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Abstract

Adapting large-scale foundational flow and diffusion generative models to optimize1

task-specific objectives while preserving prior information is crucial for real-world2

applications such as molecular design, protein docking, and creative image genera-3

tion. Existing principled fine-tuning methods aim to maximize the expected reward4

of generated samples, while retaining knowledge from the pre-trained model via5

KL-divergence regularization. In this work, we tackle the significantly more gen-6

eral problem of optimizing general utilities beyond average rewards, including7

risk-averse and novelty-seeking reward maximization, diversity measures for explo-8

ration, and experiment design objectives among others. Likewise, we consider more9

general ways to preserve prior information beyond KL-divergence, such as optimal10

transport distances and Rényi divergences. To this end, we introduce Flow Density11

Control (FDC), a simple algorithm that reduces this complex problem to a specific12

sequence of simpler fine-tuning tasks, each solvable via scalable established meth-13

ods. We derive convergence guarantees for the proposed scheme under realistic14

assumptions by leveraging recent understanding of mirror flows. Finally, we val-15

idate our method on illustrative settings, text-to-image, and molecular design tasks,16

showing that it can steer pre-trained generative models to optimize objectives and17

solve practically relevant tasks beyond the reach of current fine-tuning schemes.18

1 Introduction19

Utility

Current This work

Divergence

Figure 1: We extend the capabilities of cur-
rent fine-tuning schemes from KL-regularized
expected reward maximization (left) to the
optimization of arbitrary distributional util-
ities F under general divergences D (right).

Large-scale generative modeling has recently seen20

remarkable advancements, with flow [30, 31] and21

diffusion models [52, 53, 23] standing out for their22

ability to produce high-fidelity samples across a wide23

range of applications, from chemistry [24] and bi-24

ology [9] to robotics [8]. However, approximating25

the data distribution is insufficient for real-world ap-26

plications such as scientific discovery [6, 60], where27

one typically wishes to generate samples optimizing28

specific utilities, e.g., molecular stability and diver-29

sity, while preserving certain information from a pre-30

trained model. This problem has recently been tack-31

led via fine-tuning in the case where the utility corre-32

sponds to the expected reward of generated samples,33

and pre-trained model information is retained via KL-34

divergence regularization, as shown in Fig. 1 (left). Crucially, this specific fine-tuning problem can be35

solved via entropy-regularized control formulations [e.g., 14, 56, 54] with successful applications in36

real-world domains such as image generation [14], molecular design [57], or protein engineering [57].37
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Unfortunately, many practically relevant tasks cannot be captured by this formulation. For instance,38

consider the tasks of risk-averse and novelty-seeking reward maximization. In the former case,39

one wishes to steer the generative model toward distributions with controlled worst-case rewards,40

thereby improving validity and safety. In the latter case, one aims to control the upper tail of the41

reward distribution to maximize the probability of generating exceptionally promising designs,42

e.g., for scientific discovery. Other applications that cannot be captured via maximization of simple43

expectations include manifold exploration [12], model de-biasing [13], and optimal experimental44

design [39, 10] among others. Similarly, preserving prior information via a KL divergence has45

known drawbacks. For instance, it can lead to missing of low-probability yet valuable modes [29, 44],46

and it prevents from leveraging the geometry of the space even when this is known, e.g., in protein47

docking [9]. Replacing KL with alternative divergences can address these shortcomings. Driven by48

these motivations, in this work we aim to answer the following fundamental question (see Fig. 1):49

How can we provably fine-tune a flow or diffusion model to optimize any user-specified utility50

while preserving prior information via an arbitrary divergence?51

Answering this would contribute to the algorithmic-theoretical foundations of generative optimization.52

53 Our approach We tackle this challenge by first introducing the formal problem of generative54

optimization via fine-tuning. Then, we shed light on why this formulation is strictly more expressive55

than current fine-tuning problems [14, 54], and present a sample of novel practically relevant utilities56

and divergences (Sec. 3). Next, we introduce Flow Density Control (FDC), a simple sequential57

scheme that can fine-tune models to optimize general objectives beyond the reach of entropy-58

regularized control methods. This is achieved by leveraging recent machinery from Convex [20] and59

General Utilities RL [61] (Sec. 4). We provide rigorous convergence guarantees for the proposed60

algorithm in both a simplified scenario, via convex optimization analysis [43, 33], and in a realistic61

setting, by building on recent understanding of mirror flows [25] (Sec. 5). Finally, we provide62

an experimental evaluation of the proposed method, demonstrating its practical relevance on both63

synthetic and high-dimensional image and molecular generation tasks, showing how it can steer64

pre-trained models to solve tasks beyond the inherent limits of current fine-tuning schemes (Sec. 6).65

