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Abstract

Adapting large-scale foundational flow and diffusion generative models to optimize
task-specific objectives while preserving prior information is crucial for real-world
applications such as molecular design, protein docking, and creative image genera-
tion. Existing principled fine-tuning methods aim to maximize the expected reward
of generated samples, while retaining knowledge from the pre-trained model via
KL-divergence regularization. In this work, we tackle the significantly more gen-
eral problem of optimizing general utilities beyond average rewards, including
risk-averse and novelty-seeking reward maximization, diversity measures for explo-
ration, and experiment design objectives among others. Likewise, we consider more
general ways to preserve prior information beyond KL-divergence, such as optimal
transport distances and Rényi divergences. To this end, we introduce Flow Density
Control (FDC), a simple algorithm that reduces this complex problem to a specific
sequence of simpler fine-tuning tasks, each solvable via scalable established meth-
ods. We derive convergence guarantees for the proposed scheme under realistic
assumptions by leveraging recent understanding of mirror flows. Finally, we val-
idate our method on illustrative settings, text-to-image, and molecular design tasks,
showing that it can steer pre-trained generative models to optimize objectives and
solve practically relevant tasks beyond the reach of current fine-tuning schemes.

1 Introduction

Utility

Current This work

Divergence

Figure 1: We extend the capabilities of cur-
rent fine-tuning schemes from KL-regularized
expected reward maximization (left) to the
optimization of arbitrary distributional util-
ities F under general divergences D (right).

Large-scale generative modeling has recently seen re-
markable advancements, with flow [30, 31] and diffu-
sion models [52, 53, 23] standing out for their ability
to produce high-fidelity samples across a wide range
of applications, from chemistry [24] and biology [9]
to robotics [8]. However, approximating the data
distribution is insufficient for real-world applications
such as scientific discovery [6, 60], where one typi-
cally wishes to generate samples optimizing specific
utilities, e.g., molecular stability and diversity, while
preserving certain information from a pre-trained
model. This problem has recently been tackled via
fine-tuning in the case where the utility corresponds
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to the expected reward of generated samples, and pre-trained model information is retained via KL-
divergence regularization, as shown in Fig. 1 (left). Crucially, this specific fine-tuning problem can be
solved via entropy-regularized control formulations [e.g., 14, 56, 54] with successful applications in
real-world domains such as image generation [14], molecular design [57], or protein engineering [57].

Unfortunately, many practically relevant tasks cannot be captured by this formulation. For instance,
consider the tasks of risk-averse and novelty-seeking reward maximization. In the former case,
one wishes to steer the generative model toward distributions with controlled worst-case rewards,
thereby improving validity and safety. In the latter case, one aims to control the upper tail of the
reward distribution to maximize the probability of generating exceptionally promising designs,
e.g., for scientific discovery. Other applications that cannot be captured via maximization of simple
expectations include manifold exploration [12], model de-biasing [13], and optimal experimental
design [39, 10] among others. Similarly, preserving prior information via a KL divergence has
known drawbacks. For instance, it can lead to missing of low-probability yet valuable modes [29, 44],
and it prevents from leveraging the geometry of the space even when this is known, e.g., in protein
docking [9]. Replacing KL with alternative divergences can address these shortcomings. Driven by
these motivations, in this work we aim to answer the following fundamental question (see Fig. 1):

How can we provably fine-tune a flow or diffusion model to optimize any user-specified utility
while preserving prior information via an arbitrary divergence?

Answering this would contribute to the algorithmic-theoretical foundations of generative optimization.
Our approach We tackle this challenge by first introducing the formal problem of generative
optimization via fine-tuning. Then, we shed light on why this formulation is strictly more expressive
than current fine-tuning problems [14, 54], and present a sample of novel practically relevant utilities
and divergences (Sec. 3). Next, we introduce Flow Density Control (FDC), a simple sequential
scheme that can fine-tune models to optimize general objectives beyond the reach of entropy-
regularized control methods. This is achieved by leveraging recent machinery from Convex [20] and
General Utilities RL [61] (Sec. 4). We provide rigorous convergence guarantees for the proposed
algorithm in both a simplified scenario, via convex optimization analysis [43, 33], and in a realistic
setting, by building on recent understanding of mirror flows [25] (Sec. 5). Finally, we provide
an experimental evaluation of the proposed method, demonstrating its practical relevance on both
synthetic and high-dimensional image and molecular generation tasks, showing how it can steer
pre-trained models to solve tasks beyond the inherent limits of current fine-tuning schemes (Sec. 6).
Our contributions To sum up, in this work we contribute

• A formalization of the generative optimization problem, which extends current fine-tuning formula-
tions beyond linear utilities and general divergences (Sec. 3).

• Flow Density Control (FDC), a principled algorithm capable of optimizing functionals beyond the
reach of current fine-tuning schemes based on entropy-regularized control/RL (Sec. 4).

• Convergence guarantees for the presented algorithm both under simplified and realistic assumptions
leveraging recent understanding of mirror flows (Sec. 5).

• An experimental evaluation of FDC showcasing its practical relevance on both illustrative and
high-dimensional text-to-image and molecular design tasks, showing how it can steer pre-trained
models to solve tasks beyond the capabilities of current fine-tuning schemes. (Sec. 6).

2 Background and Notation
General Notation. We denote with X ⊆ Rd an arbitrary set. Then, we indicate the set of Borel
probability measures on X with P(X ), and the set of functionals over the set of probability measures
P(X ) as F(X ). Given an integer N , we define [N ] := {1, . . . , N}.

Generative Flow Models. Generative models aim to approximately sample novel data points from a
data distribution pdata. Flow models tackle this problem by transforming samples X0 = x0 from a
source distribution p0 into samples X1 = x1 from the target distribution pdata[31, 17]. Formally, a
flow is a time-dependent map ψ : [0, 1]× Rd → R such that ψ : (t, x) → ψt(x). A generative flow
model is a continuous-time Markov process {Xt}0≤t≤1 obtained by applying a flow ψt to X0 ∼ p0
as Xt = ψt(X0), t ∈ [0, 1], such that X1 = ψ1(X0) ∼ pdata. In particular, the flow ψ can be
defined by a velocity field u : [0, 1]×Rd → Rd, which is a vector field related to ψ via the following
ordinary differential equation (ODE), typically referred to as flow ODE:

d

dt
ψt(x) = ut(ψt(x)) (1)
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(a) Generative Optimization via Flow Model Fine-tuning.
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Figure 2: (2a) Pre-trained and fine-tuned policies inducing densities ppre1 and optimal density p∗1
w.r.t. utility F and divergence D. (2b) Expressivity and control hierarchy for generative optimization.

with initial condition ψ0(x) = 0. A flow model Xt = ψt(X0) induces a probability path of
marginal densities p = {pt}0≤t≤1 such that at time t we have that Xt ∼ pt. Given a velocity
field u and marginal densities p, we say that u generates the marginal densities p = {pt}0≤t≤1 if
Xt = ψt(X0) ∼ pt for all t ∈ [0, 1). This is the case if the pair (u, p) satisfy the Continuity Equation:

d

dt
pt(x) + div(ptut)(x) = 0 (2)

In this case, we denote by pu the probability path of marginal densities induced by the velocity field u.
Flow matching [30, 32, 1, 31] can estimate a velocity field uθ s.t. the induced marginal densities puθ

satisfy puθ
0 = p0 and puθ

1 = pdata, where p0 denotes the source distribution, and pdata the target data
distribution. Interestingly, diffusion models [53] (DMs) admit an equivalent ODE-based formulation
with identical marginal densities to their original SDE dynamics [31, Chapter 10]. Consequently, al-
though in this work we adopt the notation of flow models, our contributions carry over directly to DMs.

