UNLOCKING THE POTENTIAL OF WEIGHTING METHODS IN FEDERATED LEARNING THROUGH COMMUNICATION COMPRESSION

Anonymous authors

Paper under double-blind review

ABSTRACT

Modern machine learning problems are frequently formulated in federated learning domain and incorporate inherently heterogeneous data. Weighting methods operate efficiently in terms of iteration complexity and represent a common direction in this setting. At the same time, they do not address directly one of the main obstacle in federated and distributed learning – communication bottleneck. We tackle this issue by incorporating compression into the weighting scheme. We establish the convergence under a convexity assumption, considering both exact and stochastic oracles. Finally, we evaluate the practical performance of the proposed method on classification problems.

1 Introduction

Behind groundbreaking results achieved by new machine learning models lies a carefully constructed optimization process. From the advent of Stochastic Gradient Descent (SGD) (Robbins & Monro, 1951) to adaptive methods like Adam (Kingma & Ba, 2014) and beyond, new outputs of optimization theory not only accelerated convergence but have, at times, redefined what is possible in entire industries. Contemporary supervised machine learning approaches universally require large-scale training data to reach state-of-the-art results on established benchmarks (Alzubaidi et al., 2021; Hoffmann et al., 2022; Shoeybi et al., 2019). The primary way to process this volume of samples is usage of multiple nodes for computations. This setting poses new challenges for the research community, highlighting once again that the future of the entire field hinges on novel solutions.

To harness the full potential of such data, distributed learning (Verbraeken et al., 2020) has become a domain paradigm, enabling cutting-edge results in computer vision (CV) (Goyal et al., 2017), natural language processing (NLP) (Shoeybi et al., 2019), and recommendation systems (Covington et al., 2016) by leveraging multiple machines working in parallel. Formally, this setting can be characterized by the following formulation of an optimization problem:

$$\min_{\theta \in \mathbb{R}^d} \left[f(\theta) = \frac{1}{M} \sum_{i=1}^M f_i(\theta) \right], \tag{1}$$

where $f_i(\theta)$ represents the empirical risk (Shalev-Shwartz et al., 2010) for data at node i. A bottleneck emerges in this distributed setting: communication. During the training process local model states should be synchronized. This coordination steps can be prohibitively time-expensive and completely offset advantage gained from a parallel processing.

Distributed learning offers several major approaches to address this issue: *local steps* techniques (Stich, 2018; Gorbunov et al., 2021b), *partial participation* concept (Li et al., 2019; Rizk et al., 2021), *data-similarity-based* methods (Hendrikx et al., 2020; Kovalev et al., 2022; Lin et al., 2023). Finally, in our work, we adopt *compression*. The first works in this field were dedicated to one-bit quantization (Seide et al., 2014; Bernstein et al., 2018). Currently, the most widely used techniques include quantization (Alistarh et al., 2017) and sparsification (Alistarh et al., 2018; Beznosikov et al., 2023a) methods such as Randk and Topk. A key consideration in this context is that increasing the number of nodes enhances the robustness of the training process to inaccuracies in aggregated local gradients. This gives rise to a trade-off between transmission precision and communication cost, which can be exploited by compressing gradients during aggregation. Formally, compression can be described using unbiased and contractive compression operators. In our work, we utilize the former.

Definition 1. We say that a map $C : \mathbb{R}^d \to \mathbb{R}^d$ is an unbiased compression operator, or simply unbiased compressor, if there exist a constant ω such that holds:

$$\mathbb{E}\left[\mathcal{Q}(x)\right] = x, \ \mathbb{E}\left[\|\mathcal{Q}(x)\|^2\right] \le \omega \|x\|^2 \text{ for all } x \in \mathbb{R}^d.$$
 (2)

Contemporary problem formulations often additionally involve heterogeneity, which necessitates the development of federated learning techniques (Konečný et al., 2016; McMahan et al., 2017; Smith et al., 2017; Li et al., 2020; Kairouz et al., 2021). The high cost of transmitting raw samples often makes homogeneous redistribution infeasible. Moreover, settings exist in which observation redistribution is impractical or fundamentally disallowed (Nishio & Yonetani, 2019; Zhang et al., 2020; Diao et al., 2020; Mishchenko et al., 2023; Khirirat et al., 2023; Islamov et al., 2025).

Standard formulation (1) of the objective function treats all devices equally. However, since the data across nodes may inherently differ, the effectiveness of this formulation becomes questionable. To address this issue, various weighting strategies was proposed, alternating the optimization problem into:

$$\min_{\theta \in \mathbb{R}^d} \left[\sum_{i=1}^M \pi_i f_i(\theta) \right], \tag{3}$$

where π_i represent weights constrained to the simplex Δ^{M-1} , provided by particular weighting method. The idea here is to assign big weights to clients with clean representative or even unique data, and small weights to ones with noisy inappropriate samples. If this is achieved by any means, performance of the model can be improved by effectively training it on higher-quality observations.

Currently, a wide range of weighting methods has been developed (McMahan et al., 2017; Nishio & Yonetani, 2019; Wang et al., 2020; Cao et al., 2020). Each technique offers its own advantages, such as adaptivity or the absence of extra information communication. *Agnostic* reformulation of optimization problem (Mohri et al., 2019; Namkoong & Duchi, 2016; Shalev-Shwartz & Ben-David, 2014; Hashimoto et al., 2018):

$$\min_{\theta \in \mathbb{R}^d} \max_{\pi \in \Lambda} \left\{ \sum_{i=1}^M \pi_i f_i(\theta) \right\},\tag{4}$$

where Λ is a convex subset of Δ^{M-1} , combines both of these advantages. The weights are selected automatically during training, while the strategy requires only the local losses to be known by the server. Communicating this information is inexpensive and does not exacerbate the communication bottleneck. Intuitively, the method operates as follows: if certain nodes possess unique observations, a brief training phase can lead to a rapid loss reduction on the remaining users' samples. This, in turn, assigns higher weights to the devices holding the unique data, thereby mitigating the problem of data imbalance and reducing model bias.

However, while mitigating the issues of data heterogeneity across nodes, weighting methods do not address the core challenge – the communication bottleneck – which makes them independently nonviable in real-world applications. To address this fundamental problem and unlock the practical potential of weighting methods we aim to investigate the following question.

Is it possible to effectively combine weighting-based approaches with communication compression techniques?

2 Our contribution

- We answer the posed question affirmatively by introducing ADI (Algorithm 1). It incorporates compression (1) into agnostic weighting scheme (4). Moreover, operating in the saddle point problem setting, the proposed method never requires the transmission of full gradients, which is further reinforce practical applicability.
- We establish theoretical guarantees under general assumptions for the weighting setup. Our analysis additionally includes practically relevant settings of stochastic local oracles and partial participation.
- We validate ADI performance on the classification problems.

3 RELATED WORKS

In this section, we intend to survey both classical results and recent developments in the fields of weighting methods, compression, and saddle point problems, with a particular focus on studies that integrate the latter two. These directions are most relevant to our work.

3.1 Weighting methods

First approach in this field FedAvg (McMahan et al., 2017) suggests to assign weights to clients regarding the size of dataset m_i : $\pi_i = \frac{m_i}{m}$, where $m = \sum_{i=1}^M m_i$. This approach enables weight determination prior to training initiation, which precludes the need for additional inter-node communication and mitigates associated bottleneck. However, it only addresses data imbalance in terms of quantity rather than quality. Subsequent approaches employ dynamic weight assignment. To estimate client importance, they leverage such information as cross-client weight distribution divergence (Wang et al., 2020), local-global gradient discrepancy (Cao et al., 2020; Nguyen et al., 2020), and local loss (Mohri et al., 2019; Cho et al., 2022). Alternative approaches leverage hardware-aware metrics, including node computation capacity and connection stability, to accelerate training. These methods minimize participation of edge devices with significantly slower compute or communication capabilities (Nishio & Yonetani, 2019; Li et al., 2022; Ribero et al., 2022).

Utilized in this paper technique (4) (Mohri et al., 2019; Namkoong & Duchi, 2016; Shalev-Shwartz & Ben-David, 2014; Hashimoto et al., 2018) offers the benefit of adaptivity while introducing minimal additional communication overhead, as it only requires transmitting local loss values – a single scalar per device. The communication cost of aggregating this exact information is incomparably lower than even that of compressed gradients. This feature is particularly crucial as we aim to address the communication bottleneck. Finally, as can be observed, problem (4) is a saddle-point problem not a classical minimization one. This introduces additional challenges to algorithm design and theoretical analysis.

3.2 METHODS FOR SADDLE POINT PROBLEMS

The Gradient Descent method can be generalized to Descent-Ascent algorithm for saddle point problems (SPP). However, this straightforward generalization may fail to converge even for relatively simple objective functions (Beznosikov et al., 2023b). A more robust alternative, the Extragradient method, was introduced in 1976 by Korpelevich and has since become a fundamental paradigm for solving saddle point problems. The original Extragradient algorithm requires two gradient evaluations per iteration, but there are modifications that reduce this to a single one, for instance, optimistic approach (Popov, 1980). It is worth noting that alternative techniques for solving SPP also exist (Tseng, 2000; Nesterov, 2007; Malitsky, 2015). At the same time, the research community continues to actively adapt Extragradient method to various settings (Nemirovski, 2004; Alacaoglu & Malitsky, 2022), including distributed learning with communication compression (Beznosikov et al., 2022).

3.3 Compression methods

QSGD (Alistarh et al., 2017) was one of the initial steps toward understanding compression techniques applied to classical minimization problems. It examined the incorporation of quantized communication into SGD (Robbins & Monro, 1951). Authors used restrictive assumptions that all nodes have identical functions, and the stochastic gradients have bounded second moment. These assumptions were relaxed in subsequent studies (Khirirat et al., 2018; Mishchenko et al., 2024). Additionally, QSGD suffered from an irreducible term in the theoretical convergence bound, caused by the stochasticity of the compressor, even when full local gradients were computed. The next notable concept in this field was the error feedback technique. Initially introduced as a successful heuristic (Seide et al., 2014; Ström, 2015), later it obtained theoretical support in (Stich et al., 2018; Karimireddy et al., 2019) and enabled the analysis of biased compression. Then, a significant advancement followed with the idea of compressing the difference between successive local gradient estimators, instead of directly compressing the gradients. This concept was first introduced in the DIANA (Mishchenko et al., 2024) and enabled vanishing irreducible compressor stochasticity term, improved theoretical guarantees and extension of the analysis to new settings. Later, in (Richtárik et al., 2021), it was shown that local state difference compression can be interpreted as a variant of the error feedback

technique, which led to the development of the EF21 algorithm. Subsequently, in MARINA (Gorbunov et al., 2021a) the PAGE (Li et al., 2021) variance reduction technique was utilized. Using biased local gradient estimators MARINA reached state-of-the-art convergence rates. Finally, the authors of DASHA (Tyurin & Richtárik, 2022) ultimately combined error feedback with the EF21 mechanism and achieved optimal oracle complexity while preserving the state-of-the-art communication performance of MARINA. Moreover, they eliminated the need for periodic transmission of full gradients, which was required in MARINA.

Despite the fundamental importance of variational inequalities including saddle point problems, and their extensive study, methods for them which incorporate the compression remains largely unexplored. Only several algorithms operating in this setting was proposed. MASHA (Beznosikov et al., 2022), integrates operator compression with the Extragradient concept. An extension of this approach, Optimistic MASHA (Beznosikov & Gasnikov, 2022), incorporates the optimistic principle and, through the use of permutation compressor, leverages data similarity to strengthen theoretical guarantees. Finally, Three Pillars (Beznosikov et al., 2023c) combines compression, data similarity, and local steps, unifying all three concepts within a single framework and achieving optimal theoretical guarantees. However, despite these theoretical advantages, the practical applicability of Three Pillars remains limited. In particular, due to its strong reliance on data similarity across all devices. Moreover, a key practical drawback of all three methods lies in the requirement for periodic transmission of full operator values.

4 SETUP

The analysis in this work is conducted relying on further assumptions.

Assumption 1. For all i = 1, 2, ..., M, let f_i be \tilde{L}_i -Lipschitz, i.e., $|f_i(\theta_1) - f_i(\theta_2)| \leq \tilde{L}_i \|\theta_1 - \theta_2\|$ holds for all $\theta_1, \theta_2 \in \mathbb{R}^d$. We denote $\tilde{L} = \max_i {\tilde{L}_i}$.

Assumption 2. For all $i=1,2,\ldots,M$, let f_i be L_i -smooth, i.e., $\|\nabla f_i(\theta_1) - \nabla f_i(\theta_2)\| \le L_i\|\theta_1 - \theta_2\|$ holds for all $\theta_1, \theta_2 \in \mathbb{R}^d$. We denote $L = \max_i \{L_i\}$.

Assumption 3. For all i = 1, 2, ..., M, let f_i be convex, i.e., $f_i(\theta_1) \ge f_i(\theta_2) + \langle \nabla f_i(\theta_2), \theta_1 - \theta_2 \rangle$ holds for all $\theta_1, \theta_2 \in \mathbb{R}^d$.

5 ALGORITHMS AND THEORETICAL ANALYSIS

5.1 DESCRIPTION OF THE ALGORITHM

Now we are ready to present our Algorithm 1 ADI (Agnostic **DI**ANA). In suggested approach each iteration begins with the nodes computing weighted loss gradient \tilde{f}_i , compressing the difference with their local memory state, and sending the result to the server – Lines 5, 7 and 9, respectively. Additionally, Lines 5 and 7 represents the modifications required in stochastic local oracle and partial participation settings. The nodes then update their local states on Line 8.

All remaining operations are carried out on the server side. Firstly, it aggregate compressed local differences and local losses – Line 11. Then, gradients estimators g and p with respect to θ and π are computed on Lines 12 and 14. After that, the update of θ is performed using the optimistic version \hat{g} of oracle g – Lines 16 and 13. At the same time, the weights π_i are constrained to remain within a subset Λ of the simplex. Hence, a Mirror Descent step on Line 17 is applied to update them. Where the Kullback–Leibler divergence is used as the Bregman divergence. Additionally, we point out that due to the maximization over π_i in agnostic objective formulation (4), a positive sign precedes the inner product. Finally, server updates the local state h and communicates θ and π_i to each node.

Thus, Lines 16 and 17 – considering Lines 13 and 15 – correspond to a step of Optimistic Extragradient (Yudin, 1983) method (Popov, 1980). While Lines 7, 8, 11, 12, 18 reflect the idea of difference compression introduced in DIANA (Mishchenko et al., 2024). This concept resembles the variance reduction technique (Johnson & Zhang, 2013) and similarly enables the elimination of the irreducible term, caused by the stochasticity, in the convergence analysis. These methods are driven by an intuitive idea: near the optimum of a smooth function, the full gradient tends to zero, while local gradients may remain relatively large.

At the same time, according to Definition 1, the distortion introduced by the compressor scales with the norm of its input. As a result, near the optima compression of local gradient introduce a significant noise and prevent the aggregated estimator from converging to zero. This leads to erratic oscillations near the solution θ^* in practice and to an irreducible variance term in theoretical analysis. In contrast, the difference between local gradients at nearby points is bounded due to the smoothness of each local objective. Hence, as the algorithm approaches the optimum and the update steps diminish, it becomes necessary to compress progressively finer differences. Consequently, the local estimators h_i^k tend to the local gradients $\nabla f_i(\theta^*)$. It ensure that the aggregated estimator h^k converges to zero. This property allows the method to converge to the optimum itself, rather than to a neighborhood of it.

216

217

218

219

220

221

222

224

225

226

227

228

229

230

231

232

233

235

236

237

238

239

240

241

242

243

244

245

246

247

249250

251

253

254

255

256

257

258

259

260261262

264

265

266

267

268

269

Let us now justify the choice of DIANA as the compression foundation in our method. To this end we consider alternative candidates. Firstly, DASHA (Tyurin & Richtárik, 2022), which demonstrates state-of-the-art results in the classical minimization setting, offers theoretical guarantees under non-convex objective functions. At the same time, the theoretical analysis of SPP in such setting remains largely underdeveloped, making the extension of DASHA's analysis to our sce-

Algorithm 1 ADI

```
1: Input: Starting points \theta^0 \in \mathbb{R}^d, \pi^0 \in \Lambda, \{h_i^0\}_{i=1}^M, h_i^0 \in \mathbb{R}^d \text{ and } h^0 = \sum_{i=1}^M h_i^0, \text{ number of iterations } K, \text{ number of nodes } M, \text{ random } k
               variables \eta_i^k \sim Bern(p).
   2: Parameters: \alpha, \beta, \gamma_{\theta}, \gamma_{\pi} > 0; p \in (0, 1].
   3: for k = 1, 2, 3, \dots, K do
                             for all nodes i = 1, 2, \dots, M in parallel do
                                          \begin{bmatrix} \tilde{f}_i^k = \pi_i^k \nabla f_i(\theta^k) \text{ exact local gradient} \\ \tilde{f}_i^k = \pi_i^k \nabla f_{i,\xi_i}(\theta^k) \text{ stochastic oracle} \end{bmatrix}
   5:
                                          \Delta_i^k = \tilde{f}_i^k - h_i^k
                                        \begin{array}{l} \Delta_i - J_i & h_i \\ \hat{\Delta}_i^k = \mathcal{Q}(\Delta_i^k) \\ \hat{\Delta}_i^k = \frac{\eta_i^k}{p} \mathcal{Q}(\Delta_i^k) \text{ partial participation} \\ h_i^{k+1} = h_i^k + \beta \hat{\Delta}_i^k \\ \text{send } \hat{\Delta}_i^k, f_i(\theta^k) \text{ to server} \end{array}
   8:
   9:
                        end for \hat{\Delta}^k = \sum_{i=1}^M \hat{\Delta}_i^k g^k = h^k + \hat{\Delta}^k \hat{g}^k = (1 + \alpha)g^k - \alpha g^{k-1} p^k = \left(f_i(\theta^k)\right)_{i=1}^M \hat{p}^k = (1 + \alpha)p^k - \alpha p^{k-1} \theta^{k+1} = \theta^k - \gamma_\theta \hat{g}^k \pi^{k+1} = \arg\min_{\pi \in \Lambda} \left\{ \gamma_\pi \langle \hat{p}^k, \pi \rangle + D_{KL}(\pi, \pi^k) \right\} server send \pi_i^{k+1}, \theta^{k+1} to i^{th} node for all i d for
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20: end for
```

nario intricated. MASHA (Beznosikov et al., 2022), on the other hand, operates in the SPP setting and incorporates compression. However, it requires periodic communication of full gradients, which significantly limits its practical applicability. By establishing the analysis of DIANA within the SPP setup, we avoid such constraints while leveraging its compression strategy.