Our contributions To sum up, in this work we contribute66

• A formalization of the generative optimization problem, which extends current fine-tuning formula-67

tions beyond linear utilities and general divergences (Sec. 3).68

• Flow Density Control (FDC), a principled algorithm capable of optimizing functionals beyond the69

reach of current fine-tuning schemes based on entropy-regularized control/RL (Sec. 4).70

• Convergence guarantees for the presented algorithm both under simplified and realistic assumptions71

leveraging recent understanding of mirror flows (Sec. 5).72

• An experimental evaluation of FDC showcasing its practical relevance on both illustrative and73

high-dimensional text-to-image and molecular design tasks, showing how it can steer pre-trained74

models to solve tasks beyond the capabilities of current fine-tuning schemes. (Sec. 6).75

2 Background and Notation76

General Notation. We denote with X ⊆ Rd an arbitrary set. Then, we indicate the set of Borel77

probability measures on X with P(X ), and the set of functionals over the set of probability measures78

P(X ) as F(X ). Given an integer N , we define [N ] := {1, . . . , N}.79

Generative Flow Models. Generative models aim to approximately sample novel data points from a80

data distribution pdata. Flow models tackle this problem by transforming samples X0 = x0 from a81

source distribution p0 into samples X1 = x1 from the target distribution pdata[31, 17]. Formally, a82

flow is a time-dependent map ψ : [0, 1]× Rd → R such that ψ : (t, x) → ψt(x). A generative flow83

model is a continuous-time Markov process {Xt}0≤t≤1 obtained by applying a flow ψt to X0 ∼ p084

as Xt = ψt(X0), t ∈ [0, 1], such that X1 = ψ1(X0) ∼ pdata. In particular, the flow ψ can be85

defined by a velocity field u : [0, 1]×Rd → Rd, which is a vector field related to ψ via the following86

ordinary differential equation (ODE), typically referred to as flow ODE:87

d

dt
ψt(x) = ut(ψt(x)) (1)

with initial condition ψ0(x) = 0. A flow model Xt = ψt(X0) induces a probability path of88

marginal densities p = {pt}0≤t≤1 such that at time t we have that Xt ∼ pt. Given a velocity89

field u and marginal densities p, we say that u generates the marginal densities p = {pt}0≤t≤1 if90
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Figure 2: (2a) Pre-trained and fine-tuned policies inducing densities ppre1 and optimal density p∗1
w.r.t. utility F and divergence D. (2b) Expressivity and control hierarchy for generative optimization.

Xt = ψt(X0) ∼ pt for all t ∈ [0, 1). This is the case if the pair (u, p) satisfy the Continuity Equation:91

92 d

dt
pt(x) + div(ptut)(x) = 0 (2)

In this case, we denote by pu the probability path of marginal densities induced by the velocity field u.93

Flow matching [30, 32, 1, 31] can estimate a velocity field uθ s.t. the induced marginal densities puθ94

satisfy puθ
0 = p0 and puθ

1 = pdata, where p0 denotes the source distribution, and pdata the target data95

distribution. Interestingly, diffusion models [53] (DMs) admit an equivalent ODE-based formulation96

with identical marginal densities to their original SDE dynamics [31, Chapter 10]. Consequently, al-97

though in this work we adopt the notation of flow models, our contributions carry over directly to DMs.98

Continuous-time Reinforcement Learning. We formulate finite-horizon continuous-time reinforce-99

ment learning (RL) as a specific class of optimal control problems [58, 26, 55, 62]. Given a state100

space X and an action space A, we consider the transition dynamics governed by the following ODE:101

d

dt
ψt(x) = at(ψt(x)) (3)

where at ∈ A is a selected action. We consider a state space X := Rd× [0, 1], and denote by (Marko-102

vian) deterministic policy a function πt(Xt) := π(Xt, t) ∈ A mapping a state (x, t) ∈ X to an action103

a ∈ A such that at = π(Xt, t), and denote with pπt the marginal density at time t induced by policy π.104

Pre-trained Flow Models as an RL policy. A pre-trained flow model with velocity field upre can be105

interpreted as an action process apret := upre(Xt, t), where apret is determined by a continuous-time106

RL policy via apret = πpre(Xt, t) [12]. Therefore, we can express the flow ODE induced by a107

pre-trained flow model by replacing at with apre in Eq. (3), and denote the pre-trained model by108

its (implicit) policy πpre, which induces a marginal density ppre1 := pπ
pre

1 approximating pdata.109

We present a thorough analysis of related works in Apx. A.110

3 Formal Problem: a General Framework for Generative Optimization111

In this section, we aim to formally introduce the general problem of generative optimization (GO)112

via fine-tuning. Formally, we wish to adapt a pre-trained generative flow model πpre to obtain a113

new model π∗ inducing an ODE:114

d

dt
ψt(x) = a∗t (ψt(x)) with a∗t = π∗(x, t), (4)

such that instead of imitating the data distribution pdata, as typically in generative modeling, it115

induces a marginal density pπ
∗

1 that maximizes a utility measure F : P(X ) → R, while preserving116

information from the pre-trained model πpre via regularization with an arbitrary divergence117