Continuous-time Reinforcement Learning. We formulate finite-horizon continuous-time reinforce-
ment learning (RL) as a specific class of optimal control problems [58, 26, 55, 62]. Given a state
space X and an action space A, we consider the transition dynamics governed by the following ODE:

d

dt
ψt(x) = at(ψt(x)) (3)

where at ∈ A is a selected action. We consider a state space X := Rd× [0, 1], and denote by (Marko-
vian) deterministic policy a function πt(Xt) := π(Xt, t) ∈ A mapping a state (x, t) ∈ X to an action
a ∈ A such that at = π(Xt, t), and denote with pπt the marginal density at time t induced by policy π.

Pre-trained Flow Models as an RL policy. A pre-trained flow model with velocity field upre can be
interpreted as an action process apret := upre(Xt, t), where apret is determined by a continuous-time
RL policy via apret = πpre(Xt, t) [12]. Therefore, we can express the flow ODE induced by a
pre-trained flow model by replacing at with apre in Eq. (3), and denote the pre-trained model by
its (implicit) policy πpre, which induces a marginal density ppre1 := pπ

pre

1 approximating pdata.

We present a thorough analysis of related works in Apx. A.

3 Formal Problem: a General Framework for Generative Optimization
In this section, we aim to formally introduce the general problem of generative optimization (GO)
via fine-tuning. Formally, we wish to adapt a pre-trained generative flow model πpre to obtain a
new model π∗ inducing an ODE:

d

dt
ψt(x) = a∗t (ψt(x)) with a∗t = π∗(x, t), (4)

such that instead of imitating the data distribution pdata, as typically in generative modeling, it
induces a marginal density pπ

∗

1 that maximizes a utility measure F : P(X ) → R, while preserving
information from the pre-trained model πpre via regularization with an arbitrary divergence
D(· ∥ ppre). This algorithmic problem is illustrated in Fig. 2a, and formalized in the following.

Generative Optimization via Flow Model Fine-Tuning

argmax
π

F (pπ1 )− αD(pπ1 ∥ p
pre
1 ) s.t.

d

dt
pt(x) + div(ptat)(x) = 0 with at = π(x, t) (5)
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APPLICATION FUNCTIONAL F / D LINEAR GO
NON-LINEAR GO

CONCAVE GENERAL

REWARD OPTIMIZATION [14, 56] Ex∼pπ [r(x)] ✓ ✓ ✓

MANIFOLD EXPLORATION [12]
GEN. MODEL DE-BIASING

H(pπ) := − E
x∼pπ

[log pπ(x)] ✗ ✓ ✓

RISK-AVERSE OPTIMIZATION
CVaRr

β(p
π) := E

x∼pπ
[r(x) | r(x) ≤ qrβ(p

π)] ✗ ✓ ✓

Ex∼pπ [r(x)]− Var(pπ) ✗ ✗ ✓

NOVELTY-SEEKING OPTIMIZATION SQr
β(p

π) := E
x∼pπ

[r(x) | r(x) ≥ qrβ(p
π)] ✗ ✗ ✓

OPTIMAL EXPERIMENT DESIGN
s

(
E

x∼pπ
[Φ(x)Φ(x)⊤ − λI]

)
✗ ✓ ✓

s(·) ∈ {log det(·),−Tr(·)−1,−λmax(·)}

DIVERSE MODES DISCOVERY −E
z
[DKL(p

π,z∥E
k
pπ,k)] ✗ ✗ ✓

LOG-BARRIER CONSTRAINED GENERATION Ex∼pπ [r(x)]− β log (⟨pπ, c⟩ − C) ✗ ✓ ✓

KULLBACK–LEIBLER DIVERGENCE [14, 56] DKL(p
π ∥ ppre) =

∫
pπ(x) log

pπ(x)

ppre(x)
dx ✓ ✓ ✓

RÉNYI DIVERGENCES Dβ(p
π ∥ ppre) := 1

β − 1
log

∫
(pπ(x))β(ppre)1−β dx ✗ ✗ ✓

OPTIMAL TRANSPORT DISTANCES Wp(p
π ∥ ppre) := inf

γ∈Γ(pπ,ppre)
E

(x,y)∼γ
[d(x, y)p]

1
p ✗ ✗ ✓

MAXIMUM MEAN DISCREPANCY MMDk(p
π ∥ ppre) := ∥µpπ − µppre∥, µp := E

x∼p
[k(x, ·)] ✗ ✓ ✓

Table 1: Examples of practically relevant utilities F (blue) and divergences D (orange). Apx. B
provides mathematical details and practical applications for each functional. Notice that besides H, all
non-linear functionals presented are novel in the context of fine-tuning of diffusion and flow models.

In this formulation, F and D are both functionals mapping the marginal density pπ1 induced by policy
π to a scalar real number, namely F ,D : P(X ) → R. The constraint in Eq. (5) is the (controlled) Con-
tinuity Equation (see Eq. (2)), which relates the control policy π to the induced marginal density pπ1 .

3.1 The sub-case of KL-regularized reward maximization via entropy-regularized control
Current fine-tuning schemes for flow generative models based on RL and control-theoretic formula-
tions [e.g., 14, 56] aim to tackle the following problem, where we omit the flow constraint for clarity:

Linear Generative Optimization via Flow Model Fine-Tuning

argmax
π

E
x∼pπ

1

[r(x)]− αDKL(p
π
1 ∥ p

pre
1 ) (6)

Crucially, the common problem in Eq. (6), which we denote by Linear1 GO, is the specific sub-case of
the generative optimization problem in Eq. (5), where the utility F is a linear functional corresponding
to the expectation of a (reward) function r : X → R, and D is the Kullback–Leibler divergence:

F(pπ1 ) = ⟨pπ1 , r⟩ = E
x∼pπ

1

[r(x)] and D(pπ1 ∥ p
pre
1 ) = DKL(p

π
1 ∥ p

pre
1 ) (7)

This specific fine-tuning problem can be solved via entropy-regularized (or relaxed) control [14].

3.2 Beyond Linear Generative Optimization

Let G(pπ1 ) = F(pπ1 ) − αD(pπ1∥ p
pre
1 ) be the functional in Eq. (5). Then we denote by Convex GO

the case where G is concave in pπ1 , and by General GO the case for arbitrary, possibly non-convex
functionals 2. In terms of expressivity Linear GO ⊂ Convex GO ⊂ General GO, as depicted in Fig.
2b (left). In Table 1 we classify into these tree tiers a sample of practically relevant utilities (F , blue)
and divergences (D, orange). In Apx. B we report complete definitions and applications. Except for
entropy [12] and KL, all non-linear functionals in Table 1 are to our knowledge explicitly used for the
first time in the flow and diffusion model fine-tuning literature, while vastly employed in other areas.
Moreover, the framework presented in this work for GO (Eq. 5) applies to any new choice of F or D.

1For clarity, we adopt the term linear motivated by the linear utility even though the KL is non-linear.
2We use the term convex GO, rather than concave GO, to denote the problem class with concave functionals.
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Algorithm 1 Flow Density Control (FDC)
1: input: G : general utility functional, K : number of iterations, πpre : pre-trained flow generative model,
{ηk}Kk=1 regularization coefficients

2: Init: π0 := πpre

3: for k = 1, 2, . . . ,K do
4: Estimate: ∇xgk = ∇xδG(pk−1

1 )
5: Compute πk via first-order linear fine-tuning:

πk ← ENTROPYREGULARIZEDCONTROLSOLVER(∇xgk, ηk, πk−1)
6: end for
7: output: policy π := πK

Given the generality of generative optimization (Eq.(5)), a natural question arises: how can it be solved
algorithmically? In the next section, we answer this by leveraging recent machinery from Convex [20]
and General-Utilities RL [61], to derive a fine-tuning scheme that handles both convex and general
GO, thus going beyond current entropy-regularized control methods, as illustrated in Fig. 2b (right).