Another detail we want to highlight is simplex regularization. In various problem settings, it may be advantageous to impose additional constraints on the weights by restricting the feasible set to a subset Λ of the simplex Δ^{M-1} (Mehta et al., 2024). Let us provide a reasoning, helpful for understanding which regularization can be suitable in our case. Considering optimization problem (4) with $\Lambda = \Delta^{M-1}$ at optimum point the weights take the form of $\pi_{i_0} = 1, \pi_j = 0$ for all $j \neq i_0$, where $i_0 = \underset{i}{\operatorname{argmax}} f_i(\theta^*)$. At the same time, some clients may possess noisy samples. The model can not – and should not – learn patterns from such data. Even a single device with notable higher noise level can cause an obstacle to effective training. Particularly, since its data is less representative, it experiences a slower decrease in loss. As training progresses, this leads to the weight of that client growing close to one. Further training will only lead to overfitting the model to the noise present in the data of the given device. This potential issue can be mitigated by using $\Lambda = \Delta^{M-1} \cap Q_a^M$, where $Q_a^M = \left\{x \in \mathbb{R}^M \middle| 0 \le x_i \le \frac{a}{M}\right\}$ and $a \in [1,M]$. The parameter a controls the trade-off between full flexibility in weight assignment and stronger averaging. Specifically, setting a=1 recovers formulation (1), while a=M imposes no additional constraints on the weights. We employ regularization of the specified form and additionally highlight its role in the theoretical sectrion.

Finally, let us follow all communications in the proposed algorithm. At each iteration, transmissions of $f_i(\theta^k)$, $\hat{\Delta}_i^k$ from the nodes to the server and π_i^k , θ^k in the opposite direction are required. As $f_i(\theta^k)$ and π_i^k are scalar values they do not pose major threat to communication efficiency. Then, both $\hat{\Delta}_i^k$ and θ^k have dimensionality d. The vector θ^k is transmitted from the server to nodes, which poses fewer challenges (Kairouz et al., 2021). In contrast, aggregation of $\hat{\Delta}_i$ on the server constitutes the

main obstacle to communication efficiency. ADI address this issue since $\hat{\Delta}_i^k$ is compressed version of Δ_i^k , which makes its transmission significantly cheaper than that of an general vector of dimension d.

5.2 Convergence guaranties in exact local gradient setting

We establish the convergence with respect to Gap function (Definition 2 in Section D). It is standard for convex-concave SPP setup criteria. To initiate the analysis, we introduce the notation $z = \begin{pmatrix} \theta \\ \pi \end{pmatrix}$

and $F(z^k) = \begin{pmatrix} g^k \\ -p^k \end{pmatrix}$. Descent Lemma 3 (Section D) imposes conditions on operator F evaluation across iterations. Then Lemmas 1 and 2 (Section C) justify the transition to the $\mathbf{Gap}(z)$ function and further analysis.

Finally, Theorem 1 represents our main theoretical result.

Theorem 1. Let Assumptions 1, 2, 3 hold and $\alpha = 1$, $\beta = \frac{1}{\omega}$, $H = 32\gamma^2\omega^2$, $N = 7\gamma^2\omega$, $\gamma_{\pi} = \gamma_{\theta} = \gamma \leq \gamma_0 = \min\left\{\frac{1}{2\tilde{L}}\sqrt{\frac{1}{96\omega^3+14M\omega^2}},\sqrt{\frac{1}{2}\frac{1}{4M\tilde{L}^2+576\frac{a\omega^3}{M}L^2+28\omega^2L^2}}\right\}$. Then, after K iterations of Algorithm 1 with unbiased compressor 1 Q and exact local gradients solving problem (4) the following holds:

$$\mathbb{E}\left[\mathbf{Gap}(\overline{z}_K)\right] \leq rac{V}{2\gamma K},$$

where

$$V = \mathbb{E}\left[\max_{z \in \mathcal{D}} \left\{ 4D_{KL}(\pi, \pi^{1}) + 2\|\theta^{1} - \theta\|^{2} + 2\gamma \langle F(z^{1}) - F(z^{0}), z - z^{1} \rangle \right\} + H \sum_{k=0}^{1} \sum_{i=1}^{M} \left\| \tilde{f}_{i}^{k} - h_{i}^{k} \right\|^{2} + N \sum_{k=0}^{1} \left\| \tilde{f}^{k} - h^{k} \right\|^{2} \right]$$

and
$$\overline{z}_K = \frac{1}{K} \sum_{k=1}^K z^k$$
.

This implies the following bounds on the number of communication rounds and the amount of information transmitted from the clients to the server.

Corollary 1. In setting of Theorem 1 with $\gamma = \gamma_0$, Algorithm 1 with exact local gradients needs

$$\mathcal{O}\left(rac{1}{arepsilon}\left[ilde{L}\omega^{3/2}+ ilde{L}M^{1/2}+L\left(\sqrt{rac{\omega^3}{M}}+\omega
ight)
ight]
ight)$$

iterations in order to reach ε -accuracy with respect to $\mathbb{E}[\mathbf{Gap}(\overline{z}_K)]$. Additionally, it requires

$$\mathcal{O}\left(\frac{1}{\varepsilon}\left[\tilde{L}\omega^{^{1/2}}+\tilde{L}\frac{M^{^{1/2}}}{\omega}+L\left(\sqrt{\frac{\omega}{M}}+1\right)\right]\right)$$

bits communicated from nodes to the server.

The first term in both bounds in Corollary 1 originate from the recursion on $\|\pi_i^{k+1} - \pi_i^k\|_1^2$. If the weights are fixed, these terms vanish, and under condition $\omega \leq M$, compression leads to at least no increase in communication complexity. Returning to the analysis of the full result, we must acknowledge that weighting algorithms typically suffer from weak theoretical guarantees. For instance, theoretically FedAvg enjoys only sublinear convergence rate in the strongly convex setting (Li et al., 2019). In our setup, the weighting-induced terms deteriorate the theoretical guarantees monotonically with increasing compression rate. Finally, discussing the role of simplex regularization Λ in the theoretical analysis, we note that it enables an acceleration by a factor of $\frac{1}{M}$ in square-root terms.

5.3 Convergence guaranties in Stochastic local oracle setting

Despite introducing new challenges, federated learning is still subject to classical difficulties of gradient-based optimization. In practice, computing the full even local gradient may be prohibitively expensive, especially in the presence of devices with limited computational capabilities. This makes stochastic optimization (Robbins & Monro, 1951; Bottou et al., 2018) particularly relevant in practical

applications, including the context of federated learning. We extend our analysis to cover this setting as well.

Guaranties in this case are provided under assumption that all nodes have access to an unbiased oracle $\nabla f_{i,\xi_i}(x^k)$ with bounded variance, i.e., Assumption 4 holds.

Assumption 4. Let for all k = 1, 2, ..., K and $i = 1, 2, ..., M \nabla f_{i, \xi_i}(\theta^k)$ satisfies

$$i) \quad \mathbb{E} \nabla f_{i,\xi_i}(\theta^k) = \nabla f_i(\theta^k)$$

$$ii) \mathbb{E} \|\nabla f_{i,\xi_i}(\theta^k) - \nabla f_i(\theta^k)\|^2 \le \sigma^2.$$

ADI structure imposes minor modification in this setting. Particularly, Line 5 transforms into *sample* $\tilde{f}_i^k = \pi_i^k \nabla f_{i,\xi_i}(\theta^k)$. The theoretical analysis similarly remains largely unchanged, as stochasticity was already involved in the compression operator, and the oracle is assumed to be independent of it. Thus, we can reformulate Theorem 1 for stochastic oracle setting as follows.

Theorem 2. Let in setting of Theorem 1 additionally Assumption 4 holds. Then, it implies

$$\mathbb{E}\left[\mathbf{Gap}(\overline{z}_K)\right] \le \frac{V}{2\gamma K} + \gamma \frac{64a^2\omega^2}{M}\sigma^2$$

for iterations of Algorithm 1 with stochastic local oracles.

Choosing $\gamma=\min\left\{\gamma_0,\sqrt{\frac{VM}{128a^2\omega^2\sigma^2K}}\right\}$ we obtain the further guarantees.

Corollary 2. In setting of Theorem 2 with $\gamma = \min \left\{ \gamma_0, \sqrt{\frac{VM}{128a^2\omega^2\sigma^2K}} \right\}$, Algorithm 1 with stochastic local oracles needs

$$\mathcal{O}\left(\frac{1}{\varepsilon^2}\left[\frac{\omega^2\sigma^2}{M}\right] + \frac{1}{\varepsilon}\left[\tilde{L}\omega^{3/2} + \tilde{L}M^{1/2} + L\left(\sqrt{\frac{\omega^3}{M}} + \omega\right)\right]\right)$$

iterations in order to reach ε -accuracy with respect to $\mathbb{E}[\mathbf{Gap}(\overline{z}_K)]$. Additionally, it requires

$$\mathcal{O}\left(\frac{1}{\varepsilon^2}\left[\frac{\omega\sigma^2}{M}\right] + \frac{1}{\varepsilon}\left[\tilde{L}\omega^{1/2} + \tilde{L}\frac{M^{1/2}}{\omega} + L\left(\sqrt{\frac{\omega}{M}} + 1\right)\right]\right)$$

bits communicated from nodes to the server.

In this case, guaranties in Theorem 2 are affected by an additional irreducible term $\gamma \frac{64a^2\omega^2}{M}\sigma^2$ induced by the stochasticity of the local oracle. It is general term for analysis in stochastic oracle setup with Assumption 4. In its presence, optimal stepsize γ transforms into $\gamma = \min\left\{\gamma_0, \sqrt{\frac{VM}{128a^2\omega^2\sigma^2K}}\right\}$ and communication complexity bounds include an additional term $\frac{1}{\varepsilon^2}\left[\frac{\omega\sigma^2}{M}\right]$.

5.4 Convergence guaranties in Partial Participation Setting

Another classical direction in federated learning is partial participation (Li et al., 2019; Rizk et al., 2021). In its context only the subset of all nodes are involved in each computation and communication round. This modification addresses several challenges inherent to federated setting, primarily the periodic unavailability of some devices (Li et al., 2019; Yang et al., 2021). We establish theoretical guarantees for this setup as well.

Corollary 3. In setting of Theorem 1 with
$$\beta = \frac{p}{\omega}$$
, $H = 32\gamma^2 \left(\frac{\omega}{p}\right)^2$, $N = 7\gamma^2 \frac{\omega}{p}$, $\gamma_{\pi} = \gamma_{\theta} = \gamma \leq \gamma_p = \min\left\{\frac{1}{2\tilde{L}}\sqrt{\frac{1}{96\left(\frac{\omega}{p}\right)^3 + 14M\left(\frac{\omega}{p}\right)^2}}, \sqrt{\frac{1}{2}\frac{1}{4M\tilde{L}^2 + 576\frac{a}{M}\left(\frac{\omega}{p}\right)^3L^2 + 28\left(\frac{\omega}{p}\right)^2L^2}}\right\}$ it implies
$$\mathbb{E}\left[\mathbf{Gap}(\overline{z}_K)\right] \leq \frac{V}{2\gamma K}$$

for iterations of Algorithm 1 with partial participation.

According Corollary 3, we bound number of communication rounds and the volume of data sent from the clients to the server.

Corollary 4. In setting of Corollary 3 with $\gamma = \gamma_p$, Algorithm 1 with partial participation needs

$$\mathcal{O}\left(\frac{1}{\varepsilon}\left[\tilde{L}\left(\frac{\omega}{p}\right)^{^{3/2}}+\tilde{L}M^{^{1/2}}+L\left(\sqrt{\frac{\omega^3}{Mp^3}}+\frac{\omega}{p}\right)\right]\right)$$

iterations in order to reach ε -accuracy with respect to $\mathbb{E}[\mathbf{Gap}(\overline{z}_K)]$. Additionally, it requires

$$\mathcal{O}\left(\frac{1}{\varepsilon}\left[\tilde{L}\left(\frac{\omega}{p}\right)^{^{1/2}}+\tilde{L}\frac{M^{^{1/2}}p}{\omega}+L\left(\sqrt{\frac{\omega}{Mp}}+1\right)\right]\right)$$

bits communicated from nodes to the server.

Analysis in this setting relies on the observation that multiplying the compression operator by the $\frac{\eta}{p}$, with $\eta \sim \text{Bern}(p)$, yields another valid compression operator. It remains unbiased, while its compression rate ω is scaled by a factor of p. Finally we note that our analysis in stochastic local gradients and partial participation settings can be straightforwardly merged.

6 EXPERIMENTS

To validate the performance of our algorithm ADI on practical tasks, we compare it in experiments against baseline methods that employ either weighting schemes or communication compression techniques. Specifically, ADI with no compression and EF21(Richtárik et al., 2021), DIANA (Mishchenko et al., 2024) serve as representatives respectively. Although weighting-based approaches are specifically designed to improve performance in heterogeneous settings, we assess the generality of ADI by conducting experiments under varying degrees of heterogeneity, including the homogeneous case. It is also important to note that classical approaches and weighting-based methods formally solve different optimization problems (1) and (3). Consequently, comparing them in terms of loss is not valid, and we instead rely on model quality metrics such as accuracy.

We conduct a comparative evaluation on image classification tasks using CIFAR-10 (Krizhevsky et al., 2009) dataset and RESNET-18 (Meng et al., 2019) neural network architecture, which is considered to be a standard benchmark for optimizers performance. We set number of clients Mequal to 10 and evaluate optimizers under 2 major data distribution setups: i.i.d. distribution, where each client has the same number of data samples, and class labels are uniformly distributed across clients; and noni.i.d. distribution (namely Dirichlet one with the parameter $\alpha = 0.5$) with different amount of data samples per client.

The first set of experiments, presented in Figure 1, compares ADI with compression-based methods under different setups of data heterogeneity and parameter K=10%,50% for

Figure 1: Performance comparison for ADI across different heterogeneity levels.

RandK compressor. To ensure a fair comparison, we run the experiments for 10k communication rounds with stochastic oracle for each method and tune theirs hyperparameters.

As illustrated in the plots presented in Figures 1a, 1b, the weighting mechanism plays a crucial role in the convergence behavior of our method. By effectively mitigating the impact of data heterogeneity, ADI demonstrates superior convergence properties compared to baseline approaches. Furthermore, the accumulated weight adjustments significantly influence the later stages of training, contributing to enhanced model accuracy and overall performance. With the identity compressor, ADI reduces to an

Optimistic Extragradient (Popov, 1980) method for problem (4), effectively representing a standalone weighting-based optimization approach.

Ablation study. The second experiment (see Figure2) compares same methods, but we apply weighting technique to all of them. We use RandK with $\mathrm{K}=10\%$ and non-i.i.d. data distribution, we observe consistent improvements in convergence across all methods – demonstrating that the weighting mechanism enhances robustness even in highly heterogeneous settings. This experimental validation highlights the significant advantage of setup (4) over conventional distributed learning approaches, particularly in challenging heterogeneous environments where traditional methods exhibit poor performance.

 We further analyze the evolution of client weights under Algorithm 1 in a heterogeneous setting, with full results shown in Figure 3. At initialization, all clients are assigned equal weights, reflecting no prior knowledge of their data quality or relevance. As training progresses, the weights rapidly diverge, adapting to the statistical heterogeneity of local datasets. Over time, each client's weight converges to a distinct, stable plateau – indicating that the system learns a consistent, data-driven importance score for every participant.

This convergence behavior reveals two key phases of the optimization process:

- (i) an early exploration phase, during which substantial weight adjustments occur as the algorithm identifies informative clients;
- (ii) a later stabilization phase, where weights remain nearly constant once the global model approaches a global optimum.

Figure 2: Weighting approach comparison.

Figure 3: Weights magnitudes for Algorithm 1 in **non-i.i.d.** data distribution setup.

Notably, significant reweighting ceases once the optimizer enters a neighborhood of a (local or global) minimum, suggesting that the weighting mechanism primarily acts during transient, high-gradient stages of training—precisely when client contributions are most discriminative.

7 Discussion

This study has introduced a method for federated learning, supported by comprehensive theoretical analysis and empirical validation. Theoretical guarantees were established for a range of relevant scenarios, including setups with exact local gradients, stochastic local oracles, and partial client participation. Experimental results demonstrated that the superiority of the proposed method over the baselines becomes more pronounced as the level of compression and data heterogeneity increases. This allows it to be concluded that two of the most important problems in federated learning – the communication bottleneck and heterogeneity – can be addressed concurrently, offering new potential for specific federated learning formulations. Additionally, the developed approach maintains performance comparable to baseline algorithms in homogeneous data settings and never requires the transmission of full gradients, thus further supporting its practical utility.

REFERENCES

- Ahmet Alacaoglu and Yura Malitsky. Stochastic variance reduction for variational inequality methods. In *Conference on Learning Theory*, pp. 778–816. PMLR, 2022.
- Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. Qsgd: Communication-efficient sgd via gradient quantization and encoding. *Advances in neural information processing systems*, 30, 2017.
- Dan Alistarh, Torsten Hoefler, Mikael Johansson, Nikola Konstantinov, Sarit Khirirat, and Cédric Renggli. The convergence of sparsified gradient methods. *Advances in Neural Information Processing Systems*, 31, 2018.
- Laith Alzubaidi, Jinglan Zhang, Amjad J Humaidi, Ayad Al-Dujaili, Ye Duan, Omran Al-Shamma, José Santamaría, Mohammed A Fadhel, Muthana Al-Amidie, and Laith Farhan. Review of deep learning: concepts, cnn architectures, challenges, applications, future directions. *Journal of big Data*, 8:1–74, 2021.
- Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzadenesheli, and Animashree Anandkumar. signsgd: Compressed optimisation for non-convex problems. In *International Conference on Machine Learning*, pp. 560–569. PMLR, 2018.
- Aleksandr Beznosikov and Alexander Gasnikov. Compression and data similarity: Combination of two techniques for communication-efficient solving of distributed variational inequalities. In *International Conference on Optimization and Applications*, pp. 151–162. Springer, 2022.
- Aleksandr Beznosikov, Peter Richtárik, Michael Diskin, Max Ryabinin, and Alexander Gasnikov. Distributed methods with compressed communication for solving variational inequalities, with theoretical guarantees. *Advances in Neural Information Processing Systems*, 35:14013–14029, 2022.
- Aleksandr Beznosikov, Samuel Horváth, Peter Richtárik, and Mher Safaryan. On biased compression for distributed learning. *Journal of Machine Learning Research*, 24(276):1–50, 2023a.
- Aleksandr Beznosikov, Boris Polyak, Eduard Gorbunov, Dmitry Kovalev, and Alexander Gasnikov. Smooth monotone stochastic variational inequalities and saddle point problems: A survey. *European Mathematical Society Magazine*, (127):15–28, 2023b.
- Aleksandr Beznosikov, Martin Takáč, and Alexander Gasnikov. Similarity, compression and local steps: three pillars of efficient communications for distributed variational inequalities. *arXiv* preprint arXiv:2302.07615, 2023c.
- Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimization methods for large-scale machine learning. *SIAM review*, 60(2):223–311, 2018.
- Xiaoyu Cao, Minghong Fang, Jia Liu, and Neil Zhenqiang Gong. Fltrust: Byzantine-robust federated learning via trust bootstrapping. *arXiv preprint arXiv:2012.13995*, 2020.
- Chih-Chung Chang and Chih-Jen Lin. Diabetes dataset (scaled version). LIBSVM Data Repository, 2011. URL https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary/diabetes_scale. Original data from National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), 1999.
- Yae Jee Cho, Jianyu Wang, and Gauri Joshi. Towards understanding biased client selection in federated learning. In *International Conference on Artificial Intelligence and Statistics*, pp. 10351–10375. PMLR, 2022.
- Paul Covington, Jay Adams, and Emre Sargin. Deep neural networks for youtube recommendations. In *Proceedings of the 10th ACM conference on recommender systems*, pp. 191–198, 2016.
- Enmao Diao, Jie Ding, and Vahid Tarokh. Heterofl: Computation and communication efficient federated learning for heterogeneous clients. *arXiv preprint arXiv:2010.01264*, 2020.

Eduard Gorbunov, Konstantin P Burlachenko, Zhize Li, and Peter Richtárik. Marina: Faster non-convex distributed learning with compression. In *International Conference on Machine Learning*, pp. 3788–3798. PMLR, 2021a.

- Eduard Gorbunov, Filip Hanzely, and Peter Richtárik. Local sgd: Unified theory and new efficient methods. In *International Conference on Artificial Intelligence and Statistics*, pp. 3556–3564. PMLR, 2021b.
- Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola, Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch sgd: Training imagenet in 1 hour. *arXiv preprint arXiv:1706.02677*, 2017.
- Tatsunori Hashimoto, Megha Srivastava, Hongseok Namkoong, and Percy Liang. Fairness without demographics in repeated loss minimization. In *International Conference on Machine Learning*, pp. 1929–1938. PMLR, 2018.
- Hadrien Hendrikx, Lin Xiao, Sebastien Bubeck, Francis Bach, and Laurent Massoulie. Statistically preconditioned accelerated gradient method for distributed optimization. In *International conference on machine learning*, pp. 4203–4227. PMLR, 2020.
- Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. Training compute-optimal large language models. *arXiv preprint arXiv:2203.15556*, 2022.
- Rustem Islamov, Samuel Horvath, Aurelien Lucchi, Peter Richtarik, and Eduard Gorbunov. Double momentum and error feedback for clipping with fast rates and differential privacy. *arXiv* preprint *arXiv*:2502.11682, 2025.
- Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive variance reduction. *Advances in neural information processing systems*, 26, 2013.
- Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. Advances and open problems in federated learning. *Foundations and trends® in machine learning*, 14(1–2):1–210, 2021.
- Sai Praneeth Karimireddy, Quentin Rebjock, Sebastian Stich, and Martin Jaggi. Error feedback fixes signsgd and other gradient compression schemes. In *International conference on machine learning*, pp. 3252–3261. PMLR, 2019.
- Sarit Khirirat, Hamid Reza Feyzmahdavian, and Mikael Johansson. Distributed learning with compressed gradients. *arXiv preprint arXiv:1806.06573*, 2018.
- Sarit Khirirat, Eduard Gorbunov, Samuel Horváth, Rustem Islamov, Fakhri Karray, and Peter Richtárik. Clip21: Error feedback for gradient clipping. *arXiv preprint arXiv:2305.18929*, 2023.
- Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. *arXiv preprint arXiv:1412.6980*, 2014.
- Jakub Konečný, H Brendan McMahan, Felix X Yu, Peter Richtárik, Ananda Theertha Suresh, and Dave Bacon. Federated learning: Strategies for improving communication efficiency. arXiv preprint arXiv:1610.05492, 2016.
- Galina M Korpelevich. The extragradient method for finding saddle points and other problems. *Matecon*, 12:747–756, 1976.
 - Dmitry Kovalev, Aleksandr Beznosikov, Ekaterina Borodich, Alexander Gasnikov, and Gesualdo Scutari. Optimal gradient sliding and its application to optimal distributed optimization under similarity. *Advances in Neural Information Processing Systems*, 35:33494–33507, 2022.
 - Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Chenning Li, Xiao Zeng, Mi Zhang, and Zhichao Cao. Pyramidfl: A fine-grained client selection framework for efficient federated learning. In *Proceedings of the 28th annual international conference on mobile computing and networking*, pp. 158–171, 2022.

- Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. Federated learning: Challenges, methods, and future directions. *IEEE signal processing magazine*, 37(3):50–60, 2020.
- Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and Zhihua Zhang. On the convergence of fedayg on non-iid data. *arXiv preprint arXiv:1907.02189*, 2019.
- Zhize Li, Hongyan Bao, Xiangliang Zhang, and Peter Richtárik. Page: A simple and optimal probabilistic gradient estimator for nonconvex optimization. In *International conference on machine learning*, pp. 6286–6295. PMLR, 2021.
- Dachao Lin, Yuze Han, Haishan Ye, and Zhihua Zhang. Stochastic distributed optimization under average second-order similarity: Algorithms and analysis. *Advances in Neural Information Processing Systems*, 36:1849–1862, 2023.
- Yu Malitsky. Projected reflected gradient methods for monotone variational inequalities. *SIAM Journal on Optimization*, 25(1):502–520, 2015.
- Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas. Communication-efficient learning of deep networks from decentralized data. In *Artificial intelligence and statistics*, pp. 1273–1282. PMLR, 2017.
- Ronak Mehta, Jelena Diakonikolas, and Zaid Harchaoui. Drago: Primal-dual coupled variance reduction for faster distributionally robust optimization. In *The Thirty-eighth Annual Conference on Neural Information Processing Systems*, 2024.
- Debin Meng, Xiaojiang Peng, Kai Wang, and Yu Qiao. Frame attention networks for facial expression recognition in videos. In *2019 IEEE international conference on image processing (ICIP)*, pp. 3866–3870. IEEE, 2019.
- Konstantin Mishchenko, Rustem Islamov, Eduard Gorbunov, and Samuel Horváth. Partially personalized federated learning: Breaking the curse of data heterogeneity. *arXiv preprint arXiv:2305.18285*, 2023.
- Konstantin Mishchenko, Eduard Gorbunov, Martin Takáč, and Peter Richtárik. Distributed learning with compressed gradient differences. *Optimization Methods and Software*, pp. 1–16, 2024.
- Mehryar Mohri, Gary Sivek, and Ananda Theertha Suresh. Agnostic federated learning. In *International conference on machine learning*, pp. 4615–4625. PMLR, 2019.
- Hongseok Namkoong and John C Duchi. Stochastic gradient methods for distributionally robust optimization with f-divergences. *Advances in neural information processing systems*, 29, 2016.
- Arkadi Nemirovski. Prox-method with rate of convergence o (1/t) for variational inequalities with lipschitz continuous monotone operators and smooth convex-concave saddle point problems. *SIAM Journal on Optimization*, 15(1):229–251, 2004.
- Yurii Nesterov. Dual extrapolation and its applications to solving variational inequalities and related problems. *Mathematical Programming*, 109(2):319–344, 2007.
- Hung T Nguyen, Vikash Sehwag, Seyyedali Hosseinalipour, Christopher G Brinton, Mung Chiang, and H Vincent Poor. Fast-convergent federated learning. *IEEE Journal on Selected Areas in Communications*, 39(1):201–218, 2020.
- Takayuki Nishio and Ryo Yonetani. Client selection for federated learning with heterogeneous resources in mobile edge. In *ICC 2019-2019 IEEE international conference on communications (ICC)*, pp. 1–7. IEEE, 2019.
 - Leonid Denisovich Popov. A modification of the arrow-hurwitz method of search for saddle points. *Mat. Zametki*, 28(5):777–784, 1980.

Mónica Ribero, Haris Vikalo, and Gustavo De Veciana. Federated learning under intermittent client availability and time-varying communication constraints. *IEEE Journal of Selected Topics in Signal Processing*, 17(1):98–111, 2022.

- Peter Richtárik, Igor Sokolov, and Ilyas Fatkhullin. Ef21: A new, simpler, theoretically better, and practically faster error feedback. *Advances in Neural Information Processing Systems*, 34: 4384–4396, 2021.
- Elsa Rizk, Stefan Vlaski, and Ali H Sayed. Optimal importance sampling for federated learning. In *ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, pp. 3095–3099. IEEE, 2021.
- Herbert Robbins and Sutton Monro. A stochastic approximation method. *The annals of mathematical statistics*, pp. 400–407, 1951.
- Frank Seide, Hao Fu, Jasha Droppo, Gang Li, and Dong Yu. 1-bit stochastic gradient descent and its application to data-parallel distributed training of speech dnns. In *Interspeech*, volume 2014, pp. 1058–1062. Singapore, 2014.
- Shai Shalev-Shwartz and Shai Ben-David. *Understanding machine learning: From theory to algorithms*. Cambridge university press, 2014.
- Shai Shalev-Shwartz, Ohad Shamir, Nathan Srebro, and Karthik Sridharan. Learnability, stability and uniform convergence. *The Journal of Machine Learning Research*, 11:2635–2670, 2010.
- Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan Catanzaro. Megatron-lm: Training multi-billion parameter language models using model parallelism. *arXiv preprint arXiv:1909.08053*, 2019.
- Virginia Smith, Chao-Kai Chiang, Maziar Sanjabi, and Ameet S Talwalkar. Federated multi-task learning. *Advances in neural information processing systems*, 30, 2017.
- Sebastian U Stich. Local sgd converges fast and communicates little. *arXiv preprint arXiv:1805.09767*, 2018.
- Sebastian U Stich, Jean-Baptiste Cordonnier, and Martin Jaggi. Sparsified sgd with memory. *Advances in neural information processing systems*, 31, 2018.
- Nikko Ström. Scalable distributed dnn training using commodity gpu cloud computing. 2015.
- Paul Tseng. A modified forward-backward splitting method for maximal monotone mappings. *SIAM Journal on Control and Optimization*, 38(2):431–446, 2000.
- Alexander Tyurin and Peter Richtárik. Dasha: Distributed nonconvex optimization with communication compression, optimal oracle complexity, and no client synchronization. *arXiv* preprint *arXiv*:2202.01268, 2022.
- Joost Verbraeken, Matthijs Wolting, Jonathan Katzy, Jeroen Kloppenburg, Tim Verbelen, and Jan S Rellermeyer. A survey on distributed machine learning. *Acm computing surveys (csur)*, 53(2): 1–33, 2020.
- Hongyi Wang, Mikhail Yurochkin, Yuekai Sun, Dimitris Papailiopoulos, and Yasaman Khazaeni. Federated learning with matched averaging. *arXiv preprint arXiv:2002.06440*, 2020.
- Haibo Yang, Minghong Fang, and Jia Liu. Achieving linear speedup with partial worker participation in non-iid federated learning. *arXiv preprint arXiv:2101.11203*, 2021.
- David Borisovich Yudin. Problem complexity and method efficiency in optimization. Wiley, 1983.
- Michael Zhang, Karan Sapra, Sanja Fidler, Serena Yeung, and Jose M Alvarez. Personalized federated learning with first order model optimization. *arXiv preprint arXiv:2012.08565*, 2020.

A ADDITIONAL EXPERIMENTS AND CLARIFICATIONS

A.1 ADDITIONAL CLARIFICATION ON IMAGE CLASSIFICATION PROBLEM

Our experiments are conducted on the CIFAR-10 dataset using a RESNET-18 architecture, with M=10 clients for federated training. We evaluate each sampling strategy under three representative data partitioning schemes: (**homo**) an *i.i.d.* homogeneous split, where each client receives a statistically identical sample of the data; (**hetero**) a heterogeneous configuration in which clients are assigned disjoint class subsets, simulating non-*i.i.d.* label distributions; and (**pathological**) a strongly heterogeneous regime, reflecting real-world imbalances through uneven data quantities and skewed class distributions across clients. This controlled setup enables a rigorous comparison of Algorithm 1 under increasingly realistic and challenging federated learning conditions.

A.2 ADDITIONAL EXPERIMENTS

To evaluate the performance of proposed method under tightly controlled conditions, we conduct additional experiments on the simplest task. We use the diabets_scaled (Chang & Lin, 2011) dataset for linear regression task consisting of 768 samples with 8 features and two classes. As baselines, we select the communication compression algorithm DIANA (Mishchenko et al., 2024); for uncompressed weighting method, we use ADI with identical compressor as Optimistic Extragradient (Popov, 1980) for formulation (4). Additionally, we compare ADI with MASHA (Beznosikov et al., 2022) for problem (4), which is an analogous method combining both weighting and compression. For all algorithms with compression we utilize RandK compressor.

To model different degrees of heterogeneity, we introduce parameter $\alpha_h \in [0,1]$. While emulating training on M=4 devices, we distribute data across clients as follows: the first node receives $\frac{1}{M} + \alpha_h \frac{M-1}{M}$ observations from the negative class and $\frac{1-\alpha_h}{M}$ positive observations. The remaining data is distributed uniformly across the other M-1 devices. Thus, $\alpha_h=1$ corresponds to complete heterogeneity where the negative class appears only on one device while the other devices contain exclusively positive class observations. Accordingly, $\alpha_h=0$ corresponds to complete data homogeneity.

Figure 4: Performance comparison for ADI across different heterogeneity levels.

The first series of experiments (Figure 4) compares ADI with the specified baselines under different levels of data heterogeneity (α_h equal to 0, 0.5, and 1). For all compression methods, we use RandK with K = 1. MASHA additionally transmits full gradients every 8 iterations. These experiments

confirm the superiority of weighting methods: while showing comparable performance on homogeneous data, ADI gains significant advantage over DIANA as heterogeneity increases. By comparing Optimistic Extragradient with other methods, we demonstrate the effectiveness of compression, particularly in combination with weighting approaches across varying heterogeneity levels. Finally, we present the evolution of ADI algorithm's weights across iterations. We observe that their dynamics can be unpredictable, particularly in the homogeneous setup. Yet this does not lead to performance degradation.

Figure 5: ADI and DIANA with RandK across different K with $\alpha_h=0.5$.

Experiments in Figure 5 compares ADI and DIANA at $\alpha_h=0.5$ with different compressor constants K (8,5,2,1). This comparison highlights that the advantage of weighting remains independent of the compression level even under aggressive compression as Rand1.

Figure 6: Weights stabilization in homogeneous and heterogeneous setups.

Finally, in Figure 6 we verified that ADI weights ultimately stabilize in both complete homogeneity and heterogeneity cases. Notably, in the homogeneous scenario, their pre-stabilization evolution does not affect performance.

B GENERAL INEQUALITIES AND NOTATION

 Suppose $x, y \in \mathbb{R}^d$, $\pi_1, \pi_2 \in \Delta$ and D_{KL} is Kullback–Leibler divergence. Then, following inequality holds:

$$\langle x, y \rangle \le \frac{\beta}{2} \|x\|^2 + \frac{1}{2\beta} \|y\|^2,$$
 (Fen)

$$||x+y||^2 \le (1+\alpha) ||x||^2 + (1+\alpha^{-1}) ||y||^2,$$
 (CS)

$$D_{KL}(\pi_1, \pi_2) \ge \frac{1}{2} \|\pi_1 - \pi_2\|_1^2 \ge \frac{1}{2} \|\pi_1 - \pi_2\|^2.$$
 (Pi)

Definition 2. Let $F: \mathbb{R}^d \to \mathbb{R}^d$ and \mathcal{D} be a compact subset of \mathbb{R}^d . Then, for any $z \in \mathbb{R}^d$ we define $\operatorname{\mathbf{Gap}}(z) = \max_{z' \in \mathcal{D}} \left\{ \langle F(z'), z - z' \rangle \right\}$.

Definition 3. Let $||z||_{bits}$ represents the amount of bits required to encode the vector $z \in \mathbb{R}^d$, b denotes the number of bits per floating point value, and d is the dimensionality of the problem (i.e., $bd = ||z||_{bits}$). Then for compression operator Q we define the expected density of compressed vector

$$q_{\omega} = \frac{\mathbb{E}\|\mathcal{Q}(z)\|}{bd}.$$

C AUXILIARY LEMMAS

Lemma 1 reflects the general fact from the theory of saddle point problems.

Lemma 1. If a function $f(x,y): \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$ is convex w.r.t. x and concave w.r.t. y, then target operator F for the min-max problem $\min_{x \in \mathcal{X}} \max_{y \in \mathcal{Y}} \{f(x,y)\}$ of the form

$$F(z) = \begin{pmatrix} \nabla_x f(x, y) \\ -\nabla_y f(x, y) \end{pmatrix}$$

is monotone e.i.,

$$\langle F(z_1) - F(z_2), z_1 - z_2 \rangle \ge 0$$
 for all $z_1, z_2 \in \mathcal{Z} = \mathcal{X} \times \mathcal{Y}$.

Proof. We start from the definition of monotonicity, given in the statement, and utilize the convexity and concavity of f:

$$\begin{split} \langle F(z_1) - F(z_2), z_1 - z_2 \rangle &= \langle \nabla_x f(x_1, y_1) - \nabla_x f(x_2, y_2), x_1 - x_2 \rangle \\ &- \langle \nabla_y f(x_1, y_1) - \nabla_y f(x_2, y_2), y_1 - y_2 \rangle \\ &= \langle \nabla_x f(x_1, y_1), x_1 - x_2 \rangle + \langle -\nabla_y f(x_1, y_1), y_1 - y_2 \rangle \\ &+ \langle \nabla_x f(x_2, y_2), x_2 - x_1 \rangle + \langle -\nabla_y f(x_2, y_2), y_2 - y_1 \rangle \\ &\geq f(x_1, y_1) - f(x_2, y_1) + f(x_1, y_2) - f(x_1, y_1) \\ &+ f(x_2, y_2) - f(x_1, y_2) + f(x_2, y_1) - f(x_2, y_2) = 0. \end{split}$$

The following Lemma 2 (Lemma 3 in (Alacaoglu & Malitsky, 2022)) justifies the interchange of the maximum and the expectation operators, which is crucial for transitioning from the descent lemma to the actual convergence criterion in the main theorem.

Lemma 2. Let $\mathcal{F} = \{\mathcal{F}_k\}_{k \geq be}$ a filtration u_k a stochastic process adopted to \mathcal{F} with $\mathbb{E}[u_{k+1}|\mathcal{F}_k] = 0$. Then for any $K \in \mathbb{N}$, $z_a \in \mathcal{Z}$ and compact set $\mathcal{D} \subset \mathcal{Z}$ the following holds:

$$\mathbb{E}\left[\max_{z\in\mathcal{D}}\sum_{k=0}^{K-1}\langle u_{k+1}, z\rangle\right] \le \max_{z\in\mathcal{D}}\left(\frac{1}{2}\|z_a - z\|^2 + \frac{1}{2}\sum_{k=0}^{K-1}\mathbb{E}\|u_{k+1}\|^2\right). \tag{5}$$

Proof. Let $v_0 = z_a$, $v_{k+1} = v_k + u_{k+1}$. Since $u_k - \mathcal{F}_{\parallel}$ -measurable, $v_k - \mathcal{F}_{\parallel}$ -measurable as well.

Then we write

$$||v_{k+1} - z||^2 = ||v_k - z||^2 + 2\langle u_{k+1}, v_k - z \rangle + ||u_{k+1}||^2.$$

Summing over $k = 0, 1, \dots, K - 1$ we get

$$\sum_{k=0}^{K-1} 2\langle u_{k+1}, z - v_k \rangle \le ||v_0 - z||^2 + \sum_{k=0}^{K-1} ||u_{k+1}||^2.$$

Maximizing and taking expectation we obtain

$$\mathbb{E}\left[\max_{z \in \mathcal{D}} \sum_{k=0}^{K-1} \langle u_{k+1}, z \rangle - \sum_{k=0}^{K-1} \langle u_{k+1}, v_k \rangle\right] \leq \frac{1}{2} \max_{z \in \mathcal{D}} \|v_0 - z\|^2 + \mathbb{E}\left[\frac{1}{2} \sum_{k=0}^{K-1} \|u_{k+1}\|^2\right].$$

Finally, due to \mathcal{F} -measurability of v_k and by the tower property of conditional expectation, the second sum on the left-hand side vanishes. It concludes the proof.

D MISSING PROOFS

Now we are ready to start the main analysis. We proceed with the descent Lemma 3.

Lemma 3. Let $\gamma_{\pi} = \gamma_{\theta} = \gamma$. Then, after K iterations of Algorithm 1 solving problem (4) the following holds:

$$\begin{array}{lcl} 2\gamma \langle F(z^{k+1}), z^{k+1} - z \rangle & \leq & \left(2D_{KL}(\pi, \pi^k) - 2D_{KL}(\pi, \pi^{k+1}) \right) \\ & & + \left(\|\theta^k - \theta\|^2 - \|\theta^{k+1} - \theta\|^2 \right) \end{array}$$

$$+ \left(2\gamma \alpha \langle F(z^{k}) - F(z^{k-1}), z - z^{k} \rangle \right.$$

$$-2\gamma \langle F(z^{k+1}) - F(z^{k}), z - z^{k+1} \rangle \left. \right)$$

$$-\frac{1}{2} \|\pi^{k+1} - \pi^{k}\|^{2} - \frac{1}{2} \|\theta^{k+1} - \theta^{k}\|^{2}$$

$$+2\gamma^{2} \|p^{k} - p^{k-1}\|^{2} + 2\gamma^{2} \|g^{k} - g^{k-1}\|^{2},$$

where
$$z = \begin{pmatrix} \theta \\ \pi \end{pmatrix}$$
 and $F(z^k) = \begin{pmatrix} g^k \\ -p^k \end{pmatrix}$.

Proof. We proceed with algorithm steps evaluation.

Mirror descent step provides:

$$0 \leq \langle -\gamma \hat{p}^{k} + \nabla \psi(\pi^{k+1}) - \nabla \psi(\pi^{k}), \pi - \pi^{k+1} \rangle = -\gamma \langle \hat{p}^{k}, \pi - \pi^{k+1} \rangle + D_{KL}(\pi, \pi^{k}) - D_{KL}(\pi, \pi^{k+1}) - D_{KL}(\pi^{k+1}, \pi^{k}).$$

Rearranging it we reach:

$$D_{KL}(\pi, \pi^{k+1}) \leq D_{KL}(\pi, \pi^{k}) - D_{KL}(\pi^{k+1}, \pi^{k}) - \gamma \langle \hat{p}^{k}, \pi - \pi^{k+1} \rangle$$

$$= D_{KL}(\pi, \pi^{k}) - D_{KL}(\pi^{k+1}, \pi^{k}) - \gamma (1 + \alpha) \langle p^{k}, \pi - \pi^{k+1} \rangle$$

$$+ \gamma \alpha \langle p^{k-1}, \pi - \pi^{k+1} \rangle$$

$$= D_{KL}(\pi, \pi^{k}) - D_{KL}(\pi^{k+1}, \pi^{k}) - \gamma \langle p^{k}, \pi - \pi^{k+1} \rangle$$

$$- \gamma \alpha \langle p^{k} - p^{k-1}, \pi - \pi^{k+1} \rangle$$

$$= D_{KL}(\pi, \pi^{k}) - D_{KL}(\pi^{k+1}, \pi^{k}) - \gamma \langle p^{k} - p^{k+1}, \pi - \pi^{k+1} \rangle$$

$$- \gamma \langle p^{k+1}, \pi - \pi^{k+1} \rangle - \gamma \alpha \langle p^{k} - p^{k-1}, \pi - \pi^{k} \rangle$$

$$- \gamma \alpha \langle p^{k} - p^{k-1}, \pi^{k} - \pi^{k+1} \rangle. \tag{6}$$

 θ update rule implies:

$$\begin{split} \|\theta^{k+1} - \theta\|^{2} & \leq \|\theta^{k} - \theta\|^{2} + \|\theta^{k+1} - \theta^{k}\|^{2} + 2\langle\theta^{k+1} - \theta^{k}, \theta^{k} - \theta\rangle \\ & = \|\theta^{k} - \theta\|^{2} - \|\theta^{k+1} - \theta^{k}\|^{2} + 2\langle\theta^{k+1} - \theta^{k}, \theta^{k+1} - \theta\rangle \\ & = \|\theta^{k} - \theta\|^{2} - \|\theta^{k+1} - \theta^{k}\|^{2} + 2\gamma\langle\hat{g}^{k}, \theta - \theta^{k+1}\rangle \\ & = \|\theta^{k} - \theta\|^{2} - \|\theta^{k+1} - \theta^{k}\|^{2} + 2\gamma(1 + \alpha)\langle g^{k}, \theta - \theta^{k+1}\rangle \\ & -2\gamma\alpha\langle g^{k-1}, \theta - \theta^{k+1}\rangle \\ & = \|\theta^{k} - \theta\|^{2} - \|\theta^{k+1} - \theta^{k}\|^{2} + 2\gamma\langle g^{k}, \theta - \theta^{k+1}\rangle \\ & +2\gamma\alpha\langle g^{k} - g^{k-1}, \theta - \theta^{k+1}\rangle \\ & = \|\theta^{k} - \theta\|^{2} - \|\theta^{k+1} - \theta^{k}\|^{2} + 2\gamma\langle g^{k} - g^{k+1}, \theta - \theta^{k+1}\rangle \\ & +2\gamma\langle g^{k+1}, \theta - \theta^{k+1}\rangle + 2\gamma\alpha\langle g^{k} - g^{k-1}, \theta - \theta^{k}\rangle \\ & +2\gamma\alpha\langle g^{k} - g^{k-1}, \theta^{k} - \theta^{k+1}\rangle. \end{split}$$
(7)

Summing 2(6) and (7) we get:

$$\begin{split} & 2D_{KL}(\pi,\pi^{k+1}) + \|\theta^{k+1} - \theta\|^2 \\ & \leq 2D_{KL}(\pi,\pi^k) + \|\theta^k - \theta\|^2 - 2D_{KL}(\pi^{k+1},\pi^k) - \|\theta^{k+1} - \theta^k\|^2 \\ & - 2\gamma \langle p^k - p^{k+1}, \pi - \pi^{k+1} \rangle + 2\gamma \langle g^k - g^{k+1}, \theta - \theta^{k+1} \rangle \\ & - 2\gamma \langle p^{k+1}, \pi - \pi^{k+1} \rangle + 2\gamma \langle g^{k+1}, \theta - \theta^{k+1} \rangle \\ & - 2\gamma \alpha \langle p^k - p^{k-1}, \pi - \pi^k \rangle + 2\gamma \alpha \langle g^k - g^{k-1}, \theta - \theta^k \rangle \\ & - 2\gamma \alpha \langle p^k - p^{k-1}, \pi^k - \pi^{k+1} \rangle + 2\gamma \alpha \langle g^k - g^{k-1}, \theta^k - \theta^{k+1} \rangle. \end{split}$$

Now we rewrite last inequality using $z=\begin{pmatrix}\theta\\\pi\end{pmatrix}$ and $F(z^k)=\begin{pmatrix}g^k\\-p^k\end{pmatrix}$.

$$2D_{KL}(\pi, \pi^{k+1}) + \|\theta^{k+1} - \theta\|^2$$

$$\leq 2D_{KL}(\pi, \pi^{k}) + \|\theta^{k} - \theta\|^{2} - 2D_{KL}(\pi^{k+1}, \pi^{k}) - \|\theta^{k+1} - \theta^{k}\|^{2}$$

$$+2\gamma \langle F(z^{k}) - F(z^{k+1}), z - z^{k+1} \rangle + 2\gamma \langle F(z^{k+1}), z - z^{k+1} \rangle$$

$$+2\gamma \alpha \langle F(z^{k}) - F(z^{k-1}), z - z^{k} \rangle$$

$$-2\gamma \alpha \langle p^{k} - p^{k-1}, \pi^{k} - \pi^{k+1} \rangle + 2\gamma \alpha \langle g^{k} - g^{k-1}, \theta^{k} - \theta^{k+1} \rangle.$$

Pinsker's inequality (Pi) and (CS) with $\beta = 2\gamma$ provides

$$\begin{split} &2D_{KL}(\pi,\pi^{k+1}) + \|\theta^{k+1} - \theta\|^2 \\ &\leq 2D_{KL}(\pi,\pi^k) + \|\theta^k - \theta\|^2 - \|\pi^{k+1} - \pi^k\|^2 - \|\theta^{k+1} - \theta^k\|^2 \\ &\quad + 2\gamma \langle F(z^k) - F(z^{k+1}), z - z^{k+1} \rangle + 2\gamma \langle F(z^{k+1}), z - z^{k+1} \rangle \\ &\quad + 2\gamma \alpha \langle F(z^k) - F(z^{k-1}), z - z^k \rangle \\ &\quad + 2\alpha \gamma^2 \|p^k - p^{k-1}\|^2 + \frac{\alpha}{2} \|\pi^k - \pi^{k+1}\|_1^2 \\ &\quad + 2\alpha \gamma^2 \|g^k - g^{k-1}\|^2 + \frac{\alpha}{2} \|\theta^k - \theta^{k+1}\|^2. \end{split}$$

Finally, rearranging brings us to

$$\begin{split} & 2\gamma \langle F(z^{k+1}), z^{k+1} - z \rangle \\ & \leq \left(2D_{KL}(\pi, \pi^k) - 2D_{KL}(\pi, \pi^{k+1}) \right) + \left(\|\theta^k - \theta\|^2 - \|\theta^{k+1} - \theta\|^2 \right) \\ & + \left(2\gamma\alpha \langle F(z^k) - F(z^{k-1}), z - z^k \rangle - 2\gamma \langle F(z^{k+1}) - F(z^k), z - z^{k+1} \rangle \right) \\ & - \left(1 - \frac{\alpha}{2} \right) \|\pi^{k+1} - \pi^k\|_1^2 - \left(1 - \frac{\alpha}{2} \right) \|\theta^{k+1} - \theta^k\|^2 \\ & + 2\alpha\gamma^2 \|p^k - p^{k-1}\|^2 + 2\alpha\gamma^2 \|g^k - g^{k-1}\|^2. \end{split}$$

D.1 ANALYSIS IN EXACT LOCAL GRADIENTS SETTING

Let us introduce the convergence criterion. In saddle point problems under the convex-concave setting convergence measures in term of the **Gap** function (Definition 2). Since ADI incorporates possibly randomized compression operator \mathcal{Q} , the convergence guaranties for it is based on $\mathbb{E}\left[\mathbf{Gap}(z)\right]$. This guaranties are provided by Theorem 1.

Theorem 1. Let Assumptions 1, 2, 3 hold and $\alpha = 1$, $\beta = \frac{1}{\omega}$, $H = 32\gamma^2\omega^2$, $N = 7\gamma^2\omega$, $\gamma_{\pi} = \gamma_{\theta} = \gamma \leq \gamma_0 = \min\left\{\frac{1}{2\tilde{L}}\sqrt{\frac{1}{96\omega^3 + 14M\omega^2}}, \sqrt{\frac{1}{2}\frac{1}{4M\tilde{L}^2 + 576\frac{a\omega^3}{M}L^2 + 28\omega^2L^2}}\right\}$. Then, after K iterations of Algorithm 1 with unbiased compressor 1 Q and exact local gradients solving problem (4) the following holds:

$$\mathbb{E}\left[\mathbf{Gap}(\overline{z}_K)\right] \leq \frac{V}{2\gamma K},$$

where

$$\begin{split} V &= \mathbb{E} \bigg[\max_{z \in \mathcal{D}} \Big\{ 4D_{KL}(\pi, \pi^1) + 2\|\theta^1 - \theta\|^2 + 2\gamma \langle F(z^1) - F(z^0), z - z^1 \rangle \Big\} \\ &+ H \sum_{k=0}^1 \sum_{i=1}^M \left\| \tilde{f}_i^k - h_i^k \right\|^2 + N \sum_{k=0}^1 \left\| \tilde{f}^k - h^k \right\|^2 \bigg] \quad \textit{and} \quad \overline{z}_K \quad = \quad \frac{1}{K} \sum_{k=1}^K z^k. \end{split}$$

Proof. We proceed with using the unbiasedness (2) of compressor Q:

$$\mathbb{E}\left[F(z^k)|z^k\right] = \mathbb{E}\left[\begin{pmatrix}g^k\\p^k\end{pmatrix}\left|z^k\right| = \mathbb{E}\left[\begin{pmatrix}h^k + \sum_{i=1}^M \mathcal{Q}(\tilde{f}_i^k - h_i^k)\\p^k\end{pmatrix}\left|z^k\right| = \begin{pmatrix}\tilde{f}^k\\p^k\end{pmatrix} \stackrel{\text{def}}{=} \overline{F}(z^k),$$

where $\tilde{f}^k = \sum_{i=1}^M \tilde{f}^k_i = \sum_{i=1}^M \pi^k_i \nabla f_i(\theta^k)$. Considering $f(\theta,\pi) = \sum_{i=1}^M \pi_i f_i(\theta)$ we note that it is convex with respect to θ due to convexity of all f_i . At the same time, f is linear, and therefore

concave with respect to all π_i . Then, noting that $\overline{F}(z) = \begin{pmatrix} \nabla_{\theta} f(\theta, \pi) \\ -\nabla_{\pi} f(\theta, \pi) \end{pmatrix}$, we invoke Lemma 1 to establish its monotonicity.

Our objective is to obtain convergence with respect to $\operatorname{\bf Gap}(z) = \max_{x \in \mathcal D} \left\{ \langle \overline F(x), z - x \rangle \right\}$. Hence, the next step is conditioning the result of Lemma 3 on z^{k+1} , using $\alpha = 1$ and summing over k = 1 to K,

$$\begin{split} &2\gamma\sum_{k=1}^{K}\langle\overline{F}(z^{k+1}),z^{k+1}-z\rangle\\ &\leq \sum_{k=1}^{K}\Big[\left(2D_{KL}(\pi,\pi^{k})-2D_{KL}(\pi,\pi^{k+1})\right)+\left(\|\theta^{k}-\theta\|^{2}-\|\theta^{k+1}-\theta\|^{2}\right)\\ &+\left(2\gamma\langle F(z^{k})-F(z^{k-1}),z-z^{k}\rangle-2\gamma\langle\overline{F}(z^{k+1})-F(z^{k}),z-z^{k+1}\rangle\right)\\ &-\frac{1}{2}\|\pi^{k+1}-\pi^{k}\|_{1}^{2}-\frac{1}{2}\|\theta^{k+1}-\theta^{k}\|^{2}\\ &+2\gamma^{2}\|p^{k}-p^{k-1}\|^{2}+2\gamma^{2}\|g^{k}-g^{k-1}\|^{2}\Big]\\ &=\left(2D_{KL}(\pi,\pi^{1})-2D_{KL}(\pi,\pi^{K+1})\right)+\left(\|\theta^{1}-\theta\|^{2}-\|\theta^{K+1}-\theta\|^{2}\right)\\ &+\left(2\gamma\langle F(z^{1})-F(z^{0}),z-z^{1}\rangle-2\gamma\langle\overline{F}(z^{K+1})-F(z^{K}),z-z^{K+1}\rangle\right)\\ &+\sum_{k=1}^{K-1}\left[2\gamma\langle\overline{F}(z^{k+1})-F(z^{k+1}),z-z^{k+1}\rangle\right]\\ &+\sum_{k=1}^{K}\left[-\frac{1}{2}\|\pi^{k+1}-\pi^{k}\|_{1}^{2}-\frac{1}{2}\|\theta^{k+1}-\theta^{k}\|^{2}\\ &+2\gamma^{2}\|p^{k}-p^{k-1}\|^{2}+2\gamma^{2}\|g^{k}-g^{k-1}\|^{2}\right]. \end{split}$$

Maximizing obtained inequality over compact set $z \in \mathcal{D}$ and taking full expectation, we get

$$2\gamma \mathbb{E} \left[\max_{z \in \mathcal{D}} \left\{ \sum_{k=1}^{K} \langle \overline{F}(z^{k+1}), z^{k+1} - z \rangle \right\} \right] \leq \mathbb{E} \left[\max_{z \in \mathcal{D}} \left\{ \left(2D_{KL}(\pi, \pi^{1}) - 2D_{KL}(\pi, \pi^{K+1}) \right) + \left(\|\theta^{1} - \theta\|^{2} - \|\theta^{K+1} - \theta\|^{2} \right) + \left(2\gamma \langle F(z^{1}) - F(z^{0}), z - z^{1} \rangle - 2\gamma \langle \overline{F}(z^{K+1}) - F(z^{K}), z - z^{K+1} \rangle \right) + \sum_{k=1}^{K-1} 2\gamma \langle \overline{F}(z^{k+1}) - F(z^{k+1}), z - z^{k+1} \rangle \right\} + \sum_{k=1}^{K} \left[-\frac{1}{2} \|\pi^{k+1} - \pi^{k}\|_{1}^{2} - \frac{1}{2} \|\theta^{k+1} - \theta^{k}\|^{2} + 2\gamma^{2} \|p^{k} - p^{k-1}\|^{2} + 2\gamma^{2} \|g^{k} - g^{k-1}\|^{2} \right] \right]. \quad (8)$$

Several next steps evaluate different terms of (8), starting with the LHS. Due to monotonicity of \overline{F} ,

$$\mathbf{Gap}\left(\sum_{k=1}^{K} z^{k}\right) \leq \max_{z \in \mathcal{D}} \left\{ \left\langle \sum_{k=1}^{K} \overline{F}(z^{k}), z^{k} - z \right\rangle \right\}.$$

Combined with the positive homogeneity of the Gap function, for $\overline{z}_K = \frac{1}{K} \sum_{k=1}^K z^k$ it yields

$$K$$
Gap $(\overline{z}_K) \le \max_{z \in \mathcal{D}} \left\{ \left\langle \sum_{k=1}^K \overline{F}(z^k), z^k - z \right\rangle \right\}.$ (9)

We apply Lemma 2 to bound the first sum on the RHS of (8):

$$2\mathbb{E}\left[\max_{z\in\mathcal{D}}\left\{\sum_{k=1}^{K-1}\left\langle\gamma\left(\overline{F}(z^{k+1})-F(z^{k+1})\right),z-z^{k+1}\right\rangle\right\}\right]$$

$$=2\mathbb{E}\left[\max_{z\in\mathcal{D}}\left\{\sum_{k=1}^{K-1}\left\langle\gamma\left(\overline{F}(z^{k+1})-F(z^{k+1})\right),z\right\rangle\right\}\right]$$

$$-\sum_{k=1}^{K-1}\mathbb{E}\left\langle\gamma\left(\overline{F}(z^{k+1})-F(z^{k+1})\right),z^{k+1}\right\rangle$$

$$=2\mathbb{E}\left[\max_{z\in\mathcal{D}}\left\{\sum_{k=1}^{K-1}\left\langle\gamma\left(\overline{F}(z^{k+1})-F(z^{k+1})\right),z\right\rangle\right\}\right]-0$$

$$\leq\max_{z\in\mathcal{D}}\left(\|z_{a}-z\|^{2}\right)+\gamma^{2}\sum_{k=1}^{K-1}\mathbb{E}\left\|\overline{F}(z^{k+1})-F(z^{k+1})\right\|^{2}.$$
(10)

We continue with evaluating of the last term applying properties (2) of unbiased compressor Q:

$$\mathbb{E} \|\overline{F}(z^{k}) - F(z^{k})\|^{2} = \mathbb{E} \left\| \begin{pmatrix} \tilde{f}^{k} \\ p^{k} \end{pmatrix} - \begin{pmatrix} h^{k} + \sum_{i=1}^{M} \mathcal{Q}(\tilde{f}^{k}_{i} - h^{k}_{i}) \end{pmatrix} \right\|^{2}$$

$$= \mathbb{E} \left\| \sum_{i=1}^{M} \mathcal{Q}(\tilde{f}^{k}_{i} - h^{k}_{i}) - (\tilde{f}^{k} - h^{k}) \right\|^{2}$$

$$= \sum_{i=1}^{M} \mathbb{E} \left\| \mathcal{Q}(\tilde{f}^{k}_{i} - h^{k}_{i}) \right\|^{2} + \mathbb{E} \left\| \tilde{f}^{k} - h^{k} \right\|^{2}$$

$$-2 \sum_{i=1}^{M} \mathbb{E} \left\langle \mathcal{Q}(\tilde{f}^{k}_{i} - h^{k}_{i}), \tilde{f}^{k} - h^{k} \right\rangle$$

$$\leq \omega \sum_{i=1}^{M} \mathbb{E} \left\| \tilde{f}^{k}_{i} - h^{k}_{i} \right\|^{2} - \mathbb{E} \left\| \tilde{f}^{k} - h^{k} \right\|^{2}. \tag{11}$$

Finally, using (Pi), the definition of $z=\begin{pmatrix}\theta\\\pi\end{pmatrix}$ and choosing $z_a=z^1-z^{k+1}$, we estimate

$$\max_{z \in \mathcal{D}} \left\{ 2D_{KL}(\pi, \pi^{1}) + \|\theta^{1} - \theta\|^{2} \right\} \geq \max_{z \in \mathcal{D}} \left\{ \|\pi^{1} - \pi\|^{2} + \|\theta^{1} - \theta\|^{2} \right\}$$

$$= \max_{z \in \mathcal{D}} \left\{ \|z_{a} - z\|^{2} \right\}. \tag{12}$$

Introducing new notation $v^k = \mathbb{E} \left\| \tilde{f}^k - h^k \right\|^2$, $w^k = \sum_{i=1}^M \mathbb{E} \left\| \tilde{f}^k_i - h^k_i \right\|^2$ and combining (10),(11) with (12) we derive:

$$2\mathbb{E}\left[\max_{z\in\mathcal{D}}\left\{\sum_{k=1}^{K-1}\left\langle\gamma\left(\overline{F}(z^{k+1})-F(z^{k+1})\right),z-z^{k+1}\right\rangle\right\}\right]$$

$$\leq \max_{z\in\mathcal{D}}\left\{2D_{KL}(\pi,\pi^{1})+\|\theta^{1}-\theta\|^{2}\right\}+\gamma^{2}\sum_{k=2}^{K}\left(\omega w^{k}-v^{k}\right). \tag{13}$$

After that, we estimate $2\gamma^2 ||p^k - p^{k-1}||^2$ in (8) via Assumption 1:

$$2\gamma^{2}\|p^{k} - p^{k-1}\|^{2} \le 2\gamma^{2}M\tilde{L}^{2}\|\theta^{k} - \theta^{k-1}\|^{2}.$$
 (14)

Last term we want evaluate in (8) is $2\gamma^2 ||g^k - g^{k-1}||^2$:

$$2\gamma^2 \mathbb{E} \|g^k - g^{k-1}\|^2$$

$$= 2\gamma^{2} \mathbb{E} \| h^{k} + \hat{\Delta}^{k} - h^{k-1} - \hat{\Delta}^{k-1} \|^{2}$$

$$= 2\gamma^{2} \mathbb{E} \left\| \sum_{i=1}^{M} \left(h_{i}^{k} - h_{i}^{k-1} \right) + \sum_{i=1}^{M} \mathcal{Q} \left(\tilde{f}_{i}^{k} - h_{i}^{k} \right) - \sum_{i=1}^{M} \mathcal{Q} \left(\tilde{f}_{i}^{k-1} - h_{i}^{k-1} \right) \right\|^{2}$$

$$= 2\gamma^{2} \mathbb{E} \left\| \beta \sum_{i=1}^{M} \mathcal{Q} \left(\tilde{f}_{i}^{k-1} - h_{i}^{k-1} \right) + \sum_{i=1}^{M} \mathcal{Q} \left(\tilde{f}_{i}^{k} - h_{i}^{k} \right) - \sum_{i=1}^{M} \mathcal{Q} \left(\tilde{f}_{i}^{k-1} - h_{i}^{k-1} \right) \right\|^{2}$$

$$= 2\gamma^{2} \mathbb{E} \left\| \sum_{i=1}^{M} \mathcal{Q} \left(\tilde{f}_{i}^{k} - h_{i}^{k} \right) - (1 - \beta) \sum_{i=1}^{M} \mathcal{Q} \left(\tilde{f}_{i}^{k-1} - h_{i}^{k-1} \right) \right\|^{2}$$

$$= 2\gamma^{2} \mathbb{E} \left\| \sum_{i=1}^{M} \mathcal{Q} \left(\tilde{f}_{i}^{k} - h_{i}^{k} \right) \right\|^{2} + 4\gamma^{2} (1 - \beta)^{2} \mathbb{E} \left\| \sum_{i=1}^{M} \mathcal{Q} \left(\tilde{f}_{i}^{k-1} - h_{i}^{k-1} \right) \right\|^{2}. \tag{15}$$

Terms differ only in their indices, which makes it convenient to analyze them separately. Here we utilize cross-device compressor independence and unbiasedness once again:

$$\mathbb{E} \left\| \sum_{i=1}^{M} \mathcal{Q} \left(\tilde{f}_{i}^{k} - h_{i}^{k} \right) \right\|^{2} = \sum_{i=1}^{M} \mathbb{E} \left\| \mathcal{Q} \left(\tilde{f}_{i}^{k} - h_{i}^{k} \right) \right\|^{2} + \sum_{i \neq j} \mathbb{E} \left\langle \mathcal{Q} \left(\tilde{f}_{i}^{k} - h_{i}^{k} \right), \mathcal{Q} \left(\tilde{f}_{j}^{k} - h_{j}^{k} \right) \right\rangle \\
= \sum_{i=1}^{M} \omega \mathbb{E} \left\| \tilde{f}_{i}^{k} - h_{i}^{k} \right\|^{2} + \sum_{i \neq j} \mathbb{E} \left\langle \mathcal{Q} \left(\tilde{f}_{i}^{k} - h_{i}^{k} \right), \mathcal{Q} \left(\tilde{f}_{j}^{k} - h_{j}^{k} \right) \right\rangle \\
= \omega \sum_{i=1}^{M} \mathbb{E} \left\| \tilde{f}_{i}^{k} - h_{i}^{k} \right\|^{2} + \sum_{i \neq j} \mathbb{E} \left\langle \tilde{f}_{i}^{k} - h_{i}^{k}, \tilde{f}_{j}^{k} - h_{j}^{k} \right\rangle \\
= (\omega - 1) \sum_{i=1}^{M} \mathbb{E} \left\| \tilde{f}_{i}^{k} - h_{i}^{k} \right\|^{2} + \mathbb{E} \left\| \tilde{f}^{k} - h^{k} \right\|^{2} \\
= (\omega - 1) w^{k} + v^{k}. \tag{16}$$

Substituting (16) into (15) we reach

$$2\gamma^{2}\mathbb{E}\|g^{k} - g^{k-1}\|^{2} = 4\gamma^{2}(\omega - 1)\left(w^{k} + (1 - \beta)^{2}w^{k-1}\right) + 4\gamma^{2}\left(v^{k} + (1 - \beta)^{2}v^{k-1}\right). \tag{17}$$

Finally, we evaluate the sum:

$$2\gamma^{2} \sum_{k=1}^{K} \mathbb{E} \|g^{k} - g^{k-1}\|^{2}$$

$$= 4\gamma^{2} \sum_{k=1}^{K} \left[(\omega - 1)w^{k} + v^{k} \right] + 4\gamma^{2} (1 - \beta)^{2} \sum_{k=1}^{K} \left[(\omega - 1)w^{k-1} + v^{k-1} \right]$$

$$= 4\gamma^{2} \sum_{k=1}^{K} \left[(\omega - 1)w^{k} + v^{k} \right] + 4\gamma^{2} (1 - \beta)^{2} \sum_{k=0}^{K-1} \left[(\omega - 1)w^{k} + v^{k} \right]$$

$$= 4\gamma^{2} (1 + (1 - \beta)^{2}) \left[\sum_{k=0}^{K} (\omega - 1)w^{k} + v^{k} \right]$$

$$-4\gamma^{2} (1 - \beta) \left[(\omega - 1)w^{K} + v^{K} \right]$$

$$-4\gamma^{2} \left[(\omega - 1)w^{0} + v^{0} \right]. \tag{18}$$

Substituting (18), (14), (13) and (9) into (8),

$$2\gamma K \mathbb{E}\left[\mathbf{Gap}(\overline{z}_K)\right] \leq \mathbb{E}\left[\max_{z\in\mathcal{D}}\left\{\left(4D_{KL}(\pi,\pi^1) - 2D_{KL}(\pi,\pi^{K+1})\right) + \left(2\|\theta^1 - \theta\|^2 - \|\theta^{K+1} - \theta\|^2\right)\right]\right]$$

$$\begin{aligned} & + \left(2\gamma \langle F(z^1) - F(z^0), z - z^1 \rangle - 2\gamma \langle \overline{F}(z^{K+1}) - F(z^K), z - z^{K+1} \rangle \right) \Big\} \\ & + \left(2\gamma \langle F(z^1) - F(z^0), z - z^1 \rangle - 2\gamma \langle \overline{F}(z^{K+1}) - F(z^K), z - z^{K+1} \rangle \right) \Big\} \\ & + 4\gamma^2 (1 - \beta) [(\omega - 1) w^K + v^K] - 4\gamma^2 [(\omega - 1) w^0 + v^0] \\ & + \gamma^2 \sum_{k=2}^K \left(\omega w^k - v^k\right) + 4\gamma^2 (1 + (1 - \beta)^2) \sum_{k=0}^K \left[(\omega - 1) w^k + v^k\right] \\ & + \sum_{k=1}^K \left[-\frac{1}{2} \|\pi^{k+1} - \pi^k\|_1^2 - \left(\frac{1}{2} - 2\gamma^2 M \tilde{L}^2\right) \|\theta^{k+1} - \theta^k\|^2 \right] \Big]. \end{aligned}$$

Using (11) as $\omega w^k - v^k \ge 0$ and $0 < \beta < 1$, and introducing

$$\Xi_{K} = \max_{z \in \mathcal{D}} \left\{ \left(4D_{KL}(\pi, \pi^{1}) - 2D_{KL}(\pi, \pi^{K+1}) \right) + \left(2\|\theta^{1} - \theta\|^{2} - \|\theta^{K+1} - \theta\|^{2} \right) + \left(2\gamma \langle F(z^{1}) - F(z^{0}), z - z^{1} \rangle \right) \\ v - 2\gamma \langle \overline{F}(z^{K+1}) - F(z^{K}), z - z^{K+1} \rangle \right) \right\} \\ -4\gamma^{2} (1 - \beta) [(\omega - 1)w^{K} + v^{K}] - 4\gamma^{2} [(\omega - 1)w^{0} + v^{0}],$$
(19)

we can rewrite:

$$2\gamma K \mathbb{E} \left[\mathbf{Gap}(\overline{z}_{K}) \right] \leq \mathbb{E} \left[\Xi_{K} + \left(2\|\theta^{1} - \theta\|^{2} - \|\theta^{K+1} - \theta\|^{2} \right) + \left(2\gamma \langle F(z^{1}) - F(z^{0}), z - z^{1} \rangle - 2\gamma \langle \overline{F}(z^{K+1}) - F(z^{K}), z - z^{K+1} \rangle \right) \right] + \sum_{k=0}^{K} \left[9\omega \gamma^{2} w^{k} + 7\gamma^{2} v^{k} \right] + \sum_{k=1}^{K} \left[-\frac{1}{2} \|\pi^{k+1} - \pi^{k}\|_{1}^{2} - \left(\frac{1}{2} - 2\gamma^{2} M \tilde{L}^{2} \right) \|\theta^{k+1} - \theta^{k}\|^{2} \right] \right]. (20)$$

Now we estimate w^k and v^k . Let us begin with w^k :

$$w^{k} = \sum_{i=1}^{M} \mathbb{E} \|\tilde{f}_{i}^{k} - h_{i}^{k}\|^{2} = \sum_{i=1}^{M} \mathbb{E} \|\tilde{f}_{i}^{k} - h_{i}^{k-1} - \beta \mathcal{Q}(\tilde{f}_{i}^{k-1} - h_{i}^{k-1})\|^{2}$$

$$= \sum_{i=1}^{M} \mathbb{E} \| \left(\tilde{f}_{i}^{k} - \tilde{f}_{i}^{k-1} \right) + \left(\tilde{f}_{i}^{k-1} - h_{i}^{k-1} - \beta \mathcal{Q}(\tilde{f}_{i}^{k-1} - h_{i}^{k-1}) \right) \|^{2}$$

$$\stackrel{(CS)}{\leq} (1 + c_{2}^{-1}) \sum_{i=1}^{M} \mathbb{E} \| \tilde{f}_{i}^{k} - \tilde{f}_{i}^{k-1} \|^{2}$$

$$+ (1 + c_{2}) \sum_{i=1}^{M} \mathbb{E} \| \tilde{f}_{i}^{k-1} - h_{i}^{k-1} - \beta \mathcal{Q}(\tilde{f}_{i}^{k-1} - h_{i}^{k-1}) \|^{2}. \tag{21}$$

We estimate the first term:

$$\begin{split} \sum_{i=1}^{M} \mathbb{E} \left\| \hat{f}_{i}^{k} - \hat{f}_{i}^{k-1} \right\|^{2} &= \sum_{i=1}^{M} \mathbb{E} \left\| \pi_{i}^{k} \nabla f_{i}(\theta^{k}) - \pi_{i}^{k-1} \nabla f_{i}(\theta^{k-1}) \right\|^{2} \\ &\stackrel{\text{(CS)}}{\leq} 2 \sum_{i=1}^{M} \mathbb{E} \left\| \pi_{i}^{k} \nabla f_{i}(\theta^{k}) - \pi_{i}^{k} \nabla f_{i}(\theta^{k-1}) \right\|^{2} \\ &+ 2 \sum_{i=1}^{M} \mathbb{E} \left\| (\pi_{i}^{k} - \pi_{i}^{k-1}) \nabla f_{i}(\theta^{k-1}) \right\|^{2} \end{split}$$

$$= 2\sum_{i=1}^{M} \mathbb{E} \pi_{i}^{k^{2}} \|\nabla f_{i}(\theta^{k}) - \nabla f_{i}(\theta^{k-1})\|^{2}$$

$$+2\sum_{i=1}^{M} \mathbb{E} |\pi_{i}^{k} - \pi_{i}^{k-1}|^{2} \|\nabla f_{i}(\theta^{k-1})\|^{2}$$

$$\stackrel{(i)}{\leq} 2\sum_{i=1}^{M} \mathbb{E} \pi_{i}^{k^{2}} L_{i}^{2} \|\theta^{k} - \theta^{k-1}\|^{2} + 2\mathbb{E} \sum_{i=1}^{M} |\pi_{i}^{k} - \pi_{i}^{k-1}|^{2} \tilde{L}^{2}$$

$$= 2\mathbb{E} \|\theta^{k} - \theta^{k-1}\|^{2} \sum_{i=1}^{M} \pi_{i}^{k^{2}} L_{i}^{2} + 2\tilde{L}^{2} \mathbb{E} \|\pi^{k} - \pi^{k-1}\|^{2}$$

$$\leq 2\mathbb{E} \|\theta^{k} - \theta^{k-1}\|^{2} \sum_{i=1}^{M} \pi_{i}^{k^{2}} L_{i}^{2} + 2\tilde{L}^{2} \mathbb{E} \|\pi^{k} - \pi^{k-1}\|_{1}^{2}. \tag{22}$$

Where (i) holds due to Assumptions 1 and 2. We can bound $\sum_{i=1}^M \mathbb{E} \pi_i^{k^2} L_i^2$ using condition $\pi \in \Delta^{M-1} \cap Q_a^M$, where $Q_a^M = \left\{x \in \mathbb{R}^M \middle| 0 \leq x_i \leq \frac{a}{M} \right\}$ and $a \in [1,M]$:

$$\sum_{i=1}^{M} \pi_i^{k^2} L_i^2 \leq L^2 \sum_{i=1}^{M} \pi_i^{k^2} \leq L^2 \max_{x \in (\Delta^{M-1} \cap Q_a^M)} ||x||^2$$

$$= L^2 \left[\left(\frac{a}{M} \right)^2 \left[\frac{M}{a} \right] + \left(1 - \frac{a}{M} \left[\frac{M}{a} \right] \right)^2 \right]$$

$$\leq L^2 \left[\left(\frac{a}{M} \right)^2 \left(\left[\frac{M}{a} \right] + 1 \right) \right]$$

$$\leq L^2 \left[\left(\frac{a}{M} \right)^2 \left(\frac{M}{a} + 2 \right) \right]$$

$$\leq L^2 \left[\left(\frac{a}{M} \right)^2 \frac{3M}{a} \right] = L^2 \frac{3a}{M}. \tag{23}$$