D(· ∥ ppre). This algorithmic problem is illustrated in Fig. 2a, and formalized in the following.118

Generative Optimization via Flow Model Fine-Tuning

argmax
π

F (pπ1 )− αD(pπ1 ∥ p
pre
1 ) s.t.

d

dt
pt(x) + div(ptat)(x) = 0 with at = π(x, t) (5)

119

In this formulation, F and D are both functionals mapping the marginal density pπ1 induced by policy120

π to a scalar real number, namely F ,D : P(X ) → R. The constraint in Eq. (5) is the (controlled) Con-121

tinuity Equation (see Eq. (2)), which relates the control policy π to the induced marginal density pπ1 .122
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APPLICATION FUNCTIONAL F / D LINEAR GO
NON-LINEAR GO

CONCAVE GENERAL

REWARD OPTIMIZATION [14, 56] Ex∼pπ [r(x)] ✓ ✓ ✓

MANIFOLD EXPLORATION [12]
GEN. MODEL DE-BIASING

H(pπ) := − E
x∼pπ

[log pπ(x)] ✗ ✓ ✓

RISK-AVERSE OPTIMIZATION
CVaRr

β(p
π) := E

x∼pπ
[r(x) | r(x) ≤ qrβ(p

π)] ✗ ✓ ✓

Ex∼pπ [r(x)]− Var(pπ) ✗ ✗ ✓

NOVELTY-SEEKING OPTIMIZATION SQr
β(p

π) := E
x∼pπ

[r(x) | r(x) ≥ qrβ(p
π)] ✗ ✗ ✓

OPTIMAL EXPERIMENT DESIGN
s

(
E

x∼pπ
[Φ(x)Φ(x)⊤ − λI]

)
✗ ✓ ✓

s(·) ∈ {log det(·),−Tr(·)−1,−λmax(·)}

DIVERSE MODES DISCOVERY −E
z
[DKL(p

π,z∥E
k
pπ,k)] ✗ ✗ ✓

LOG-BARRIER CONSTRAINED GENERATION Ex∼pπ [r(x)]− β log (⟨pπ, c⟩ − C) ✗ ✓ ✓

KULLBACK–LEIBLER DIVERGENCE [14, 56] DKL(p
π ∥ ppre) =

∫
pπ(x) log

pπ(x)

ppre(x)
dx ✓ ✓ ✓

RÉNYI DIVERGENCES Dβ(p
π ∥ ppre) := 1

β − 1
log

∫
(pπ(x))β(ppre)1−β dx ✗ ✗ ✓

OPTIMAL TRANSPORT DISTANCES Wp(p
π ∥ ppre) := inf

γ∈Γ(pπ,ppre)
E

(x,y)∼γ
[d(x, y)p]

1
p ✗ ✗ ✓

MAXIMUM MEAN DISCREPANCY MMDk(p
π ∥ ppre) := ∥µpπ − µppre∥, µp := E

x∼p
[k(x, ·)] ✗ ✓ ✓

Table 1: Examples of practically relevant utilities F (blue) and divergences D (orange). Apx. B
provides mathematical details and practical applications for each functional. Notice that besides H, all
non-linear functionals presented are novel in the context of fine-tuning of diffusion and flow models.

3.1 The sub-case of KL-regularized reward maximization via entropy-regularized control123

Current fine-tuning schemes for flow generative models based on RL and control-theoretic formula-124

tions [e.g., 14, 56] aim to tackle the following problem, where we omit the flow constraint for clarity:125

Linear Generative Optimization via Flow Model Fine-Tuning

argmax
π

E
x∼pπ

1

[r(x)]− αDKL(p
π
1 ∥ p

pre
1 ) (6)

126

Crucially, the common problem in Eq. (6), which we denote by Linear1 GO, is the specific sub-case of127

the generative optimization problem in Eq. (5), where the utility F is a linear functional corresponding128

to the expectation of a (reward) function r : X → R, and D is the Kullback–Leibler divergence:129

F(pπ1 ) = ⟨pπ1 , r⟩ = E
x∼pπ

1

[r(x)] and D(pπ1 ∥ p
pre
1 ) = DKL(p

π
1 ∥ p

pre
1 ) (7)

This specific fine-tuning problem can be solved via entropy-regularized (or relaxed) control [14].130

3.2 Beyond Linear Generative Optimization: an Expressivity Viewpoint131

Let G(pπ1 ) = F(pπ1 ) − αD(pπ1∥ p
pre
1 ) be the functional in Eq. (5). Then we denote by Concave GO132

the case where G is concave in pπ1 , and by General GO the case for arbitrary, possibly non-concave133

functionals. In terms of expressivity Linear GO ⊂ Concave GO ