting (20) into (T9) we reach
2B — g = 492 — 1) (0 + (1= BP0 ) 4y (0F + (1= B2
O

Finally, let us introduce the convergence criterion. In saddle point problems under the convex-
concave setting convergence measures in term of the Gap function (Definition 2). Since ADI
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incorporates possibly randomized compression operator Q, the convergence guaranties for it is based
on E [Gap(z)]. This guaranties are provided by Theorem I}

Theorem Let Assumptions EI hold and o = 1, § = %, H = 32’y2w2, N = 7720.),

— — _ : 1 ) 1 1 1 — ANM-1 M
'YTI'_’YQ_’YS’YO—mln{QL 96""3+14sz7\/24Mz/2+576‘“"’3L2+28w2L2},A A ﬂQ

where QM = {x € RM|O < x; < 45}. Then, after K iterations ofAlgortthmwzth unbiased
compressorm Q and exact local gradients solving problem [@) the following holds:

E[Gap(Zk)] <

e
where
V= E[gg{wm(w, 1) + 2010 — 0] + 29(F(zY) — F(2°), 2 — z1>}
— hk 2+Ni:iifk—th2} and Zg = iizk
' k=0 K k=1

Proof. We proceed with using the unbiasedness (2)) of compressor Q:

k k M ik k k _
E[F(%)|2%] = E K%) zk:| _E Kh +2im A —hz‘)) ] <f ) T F(25),
p p p
where f¥ = M b = S°M 7kvf;(0F). Considering f(60,7) = Yo, mfi(8) we note that it
is convex with respect to 6 due to convexity of all f;. At the same time, f is linear, and therefore

concave with respect to all ;. Then, noting that F(z) = (_vaf }?éﬁi)), we invoke Lemmato

establish its monotonicity.

Our objective is to obtain convergence with respect to Gap(z) = max {(F(z),z — x)}. Hence, the
S

next step is conditioning the result of Lemmaon 2#+1 using o = 1 and summing over k = 1 to K,
Z F k+1 Zk +1 Z>

=
sZ[szmHDm ) 4 (165 — 6] — (6% — 6])%)
+(2v

F(2") = F(2" 1), 2 = 2%) = 29(F (") = F(2%), 2 = 2M))
1 1
2|| T — R — S [o T — 65 ?
+22lp* = P2 4+ 2920 — g
= 2Dk (7, 7") — 2Dgcp, (m, 75 F)) + (|00 — 0> — |05 —0))
+ (29(F(z") = F(2°),2 — 2") = 29(F (" t") = F(z5),z - 251))

+ Z_ [2%?(,2’“‘1) — F(zFY), 2 — zk'i'l)}
k=1

1
+Z [ phtL k2 5||91<:+1 — k|2

+22 " = P+ 292 g — g2,

Maximizing obtained inequality over compact set z € D and taking full expectation, we get

27 E[Iznez%({ i(F(ZkJrl),szrl - z)}] < E[rzneag{ (2D (7, 7') — 2D g (7, 7 T1))
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+ (10" =0l — 116"+ — 0]%)
+(29(F (") = F(2"),z — 2")
(P — F(ER), 2 - )

K—

+ Z 27<F(Zk+1) _ F(zkﬂ),z _ Zk+1>}
k=1
AR | 1

+ 30 [ - gl AR = Sl - 0t
k=1

PP =P 207 - o] |

Several next steps evaluate different terms of (ZI)), starting with the LHS.

Due to monotonicity of F,

Gap (Z zk> < max {Z <F(zk)7zk' - z>} .
k=1 k=1

Combined with the positive homogeneity of the Gap function, for Zx = % Zszl 2 it yields

K
KGap (Zg) < max {Z (F(2), 2" - z>} . (22)

z€D
k=1

We apply Lemma [2]to bound the first sum on the RHS of (ZI):

2Kk [max{ Kz_:l <fy (F(Zk+1) _ F(zk+1)) JZ— Zk+1> }}

z2€D
k=

=

K—1
=2E {r;aeag{ 2 (v (F(*+1) — F(*1) | 2) }]
K—1
E k+1) F(zk+1)) 7Zk+1>
k=1
K- 1
pas) pas)
2@[%{ )2 )] o
K-1
< max (Ilza — 2II7) ++° Z E ||F(zk+1) - F(z’“"’l)H2 . (23)
k=1

We continue with evaluating of the last term applying properties (2)) of unbiased compressor Q:

E|F(H) - ()| = EH@:) - (huza’?(ﬁ_h?))HZ

—hF) = (f* = n*)

M
= Y E|aF - nh)
i=1
M
23 E(QUE -1, - 1)

Q—EHf’“—thZ. 24)