Substitution of (23) into (22) gives

$$\sum_{i=1}^{M} \mathbb{E} \left\| \tilde{f}_{i}^{k} - \tilde{f}_{i}^{k-1} \right\|^{2} = \sum_{i=1}^{M} \mathbb{E} \left\| \pi_{i}^{k} \nabla f_{i}(x^{k}) - \pi_{i}^{k-1} \nabla f_{i}(x^{k-1}) \right\|^{2} \\
\leq 6 \frac{aL^{2}}{M} \mathbb{E} \left\| \theta^{k} - \theta^{k-1} \right\|^{2} + 2\tilde{L}^{2} \mathbb{E} \left\| \pi^{k} - \pi^{k-1} \right\|_{1}^{2}.$$
(24)

Then we evaluate the second term of (21) RHS:

$$\mathbb{E} \left\| \tilde{f}_{i}^{k-1} - h_{i}^{k-1} - \beta \mathcal{Q}(\tilde{f}_{i}^{k-1} - h_{i}^{k-1}) \right\|^{2}$$

$$= \mathbb{E} \left\| \tilde{f}_{i}^{k-1} - h_{i}^{k-1} \right\|^{2} + \beta^{2} \mathbb{E} \left\| \mathcal{Q}(\tilde{f}_{i}^{k-1} - h_{i}^{k-1}) \right\|^{2}$$

$$-2 \mathbb{E} \left\langle \tilde{f}_{i}^{k-1} - h_{i}^{k-1}, \beta \mathcal{Q}(\tilde{f}_{i}^{k-1} - h_{i}^{k-1}) \right\rangle$$

$$\stackrel{!}{\leq} \mathbb{E} \left\| \tilde{f}_{i}^{k-1} - h_{i}^{k-1} \right\|^{2} + \beta^{2} \omega \mathbb{E} \left\| \tilde{f}_{i}^{k-1} - h_{i}^{k-1} \right\|^{2} - 2\beta \mathbb{E} \| \tilde{f}_{i}^{k-1} - h_{i}^{k-1} \|^{2}$$

$$= (1 + \beta^{2} \omega - 2\beta) \mathbb{E} \left\| \tilde{f}_{i}^{k-1} - h_{i}^{k-1} \right\|^{2}. \tag{25}$$

Finally, combining (21) with (24) and (25) we obtain:

$$w^{k} \leq (1 + c_{2}^{-1}) \left[6 \frac{aL^{2}}{M} \mathbb{E} \left\| \theta^{k} - \theta^{k-1} \right\|^{2} + 2 \tilde{L}^{2} \mathbb{E} \left\| \pi^{k} - \pi^{k-1} \right\|_{1}^{2} \right]$$

$$+(1+c_2)(1+\beta^2\omega-2\beta)\mathbb{E}\sum_{i=1}^{M} \left\|\tilde{f}_i^{k-1} - h_i^{k-1}\right\|^2$$

$$= (1+c_2^{-1}) \left[6\frac{aL^2}{M}\mathbb{E}\left\|\theta^k - \theta^{k-1}\right\|^2 + 2\tilde{L}^2\mathbb{E}\left\|\pi^k - \pi^{k-1}\right\|_1^2\right]$$

$$+(1+c_2)(1+\beta^2\omega-2\beta)w^{k-1}. \tag{26}$$

We proceed by estimating v^k :

$$v^{k} = \mathbb{E} \left\| \tilde{f}^{k} - h^{k} \right\|^{2} = \mathbb{E} \left\| \tilde{f}^{k} - h^{k-1} - \beta \sum_{i=1}^{M} \mathcal{Q}(\tilde{f}_{i}^{k-1} - h_{i}^{k-1}) \right\|^{2}$$

$$= \mathbb{E} \left\| \left(\tilde{f}^{k} - \tilde{f}^{k-1} \right) + \left(\tilde{f}^{k-1} - h^{k-1} - \beta \sum_{i=1}^{M} \mathcal{Q}(\tilde{f}_{i}^{k-1} - h_{i}^{k-1}) \right) \right\|^{2}$$

$$\stackrel{\text{(CS)}}{\leq} \left(1 + c_{1}^{-1} \right) \mathbb{E} \left\| \tilde{f}^{k} - \tilde{f}^{k-1} \right\|^{2}$$

$$+ (1 + c_{1}) \mathbb{E} \left\| \tilde{f}^{k-1} - h^{k-1} - \beta \sum_{i=1}^{M} \mathcal{Q}(\tilde{f}_{i}^{k-1} - h_{i}^{k-1}) \right\|^{2}.$$

Then we examine first term on the (27) RHS.

As all f_i are L-Lipschitz continuous (Assumption 2) the weighted sum $\sum_{i=1}^{M} \pi_i f_i$ is L-Lipschitz continuous as well. It justifies (i) in following inequality sequence.

$$\mathbb{E} \left\| \tilde{f}^{k} - \tilde{f}^{k-1} \right\|^{2} = \mathbb{E} \left\| \sum_{i=1}^{M} \pi_{i}^{k} \nabla f_{i}(\theta^{k}) - \pi_{i}^{k-1} \nabla f_{i}(\theta^{k-1}) \right\|^{2}$$

$$= \mathbb{E} \left\| \sum_{i=1}^{M} \pi_{i}^{k} \left(\nabla f_{i}(\theta^{k}) - \nabla f_{i}(\theta^{k-1}) \right) + \left(\pi_{i}^{k} - \pi_{i}^{k-1} \right) \nabla f_{i}(\theta^{k-1}) \right\|^{2}$$

$$\stackrel{\text{(CS)}}{\leq} 2\mathbb{E} \left\| \sum_{i=1}^{M} \pi_{i}^{k} \left(\nabla f_{i}(\theta^{k}) - \nabla f_{i}(\theta^{k-1}) \right) \right\|^{2}$$

$$+ 2\mathbb{E} \left\| \sum_{i=1}^{M} \left(\pi_{i}^{k} - \pi_{i}^{k-1} \right) \nabla f_{i}(\theta^{k-1}) \right\|^{2}$$

$$\stackrel{(i)}{\leq} 2L^{2}\mathbb{E} \left\| \theta^{k} - \theta^{k-1} \right\|^{2} + 2\mathbb{E} \left(\sum_{i=1}^{M} \left| \pi_{i}^{k} - \pi_{i}^{k-1} \right| \left\| \nabla f_{i}(\theta^{k-1}) \right\| \right)^{2}$$

$$\stackrel{1}{\leq} 2L^{2}\mathbb{E} \left\| \theta^{k} - \theta^{k-1} \right\|^{2} + 2\mathbb{E} \left(\sum_{i=1}^{M} \left| \pi_{i}^{k} - \pi_{i}^{k-1} \right| \left\| \tilde{L} \right)^{2}$$

$$\leq 2L^{2}\mathbb{E} \left\| \theta^{k} - \theta^{k-1} \right\|^{2} + 2\tilde{L}^{2}\mathbb{E} \left\| \pi^{k} - \pi^{k-1} \right\|^{2}. \tag{27}$$

Now we concentrate on the second term on the (27) RHS:

$$\mathbb{E} \left\| \tilde{f}^{k-1} - h^{k-1} - \beta \sum_{i=1}^{M} \mathcal{Q}(\tilde{f}_{i}^{k-1} - h_{i}^{k-1}) \right\|^{2}$$

$$= \mathbb{E} \left\| \tilde{f}^{k-1} - h^{k-1} \right\|^{2} + \beta^{2} \mathbb{E} \left\| \sum_{i=1}^{M} \mathcal{Q}(\tilde{f}_{i}^{k-1} - h_{i}^{k-1}) \right\|^{2}$$

$$-2\beta \mathbb{E} \left\langle \tilde{f}^{k-1} - h^{k-1}, \sum_{i=1}^{M} \mathcal{Q}(\tilde{f}_{i}^{k-1} - h_{i}^{k-1}) \right\rangle$$

$$\stackrel{(1)}{\leq} \mathbb{E} \left\| \tilde{f}^{k-1} - h^{k-1} \right\|^2 + \beta^2 \left(v^{k-1} + \omega w^{k-1} \right) - 2\beta \mathbb{E} \left\| \tilde{f}^{k-1} - h^{k-1} \right\|^2$$

$$= v^{k-1} (1 + \beta^2 - 2\beta) + \beta^2 \omega w^{k-1}.$$
(28)

Plugging (28) and (27) into (27) yields:

$$v^{k} \leq \left(1 + c_{1}^{-1}\right) \left(2L^{2}\mathbb{E} \left\|\theta^{k} - \theta^{k-1}\right\|^{2} + 2M\tilde{L}^{2}\mathbb{E} \left\|\pi^{k} - \pi^{k-1}\right\|_{1}^{2}\right) + \left(1 + c_{1}\right) \left(v^{k-1}(1 + \beta^{2} - 2\beta) + \beta^{2}w^{k-1}(\omega - 1)\right). \tag{29}$$

The next step is summing (20) + $\sum_{k=2}^{K+1} \left[H \cdot (26) + N \cdot (29) \right]$:

$$\begin{split} & 2\gamma K \mathbb{E}\left[\mathbf{Gap}(\overline{z}_K)\right] + \sum_{k=2}^{K+1} (Hw^k + Nv^k) \\ & \leq \mathbb{E}\left[\Xi_K + \sum_{k=0}^K \left[9\omega\gamma^2 w^k + 7\gamma^2 v^k\right] + \sum_{k=1}^K \left[H(1+c_2)(1+\beta^2\omega - 2\beta)w^k\right] \right. \\ & \quad + \sum_{k=1}^K \left[N(1+c_1)\left(v^k(1+\beta^2 - 2\beta) + \beta^2 w^k(\omega - 1)\right)\right] \\ & \quad + \sum_{k=1}^K \left[-\left(\frac{1}{2} - 2H\tilde{L}^2(1+c_2^{-1}) - 2NM\tilde{L}^2(1+c_1^{-1})\right) \|\pi^{k+1} - \pi^k\|_1^2 \right. \\ & \quad - \left(\frac{1}{2} - 2\gamma^2 M\tilde{L}^2 - H(1+c_2^{-1})\frac{6aL^2}{M} - N\left(1+c_1^{-1}\right)2L^2\right) \|\theta^{k+1} - \theta^k\|^2\right] \right]. \end{split}$$

By rearranging the terms, we obtain

$$2\gamma K \mathbb{E} \left[\mathbf{Gap}(\overline{z}_{K}) \right] + \sum_{k=2}^{K+1} (Hw^{k} + Nv^{k})$$

$$\leq \mathbb{E} \left[\Xi_{K} + \sum_{k=0}^{K} \left[7\gamma^{2} + N(1+c_{1})(1+\beta^{2}-2\beta) \right] v^{k} \right]$$

$$+ \sum_{k=0}^{K} \left[9\omega\gamma^{2} + H(1+c_{2})(1+\beta^{2}\omega-2\beta) + N(1+c_{1})\beta^{2}(\omega-1) \right] w^{k}$$

$$+ \sum_{k=1}^{K} \left[-\left(\frac{1}{2} - 2H\tilde{L}^{2}(1+c_{2}^{-1}) - 2NM\tilde{L}^{2}(1+c_{1}^{-1})\right) \|\pi^{k+1} - \pi^{k}\|_{1}^{2} \right]$$

$$-\left(\frac{1}{2} - 2\gamma^{2}M\tilde{L}^{2} - H(1+c_{2}^{-1})\frac{6aL^{2}}{M} - N\left(1+c_{1}^{-1}\right)2L^{2}\right) \|\theta^{k+1} - \theta^{k}\|^{2} \right]. \quad (30)$$

Considering the respective coefficients of $\|\theta^{k+1} - \theta^k\|^2$, $\|\pi^{k+1} - \pi^k\|_1^2$, w^k and v^k , we derive the following restrictions:

$$\begin{cases}
\frac{1}{2} \ge 4\gamma^2 M \tilde{L}^2 + H(1 + c_2^{-1}) \frac{6aL^2}{M} + N\left(1 + c_1^{-1}\right) 2L^2 \\
\frac{1}{2} \ge 2H \tilde{L}^2 (1 + c_2^{-1}) + 2NM \tilde{L}^2 (1 + c_1^{-1}) \\
H \ge 9\omega \gamma^2 + H(1 + c_2) (1 + \beta^2 \omega - 2\beta) + N(1 + c_1)\beta^2 (\omega - 1) \\
N \ge 7\gamma^2 + N(1 + c_1) (1 + \beta^2 - 2\beta)
\end{cases}$$
(31)

We now turn to selecting the free coefficients to satisfy conditions (31). Beginning with the last inequality on N, we set

$$c_1 = \beta$$
, which yields $N = \frac{7\gamma^2}{\beta}$ (32)

is sufficient.

With this selection the third restriction in (31) transforms into

$$H(1-(1+c_2)(1+\beta^2\omega-2\beta)) \ge 9\omega\gamma^2 + \frac{7\gamma^2}{\beta}(1+\beta)\beta^2(\omega-1).$$

The choice

$$c_2 = \frac{\beta}{2}, \ \beta = \frac{1}{\omega} \text{ guarantees sufficiency of } H = \frac{32\gamma^2}{\beta^2}.$$
 (33)

Then, utilizing (33) and (32) we rewrite the second inequality in (31):

$$\frac{1}{2} \geq 2\frac{32\gamma^2}{\beta^2}\tilde{L}^2(1+2\beta^{-1}) + 2\frac{7\gamma^2}{\beta}M\tilde{L}^2(1+\beta^{-1}).$$

This poses constrain on γ :

$$\gamma \le \sqrt{\frac{1}{2} \frac{1}{192\omega^3 \tilde{L}^2 + 28M\omega^2 \tilde{L}^2}} = \frac{1}{2\tilde{L}} \sqrt{\frac{1}{96\omega^3 + 14M\omega^2}}.$$
 (34)

Finally, we examine the first inequality in (31). Using (32) and (33) we derive:

$$\frac{1}{2} \ge 4\gamma^2 M \tilde{L}^2 + \frac{32\gamma^2}{\beta^2} (1 + 2\beta^{-1}) \frac{6aL^2}{M} + \frac{7\gamma^2}{\beta} (1 + \beta^{-1}) 2L^2,$$

$$\gamma \le \sqrt{\frac{1}{2} \frac{1}{4M\tilde{L}^2 + 576L^2\beta^{-3} \frac{a}{M} + 28L^2\beta^{-2}}}$$

$$= \sqrt{\frac{1}{2} \frac{1}{4M\tilde{L}^2 + 576 \frac{a\omega^3}{M} L^2 + 28\omega^2 L^2}}.$$
(35)

By choosing

$$\gamma = \min \left\{ \frac{1}{2\tilde{L}} \sqrt{\frac{1}{96\omega^3 + 14M\omega^2}}, \sqrt{\frac{1}{2} \frac{1}{4M\tilde{L}^2 + 576 \frac{a\omega^3}{M} L^2 + 28\omega^2 L^2}} \right\}, \tag{36}$$

and taking (34), (35) into account, we satisfy (31). Consequently, with the definition Ξ_K (19) substitution, (30) transforms into

$$2\gamma K \mathbb{E} \left[\mathbf{Gap}(\overline{z}_{K}) \right] + (Hw^{K+1} + Nv^{K+1})$$

$$\leq \mathbb{E} \left[\max_{z \in \mathcal{D}} \left\{ \left(4D_{KL}(\pi, \pi^{1}) - 2D_{KL}(\pi, \pi^{K+1}) \right) + \left(2\|\theta^{1} - \theta\|^{2} - \|\theta^{K+1} - \theta\|^{2} \right) + \left(2\gamma \langle F(z^{1}) - F(z^{0}), z - z^{1} \rangle - 2\gamma \langle \overline{F}(z^{K+1}) - F(z^{K}), z - z^{K+1} \rangle \right) \right\}$$

$$-4\gamma^{2} (1 - \beta) \left[(\omega - 1)w^{K} + v^{K} \right] - 4\gamma^{2} \left[(\omega - 1)w^{0} + v^{0} \right]$$

$$+ H \sum_{k=0}^{1} w^{k} + N \sum_{k=0}^{1} v^{k} - \sum_{k=1}^{K} 2\gamma^{2} M \tilde{L}^{2} \|\theta^{k+1} - \theta^{k}\|. \tag{37}$$

To proof the convergence we need to eliminate the $-2\gamma \langle \overline{F}(z^{K+1}) - F(z^K), z - z^{K+1} \rangle$ term.

$$\begin{aligned} &-2\gamma \langle \overline{F}(z^{K+1}) - F(z^K), z - z^{K+1} \rangle \overset{\text{(Fen)}}{\leq} \gamma^2 \| \overline{F}(z^{K+1}) - F(z^K) \|^2 + \| z - z^{K+1} \|^2 \\ &\stackrel{(i)}{\leq} 2\gamma^2 \| \overline{F}(z^{K+1}) - F(z^{K+1}) \|^2 + 2\gamma^2 \| F(z^{K+1}) - F(z^K) \|^2 \\ &+ \| \theta - \theta^{K+1} \|^2 + 2D_{KL}(\pi, \pi^{K+1}) \\ &\stackrel{(ii)}{\leq} \| \theta - \theta^{K+1} \|^2 + 2D_{KL}(\pi, \pi^{K+1}) + 2\tilde{L}^2 \gamma^2 \| \theta^{K+1} - \theta^K \|^2 \end{aligned}$$

$$+4\gamma^{2}(\omega-1)\left(w^{K+1}+(1-\beta)^{2}w^{K}\right)+4\gamma^{2}\left(v^{K+1}+(1-\beta)^{2}v^{K}\right)$$

$$+2\gamma^{2}\omega w^{K+1}-2\gamma^{2}v^{K+1}$$

$$(38)$$

Where (i) holds by (CS) and (Pi), and (ii) follows from (11), (14), and (17).

Then, the choice of H (33) and N (32) along with (38) provides

$$-2\gamma \langle \overline{F}(z^{K+1}) - F(z^K), z - z^{K+1} \rangle - \sum_{k=1}^K 2\gamma^2 M \tilde{L}^2 \|\theta^{k+1} - \theta^k\|$$

$$-(Hw^{K+1} + Nv^{K+1}) - 2D_{KL}(\pi, \pi^{K+1}) - \|\theta^{K+1} - \theta\|^2 \le 0.$$
(39)

The substitution of (39) into (37) concludes the proof.

Theorem 1 yields further bounds on the number of communication rounds and the amount of information transmitted from the clients to the server.

Remark 1. In our analysis we assume that compression does not reduce the size of $\hat{\Delta}_i$ below that of the scalar f_i (i.e., $q_{\omega} \geq \frac{1}{d}$). Hence, the cost of transmitting f_i can be upper bounded by that of $\hat{\Delta}_i$. This allows us to ignore the communication of f_i in the \mathcal{O} notation.

Corollary 1 In setting of Theorem 1 with $\gamma = \gamma_0$, Algorithm 1 with exact local gradients needs

$$\mathcal{O}\left(rac{1}{arepsilon}\left[ilde{L}\omega^{3/2}+ ilde{L}M^{1/2}+L\left(\sqrt{rac{\omega^3}{M}}+\omega
ight)
ight]
ight)$$

iterations in order to reach ε -accuracy with respect to $\mathbb{E}[\mathbf{Gap}(\overline{z}_K)]$. Additionally, it requires

$$\mathcal{O}\left(\frac{1}{\varepsilon}\left[\tilde{L}\omega^{1/2} + \tilde{L}\frac{M^{1/2}}{\omega} + L\left(\sqrt{\frac{\omega}{M}} + 1\right)\right]\right)$$

bits communicated from nodes to the server.

Proof. The result of Theorem 1 directly provides the first bound.

Given Remark 1, to obtain the second estimate from the first, we consider transmitting $\hat{\Delta}_i^k$ from the nodes to the server for $i=1,2,\ldots,M$. This corresponds to sending $Mdbq_{\omega}$ bits at every iteration. We omit constants M,d and b under the \mathcal{O} notation. As for q_{ω} , we note that for practically relevant compressors (Beznosikov et al., 2023a) it holds $q_{\omega} \leq \frac{1}{\omega}$. It concludes the proof.

D.2 ANALYSIS IN STOCHASTIC LOCAL ORACLES SETTING

The convergence proof in the stochastic setting largely mirrors that of Theorem 1. Nevertheless, for the sake of completeness, we present it below.

Theorem 2 Let in setting of Theorem 1 additionally Assumption 4 holds. Then, it implies

$$\mathbb{E}\left[\mathbf{Gap}(\overline{z}_K)\right] \leq \frac{V}{2\gamma K} + \gamma \frac{64a^2\omega^2}{M}\sigma^2$$

for iterations of Algorithm 1 with stochastic local oracles.

Proof. For the sake of consistency with previous notation, we relabel the full weighted local gradient $\tilde{f}_i^k := \pi_i^k \nabla f_i(\theta^k)$ and its stochastic estimator $\tilde{f}_{i,\xi_i}^k = \pi_i^k \nabla f_{i,\xi_i}(\theta^k)$.

As in Theorem 1 we proceed with using the unbiasedness (2) of compressor Q:

$$\mathbb{E}\left[F(z^k)|z^k\right] = \mathbb{E}\left[\begin{pmatrix}g^k\\p^k\end{pmatrix}\bigg|z^k\right] = \mathbb{E}\left[\begin{pmatrix}h^k + \sum_{i=1}^M \mathcal{Q}(\tilde{f}^k_{i,\xi_i} - h^k_i)\\p^k\end{pmatrix}\bigg|z^k\right] = \begin{pmatrix}\tilde{f}^k\\p^k\end{pmatrix} \stackrel{\text{def}}{=} \overline{F}(z^k),$$

where $\tilde{f}^k = \sum_{i=1}^M \tilde{f}_i^k = \sum_{i=1}^M \pi_i^k \nabla f_i(\theta^k)$. And Lemma 1 again justifies the monotonicity of \overline{F} .

The next step is conditioning the result of Lemma 3 on z^{k+1} , using $\alpha = 1$ and summing over k = 1 to K:

$$2\gamma \sum_{k=1}^{K} \langle \overline{F}(z^{k+1}), z^{k+1} - z \rangle \leq \sum_{k=1}^{K} \left[\left(2D_{KL}(\pi, \pi^k) - 2D_{KL}(\pi, \pi^{k+1}) \right) + \left(\|\theta^k - \theta\|^2 - \|\theta^{k+1} - \theta\|^2 \right) \right]$$

$$\begin{aligned} &+ \left(2\gamma \langle F(z^k) - F(z^{k-1}), z - z^k \rangle - 2\gamma \langle \overline{F}(z^{k+1}) - F(z^k), z - z^{k+1} \rangle \right) \\ &- \frac{1}{2} \| \pi^{k+1} - \pi^k \|_1^2 - \frac{1}{2} \| \theta^{k+1} - \theta^k \|^2 \\ &+ 2\gamma^2 \| p^k - p^{k-1} \|^2 + 2\gamma^2 \| g^k - g^{k-1} \|^2 \Big] \\ &+ \left(2D_{KL}(\pi, \pi^1) - 2D_{KL}(\pi, \pi^{K+1}) \right) + \left(\| \theta^1 - \theta \|^2 - \| \theta^{K+1} - \theta \|^2 \right) \\ &+ \left(2\gamma \langle F(z^1) - F(z^0), z - z^1 \rangle - 2\gamma \langle \overline{F}(z^{K+1}) - F(z^K), z - z^{K+1} \rangle \right) \\ &+ \sum_{k=1}^{K-1} \left[2\gamma \langle \overline{F}(z^{k+1}) - F(z^{k+1}), z - z^{k+1} \rangle \right] \\ &+ \sum_{k=1}^{K} \left[-\frac{1}{2} \| \pi^{k+1} - \pi^k \|_1^2 - \frac{1}{2} \| \theta^{k+1} - \theta^k \|^2 \right. \\ &+ 2\gamma^2 \| p^k - p^{k-1} \|^2 + 2\gamma^2 \| g^k - g^{k-1} \|^2 \Big]. \end{aligned}$$

Maximizing obtained inequality over compact set $z \in \mathcal{D}$ and taking full expectation, we get

$$2\gamma \mathbb{E}\left[\max_{z\in\mathcal{D}}\left\{\sum_{k=1}^{K}\langle \overline{F}(z^{k+1}), z^{k+1} - z\rangle\right\}\right] \leq \mathbb{E}\left[\max_{z\in\mathcal{D}}\left\{\left(2D_{KL}(\pi, \pi^{1}) - 2D_{KL}(\pi, \pi^{K+1})\right) + \left(\|\theta^{1} - \theta\|^{2} - \|\theta^{K+1} - \theta\|^{2}\right) + \left(2\gamma\langle F(z^{1}) - F(z^{0}), z - z^{1}\rangle\right) - 2\gamma\langle \overline{F}(z^{K+1}) - F(z^{K}), z - z^{K+1}\rangle\right) + \sum_{k=1}^{K-1} 2\gamma\langle \overline{F}(z^{k+1}) - F(z^{k+1}), z - z^{k+1}\rangle\right\} + \sum_{k=1}^{K} \left[-\frac{1}{2}\|\pi^{k+1} - \pi^{k}\|_{1}^{2} - \frac{1}{2}\|\theta^{k+1} - \theta^{k}\|^{2} + 2\gamma^{2}\|p^{k} - p^{k-1}\|^{2} + 2\gamma^{2}\|g^{k} - g^{k-1}\|^{2}\right]\right]. (40)$$

Several next steps evaluate different terms of (40). Inequalities (9) and (10) remain valid. We continue with evaluating of the last term applying properties (2) of unbiased compressor Q and its independence from stochastic local oracles:

$$\mathbb{E} \|\overline{F}(z^{k}) - F(z^{k})\|^{2} = \mathbb{E} \left\| \begin{pmatrix} \tilde{f}^{k} \\ p^{k} \end{pmatrix} - \begin{pmatrix} h^{k} + \sum_{i=1}^{M} \mathcal{Q}(\tilde{f}^{k}_{i,\xi_{i}} - h^{k}_{i}) \end{pmatrix} \right\|^{2}$$

$$= \mathbb{E} \left\| \sum_{i=1}^{M} \mathcal{Q}(\tilde{f}^{k}_{i,\xi_{i}} - h^{k}_{i}) - (\tilde{f}^{k} - h^{k}) \right\|^{2}$$

$$= \sum_{i=1}^{M} \mathbb{E} \left\| \mathcal{Q}(\tilde{f}^{k}_{i,\xi_{i}} - h^{k}_{i}) \right\|^{2} + \mathbb{E} \left\| \tilde{f}^{k} - h^{k} \right\|^{2}$$

$$-2 \sum_{i=1}^{M} \mathbb{E} \left\langle \mathcal{Q}(\tilde{f}^{k}_{i,\xi_{i}} - h^{k}_{i}), \tilde{f}^{k} - h^{k} \right\rangle$$

$$\leq \omega \sum_{i=1}^{M} \mathbb{E} \left\| \tilde{f}^{k}_{i,\xi_{i}} - h^{k}_{i} \right\|^{2} - \mathbb{E} \left\| \tilde{f}^{k} - h^{k} \right\|^{2}. \tag{41}$$

Finally, using (Pi), definition of $z = \begin{pmatrix} \theta \\ \pi \end{pmatrix}$ and choosing $z_a = z^1 - z^{k+1}$ we estimate

$$\max_{z \in \mathcal{D}} \left\{ 2D_{KL}(\pi, \pi^{1}) + \|\theta^{1} - \theta\|^{2} \right\} \geq \max_{z \in \mathcal{D}} \left\{ \|\pi^{1} - \pi\|^{2} + \|\theta^{1} - \theta\|^{2} \right\}$$

$$= \max_{z \in \mathcal{D}} \left\{ \|z_{a} - z\|^{2} \right\}. \tag{42}$$

Slightly changing old notation $v^k = \mathbb{E} \left\| \tilde{f}^k - h^k \right\|^2$, $w^k = \sum_{i=1}^M \mathbb{E} \left\| \tilde{f}^k_{i,\xi_i} - h^k_i \right\|^2$ and combining (10),(41) with (42) we derive

$$2\mathbb{E}\left[\max_{z\in\mathcal{D}}\left\{\sum_{k=1}^{K-1}\left\langle\gamma\left(\overline{F}(z^{k+1})-F(z^{k+1})\right),z-z^{k+1}\right\rangle\right\}\right]$$

$$\leq \max_{z\in\mathcal{D}}\left\{2D_{KL}(\pi,\pi^{1})+\|\theta^{1}-\theta\|^{2}\right\}+\gamma^{2}\sum_{k=2}^{K}\left(\omega w^{k}-v^{k}\right). \tag{43}$$

After that, we estimate $2\gamma^2 ||p^k - p^{k-1}||^2$ in (40) via Assumption 1:

$$2\gamma^{2}\|p^{k}-p^{k-1}\|^{2} \leq 2\gamma^{2}M\tilde{L}^{2}\|\theta^{k}-\theta^{k-1}\|^{2}.$$
(44)

Last term we want evaluate in (40) is $2\gamma^2 \|g^k - g^{k-1}\|^2$:

$$\begin{split} & 2\gamma^{2} \mathbb{E} \|g^{k} - g^{k-1}\|^{2} \\ & = 2\gamma^{2} \mathbb{E} \|h^{k} + \hat{\Delta}^{k} - h^{k-1} - \hat{\Delta}^{k-1}\|^{2} \\ & = 2\gamma^{2} \mathbb{E} \left\| \sum_{i=1}^{M} \left(h_{i}^{k} - h_{i}^{k-1} \right) + \sum_{i=1}^{M} \mathcal{Q} \left(\tilde{f}_{i,\xi_{i}}^{k} - h_{i}^{k} \right) - \sum_{i=1}^{M} \mathcal{Q} \left(\tilde{f}_{i,\xi_{i}}^{k-1} - h_{i}^{k-1} \right) \right\|^{2} \\ & = 2\gamma^{2} \mathbb{E} \left\| \beta \sum_{i=1}^{M} \mathcal{Q} \left(\tilde{f}_{i,\xi_{i}}^{k-1} - h_{i}^{k-1} \right) + \sum_{i=1}^{M} \mathcal{Q} \left(\tilde{f}_{i,\xi_{i}}^{k} - h_{i}^{k} \right) - \sum_{i=1}^{M} \mathcal{Q} \left(\tilde{f}_{i,\xi_{i}}^{k-1} - h_{i}^{k-1} \right) \right\|^{2} \\ & = 2\gamma^{2} \mathbb{E} \left\| \sum_{i=1}^{M} \mathcal{Q} \left(\tilde{f}_{i,\xi_{i}}^{k} - h_{i}^{k} \right) - (1 - \beta) \sum_{i=1}^{M} \mathcal{Q} \left(\tilde{f}_{i,\xi_{i}}^{k-1} - h_{i}^{k-1} \right) \right\|^{2} \\ & = 2\gamma^{2} \mathbb{E} \left\| \sum_{i=1}^{M} \mathcal{Q} \left(\tilde{f}_{i,\xi_{i}}^{k} - h_{i}^{k} \right) - (1 - \beta) \sum_{i=1}^{M} \mathcal{Q} \left(\tilde{f}_{i,\xi_{i}}^{k-1} - h_{i}^{k-1} \right) \right\|^{2} \\ & \stackrel{\text{(CS)}}{=} 4\gamma^{2} \mathbb{E} \left\| \sum_{i=1}^{M} \mathcal{Q} \left(\tilde{f}_{i,\xi_{i}}^{k} - h_{i}^{k} \right) \right\|^{2} + 4\gamma^{2} (1 - \beta)^{2} \mathbb{E} \left\| \sum_{i=1}^{M} \mathcal{Q} \left(\tilde{f}_{i,\xi_{i}}^{k-1} - h_{i}^{k-1} \right) \right\|^{2}. \end{split} \tag{45}$$

Terms differ only in their indices, which makes it convenient to analyze them separately. Here we utilize cross-device compressors and stochastic oracles independence once again:

$$\mathbb{E} \left\| \sum_{i=1}^{M} \mathcal{Q} \left(\tilde{f}_{i,\xi_{i}}^{k} - h_{i}^{k} \right) \right\|^{2} \\
= \sum_{i=1}^{M} \mathbb{E} \left\| \mathcal{Q} \left(\tilde{f}_{i,\xi_{i}}^{k} - h_{i}^{k} \right) \right\|^{2} + \sum_{i \neq j} \mathbb{E} \left\langle \mathcal{Q} \left(\tilde{f}_{i,\xi_{i}}^{k} - h_{i}^{k} \right), \mathcal{Q} \left(\tilde{f}_{j,\xi_{j}}^{k} - h_{j}^{k} \right) \right\rangle \\
= \sum_{i=1}^{M} \omega \mathbb{E} \left\| \tilde{f}_{i,\xi_{i}}^{k} - h_{i}^{k} \right\|^{2} + \sum_{i \neq j} \mathbb{E} \left\langle \mathcal{Q} \left(\tilde{f}_{i,\xi_{i}}^{k} - h_{i}^{k} \right), \mathcal{Q} \left(\tilde{f}_{j,\xi_{j}}^{k} - h_{j}^{k} \right) \right\rangle \\
= \omega \sum_{i=1}^{M} \mathbb{E} \left\| \tilde{f}_{i,\xi_{i}}^{k} - h_{i}^{k} \right\|^{2} + \sum_{i \neq j} \mathbb{E} \left\langle \tilde{f}_{i}^{k} - h_{i}^{k}, \tilde{f}_{j}^{k} - h_{j}^{k} \right\rangle \\
\leq \omega \sum_{i=1}^{M} \mathbb{E} \left\| \tilde{f}_{i,\xi_{i}}^{k} - h_{i}^{k} \right\|^{2} + \mathbb{E} \left\| \tilde{f}^{k} - h^{k} \right\|^{2} \\
= \omega w^{k} + v^{k}. \tag{46}$$

Substituting (46) into (45) we reach

$$2\gamma^{2}\mathbb{E}\|g^{k} - g^{k-1}\|^{2} = 4\gamma^{2}\omega\left(w^{k} + (1-\beta)^{2}w^{k-1}\right) + 4\gamma^{2}\left(v^{k} + (1-\beta)^{2}v^{k-1}\right). \tag{47}$$

Finally, we evaluate the sum:

$$2\gamma^{2} \sum_{k=1}^{K} \mathbb{E} \|g^{k} - g^{k-1}\|^{2}$$

$$= 4\gamma^{2} \sum_{k=1}^{K} \left[\omega w^{k} + v^{k}\right] + 4\gamma^{2} (1 - \beta)^{2} \sum_{k=1}^{K} \left[\omega w^{k-1} + v^{k-1}\right]$$

$$= 4\gamma^{2} \sum_{k=1}^{K} \left[\omega w^{k} + v^{k}\right] + 4\gamma^{2} (1 - \beta)^{2} \sum_{k=0}^{K-1} \left[\omega w^{k} + v^{k}\right]$$

$$= 4\gamma^{2} (1 + (1 - \beta)^{2}) \left[\sum_{k=0}^{K} \omega w^{k} + v^{k}\right]$$

$$-4\gamma^{2} (1 - \beta) [\omega w^{K} + v^{K}]$$

$$-4\gamma^{2} [\omega w^{0} + v^{0}]. \tag{48}$$

Substituting (48), (44), (43) and (9) into (40),

$$\begin{split} 2\gamma K \mathbb{E} \left[\mathbf{Gap}(\overline{z}_K) \right] & \leq & \mathbb{E} \left[\max_{z \in \mathcal{D}} \left\{ \left(4D_{KL}(\pi, \pi^1) - 2D_{KL}(\pi, \pi^{K+1}) \right) \right. \\ & + \left(2\|\theta^1 - \theta\|^2 - \|\theta^{K+1} - \theta\|^2 \right) \\ & + \left(2\gamma \langle F(z^1) - F(z^0), z - z^1 \rangle - 2\gamma \langle \overline{F}(z^{K+1}) - F(z^K), z - z^{K+1} \rangle \right) \right\} \\ & - 4\gamma^2 (1 - \beta) [\omega w^K + v^K] - 4\gamma^2 [\omega w^0 + v^0] \\ & + \gamma^2 \sum_{k=2}^K \left(\omega w^k - v^k \right) + 4\gamma^2 (1 + (1 - \beta)^2) \sum_{k=0}^K \left[\omega w^k + v^k \right] \\ & + \sum_{k=1}^K \left[-\frac{1}{2} \|\pi^{k+1} - \pi^k\|_1^2 - \left(\frac{1}{2} - 2\gamma^2 M \tilde{L}^2 \right) \|\theta^{k+1} - \theta^k\|^2 \right] \right]. \end{split}$$

Using (41) as $\omega w^k - v^k \ge 0$ and $0 < \beta < 1$, and introducing

$$\Xi_{K} = \max_{z \in \mathcal{D}} \left\{ \left(4D_{KL}(\pi, \pi^{1}) - 2D_{KL}(\pi, \pi^{K+1}) \right) + \left(2\|\theta^{1} - \theta\|^{2} - \|\theta^{K+1} - \theta\|^{2} \right) + \left(2\gamma \langle F(z^{1}) - F(z^{0}), z - z^{1} \rangle \right) \\ v - 2\gamma \langle \overline{F}(z^{K+1}) - F(z^{K}), z - z^{K+1} \rangle \right\} \\ -4\gamma^{2} (1 - \beta) [\omega w^{K} + v^{K}] - 4\gamma^{2} [\omega w^{0} + v^{0}], \tag{49}$$

we can rewrite:

$$2\gamma K \mathbb{E} \left[\mathbf{Gap}(\overline{z}_{K}) \right] \leq \mathbb{E} \left[\Xi_{K} + \left(2\|\theta^{1} - \theta\|^{2} - \|\theta^{K+1} - \theta\|^{2} \right) + \left(2\gamma \langle F(z^{1}) - F(z^{0}), z - z^{1} \rangle - 2\gamma \langle \overline{F}(z^{K+1}) - F(z^{K}), z - z^{K+1} \rangle \right) \right] + \sum_{k=0}^{K} \left[9\omega \gamma^{2} w^{k} + 7\gamma^{2} v^{k} \right] + \sum_{k=1}^{K} \left[-\frac{1}{2} \|\pi^{k+1} - \pi^{k}\|_{1}^{2} - \left(\frac{1}{2} - 2\gamma^{2} M \tilde{L}^{2} \right) \|\theta^{k+1} - \theta^{k}\|^{2} \right] \right] . (50)$$