4 Algorithm: Flow Density Control
In this section, we introduce Flow Density Control (FDC), see Alg. 1, which provably solves the
generative optimization problem in Eq. (5) via sequential fine-tuning of the pre-trained model
πpre. To this end, we recall the notion of first variation of a functional over a space of probability
measures [25]. A functional G ∈ F(X ), where G : P(X ) → R, has first variation at µ ∈ P(X ) if
there exists a function δG(µ) ∈ F(X ) such that for all µ′ ∈ P(X ) it holds that:

G(µ+ ϵµ′) = G(µ) + ϵ⟨µ′, δG(µ)⟩+ o(ϵ).

where the inner product has to be interpreted as an expectation. Intuitively, the first variation of G
at µ, namely δG(µ), can be interpreted as an infinite-dimensional gradient in the space of probability
measures. Given this notion, and a pair of generative models represented via policies π and π′, we
can now state the following entropy-regularized first variation maximization fine-tuning problem.

Entropy-Regularized First Variation Maximization

argmax
π

⟨δG
(
pπ

′

1

)
, pπ1 ⟩ − ηDKL(p

π
1 ∥ pπ

′

1 ) (8)

Crucially, we can introduce a function g : X → R defined for all x ∈ X such that:

g(x) := δG
(
pπ

′

1

)
(x) and E

x∼pπ
[g(x)] = ⟨δG

(
pπ

′

1

)
, pπ1 ⟩ (9)

As a consequence, by rewriting Eq. (8) expressing the first term via an expectation as shown in
Eq. (9), it corresponds to a common Linear GO problem (see Eq. (6)), which can be optimized by
utilizing established entropy-regularized control methods [e.g., 57, 14, 62].

We can finally present Flow Density Control (FDC), see Alg. 1, a mirror descent (MD) scheme [43]
that reduces optimization of non-linear functionals G to a specific sequence of Linear GO problems.
FDC takes three inputs: a pre-trained flow or diffusion model πpre, the number of iterations K, and
a sequence of regularization weights {ηk}Kk=1. At each iteration, FDC first estimates the gradient of
the functional first variation at the previous policy πk−1, i.e., ∇xδG

(
pk−1
1

)
(line 4). Then, it updates

the flow model πk by solving the fine-tuning problem in Eq. (8) via an entropy-regularized control
solver such as Adjoint Matching [14], using ∇xgk := ∇xδG

(
pk−1
1

)
as in Eq. (9) (line 5). Ultimately,

it returns a final policy π := πK . We report a detailed implementation of FDC in Apx. F. An
introduction to computation and estimation of the gradient of first variations can be found in Apx. C.

Given the approximate gradient estimates and the generality of the objective functions, it is still unclear
whether the proposed algorithm provably converges to the optimal flow model π∗. In the next section,
we answer this question by developing a theoretical analysis via recent results on mirror flows [25].

5 Guarantees for Generative Optimization via Flow Density Control
In this section, we recast (5) as constrained optimization over stochastic processes, where the con-
straint is given by the Continuity Equation (2). This formulation enables the application of mirror
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descent for constrained optimization and the notion of relative smoothness [3]. In our framework,
convergence speed is governed by: 1. the structural complexity of the functional G (cf. Section 4),
2. the accuracy of the estimator g from (9), and 3. the quality of the oracle ENTROPYREGULARIZED-
CONTROLSOLVER in Alg. 1. To handle these cases, we will analyze two representative regimes:

• Idealized. G is concave, and both g and ENTROPYREGULARIZEDCONTROLSOLVER are exact.
In this setting, classical results yield sharp step-size prescriptions and fast convergence rates.

• General. G is non-concave, with g and the oracle subject to noise and bias. While fast
convergence is generally out of reach [34, 27], convergence to a stationary point remains
attainable under mild assumptions.

Theoretical analysis: Idealized setting. We now present a framework leading to convergence
guarantees for FDC (i.e., Alg. 1) for concave functionals G ∈ F(X ). We report in Apx. D, we report
background knowledge regarding L relative smoothness and l relative strong convexity of G w.r.t. a
given functional, and recall the notion of Bregman divergence induced by a given functional.

In the following, we interpret line (6) of FDC as a step of mirror descent [43], and the KL
divergence term as the Bregman divergence induced by an entropic mirror map Q = H, i.e.,
DKL(µ, ν) = DH(µ ∥ ν). We can finally state the following set of assumptions as well as the
convergence guarantee for an arbitrary functional G(·) = F(·)− αD(· ∥ ppre) ∈ F(X ).
Assumption 5.1 (Exact estimation and optimization). We consider the following assumptions:

1. Exact estimation: ∇xδG(pk1) is estimated exactly ∀k ∈ [K].

2. The optimization problem in Eq. (8) is solved exactly.

Theorem 5.1 (Convergence guarantee of Flow Density Control with concave functionals). Given
Assumptions 5.1, fine-tuning a pre-trained model πpre via FDC (Algorithm 1) with ηk = L
∀k ∈ [K], leads to a policy π inducing a marginal distribution pπ1 such that:

G(p∗1)− G(pπ1 ) ≤
L− l

K
DKL(p

∗
1 ∥ p

pre
1 ) (10)

where p∗1 := pπ
∗

1 is the marginal distribution induced by the optimal policy π∗ ∈
argmaxπ G(pπ1 ) := F(pπ1 )− αD(pπ1 ∥ p

pre
1 ).

Theorem 5.1 provides a fast convergence rate under a specific step-size choice (ηk = L). However,
it critically depends on Assumption 5.1, which typically does not hold in practice. To address this
limitation, we now consider a more general scenario where this key assumption is relaxed.

Theoretical analysis: General setting. Recall that pk1 := pπk
1 represents the (stochastic) density

produced by the ENTROPYREGULARIZEDCONTROLSOLVER oracle at the k-th step of FDC, and consider
the following mirror descent iterates, where 1/λk = ηk in Algorithm 1:

pk♯ := argmax
p∈P(Ωpre)

⟨δG
(
p
πk−1

T

)
, p⟩ − 1

γk
DKL(p ∥ p

πk−1

T ) (MDk)

In realistic settings, where only noisy and biased approximations of (MDk) are available, it is
essential to quantify the deviations from the idealized iterates in (MDk). To this end, denote by Tk
the filtration up to step k, and consider the decomposition of the oracle into its noise and bias parts:

bk := E
[
δG(pπk

T )− δG(pk♯ ) | Tk
]
, Uk := δG(pπk

T )− δG(pk♯ )− bk (11)

Conditioned on Tk, Uk has zero mean, while bk captures the systematic error. We then impose:
Assumption 5.2 (Noise and Bias). The following events happen almost surely:

∥bk∥∞ → 0,
∑
k

E
[
γ2k

(
∥bk∥2∞ + ∥Uk∥2∞

)]
<∞,

∑
k

γk ∥bk∥∞ <∞ (12)

The first condition is a necessary requirement for convergence since when violated, it is easy to
construct scenarios where no practical algorithm can solve the generative optimization problem.
The second and third inequalities manage the trade-off between accuracy of the approximate oracle
ENTROPYREGULARIZEDCONTROLSOLVER and aggressiveness of the step sizes, γk. Intuitively, lower
noise and bias in the oracle enable the use of larger step sizes. To this end, Assumption 5.2 provides
a concrete criterion that guarantees the success of finding the optimal policy with probability one.
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(a) Pre-trained samples (b) FDC α = 0.5 samples (c) FDC α = 0.0 samples

H(pπ)

Pre-trained 6.78
FDC α = 0.5 7.00
FDC α = 0.0 7.14

(d) Entropy evaluation

(e) Pre-trained samples

⇒

(f) FDC samples

Vendi CLIP
Pre-trained 2.36 0.19
FDC α = 0.001 2.47 0.22

(g) Images evaluation

(h) Energy distributions (i) Top 0.2% Energies

E[r(x)] SQβ

Pre 15.4 24.2
AM 29.1 39.7
FDC-A 27.5 41.8

(j) SQ Negative Energy (k) FDC-generated design

Figure 3: (top) Illustrative manifold exploration experiment via KL-regularized entropy maximization,
(mid) High-dimensional manifold exploration via text-to-image model fine-tuning for prompt "A
creative bridge design". Left: images from pre-trained model, Right: images from model fine-tuned
via FDC, with higher diversity as indicated by a higher Vendi score. (bottom) Novelty-seeking molec-
ular design for Energy (kcal/mol) maximization by fine-tuning FlowMol [15]. FDC shows enhanced
control capabilities for optimizing such complex objectives than AM, a classic fine-tuning scheme.

Theorem 5.2 (Convergence guarantee of Flow Density Control for general functionals). Given the
Robbins-Monro step-size rule:

∑
k γk = ∞,

∑
k γ

2
k <∞, under Assumption 5.2 and technical

assumptions (see Appendix E), the sequence of marginal densities pk1 induced by the iterates πk of
Algorithm 1 converges weakly to a stationary point p̃1 of G almost surely, formally: pk1 ⇀ p̃1 a.s..

6 Experimental Evaluation
We analyze the ability of Flow Density Control (FDC) to induce policies optimizing complex
non-linear objectives, and compare its performance with Adjoint Matching (AM) [14], a classic
fine-tuning method. In the following, we present three experiments: (i) an illustrative and visually
interpretable exploration task , (ii) a novelty-seeking molecular design problem for single-point
energy minimization [18] , and (iii) manifold exploration for text-to-image creative bridge design
generation. In Apx. G we provide further experiments for risk-averse and novelty-seeking utilities,
as well as regularization via Wasserstein distances. Additional details are provided in Apx. H.
Conservative manifold exploration. We tackle manifold exploration [12] by fine-tuning a
pre-trained model πpre to maximize the entropy utility (H in Tab. 1) under a KL regularization of
strength α, a capability not possible with prior methods [12]. As in previous work, we consider the
common setting where the pre-trained model density ppre1 concentrates most of its mass in a specific
region as shown in Fig. 3a, where N = 10000 samples are shown. By fine-tuning πpre via FDC, the
density of the fine-tuned model shifts into low-coverage areas (see Fig. 3b and 3c). In particular, Fig.
3d demonstrates that reducing α from 0.5 to 0.0 yields progressively higher Monte Carlo entropy
estimates (7.00 at α = 0.5, 7.14 at α = 0), thus enabling control of the trade-off between preserving
the original distribution and exploring novel regions, a capability not supported by prior methods [12].
Molecular design for single-point energy minimization. We fine-tune FlowMol [15], pre-trained
on QM9 [47], to discover molecules minimizing the single-point total energy computed via extended
tight-binding at the GFN1-xTB level of theory [18]. Concretely, we maximize the negative energy. We
do not aim to maximize the average sample reward, but rather that of the top 0.2% samples. We employ
FDC with novelty-seeking SQ utility (see Tab. 1) with β = 0.998, and make 2 gradient steps perK =
10 iterations. We compare it with AM run for 240 steps. Fig. 3j shows that while AM generates better
samples in average (namely 29.1 over 27.5 of FDC), the average quality of the top 0.2% molecules,
indicated by SQβ is higher for FDC than for AM (namely 41.8 over 39.7 of AM). This confirms (see
Fig. 3i and 3h) that FDC can sacrifice the average reward to generate a few truly high-reward designs.
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Text-to-image bridge designs conservative exploration. We perform manifold exploration by
fine-tuning Stable Diffusion (SD) 1.4 [50] with prompt "A creative bridge design.". To this end,
we maximize the KL-regularized entropy (see Tab. 1) with α = 0.001 via FDC for K = 2 steps.
As a diversity metric, we utilize the Vendi score [19] with cosine similarity kernel on the extracted
CLIP [21] features from a sample of 100 images and compared it to the baseline pre-trained model in
Fig. 3g. Beyond increasing the Vendi score, FDC also increases the CLIP score of the initial model.
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A Related Works

Flow and diffusion models fine-tuning via optimal control. Recent works have framed
fine-tuning of diffusion and flow models to maximize expected reward under KL regularization as
an entropy-regularized optimal control problem [e.g., 56, 54, 57, 14]. Crucially, as shown in Sec.
3, the problem tackled by these studies is the specific sub-case of generative optimization (Eq. (5)),
where the utility F is linear, and D = DKL. In this work, we propose a principled method with
guarantees for the far more general class of non-linear utilities and divergences beyond KL, including
the ones listed in Tab. 1. The framework introduced has strictly higher expressive power and control
capabilities for fine-tuning generative model (see Sec. 3). This renders possible to tackle relevant
tasks e.g., scientific discovery, beyond the capabilities of the aforementioned fine-tuning schemes.
Convex and General Utilities Reinforcement Learning. Convex and General (Utilities)
RL [20, 59, 61] generalizes RL to the case where one wishes to maximize a concave [20, 59],
or general [61, 4] functional of the state distribution induced by a policy over a dynamical system’s
state space. The introduced generative optimization problem (in Eq. (5)) is related, with pπ1 represent-
ing the state distribution induced by policy π over a subset of the state space. Recent works tackled
the finite samples budget setting [e.g., 42, 40, 41, 45, 11]. Ultimately, to our knowledge, this is the
first work leveraging an algorithmic scheme resembling General RL for the practically relevant task of
generative optimization of general non-linear functionals via fine-tuning of diffusion and flow models.
Optimization over probability measures via mirror flows. Recently, there has been a growing
interest in building theoretical guarantees for optimization problems over spaces of probability
measures in a variety of applications. These include GANs [25], optimal transport [3, 28, 27],
kernelized methods [16], and manifold exploration [12]. We present the first use of this framework
to establish guarantees for the generative optimization problem in Eq. (5). This novel link to
probability-space optimization sheds new light on large-scale flow and diffusion models fine-tuning.
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B Functionals and Derivation of Gradients of First-order Variations

B.1 Overview of utilities and divergences in Table 1

In the following, we report the missing details for the functionals presented within Table 1, and
discuss some possible applications.

Manifold Exploration and Generative Model De-biasing As mentioned within Sec. 3, maxi-
mization of the entropy functional as been recently introduced as a principled objective for manifold
exploration [12]. Moreover, we wish to point out that it can be interpreted also from the viewpoint of
de-biasing a prior generative model to re-distribute more uniformly its density while preserving a
certain notion of support, e.g., via sufficient KL-divergence regularization.

Risk-averse and Novelty-seeking reward maximization A definition of qrβ can be found below,
explanations of these utilities can be found in Sec. 1, and experimental illustrative examples are
provided in Sec. 6.

Optimal Experiment Design The task of Optimal Experimental Design (OED) [7] involves
choosing a sequence of experiments so as to minimize some uncertainty metric for an unknown
quantity of interest f : X → R, where X is the set of all possible experiments. From a probabilistic
standpoint, an optimal design may be viewed as a probability distribution over X , prescribing how
frequently each experiment should be performed to achieve maximal reduction in uncertainty about
f [46]. This problem has been recently studied in the case where f is an element of a reproducing
kernel Hilbert space (RKHS), i.e., f ∈ Hk, induced by a known kernel k(x, x′) = Φ(x)⊤Φ(x′)
where x, x′ ∈ X [38]. Given this setting, one might aim to acquire information about f according to
different criteria captured by the scalarization function s(·) [39]. In particular, in Table 1, we report
three illustrative choices for s:

• D-design: log det(·) (Information)
• A-design: −Tr(·) (Parameter error)
• E-design: λmax(·) (Worst projection error)

as reported in previous work [Table 1 39].

Diverse Mode Discovery This objective corresponds to a re-interpretation of the Diverse Skill
Discovery objective introduced in the context of Reinforcement Learning [59]. Consider the case
where it is given a discrete and finite set S of symbols interpretable as latent variables, which can
be leveraged to (exactly or approximately) perform conditional generation. This objective captures
the task of assuring maximal diversity, in terms of KL divergence between the different conditional
components, represented as pπ,k with k ∈ S.

Log-barrier constrained generation This formulation can be found within the General Utilities
RL literature [61]. In particular, here we show the case where constraints are enforced via a log-barrier
function, namely log(·). Nonetheless, the functional presented in Table 1 remains meaningful for
general penalty functions.

Optimal transport distances OT distances within Table 1 and their relative notation are introduced
below in the context of their first variation computation.

Maximum Mean Discrepancy Here k denotes a positive-definite kernel, which measures similarity
between two points in sample space. Moreover, µp denotes a kernel mean embedding of distribution
p [37]. In terms of applications, choosing a proper kernel k could render possible to preserve specific
structure of the initial pre-trained model that would be otherwise lost via KL regularization.

B.2 A brief tutorial on first variation derivation

In this work, we focus on the functionals that are Fréchet differentiable: Let V be a normed spaces.
Consider a functional F : V → R. There exists a linear operator A : V → R such that the following
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limit holds

lim
∥h∥V →0

|F (f + h)− F (f)−A[h]|
∥h∥V

= 0. (13)

We further assume that V admits certain structure such that every element in its dual space (the space
of bounded linear operator on V ) admits some compact representation. For example, when V is the
set of compact-supported continuous bounded functions, there exists a unique positive Borel measure
µ with the same support, which can be identified as the linear functional. We denote this element as
δF [f ] such that ⟨δF [f ], h⟩ = A[h]. Sometimes we also denote it as δF

δf . We will refer to δF [f ] as
the first-order variation of F at f .

In this section, we briefly review strategies for deriving the first-order variation of two broad classes
of functionals: those defined in closed form with respect to the density (e.g., expectation and entropy)
and those defined via variational formulations (e.g., CVaR, Wasserstein distance, and MMD).

• Category 1: Functional defined in a closed form w.r.t. the density. For this class of functionals,
the first-order variations can typically be computed using its definition and chain rule.
With definition (13) in mind, we can try to calculate the first-order variation of the mean functional.
Consider a continuous and bounded function r : Rd → R and a probability measure µ on Rd.
Consider the functional F (µ) =

∫
r(x)µ(x)dx. We have

|F (µ+ δµ)− F (µ)− ⟨r, δµ⟩| = 0. (14)

We therefore obtain δF [µ] = r for all µ. We will compute the first-order variations for other
functionals in the next subsection.

• Category 2: Functionals defined through a variational formulation. Another important subclass
of functionals considered in this paper is the ones defined via a variational problem

F [f ] = sup
g∈Ω

G[f, g], (15)

where Ω is a set of functions or vectors independent of the choice of f , and g is optimized over the
set Ω. We will assume that the maximizer g∗(f) that reaches the optimal value for G[f, ·] is unique
(which is the case for the functionals considered in this project). It is known that one can use the
Danskin’s theorem (also known as the envelope theorem) to compute

δF [f ]

δf
= ∂fG[f, g

∗(f)], (16)

under the assumption that F is differentiable [36].

B.3 Derivation of gradients of first-order variation for functionals in Table 1

• Risk-Averse Optimization (Category 2) Recall that qrβ(p
π) = sup{v ∈ R|FZ(v) ≤ β}, where

the random variable Z is defined as Z = r(x) with x ∼ pπ(x). From [49], we have

CVaRr
β(p

π) = E[r(x)|r(x) ≤ qrβ(p
π)] = β inf

ζ

{
ζ +

1

β
E [min{r(x)− ζ, 0}]

}
.

Moreover, we have ζ∗ that solves the above optimization problem is exactly ζ∗ = qrβ(p
π). By

Danskin’s theorem, one has (in a weak sense)

δCVaRr
β(p

π)

δpπ
= βmin{r(x)− qrβ(p

π), 0}. (17)

• Risk-Seeking Optimization (Category 2) Recall that qrβ(p
π) = sup{v ∈ R|FZ(v) ≤ β}, where

the random variable Z is defined as Z = r(x) with x ∼ pπ(x). From [49], we have

SQr
β(p

π) = E[r(x)|r(x) ≥ qrβ(p
π)] = (1− β) inf

ζ

{
ζ +

1

1− β
E [max{r(x)− ζ, 0}]

}
.

Moreover, we have ζ∗ that solves the above optimization problem is exactly ζ∗ = qrβ(p
π). By

Danskin’s theorem, one has (in a weak sense)

δSQr
β(p

π)

δpπ
= (1− β)max{r(x)− qrβ(p

π), 0}. (18)
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APPLICATION FUNCTIONAL F / D FIRST-ORDER VARIATION
DENSITY CONTROL

CONVEX GENERAL

REWARD OPTIMIZATION [14, 56] Ex∼pπ [r(x)] r ✓ ✓

MANIFOLD EXPLORATION
GEN. MODEL DE-BIASING

H(pπ) := −Ex∼pπ [log pπ(x)] −1− log pπ ✓ ✓

RISK-AVERSE OPTIMIZATION
CVaRr

β(p
π) := Ex∼pπ [r(x) | r(x) ≤ qrβ(p

π)] βmin{r(x)− qrβ(p
π), 0} ✓ ✓

Ex∼pπ [r(x)]− Var(pπ) r(x)−
(
r(x)2 − 2Ex∼pπ [r(x)]r(x)

)
✗ ✓

RISK-SEEKING OPTIMIZATION SQr
β(p

π) := Ex∼pπ [r(x) | r(x) ≥ qrβ(p
π)] (1− β)max{r(x)− qrβ(p

π), 0} ✗ ✓

OPTIMAL EXPERIMENT DESIGN
s(Ex∼pπ [Φ(x)Φ(x)⊤ − λI]) SEE EQUATION (28)

✓ ✓

s(·) ∈ {log det(·),−Tr(·)−1,−λmax(·)}

DIVERSE MODES DISCOVERY −Ez[DKL(p
π,z∥Ek p

π,k)] SEE EQUATION (30) ✗ ✓

LOG-BARRIER CONSTRAINED GENERATION Ex∼pπ [r(x)]− β log (⟨pπ, c⟩ − C) SEE EQUATION (29) ✓ ✓

KULLBACK–LEIBLER DIVERGENCE DKL(p
π ∥ ppre) =

∫
pπ(x) log pπ(x)

ppre(x) dx 1 + log pπ − log ppre ✓ ✓

RÉNYI DIVERGENCES Dβ(p
π ∥ ppre) := 1

β−1 log
∫
(pπ(x))β(ppre(x))1−β dx β

β−1

(∫ (
p
q

)β
dq(x)

)−1 (
p
q

)β−1

✓ ✓

OPTIMAL TRANSPORT DISTANCES Wp(p
π ∥ ppre) := infγ∈Γ(pπ,ppre) E(x,y)∼γ [d(x, y)

p]
1
p SEE EQUATION (27) ✓ ✓

MAXIMUM MEAN DISCREPANCY MMDk(p
π, ppre) := ∥µpπ − µppre∥, µp := Ex∼p[k(x, ·)] argmaxϕ∈H⟨ϕ, pπ − ppre⟩ ✓ ✓

Table 2: Examples of practically relevant utilities F (blue) and divergences D (orange), and their
first-order variations.

• Rényi Divergence (Category 1) Recall the definition of Rényi Divergence

Dβ(p∥q) =
1

β − 1
log

∫ (
p

q

)β

dq(x). (19)

We ignore higher-order terms like O((δp)2).

Dβ(p+ δp∥q)−Dβ(p∥q) =
1

β − 1
log

∫ (
p+δp

q

)β
dq(x)∫ (

p
q

)β
dq(x)

(20)

=
1

β − 1
log

∫ (
p
q

)β
+ β

(
p
q

)β−1
δp
q dq(x)∫ (

p
q

)β
dq(x)

(21)

=
1

β − 1
log 1 +

∫
β
(

p
q

)β−1
δp
q dq(x)∫ (

p
q

)β
dq(x)

(22)

=
1

β − 1

∫
β
(

p
q

)β−1
δp
q dq(x)∫ (

p
q

)β
dq(x)

(23)

δ

δp
Rβ(p, q) =

β

β − 1

(∫ (
p

q

)β

dq(x)

)−1(
p

q

)β−1

(24)

• Optimal transport and Wasserstein-p distance (Category 2) Consider the optimal transport
problem

OTc(u, v) = inf
γ

{∫ ∫
c(x, y)dγ(x, y) :

∫
γ(x, y)dx = u(y),

∫
γ(x, y)dy = v(x)

}
(25)
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where

Γ =

{
γ :

∫
γ(x, y)dx = u(y),

∫
γ(x, y)dy = v(x)

}
It admits the following equivalent dual formulation

OTc(u, v) = sup
f,g

{∫
fdu+

∫
gdv : f(x) + g(y) ≤ c(x, y)

}
(26)

By taking c(x, y) = ∥x− y∥p, we recover OTc(u, v) =Wp(u, v)
p. Let f∗ and g∗ be the solution

to the above dual optimization problem. From the Danskin’s theorem, we have

δ

δu
Wp(u, v)

p = f∗. (27)

In the special case of p = 1, we know that g∗ = −f∗ (note that the constraint can be equivalently
written as ∥∇f∥ ≤ 1), in which case f∗ is typically known as the critic in the WGAN framework.

• Optimal Experiment Design. (Category 1) We take s(M) = log det(M) as example. By chain
rule, we have

δF [pπ] = Tr

[(
E

x∼pπ
[Φ(x)Φ(x)⊤ − λI]

)−1 (
Φ(x)Φ(x)⊤ − λI

)]
. (28)

• Log-Barrier Constrained Generation. (Category 1) By chain rule, we obtain

δF [pπ] = r − βc

⟨pπ, c⟩ − C
. (29)

• Diverse modes discovery. (Category 1) By chain rule, we obtain

δF

δpπ,z
= − δ

δpπ,z
Ez

[∫
pπ,z log pπ,zdx−

∫
pπ,z log

(
Ek[p

π,k]
)
dx

]
= − Ez

[
δ

δpπ,z

(∫
pπ,z log pπ,zdx

)
− δ

δpπ,z

(∫
pπ,z log

(
Ek[p

π,k]
)
dx

)]
= − Ez

[
log pπ,z + 1− log

(
Ek[p

π,k]
)
− pπ,z

Ek[pπ,k]

]
(30)

• Entropy. (Category 1) As a first example, consider the entropy functional F(p) = −
∫
p log p, dx.

By the definition of the first-order variation, we have δF
δp (p) = −1−log p, and therefore ∇ δF

δp (p) =

−∇ log p. This gradient term can be effectively estimated using standard score approximations;
see [12].
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C Gradient of first variation: computation and estimation

Surprisingly, estimating ∇xgk in Alg. 1 (line 4) rarely requires density estimation. Among the
functionals in Table 1, only the Rényi divergence does, for which one can leverage the recent
Itô density estimator [51]. All other functionals admit straightforward plug-in or sample-based
approximations detailed in Apx. B. As an illustrative example, in the following we showcase three
examples from Table 1:

∇xδQ(pπ)(x) =


−∇x log p

π(x) Entropy (H)
∇xr(x) · 1{r(x) ≤ qrβ(p

π)} CVaR
∇xϕ

∗(x) where ϕ∗ = argmaxϕ:∥∇xϕ∥≤1⟨ϕ, pπ − ppre⟩ Wasserstein-1 (W1)

Here Q denotes either a utility F or a divergence D, and qrβ(p
π) is the β-quantile of Z = r(X) with

X ∼ pπ [48]. These gradients can be easily implemented. For entropy, the score term can be approx-
imated via the score network in the case of diffusion models [12], and obtained via a known linear
transformation of the learned velocity field in the case of flows [14, Eq.(8)]. For CVaR, any standard
sample-based estimator of qrβ(p

π) [48] can be used. For Wasserstein-1, ϕ∗ actually corresponds to the
discriminator in Wasserstein-GAN, which can be learned with established methods [2]. In Apx. B, we
report the gradient of the first variation for all functionals in Table 1, explain their practical estimation,
and present a tutorial to derive the first variation of any new functionals not mentioned within Table 1.
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D Proof for Theorem 5.1

D.1 Optimization background

We start by recalling the notion of Bregman divergence induced by a functional Q ∈ F(X ) between
densities µ, ν ∈ P(X ), namely:

DQ(µ ∥ ν) := Q(µ)−Q(ν)− ⟨δQ(ν), µ− ν⟩

Next, we introduce two structural properties for our analysis.
Definition 1 (Relative smoothness and relative strong concavity [33]). Let G : P(X ) → R a concave
functional. We say that G is L-smooth relative to Q ∈ F(X ) over P(X ) if ∃ L scalar s.t. for all
µ, ν ∈ P(X ): G(ν) ≥ G(µ) + ⟨δG(µ), ν − µ⟩ − LDQ(ν ∥µ) (31)
and we say that G is l-strongly concave relative to Q ∈ F(X ) over P(X ) if ∃ l ≥ 0 scalar s.t. for all
µ, ν ∈ P(X ):

G(ν) ≤ G(µ) + ⟨δG(µ), ν − µ⟩ − lDQ(ν ∥µ) (32)

D.2 Convergence Proof

Theorem 5.1 (Convergence guarantee of Flow Density Control with concave functionals). Given
Assumptions 5.1, fine-tuning a pre-trained model πpre via FDC (Algorithm 1) with ηk = L ∀k ∈ [K],
leads to a policy π inducing a marginal distribution pπ1 such that:

G(p∗1)− G(pπ1 ) ≤
L− l

K
DKL(p

∗
1 ∥ p

pre
1 ) (10)

where p∗1 := pπ
∗

1 is the marginal distribution induced by the optimal policy π∗ ∈ argmaxπ G(pπ1 ) :=
F(pπ1 )− αD(pπ1 ∥ p

pre
1 ).

Proof. We prove this result using the framework of relative smoothness and relative strong convexity
introduced in Section 5.

The analysis is based on the classical mirror descent framework under relative properties [33]. For
notational simplicity, we let µk := pπk

T , and fix an arbitrary reference density µ ∈ P(Ωpre). To better
align the notation of our theory with existing literature, we will proceed with the convex functional
G̃ := −G below.

We begin by showing the following inequality:

G̃(µk) ≤ G̃(µk−1) + ⟨δG̃(µk−1), µk − µk−1⟩+ LDQ(µk, µk−1) (33)

≤ G̃(µk−1) + ⟨δG̃(µk−1), µ− µk−1⟩+ LDQ(µ, µk−1)− LDQ(µ, µk). (34)

The first inequality follows from the L-smoothness of G relative to Q as defined in Definition 1. The
second inequality uses the three-point inequality of the Bregman divergence [33, Lemma 3.1] with
ϕ(µ) = 1

L ⟨δG(µk−1), µ− µk−1⟩, z = µk−1, and z+ = µk.

Next, using the l-strong concavity of G relative to Q, again from Definition 1, we obtain:

G̃(µk) ≤ G̃(µ) + (L− l)DQ(µ, µk−1)− LDQ(µ, µk). (35)

By recursively applying the above inequality and using the monotonicity of G(µk) along with the
non-negativity of the Bregman divergence, we obtain [33]:

K∑
k=1

(
L

L− l

)k (
G̃(µk)− G̃(µ)

)
≤ LDQ(µ, µ0)− L

(
L

L− l

)K

DQ(µ, µK) ≤ LDQ(µ, µ0).

(36)

Letting
1

CK
:=

K∑
k=1

(
L

L− l

)k

, (37)
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and rearranging terms, we arrive at the convergence rate:

G̃(µK)− G̃(µ) ≤ CKLDQ(µ, µ0) =
lDQ(µ, µ0)(

1 + l
L−l

)K
− 1

. (38)

Finally, the convergence rate stated in the theorem follows by observing that
(
1 + l

L−l

)K
≥ 1+ Kl

L−l .
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E Proof for Theorem 5.2

To establish our main convergence result, we introduce two additional technical assumptions that are
satisfied in virtually all practical settings:
Assumption E.1 (Support Compatibility). We assume that the support of pπk

T is contained in a fixed
compact domain Ω̃ for all k, and that for some j, we have supp(pπk

j ) = Ω̃.

Assumption E.2 (Precompactness). The sequence {δH(pπk

T )}k is precompact in the topology induced
by the L∞ norm.

We are now ready to present the full proof. For the reader’s convenience, we restate the theorem:
Theorem 5.2 (Convergence guarantee of Flow Density Control for general functionals). Given
the Robbins-Monro step-size rule:

∑
k γk = ∞,

∑
k γ

2
k <∞, under Assumption 5.2 and technical

assumptions (see Appendix E), the sequence of marginal densities pk1 induced by the iterates πk of
Algorithm 1 converges weakly to a stationary point p̃1 of G almost surely, formally: pk1 ⇀ p̃1 a.s..

Proof. To facilitate readability, we begin with an outline of the key steps.

Proof Outline The main idea is to relate the discrete iterates {pkT }k∈N produced by Algorithm 1 to
a continuous-time dynamical system. Let us define the initial dual variable as:

h0 = δH(ppre) = − log ppre,

and consider the following gradient flow:{
ḣt = δG(pt),
pt = δ(−H)⋆(ht),

(MF)

where (−H)⋆(h) = log
∫
Ω
eh is the Fenchel dual of the negative entropy functional [25, 22].

To connect this with our algorithm, we construct a continuous-time interpolation of the dual iterates
hk = δH(pπk

T ). Define the effective time τk =
∑k

r=0 αr, and let the interpolated process h(t) be
given by:

h(t) = hk +
t− τk

τ + 1k − τk
(τ + 1k − hk). (Int)

Intuitively, our convergence result follows if two conditions hold:

Informal Assumption 1 (Closeness to Continuous-Time Flow). The interpolated process h(t)
asymptotically follows the dynamics of (MF) as k → ∞.

Informal Assumption 2 (Convergence of the Flow). The trajectories of (MF) converge to a station-
ary point of G.

To formalize this, we invoke the stochastic approximation framework of [5]. Let Z be the space of
integrable functions on Ω, and let Θ denote the flow of (MF). We define:

Definition 2 (Asymptotic Pseudotrajectory (APT)). We say h(t) is an asymptotic pseudotrajectory
(APT) of (MF) if for all T > 0,

lim
t→∞

sup
0≤h≤T

∥h(t+ h)−Θh(h(t))∥∞ = 0.

If h(t) is a precompact APT, then [5] show:

Theorem E.1 (APT Limit Set Theorem). Let h(t) be a precompact APT for the flow (MF). Then,
almost surely, the limit set of h(t) is contained in the set of internally chain-transitive (ICT) points of
(MF).

The proof of our result follows from two claims:

1. The iterates {hk} generate a precompact APT under Assumptions E.1 and5.2.
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2. The ICT set of (MF) consists only of stationary points of G.

The second claim holds because (MF) is a gradient flow—specifically, the spherical
Hellinger–Kantorovich flow [35]. By Sard’s theorem and standard results in dynamical systems [5],
the ICT set must consist of stationary points.

For the first claim, Assumptions E.1 and E.2 ensure that the interpolated process is well-defined and
precompact, while Assumption 5.2 allows us to apply standard stochastic approximation arguments
[27]. We conclude the proof by applying Theorem E.1.
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F Detailed Example of Algorithm Implementation

F.1 Implementation of ENTROPYREGULARIZEDCONTROLSOLVER

To ensure completeness, below we provide pseudocode for one concrete realization of a ENTROPYREG-
ULARIZEDCONTROLSOLVER as in Eq. (8) using a first-order optimization routine. In particular, we de-
scribe exactly the version employed in Sec. 6, which builds on the Adjoint Matching framework [14],
casting linear fine-tuning as a stochastic optimal control problem and tackling it via regression.

Let upre be the initial, pre-trained vector field, and ufinetuned its fine-tuned counterpart. We also use
ᾱ to refer to the accumulated noise schedule from [23] effectively following the flow models notation
introduced by Adjoint Mathing [14, Sec. 5.2]. The full procedure is in Algorithm 2.

Algorithm 2 ENTROPYREGULARIZEDCONTROLSOLVER (Adjoint Matching [14]) based implementation

1: Input: N : number of iterations, upre : pre-trained flow vector field, η regularization coefficient
as in Eq. (8), h : step size, ∇f : reward function gradient, m batch size

2: Init: ufinetuned := upre with parameter θ
3: for n = 0, 1, 2, . . . , N − 1 do
4: Sample m trajectories {Xt}Tt=1 via memoryless noise schedule [14], e.g.,

sample ϵt ∼ N (0, I), X0 ∼ N (0, I), then:

Xt+h = Xt + h

(
2vfinetunedθ (Xt, t)−

ᾱt

αt
Xt

)
+
√
hσ(t)ϵt

Use reward gradient:

ãT = −1

η
∇f(X1)

For each trajectory, solve the lean adjoint ODE, see [14, Eq. 38-39], from t = 1 to 0, e.g.,:

ãt−h = ãt + hã⊤t ∇Xt

(
2upre(Xt, t)−

ᾱt

αt
Xt

)
Where Xt and ãt are computed without gradients, i.e., Xt = stopgrad(Xt), ãt =
stopgrad(ãt). For each trajectory compute the Adjoint Matching objective [14, Eq. 37]:

Lθ =

1−h∑
t=0

∥ 2

σ(t)

(
ufinetunedθ (X − t, t)− upre(Xt, t)

)
+ σ(t)ãt∥

Compute the gradient ∇θL(θ) and update θ.
5: end for
6: output: Fine-tuned noise predictor ufinetunedθ

F.2 Discussion: computational complexity and cost of FDC

Flow Density Control (see Algorithm 1) is a sequential fine-tuning scheme, which performs K
iterations of a base fine-tuning oracle, as shown in Algorithm 1. Typically, as for the case of Adjoint
Matching [14], which is contextualized in Algorithm 2, the inner oracle also performs N iterations to
solve the classic fine-tuning problem. As a consequence, at first glance, this lead to FDC having a
computational complexity scaling linearly in K the one of classic fine-tuning. Nonetheless, this does
not seem to capture well the practical computational cost. In particular, we wish to point out the two
following observations:

• As discussed for the molecular design experiment in Sec. 6 and further in Appendix
H, the FDC scheme might work well even with a very approximate oracle to solve the
entropy-regularized control problem at each iteration.