2 ~ 2
|-

IN

_
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. . .. 0 . .
Finally, using (Pi), the definition of z = (W) and choosing z, = 2! — zFt1, we estimate

V

max{2Dcr (m,7) + 0" — 0]} > max{|lx =2+ 0" 0]}

z€D

_ _ 2
= max{z — 2l }. (25)

2 ~ 2
wh =M R ‘ fF —hF||" and combining @23),(24) with 3)

Using notation v* = F Hf’f — h’f)
we derive:

K—-1
[max{ <7 k+1 F(zk+1)) 2 Zk+1> }]

z€D P
K
< I%%({ZDKL(ﬂ,Wl)+ |6 —9H2} —&—'yQZ:(ka — k). (26)

After that, we estimate 2v||p* — p*~1||? in 1) via Assumption|I}
29%|lp* — PP < 29 ML2 |08 — 512, @7

Finally, we use (I8) to evaluate the sum:
K
2923 EllgF — g5 )2
k

2

M-

4~ [(w—Dwk + %] + 492 (1 - p)? [(w— w4+ o571

k

Il
-

5 11

1
2

M=

=4y [(w - 1)wk + vk] + 472(1 — 5)2 [(w _ 1)wk + Uk]
k=1 k=0
K
=4v*(1+ (1 - B)?) lZ(w — Dwh + ok
k=0
—47%(1 = B)[(w — Dw® 4 v&]
—472[(w - l)wo + UO]. (28)

Substituting (28), 27), (26) and 22) into 1)) we get

27KE [Gap(zk)] < E[ma%{ (4Dgp(m, ") — 2Dy (m, 75F)

+(2ll0" o[ — [lo"+ — 0]]*)
+(2UF(") - (%), 2 = 2') = 20(F(z54) = F(X), 2 - 2541)) )
~47*(1 = B)l(w - D™ + %] = 49%[(w — 1w +2°)

K

K
+92) 7 (wwk — o) + 443( Z (w — Dw" + v*]
k=2 k=0

K
1
+30[- Ltt 2 ( 272ML2) I = 6412] .
k=1
Using 24) as ww* — v > 0and 0 < 8 < 1, and introducing
K = IZT.IEE%({ (4DKL(7T,7T1)—QDKL(F,FK+1))
+ (210" 0] — [lo"+" — 0]|*)
FARE) - F(), 2 - oY)

(1]
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v = 2 (F(K) = P(F), 2 — 2540)) )

—47?(1 = B)[(w — D™ +v™] — dy*[(w — D + 7], (29)
we can rewrite:

2KE[Gap(zx)] < E[Ex + (216" 0] — [0° " —0]?)

+(2v(F (") = F(2°),2 — 2")

—2y(F (K1) = F(:5), 2 = 2540))

K
+ Z [9w72wk + 77211’“}
+Z [ L (; - WMP) [Caans 9’”]] 30)

The next step is summing (30) + Y+ [H - @) + N - ([3)):
K41

2vKE [Gap(zk)| + Z (Huw® + Nv)
k=2

K K
[EK+Z [9wy?wh + 79208 + 3 [H(1 + e2)(1 + B — 28)w]
k=0 k=1

+) N1 +er) (V1 + B2 —28) + BPuf(w - 1))]

M 11>

1 - ~
(- (522204 ) - 2NME (L4 ) ) 0 =

+
i

1

L o572 _y,6aL? -1 2 E+1 _ k|2
5 29 ML* — H(1+c¢; ") i —N(1+cyh)2L%) |60 0% %1 |.
By rearranging the terms, we obtain
K+1
27KE [Gap(zk)] + Z (Hw® + Nv¥)
k=2

/N

K
E|Zx+ > [T+ N1 +c)(1+ 2 —28)] oF
k=0

l_|

+ [9w72+H(1+02)(1+ﬁ2w—2ﬂ)+N(1—|—cl)62(w—1)} w”
"I

1 . _
+ {— (2 —2HL*(1+c;') —2NML*(1 + c;1)> [E—s

- al?
—2y*ML? — H(1+ cgl)GM ~N(1+ch) 2L2> (- 9k||2]]. (31

o 1= 1M

Considering the respective coefficients of ||#¥+1 — 6|2, ||+ — 7%||2, w* and v¥, we derive the

following restrictions:

1> 402 MI2 + H(1 + ¢y ) 6al” +N(1 +ert)2r?

1> 2HZ2(1+02_1)+2NML2(1+c D) 32)
H>9%y?+ Hl+c)(1+ fPw—28)+N(1+c)p2(w—1)"
N>7v*+ N1 +c)(1+4 6% -28)
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We now turn to selecting the free coefficients to satisfy conditions (32). Beginning with the last
inequality on N, we set

L 72
c1 = (B, which yields N = 7 (33)

is sufficient.

With this selection the third restriction in (32)) transforms into

H(1—(14e)(1+Bw—28)) > 9wy® + 722(1 + B8)B%(w —1).

The choice
1 32+2
Cco = é, 8 = — guarantees sufficiency of H = v . (34)
2 w 32
Then, utilizing (34) and (33) we rewrite the second inequality in (32):
13297 s
522 BZ L2a+287Y) + Q%MLQ(I +87Y).

This poses constrain on y:

SRRy — ,V:{Vﬁzl. (35)
2192w3 L2 + 28Mw2L2 2LV 96w3 + 14Mw?

Finally, we examine the first inequality in (32). Using (33) and (34) we derive:
1 =5 32792 6al? 72 _
= >4y’ML? —(1 Yar?
5 =4 + 5 M+ﬂ(+6),

(1+2871)

1 1
< — =
To= \/2 AMI? + 5761233 & 1 28252

1 1
= [ —— ; : (36)
24M L2 + 576%2 [2 4 28w2 2

1 1 1 1
=min — I _ , 37
! { 2L V 96w? + 14Mw? \/2 AML? 4 576%2 [2 4 280,22 } ©7

and taking (33), (36) into account, we satisfy (32). Consequently, with the definition Zx (29)
substitution, (31)) transforms into

By choosing

2vKE [Gap(Zk)] + (Hw® ™! + No&+1)
= E[gleaz))({ (4D (m ') = 2D (m, 7))
+ (210" — 0] — [lo" " — 0]1*)
+(2’Y<F(z1) _ F(zo),z — Z1> _ 27<F(ZK+1) _ F(ZK),Z _ ZK+1>)}

—47%(1 = B)[(w — D™ + 0] = 4y*[(w — 1w’ + "]
1 1 K
HHY wh 4+ N> of = 2P ML2||0R T — 6. (38)
k=0 k=0 k=1

To proof the convergence we need to eliminate the —2y(F(25+1) — F(25), 2z — 2K+1) term.
— (Een) —
S (FRH) = FR), 2 = 20) 2 2T - PR 2 - 2
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(4) _
< 22| F(z"M) = FEEHY |2+ 292 | F(5H) = F())°
+H9 - 0K+1H2 + QDKL(F,WK+1)

(i1) -
< 16— 052 + 2Dgep (7, 75T + 20742 05T — 952
+47%(w — 1) (wKH +(1- ﬁ)QwK) + 472 (’UK+1 +(1- B)ZUK)
_|_2,y2wwK+1 _ 2’)/2’UK+1 (39)

Where (i) holds by (CS) and (Pi), and (i7) follows from (24)), (27), and (I8).
Then, the choice of H (34) and N (33) along with (39) provides

K
72’)’<F(2K+1) _ F(ZK),Z _ ZK+1> _ ZQV2M£2”8]€+1 _ 9k||2
k=1
—(Hw"* 4 No&+Y) — 2D (mr, nBH) — 05+ — 9|2 < 0. (40)
The substitution of (0) into (38) concludes the proof. O

Theorem [I] yields further bounds on the number of communication rounds and the amount of
information transmitted from the clients to the server.

Remark 1. In our analysis we assume that compression does not reduce the size of A; below that of

the scalar f; (i.e., q, > é). Hence, the cost of transmitting f; can be upper bounded by that OfAz'.
This allows us to ignore the communication of f; in the O notation.

Corollary 1) In setting of Theorem[I|with v = ~yo, Algorithm[I|with exact local gradients needs

~ ~ 3
0 (1 Lw3/2+LM1/2+L<\/aw er) )
€ M

iterations in order to reach e-accuracy with respect to E [Gap(Zx )| Additionally, it requires

N _ M2
0(1 [Lw1/2+LM +L<,/W+1>D
€ w M

bits communicated from nodes to the server.

Proof. The result of Theorem [I|directly provides the first bound.

Given Remark to obtain the second estimate from the first, we consider transmitting Af from the
nodes to the server for ¢ = 1,2, ..., M. This corresponds to sending M dbq,, bits at every iteration.
We omit constants M, d and b under the O notation. As for g,,, we note that for practically relevant
compressors (Beznosikov et al.| 2023a) it holds ¢, < % It concludes the proof. ]

F.2 ANALYSIS IN STOCHASTIC LOCAL ORACLES SETTING

The convergence proof in the stochastic setting largely mirrors that of Theorem [T} Nevertheless, for
the sake of completeness, we present it below.

k

- 2
To streamline the exposition, we slightly modify the notation: v* = E H T hk' ,wt =

- 2
Zf\il E ‘ fg — hk ’ . Lemma ELremains unchanged under the new notation. Lemma [5| under-
goes only minor modifications in the proof and takes the following form.

Lemma 7. Let Assumptions [I) and [2] hold. Then for iterations of Algorithm [I| with unbiased
compressor[I] Q and stochastic local gradients holds:

2
W< ) oS ok - 2 ]

2 ko1, 4a®
+(14c)(1+4 B w—28)w" " + SV 41)

Proof. We begin by using the explicit update rule of clients’ local state.
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M
Wt = ZEnfzf&—h?HQ ZEHfzkgL_hkl BO(fF — W17

= ZEH<£ fieh) + (Fhet = wi = padfly)! hf_l))HQ

2

d%gb (I+¢") ZIE

251 251

it - g, hf‘l)H2. 42)

‘We now estimate the first term:

Fle — Fie! ZEHW Vi (0°) — 751 £ (05|

- ZEH (vafi,ﬁi (ek) - ﬂ—fvfz(ek)) - (7T571Vfi’§i (0’“_1) — Wfflv‘fi(@k_l))
=1
+ (7Y fi(0%) = 7TV L0 ) H2

— 3B (Vs 0 - 09) ~ (S 04 =t w0 )

+ZEH (TEV£,(0%) — 7EIV £ (08 1)) HQ 43)
=1

The second sum of ([@3) was evaluated in (T1)), (I2) and (12). We proceed with estimating the first
term of 3]

M
S E|| (550, (6) — mEV ) (1 S (07 - b 0 ) |
i=1

S 2
< TV fi (0°) = TV (69|
2
Ve (04 - wf—1Vf¢<ek*1>H
=1
M M 2
SQZ(ng k 12 Z o2 = o2 (44)
i=1 i=1

Substitution of (I2)) and [@4) into @3) gives
Z E
Then we evaluate the second term of (#2)) RHS:
2
— B - B h’?‘l)}]

hk 1)H

4a2

7o @9)

2
Fro M < 6% )0 0P g 2B -t

= E

k-
i
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—om (ft - B BT - BEY)

E|

A\=!

Tl (IEREL

2
rk—1 k—1 rk—1 k—12
1,6i IR hi H - Z,BEH i& hi H

~ 2
_ (1+52w725)E’ i’j;lfhf—lu . (46)

Finally, combining (#2)) with (@3] and (#6) we obtain
2
wh < (T4 {GGJ\Z]E 6% — 051" + 202 ||o* — 2+ 2

4 2
+(1+ c2)(1 + BPw — 2B8)wk 1 + %02.

Lemma [5]likewise undergoes a minor modifications.

Lemma 8. Let Assumptions [I| and [2] hold. Then for iterations of Algorithm [I| with unbiased
compressor[I]| Q and stochastic local gradients holds:

o< (1) (2B )08 - 04|+ 2M 2B |7t — =5
+(L+e) (VP11 + B2 = 28) + Brwwt ). (47)

Proof. We begin with the explicit global estimator update rule.
2

- 2
o = nfpowf -

M
fren By o(ft
i=1

2
E

M
(fk _ ];kq) + (fkl _pk1 BZ Q(ﬁf&—il _ hf‘1)>
=1

(1+cHE ka — f’HHQ

<
<
2

+(14+c)E

M
fk—l _ hk—l _ 52 Q( Zlfgl _ hffl)
i=1

For the first term on the @8) RHS (T6) remains unchanged and we concentrate on the second term of
the (8) RHS:
2

E

M
fkrfl _ hkfl - ﬂz Q( 551 o h?—l)
=1

2
~ 2
=E Hf’H - h’HH + B°E

M ~
>t -
i=1

M

_2BE <fk—1 _ hk_17z Q( ;l?gll _ hf:l)>
=1

&

N 2 . 2
ZE ka—l _ hk—lH + B (Uk—l +(w— 1)wk—1) —28E ka—l _ hk—lH
=" (1 + 6% - 28) + B2 (w - 1). (48)
Plugging @8) and (T6) into (@) yields
o < (1) (2B |08 — 04| + 2M L2E |7 — 75 )

+(L+er) (VP11 + B2 = 28) + Brwwt ).
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We are now ready to proceed to the proof of Theorem 2, which is the main result for the stochastic
local oracles case. The structure of the reasoning remains the same as in the proof of Theorem T}

Theorem 2| Let in setting of Theorem [l|additionally Assumption[3| holds. Then, it implies
64aw?
E |[Gap(z < —
[Gap(zk)] < >k T
for iterations of Algorithm|[I|with stochastic local oracles.

g

Proof. For the sake of consistency with previous notation, we relabel the full weighted local gradient
fF =7V £i(6%) and its stochastic estimator fF, = 7'V fi ¢, (6%).
As in Theorem[I]we proceed with using the unbiasedness (2)) of compressor Q:
k k M fk _ 1k fk _
E [F(zkﬂzk] —-F l:<gk> Zk:| -E [(h + Ei:l Qk( 0,6 h; )) Zk:| _ (fk) def F(Zk})7
p p p
where f* Zl i fk Zz L TV £i(6%). And Lemmaagaln justifies the monotonicity of F.