Now our objective is recursion for w^k and v^k . Let us begin with w^k :

$$w^{k} = \sum_{i=1}^{M} \mathbb{E} \|\tilde{f}_{i,\xi_{i}}^{k} - h_{i}^{k}\|^{2} = \sum_{i=1}^{M} \mathbb{E} \|\tilde{f}_{i,\xi_{i}}^{k} - h_{i}^{k-1} - \beta \mathcal{Q}(\tilde{f}_{i,\xi_{i}}^{k-1} - h_{i}^{k-1})\|^{2}$$

$$= \sum_{i=1}^{M} \mathbb{E} \left\| \left(\tilde{f}_{i,\xi_{i}}^{k} - \tilde{f}_{i,\xi_{i}}^{k-1} \right) + \left(\tilde{f}_{i,\xi_{i}}^{k-1} - h_{i}^{k-1} - \beta \mathcal{Q}(\tilde{f}_{i,\xi_{i}}^{k-1} - h_{i}^{k-1}) \right) \right\|^{2}$$

$$\stackrel{\text{(CS)}}{\leq} (1 + c_{2}^{-1}) \sum_{i=1}^{M} \mathbb{E} \left\| \tilde{f}_{i,\xi_{i}}^{k} - \tilde{f}_{i,\xi_{i}}^{k-1} \right\|^{2}$$

$$+ (1 + c_{2}) \sum_{i=1}^{M} \mathbb{E} \left\| \tilde{f}_{i,\xi_{i}}^{k-1} - h_{i}^{k-1} - \beta \mathcal{Q}(\tilde{f}_{i,\xi_{i}}^{k-1} - h_{i}^{k-1}) \right\|^{2}. \tag{51}$$

We now estimate the first term:

$$\sum_{i=1}^{M} \mathbb{E} \left\| \tilde{f}_{i,\xi_{i}}^{k} - \tilde{f}_{i,\xi_{i}}^{k-1} \right\|^{2} = \sum_{i=1}^{M} \mathbb{E} \left\| \pi_{i}^{k} \nabla f_{i,\xi_{i}}(\theta^{k}) - \pi_{i}^{k-1} \nabla f_{i,\xi_{i}}(\theta^{k-1}) \right\|^{2}$$

$$= \sum_{i=1}^{M} \mathbb{E} \left\| \left(\pi_{i}^{k} \nabla f_{i,\xi_{i}}(\theta^{k}) - \pi_{i}^{k} \nabla f_{i}(\theta^{k}) \right) - \left(\pi_{i}^{k-1} \nabla f_{i,\xi_{i}}(\theta^{k-1}) - \pi_{i}^{k-1} \nabla f_{i}(\theta^{k-1}) \right) \right\|^{2}$$

$$+ \left(\pi_{i}^{k} \nabla f_{i}(\theta^{k}) - \pi_{i}^{k-1} \nabla f_{i}(\theta^{k-1}) \right) \right\|^{2}$$

$$= \sum_{i=1}^{M} \mathbb{E} \left\| \left(\pi_{i}^{k} \nabla f_{i,\xi_{i}}(\theta^{k}) - \pi_{i}^{k} \nabla f_{i}(\theta^{k}) \right) - \left(\pi_{i}^{k-1} \nabla f_{i,\xi_{i}}(\theta^{k-1}) - \pi_{i}^{k-1} \nabla f_{i}(\theta^{k-1}) \right) \right\|^{2}$$

$$+ \sum_{i=1}^{M} \mathbb{E} \left\| \left(\pi_{i}^{k} \nabla f_{i}(\theta^{k}) - \pi_{i}^{k-1} \nabla f_{i}(\theta^{k-1}) \right) \right\|^{2}.$$
(52)

The second sum of (52) was evaluated in (22), (23) and (23). We proceed with estimating the first term of 52.

$$\sum_{i=1}^{M} \mathbb{E} \left\| \left(\pi_{i}^{k} \nabla f_{i,\xi_{i}}(\theta^{k}) - \pi_{i}^{k} \nabla f_{i}(\theta^{k}) \right) - \left(\pi_{i}^{k-1} \nabla f_{i,\xi_{i}}(\theta^{k-1}) - \pi_{i}^{k-1} \nabla f_{i}(\theta^{k-1}) \right) \right\|^{2}$$

$$\stackrel{\text{(CS)}}{\leq} 2 \sum_{i=1}^{M} \mathbb{E} \left\| \pi_{i}^{k} \nabla f_{i,\xi_{i}}(\theta^{k}) - \pi_{i}^{k} \nabla f_{i}(\theta^{k}) \right\|^{2}$$

$$+2 \sum_{i=1}^{M} \mathbb{E} \left\| \pi_{i}^{k-1} \nabla f_{i,\xi_{i}}(\theta^{k-1}) - \pi_{i}^{k-1} \nabla f_{i}(\theta^{k-1}) \right\|^{2}$$

$$\stackrel{4}{\leq} 2 \sum_{i=1}^{M} (\pi_{i}^{k^{2}} + \pi_{i}^{k-1^{2}}) \sigma^{2} \leq \sum_{i=1}^{M} \frac{4a^{2}}{M^{2}} \sigma^{2} = \frac{4a^{2}}{M} \sigma^{2}.$$
(53)

Substitution of (23) and (53) into (52) gives

$$\sum_{i=1}^{M} \mathbb{E} \left\| \tilde{f}_{i,\xi_{i}}^{k} - \tilde{f}_{i,\xi_{i}}^{k-1} \right\|^{2} \leq 6 \frac{aL^{2}}{M} \mathbb{E} \left\| \theta^{k} - \theta^{k-1} \right\|^{2} + 2\tilde{L}^{2} \mathbb{E} \left\| \pi^{k} - \pi^{k-1} \right\|_{1}^{2} + \frac{4a^{2}}{M} \sigma^{2}.$$
 (54)

Then we evaluate the second term of (51) RHS:

$$\mathbb{E} \left\| \tilde{f}_{i,\xi_{i}}^{k-1} - h_{i}^{k-1} - \beta \mathcal{Q}(\tilde{f}_{i,\xi_{i}}^{k-1} - h_{i}^{k-1}) \right\|^{2}$$

$$= \mathbb{E} \left\| \tilde{f}_{i,\xi_{i}}^{k-1} - h_{i}^{k-1} \right\|^{2} + \beta^{2} \mathbb{E} \left\| \mathcal{Q}(\tilde{f}_{i,\xi_{i}}^{k-1} - h_{i}^{k-1}) \right\|^{2}$$

$$-2\mathbb{E}\left\langle \tilde{f}_{i,\xi_{i}}^{k-1} - h_{i}^{k-1}, \beta \mathcal{Q}(\tilde{f}_{i,\xi_{i}}^{k-1} - h_{i}^{k-1}) \right\rangle$$

$$\stackrel{1}{\leq} \mathbb{E}\left\| \tilde{f}_{i,\xi_{i}}^{k-1} - h_{i}^{k-1} \right\|^{2} + \beta^{2} \omega \mathbb{E}\left\| \tilde{f}_{i,\xi_{i}}^{k-1} - h_{i}^{k-1} \right\|^{2} - 2\beta \mathbb{E}\| \tilde{f}_{i,\xi_{i}}^{k-1} - h_{i}^{k-1} \|^{2}$$

$$= (1 + \beta^{2} \omega - 2\beta) \mathbb{E}\left\| \tilde{f}_{i,\xi_{i}}^{k-1} - h_{i}^{k-1} \right\|^{2}. \tag{55}$$

Finally, combining (51) with (54) and (55) we obtain

$$w^{k} \leq (1 + c_{2}^{-1}) \left[6 \frac{aL^{2}}{M} \mathbb{E} \left\| \theta^{k} - \theta^{k-1} \right\|^{2} + 2 \tilde{L}^{2} \mathbb{E} \left\| \pi^{k} - \pi^{k-1} \right\|_{1}^{2} \right]$$
$$+ (1 + c_{2}) (1 + \beta^{2} \omega - 2\beta) w^{k-1} + \frac{4a^{2}}{M} \sigma^{2}.$$
 (56)

We proceed by estimating v^k :

$$v^{k} = \mathbb{E} \left\| \tilde{f}^{k} - h^{k} \right\|^{2} = \mathbb{E} \left\| \tilde{f}^{k} - h^{k-1} - \beta \sum_{i=1}^{M} \mathcal{Q}(\tilde{f}_{i,\xi_{i}}^{k-1} - h_{i}^{k-1}) \right\|^{2}$$

$$= \mathbb{E} \left\| \left(\tilde{f}^{k} - \tilde{f}^{k-1} \right) + \left(\tilde{f}^{k-1} - h^{k-1} - \beta \sum_{i=1}^{M} \mathcal{Q}(\tilde{f}_{i,\xi_{i}}^{k-1} - h_{i}^{k-1}) \right) \right\|^{2}$$

$$\stackrel{\text{(CS)}}{\leq} \left(1 + c_{1}^{-1} \right) \mathbb{E} \left\| \tilde{f}^{k} - \tilde{f}^{k-1} \right\|^{2}$$

$$+ (1 + c_{1}) \mathbb{E} \left\| \tilde{f}^{k-1} - h^{k-1} - \beta \sum_{i=1}^{M} \mathcal{Q}(\tilde{f}_{i,\xi_{i}}^{k-1} - h_{i}^{k-1}) \right\|^{2}.$$

For the first term on the (57) RHS (27) remains unchanged and we concentrate on the second term on the (57) RHS:

$$\mathbb{E} \left\| \tilde{f}^{k-1} - h^{k-1} - \beta \sum_{i=1}^{M} \mathcal{Q}(\tilde{f}_{i,\xi_{i}}^{k-1} - h_{i}^{k-1}) \right\|^{2}$$

$$= \mathbb{E} \left\| \tilde{f}^{k-1} - h^{k-1} \right\|^{2} + \beta^{2} \mathbb{E} \left\| \sum_{i=1}^{M} \mathcal{Q}(\tilde{f}_{i,\xi_{i}}^{k-1} - h_{i}^{k-1}) \right\|^{2}$$

$$-2\beta \mathbb{E} \left\langle \tilde{f}^{k-1} - h^{k-1}, \sum_{i=1}^{M} \mathcal{Q}(\tilde{f}_{i,\xi_{i}}^{k-1} - h_{i}^{k-1}) \right\rangle$$

$$\stackrel{(46)}{\leq} \mathbb{E} \left\| \tilde{f}^{k-1} - h^{k-1} \right\|^{2} + \beta^{2} \left(v^{k-1} + (\omega - 1) w^{k-1} \right) - 2\beta \mathbb{E} \left\| \tilde{f}^{k-1} - h^{k-1} \right\|^{2}$$

$$= v^{k-1} (1 + \beta^{2} - 2\beta) + \beta^{2} w^{k-1} (\omega - 1). \tag{57}$$

Plugging (57) and (27) into (57) yields

$$v^{k} \leq (1 + c_{1}^{-1}) \left(2L^{2} \mathbb{E} \| \theta^{k} - \theta^{k-1} \|^{2} + 2M \tilde{L}^{2} \mathbb{E} \| \pi^{k} - \pi^{k-1} \|_{1}^{2} \right) + (1 + c_{1}) \left(v^{k-1} (1 + \beta^{2} - 2\beta) + \beta^{2} \omega w^{k-1} \right).$$
 (58)

The next step is summing (50) + $\sum_{k=2}^{K+1} [H \cdot (56) + N \cdot (58)]$:

$$2\gamma K \mathbb{E}\left[\operatorname{\mathbf{Gap}}(\overline{z}_K)\right] + \sum_{k=2}^{K+1} (Hw^k + Nv^k)$$

$$\leq \mathbb{E}\left[\Xi_K + \sum_{k=0}^{K} \left[9\omega\gamma^2 w^k + 7\gamma^2 v^k\right] + \sum_{k=1}^{K} \left[H(1+c_2)(1+\beta^2\omega - 2\beta)w^k\right]\right]$$

$$\begin{split} &+\sum_{k=1}^{K}\left[N(1+c_{1})\left(v^{k}(1+\beta^{2}-2\beta)+\beta^{2}\omega w^{k}\right)\right]\\ &+\sum_{k=1}^{K}\left[-\left(\frac{1}{2}-2H\tilde{L}^{2}(1+c_{2}^{-1})-2NM\tilde{L}^{2}(1+c_{1}^{-1})\right)\|\pi^{k+1}-\pi^{k}\|_{1}^{2}\right.\\ &-\left(\frac{1}{2}-2\gamma^{2}M\tilde{L}^{2}-H(1+c_{2}^{-1})\frac{6aL^{2}}{M}-N\left(1+c_{1}^{-1}\right)2L^{2}\right)\|\theta^{k+1}-\theta^{k}\|^{2}\right]\right]\\ &+\frac{4KHa^{2}}{M}\sigma^{2}. \end{split}$$

The subsequent analysis is unaffected by the additive term $\frac{4KHa^2}{M}\sigma^2$ introduced in the stochastic setting and fully mirrors the reasoning of Theorem 1 starting from Equation (30).

Corollary 2 provides bounds on number of communication rounds and transmitted from nodes to the server information in stochastic local oracles setup.

Corollary 2 In setting of Theorem 2 with $\gamma = \min\left\{\gamma_0, \sqrt{\frac{VM}{128a^2\omega^2\sigma^2K}}\right\}$, Algorithm 1 with stochastic local oracles needs

$$\mathcal{O}\left(\frac{1}{\varepsilon^2}\left[\frac{\omega^2\sigma^2}{M}\right] + \frac{1}{\varepsilon}\left[\tilde{L}\omega^{3/2} + \tilde{L}M^{1/2} + L\left(\sqrt{\frac{\omega^3}{M}} + \omega\right)\right]\right)$$

iterations in order to reach ε -accuracy with respect to $\mathbb{E}[\mathbf{Gap}(\overline{z}_K)]$. Additionally, it requires

$$\mathcal{O}\left(\frac{1}{\varepsilon^2}\left[\frac{\omega\sigma^2}{M}\right] + \frac{1}{\varepsilon}\left[\tilde{L}\omega^{1/2} + \tilde{L}\frac{M^{1/2}}{\omega} + L\left(\sqrt{\frac{\omega}{M}} + 1\right)\right]\right)$$

bits communicated from nodes to the server.

Proof. In stochastic local oracles case, guaranties in the Theorem 2 are affected by an additional irreducible term $\gamma \frac{64a^2\omega^2}{M}\sigma^2$. In its presence, optimal stepsize γ transforms into $\gamma = \min\left\{\gamma_0, \sqrt{\frac{VM}{128a^2\omega^2\sigma^2K}}\right\}$. This choice yields $\frac{V}{2\gamma K} \geq \gamma \frac{64a^2\omega^2}{M}\sigma^2$ and makes further analysis similar to the proof of Corollary 1.

D.3 ANALYSIS IN PARTIAL PARTICIPATION SETTING

We reduce this case to analysis in exact local oracles settings in Section D.1 by claiming that multiplying the compression operator by the $\frac{\eta}{p}$, with $\eta \sim \text{Bern}(p)$, yields another valid compression operator. It remains unbiased, while its compression rate ω is scaled by a factor of p.

Corollary 3 In setting of Theorem 1 with
$$\beta = \frac{p}{\omega}$$
, $H = 32\gamma^2 \left(\frac{\omega}{p}\right)^2$, $N = 7\gamma^2 \frac{\omega}{p}$, $\gamma_{\pi} = \gamma_{\theta} = \gamma \leq \gamma_p = \min \left\{ \frac{1}{2\tilde{L}} \sqrt{\frac{1}{96\left(\frac{\omega}{p}\right)^3 + 14M\left(\frac{\omega}{p}\right)^2}}, \sqrt{\frac{1}{2} \frac{1}{4M\tilde{L}^2 + 576\frac{a}{M}\left(\frac{\omega}{p}\right)^3 L^2 + 28\left(\frac{\omega}{p}\right)^2 L^2}} \right\}$ it implies
$$\mathbb{E}\left[\mathbf{Gap}(\overline{z}_K)\right] \leq \frac{V}{2\gamma K}$$

for iterations of Algorithm 1 with partial participation.

Proof. We consider $Q' = \frac{\eta}{n}Q$ and utilize independence of η and Q to write

$$\mathbb{E}\left\|\frac{\eta}{p}\mathcal{Q}(z)\right\|^2 = \mathbb{E}\left(\frac{\eta}{p}\right)^2 \|\mathcal{Q}(z)\|^2 = \mathbb{E}\left(\frac{\eta}{p}\right)^2 \mathbb{E}\left\|\mathcal{Q}(z)\right\|^2 \stackrel{(2)}{\leq} \frac{1}{p}\omega \|z\|^2. \tag{59}$$

Independence along with (2) guaranties the unbiasedness of Q' as well:

$$\mathbb{E}\frac{\eta}{p}\mathcal{Q}(z) = \mathbb{E}\frac{\eta}{p}\mathbb{E}\mathcal{Q}(z) \stackrel{(2)}{=} z. \tag{60}$$

The established properties implies that operator Q' is unbiased compressor with compression rate $\omega' = \frac{\omega}{n}$. This enables the application of Theorem 1 and finishing the proof.

Given Corollary 3 in partial participation setting we establish the following bounds.

Corollary 4 In setting of Corollary 3 with $\gamma = \gamma_p$, Algorithm 1 with partial participation needs

$$\mathcal{O}\left(\frac{1}{\varepsilon}\left[\tilde{L}\left(\frac{\omega}{p}\right)^{3/2}+\tilde{L}M^{1/2}+L\left(\sqrt{\frac{\omega^3}{Mp^3}}+\frac{\omega}{p}\right)\right]\right)$$

iterations in order to reach ε -accuracy with respect to $\mathbb{E}[\mathbf{Gap}(\overline{z}_K)]$. Additionally, it requires

$$\mathcal{O}\left(\frac{1}{\varepsilon}\left[\tilde{L}\left(\frac{\omega}{p}\right)^{^{1/2}}+\tilde{L}\frac{M^{^{1/2}}p}{\omega}+L\left(\sqrt{\frac{\omega}{Mp}}+1\right)\right]\right)$$

bits communicated from nodes to the server.

Proof. Proof in this setting completely coincide with the proof of Corollary 1.

E LLM USAGE

Beyond aiding in the editing process, no large language models (LLMs) were employed in this work. The entire intellectual content – including all facts, claims, arguments, and proofs – remained unaffected by LLM influence.