• For many real-world problems a very small number of iterations K might be sufficient to
approximate the non-linear functional sufficiently well and hence obtain useful fine-tuned

23



models. This is shown in text-to-image bridge design experiment in Sec. 6 and in Appendix
H. In this case, merely K = 2 iterations of FDC lead to promising results.
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G Further Experiments
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Figure 4: Illustrative settings with visually interpretable results. (top) Risk-averse reward maximiza-
tion for valid or safe generation, (mid) Novelty-seeking reward maximization for discovery, (bottom)
Expected rewards maximization under optimal transport distance regularization. Crucially, FDC can
optimize well these complex objectives, while AM [14], a classic fine-tuning scheme, fails at this.

Risk-averse reward maximization for better worst-case validity or safety. We fine-tune a pre-
trained policy πpre (see Fig. 4a) by optimizing the CVaRβ utility i.e., expected outcome in the β-worst-
case (see Tab. 1) with KL regularization, and costs interpreted as negative rewards. The cost has three
regions: a high-cost plateau (dark orange), where the initial density lies; a moderate-cost left area (light
orange); and a predominantly low-cost right zone (yellow) punctuated by narrow, but catastrophic
red-stripes. As shown in Fig. 4b, AM moves the model density into the yellow region, lowering
average cost but exposing it to rare extreme costs. In contrast, FDC, run with K = 2 iterations and
β = 0.01, successfully steers density into the safer, moderate-cost area, cutting the 1%-worst-case
cost from 217.0 achieved by AM to 75.0, well below the initial 190.9, as shown in Fig. 4c and 4d.
Novelty-seeking reward maximization for discovery. We fine-tune a pre-trained policy πpre to max-
imize the SQβ utility, i.e., expected outcome in the β-best-case (see Tab. 1). The reward shown in Fig.
4e has a moderately high-reward left area (light gray), a medium-reward central plateau (darker gray)
where the initial density lies, and a low-reward right region (black) with sparse, extreme-reward spikes
depicted by thin white lines. As shown in Fig. 4f, AM drifts the density into the safer left basin — im-
proving the average reward but only reaching a best-1% expected reward of 55.5, as shown in Fig. 4g
and Fig. 4h. In contrast, FDC, run for K = 2 iterations and β = 0.99, pushes the density rightwards,
elevating the top-1% reward to 497.7 (see Fig. 4h) — far above both AM and the initial 52.1.
Reward maximization regularized via optimal transport distance. We fine-tune the pre-trained
model with density in Fig. 4i to maximize a reward function that increases moving top right.
We consider two W1 distances induced by two ground metrics: dA, which makes vertical moves
more costly than horizontal ones, and dB , which does the opposite. Under dA, both AM and the
OT-regularized model reach an expected reward of 35.0, but FDC-A incurs onlyWA

1 = 2.1 versus 4.7
for AM, and achieves a mean shift that is 277% larger in the horizontal than in the vertical direction
(Fig. 4j and Tab. 4l). By contrast, FDC-B under dB preferentially shifts the density upward (Fig. 4k).
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H Experimental Details

H.1 Used computational resources

We run all experiments on a single Nvidia H100 GPU.

H.2 Experiments in Illustrative Settings

Shared experimental setup. For all illustrative experiments we utilize Adjoint Matching (AM) [14]
for the entropy-regularized fine-tuning solver in Algorithm 1. Moreover, the stochastic gradient steps
within the AM scheme are performed via an Adam optimizer.

Risk-averse reward maximization for better worst-case validity or safety. In this experiment,
we execute FDC for K = 2 iterations with a total of 1000 gradient steps within each iteration, AM
solver (within the FDC scheme) with learning rate of 2e−2, α = 109, and η = 10. Meanwhile,
the AM baseline, is run for 1000 gradient steps with α = 0.2857, and learning rate of 1e−5. The
resulting CVaR is computed via the standard torch quantile method. The values of β reported in the
main paper effectively refers to the value of 1− β.

Novelty-seeking reward maximization for discovery. We run FDC for K = 2 iterations with a
total of 1000 gradient steps within each iteration, AM solver (within the FDC scheme) with learning
rate of 3e−6, α = 105, and η = 0.625, and 8000 samples are used to estimate the first variation
gradient as explained in Appendix B. Meanwhile, the AM baseline, is run for 1000 gradient steps
with α = 0.333, and learning rate of 1e−5. The resulting SQ is computed via the standard torch
quantile method.

Reward maximization regularized via optimal transport distance. Within this experiment,
we present two runs of FDC, namely FDC-A and FDC-B, compared against AM. Both FDC-A and
FDC-B have been run for K = 6 iterations of FDC, with α = 0.1, AM oracle learning rate of 1e−6,
η = 6.666. Both their discriminators to solve the dual OT problem as presented in Appendix B and
mentioned within Sec. 4, have been learned via a simple MLP architecture with 800 gradient steps,
by enforcing the 1-Lip. condition via the standard gradient penalty technique with regularization
strength of λGP = 10.0 and learning rate of 1e−4. In particular, FDC-A is based on the distance
defined, for two 2-dimensional points x = (x1, x2) and y = (y1, y2) by:

dA(x, y) =
√
(x1 − y1)2 + (K(x2 − y2))2

Analogously, FDC-B leverages dB defined as:

dA(x, y) =
√
(K(x1 − y1))2 + (x2 − y2)2)

Where K = 7 in both cases. On the other hand, the AM baseline is run for 1000 gradient steps with
learning rate of 1e−3 and α = 1.538.

Conservative manifold exploration. We ran FDC for K = 50 iterations and 2500 gradient steps
in total with η = 10 and α = 0.0, 0.01, 0.1, 0.5, 1.0. We set the AM learning rate to 2e−4 and sample
trajectories of length 400 for computing the AM loss.

H.3 Real-World Experiments

Molecular design for single-point energy minimization. In this experiment FDC is run for
K = 10 iterations, with merely 2 gradient steps at each iteration (i.e., the AM oracle is very
approximate), AM learning rate of 1e−4, η = 0.01 and α = 0. Meanwhile, the AM baseline is run
for 240 gradient steps with α = 0.0045.

Text-to-image bridge designs conservative exploration. For this experiment we ran FDC on
a single Nvidia H100 GPU, with K = 2, η = 200, α = 0.001 and a 100 gradient steps in total.
Similarly to previous work, we tuned the vector field resulting from applying classifier-free guidance
with guidance scale w = 8 in SD-1.5.

26


	Introduction
	Background and Notation
	Formal Problem: a General Framework for Generative Optimization
	The sub-case of KL-regularized reward maximization via entropy-regularized control
	Beyond Linear Generative Optimization

	Algorithm: Flow Density Control
	Guarantees for Generative Optimization via Flow Density Control
	Experimental Evaluation
	Related Works
	Functionals and Derivation of Gradients of First-order Variations
	Overview of utilities and divergences in Table 1
	A brief tutorial on first variation derivation
	Derivation of gradients of first-order variation for functionals in Table 1

	Gradient of first variation: computation and estimation
	Proof for Theorem 5.1
	Optimization background
	Convergence Proof

	Proof for Theorem 5.2
	Detailed Example of Algorithm Implementation
	Implementation of EntropyRegularizedControlSolver
	Discussion: computational complexity and cost of FDC

	Further Experiments
	Experimental Details
	Used computational resources
	Experiments in Illustrative Settings
	Real-World Experiments