The next step is conditioning the result of Lemmalon 2#+1 using a = 1 and summing over k = 1
to K :

K
272 ), 2R — ) < Z [ 2D (m, 7") = 2Dk (mr, 7)) + ([|6% - 0]° — 1|6 — 6]1?)
=1
DY(F() — B(F1), 2 — o) — (P — F(H), 2 — 44)
1 R k2_1 k+1 _ pky2
2H It =516 0|

22" = o2 4+ 292 g — g1
= (2Dkr(m, 7') = 2Dgep (m, 7)) + (|01 = 0)* — [0 —6]?)
+ (2UF (1) = F(°), 2 = 21) = 29(F(z54) - P(:5), 2 = 241))

K-1
n Z {2,), (F(z k+1 F(szrl)’Z _ Zk+1>}
=1

| 1
+Z [_ §||ﬂ_k+1 _ Wk”% _ §H9k+1 _ 9k||2
k=1

22t = o2 4 292 g - 6.

Maximizing obtained inequality over compact set z € D and taking full expectation, we get
K

2~ E[%%({ ;(F(,ZI“Ll),,z'kJrl — z}}] < E[ma;)({ (QDKL(W,Wl) — 2DKL(7T,7TK+1))

+ (10" = ol* — 1o+t —0]1%)
2y (F(") - F(°), 2 — 2
72V<F(ZK+1) o F(ZK),Z o ZK+1>)

- Z 2(F(FH1) = F(MH1), 2 = 2441 |
SN 1

+Z [_ §||ﬂ_k+1 _ 7Tklﬁ _ §||9k+1 _ 9k||2
k=1

PRI = P 2 - g | )
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Several next steps evaluate different terms of @9). Inequalities (22)) and (23) remain valid. We
continue with evaluating of the last term applying properties (2)) of unbiased compressor Q and its
independence from stochastic local oracles:

B|[F(:*) - F(M)|° = EH(zf:)‘(hk+Z’ Fl hf))HQ

2

Fle, — B = (FF — BF)

- ZEHQ(ﬁ-’Tgrhf)
—QZE< Fe, = W), JF = n*)

< wZE‘
i=1

2 - 2
] -w]

2—EHf’<—th2. (50)

rk k
fi@i - hl

. . - 0 . .
Finally, using (Pi), definition of z = (71-) and choosing z, = z' — 2*! we estimate

V

1 1 g2
rzneag{2DKL(7r,7r)+||9 9\\} >

max{ ! — 72 + 0" - 0]}
zeD
2
= — . 1
mae{ 12 — 211} 51)
~ 2 ~
Slightly changing old notation v* = | Hf’c — hF H ,wh = Zi‘il E ’ 1k

2
e T th and combining
(23),(30) with (5T)) we derive
K—1

9R [glea%{ Z: {y (F(Zm-l) _ F(zkH)) Z— zk+1> }]
< rzneag{QDKL(w,ﬂl) + |6 — 9|\2} + 72 i (wwh —v*). (52)

After that, we estimate 27||p* — p*~1||? in @) via Assumption|l}
297l = " THP < 292 MEJ0" — 0", (53)

Finally, we use (T8) to evaluate the sum:

K

2y° ) Ellg" —g* |7
k=1
K

= 442 Z [wwk + vk] +49%(1 — B)?
k=1

[wwkfl + vkrfl]

2 11

—

= Z ww? +0F] + 497 (1 - B)? [ww" + 0]
k=1

=
i
=]

— 42(1+0

wa + ok

121~ B + o]
—4y?[ww® + ). (54
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Substituting (34), (53), (32) and 22) into @9),
27KE [Gap(zk)] < E[rzneal%({ (4Dgp(m,7") — 2Dy (m, 75F1))
+ (200" =01 — 07+ —0]%)
+(2'y<F(z1) —F(2%), 2 — 2" — 27<F(zK+1) — F(zK), z— zK+1>)}

—47%(1 = B)ww® + v&] — 4y?ww® 4 1Y)

K K
+92)  (wwh —v") + 492 (1 + (1 - B)?) Z [ww” + v*]
k=2 k=0
o
+Z {_ §||ﬂ_k+1 — k2 - ( _ 272ML2> jgF+ 9k|| }
k=1

Using (50) as ww* — v¥ > 0and 0 < 8 < 1, and introducing
Ex = rng%{ (4D p (7, 7') — 2D (7, 75 F1))
+ (206" 012 — 6%+ - 9)?)
+(2y(F(2") = F(z°),z — 2")
v — 2y(F(zKTY) — P(zK), 2 — zK+1>)}
—42 (1 — B)ww™ + v¥] — 4y [wu® + ), (55)
we can rewrite:
29KE[Gap(zx)] < E[Ex + (20" - 0] — 05! — 0]%)
+(2v(F(zh) = F(2%),2 = 2%)
—2y(F(KH) = F(:), 2 = 2541))

+ Z [9w72wk + 77271]“]

Z { phHL k2 <; _ 272MI:2> ok — 9k2” (56)

The next step is summing (36) + ZK+1 [H - @)+ N - @)
K+1

2vKE [Gap(Zk)] + Z (Hw"® + Nv*)
k=2

K K
<E [E Z9m?w’“+772 +Z (1+e2) (1 + BPw — 2B8)w"]
. k=0 k=1
+Y N+ o) (VF(1+ B2 = 28) + BPww?)]

K
1 . _ - _
+> [ - (2 —2HIL*(14¢;%) —2NML*(1 + ¢ 1)> |t — k|2

1 - 6aL>
—(2—272ML2 H(1+¢ Y ?\4 —N(1+011)2L2) |9k+1‘9k”2H
AKHa? |
M
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The subsequent analysis is unaffected by the additive term o? introduced in the stochastic

4K Ha?
M
setting and fully mirrors the reasoning of Theorem [I]starting from Equation (3. O

Corollary 3| provides bounds on number of communication rounds and transmitted from nodes to the
server information in stochastic local oracles setup.

Corollary In setting ofTheoremwith ~ = min {’y(), \/ 128(1‘2/% }, Algorithmwith stochastic

local oracles needs

1 [a2w?o? 1[- 3 - aw3
o= “ L+ LMY + L\ —
<€2[ i }4—5 w’”+ + Vi +w

iterations in order to reach e-accuracy with respect to E [Gap(Zx)|. Additionally, it requires

1 [a2wo? 1~ , - M/? aw
|2 - /2 -
O(EQ{ % ]+€_Lw + L - +L<1/M+1)}>

bits communicated from nodes to the server.

Proof. In stochastic local oracles case, guaranties in the Theorem [2] are affected by an addi-

. . . 2 2 . . . .
tional irreducible term 'yM“Twaz. In its presence, optimal stepsize v transforms into v =

min {70, \/ %} This choice yields QVLK > 7%02 and makes further analysis similar
to the proof of Corollary [T} O

F.3 ANALYSIS IN PARTIAL PARTICIPATION SETTING

We reduce this case to analysis in exact local oracles settings in Section by claiming that
multiplying the compression operator by the g, with 7 ~ Bern(p), yields another valid compression

operator. It remains unbiased, while its compression rate w is scaled by a factor of p.

2
Corollary 4| In setting ofTheoremwith B =2 H=32y? (%) , N = 772%, Ve =v0 =7 <

= mi 1 1 1 1
Tp = MM 5F \/96(;’)3+14A{(;)2 ’ \/2 AML2 4576 (2) L2 +28(2) L
Vv
E|Gap(zk)] < ——
[Gap(Zk)] < K

for iterations of Algorithm|l|with partial participation.

S ¢ it implies

Proof. We consider Q' = %Q and utilize independence of 7 and Q to write

n ’ A 2 7\? 2901
E|Zee)| ~£(2) 1ot - (%) ElowiE o2 57)
p p p p
Independence along with (2) guaranties the unbiasedness of Q' as well:

E’0(z) =E"EQ(2) 2 -. (58)
P P

The established properties implies that operator Q' is unbiased compressor with compression rate
w' = % This enables the application of Theoremand finishing the proof. O

Given Corollary /| in partial participation setting we establish the following bounds.
Corollary 5| In setting of Corollary[|with ~y = ~y,, Algorithm[I|with partial participation needs

1|~ /w o2 Foarl/ aw? w
Sl 7 IM74 L] — 2
© £ (p> * * Mp3+p
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iterations in order to reach e-accuracy with respect to E [Gap(Zx )| Additionally, it requires
1/2 1
1= - M
0( L(“’) + L p+L(,/“‘”+1) )
€ P w Mp

bits communicated from nodes to the server.
Proof. Proof in this setting completely coincide with the proof of Corollary [T} O

G ANALYSIS IN NON-CONVEX SETUP

In this section we conduct the convergence analysis under relaxed convexity Assumption[3] Introduced
further Assumption EI is inspired by the minty assumption (i.e. existence of such * € R? that
(F(0),0 — 6*) > 0 for all § € R?), traditionally associated with non-monotonicity in respective

literature |Dang & Lan|(2015)); [Mertikopoulos et al.| (2018)); |[Kannan & Shanbhag (2019).
Assumption@ Let there exists a point 0* € R? such that:

M M M
<mei(9),9 - 9*> > mifi(0) = Y _mifi(6%), forall 0 € R, w e AMT1,
i=1 i=1

i=1

We note that in our setting due to the linearity of objective Zf\il m; fi(6) with respect to weights 7
transition to the minty assumption is complicated. Instead of it we use Lemma[9]

_ _ T

Lemma 9. Let Assumptionholds, then for operator F(z) = F(0,7) = (Zf\il 77in¢(9),])) ,
the following holds:

(F(z) = F(¢*),2— 2"*) >0, forall z € R" and 7' € AM~1, (59)

where 2'* = (0*, ') T.

Proof. We explicitly expand the expression (F(z) — F'(2"*), z — 2/*).
M

(F(z) = F(2"),z=2") = <Z wiV [(0),0 = 67) = > (fi(6) — fi(67)) (mi — )

i=1

@ M M M
> Z fi(@)m; — Z [0 )i = (fi(0) = fi(67)) (i — 7)

= (fi(0) — fi(0") 7 >0
O

LemmaEl allows to pass to the analysis with non-convex function f(#) and consequently a non-
monotone operator F. Moreover, it enables to take into account naturally convex structure of
the objective function vail m; fi(0) with respect to the weights 7, which is also reflected in the
convergence criterion presented in (3) and written below. In (3)) we recognize the part of the Gap
operator corresponding to 7, while with respect to the parameter 6 the criterion involves an averaged
gradient norm.

2

M K M
1 y K
K _ lepx\ =K 1 k+1 k2 —K
1474 _Eg’lg}A(<;—1 m fi0), 7 — 7 > +—87 kE:IEqu T|* + 32E ;:1 T V0, )| .

_ K M _ —K . ||? = K 7
Where 75 = 37" | 71 and Hzi=1 TRV (0 )H = || f¥)2 = £ K, 11752

Theoremprovides convergence guaranties with respect to W under relaxed convexity Assumption
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Theorem 3. Let Assumptions hold and o =1, 8 =2 =9 =7 <y =
~ 1 ~ -
min{L—l (48(17w8 — 2Mw?)) 7%, (2448 0P L2 + 96w L2 + 16ML?) } A = AM-1n
M

M where QM = {z € RM |O < x; < 7). Then, after K iterations of Algorithm |I| with
unbiased compressor[l] Q and exact local gradients solving problem (@) the following holds:

[NIE

WK ma (2DKL(7T/, ) + 29(F(2Y) — F(20), 2 — z1>) 16 — %2

1
EQ")/K [ﬂ [SHN
2”

1 B 9 M ~
+y [307% ka - th +8572w22E’ Fr ok
k=0 i=1

Proof. We begin with the result of Lemma [3]
29(F ("1, 25 —2) < (2Dkp(m,7") — 2Dk (m, 7" 11))
+([10% = o1* — o™ — 0]1%)
+(21(F (5 = F(*7), 2 - 25)

—2y(F (2" — F(2F), 2 — zk+1>)
1
7§||7Tk+1 _ ﬂ,kH2 _

+29% 1" = "R + 297" — g%

1
§||6k+1 79k”2

We proceed by conditioning on z**1.

27<F(Zk+l), ZkJrl _ Z>
S (QDKL(TF,TFk) - 2DKL(7T,7Tk+1)) + (||9k - 9”2 - ||9k+1 - 9”2)
+ (29(F(F) = F(F7Y), 2 = 2%) = 2y (F (M) = F(25), 2 - 244))

1 1
= Sl S

2
+ 292 P — PP TP+ 29298 — g2 (60)

We choose 2z = 2 in order to apply LemmaEI

(F(M), M0 = 2) 2 (P(1), 20 = 27) = (pf et = o). (61)

Then we substitute (61)) into (60) and summing over k = 1 to K.

K
< (2Dgr(n',7') = 2Dgp (', 75 ) + ([|0F — 0%))* — 05 - 6%|%)

K
+> [(wF(z’c) = PR, = 28y = 2y (F(E) — F(F), 2 — 244))
k=1

1 1
_ §||7Tk+1 _ 7TkH2 _ §H9k+1 _ 9k||2
+29%p" ="+ 220" - g P (62)
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At the next step we evaluate ||#*T! — 6%||2 to extract the term for convergence criterion. We utilize

(CS) inequality several times.

110} _
&
1 _
S 2l -1t -]
(o] 1, = 1, = _
= o 1P - I - 1 - 1 - g (63)

After that we splitting the ||¢*+1 — 6% in into 2 terms with factors 1 and substitute into
2 1

the one of them.

K
1 7o

oK (o L k1 okl _ k2 o 0 R 2
(.3 w1+ 2
< (2Dgp(x,7t) — 2DKL(7r’, + ([0 — 0%|]> — [|o" T — 0%|1?)

K

+ Z [(%(F(z’“) — F(2"71), 2" = 2F) = 20(F (") = F ("), 2" — zk+1>)

k=1

1 k+1 k2 1 k+1 k12

4|| || 4H9 0"l

2
l 7k En2 . VT k  k—1p2
+g I =g I"+ 1 llg” ="

292k — P2 £ 242k — g’HP] (64)

Then we maximize over 7" € A and take full expectation. Additionally we note, that

K
E $2X<F(Zk) — F(2F 1, 2 — zk%
k=1
K K
— E[Z<gk _ gk—179* _ 9k> —i—Ir/laXZ(pk —pk_l,ﬂ'/ _ 7Tk>]
k=1 e i3
K
k_ k=1 gx _ gky|k ko k=1 1 _k
=E[Y E[(¢" —¢" 1,0~ 6" ]+g}g§;<p p =)

K

_ Fk k=1 px gk k. k=1 1 _k

> 10>

k=1
which enable us to recover the telescopic structure of inner products sum.

K K
1 1
/ R TS R Lkt _ k2 7k )2
E 27K71}}g§<p,ZK7T 7T>+Z[4II7T [ + IIf IIH
k=1 k=1
< B| max (2Dscr (', 7) — 2D (', w0 4 (167 - 07| — 65— 6°)%)
w'e

+ max (27(?(2’1) — F(2%), 2" — 2 — 29(F (25 — F(25), 2/ — ZK+1>)

S| 1
+ Z [_ Z”7_‘_13-"-1 _ﬂ_kHQ _ 1”9]6"1‘1 _9k||2
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Y o L e k12 2k k=112
+§U +THQ =g T+ 27" =" |- (65)

We proceed by summing (§3) + Y5, @) + Yi, $08) + Ti5 N@ + Ti HE) + @0

K K
1 1 Qe
/ k+1 / k+1 k112 k2
E 27K7rrr}23\<<p,ZKw —7T>+Z[4II7T =P+ I H
k=1 k=1
K-1
+ Nyktt —i—z:Hw’CJrl
k=1
<E
e

+ (GH(l + B N+ L2 4+ 4P ME? - i) [[6F+T — 6%
2 2 -y
8 ' 4 4
2
+ (94(w — D+ N1 +e)B(w—1)+H( + )1+ fPw — 25))
9 2
+ == BQ)w’“H : (66)

Considering the respective coefficients of ||[#¥T1 — 6% |2, ||7*+! — 7%||2, w* and v*, we derive the
following restrictions:

L>6H (14 ;)L £ aN(1+ ¢ VL2 + 442 M L2
i> 2H(1 +02 DWL2 +2N(1 + ¢ YML?
H = i( 1)+ N(1+e1)B(w—1)+ H1+c2)(1+ fw — 25) . (67)
+ (w—l)(1—62)
N>Z +2 4 N1 +a)(+p62 -26) + 20000

We now turn to selectmg the free coefficients to satisfy conditions (67). Beginning with the last
inequality on N, we set

2
61:5,5§1,N:6§- (68)
Then the choice
1 34~2
cy = g, 8= " guarantees sufficiency of H = BZ . (69)
to satisfy third restriction in (67).
Finally, we evaluate the first two inequalities in (67) and obtaining
- 1
v < L7 (48(17w® — 2Mw?)) 2 (70)
and
—1
N < (2448%@;3L2 4 9602L2 + 16M1i2) ? 1)

respectively.
By satisfying constraint (67) via choices (68)-(71)), we transform (66) into
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K K K
1 1 ~y 1.
]E / = k41 ! ]E k+1 _ k2 s 7E k12
g}g§<p,ZKﬂ ™ +78ny]; s | +32;K [Pl
1 _
<E—— [max (2DKL(7H,7T1) 429 (F(2Y) — F(2°), 2" — 21>> + 6t — %2

+

—
—

307 2wo” + 8572w2wkH .
k=0

It finishes the proof. O

Proceeding similarly to Corollary [I] we obtain the following bounds on the required number of
iterations and the total amount of communicated information.

Corollary 2] In setting of TheoremB|with -y = ~1, Algorithm[I|with exact local gradients needs

~ - 3
@ (1 [Lw% F LMY 4L («/“‘” +w> )
€ M

iterations in order to reach e-accuracy with respect to W . Additionally, it requires

i Y
0(1 [Lw1/2+LM +L(,/W+1>D
€ w M

bits communicated from nodes to the server.

H LLM USAGE

Beyond aiding in the editing process, no large language models (LLMs) were employed in this
work. The entire intellectual content — including all facts, claims, arguments, and proofs — remained
unaffected by LLM influence.
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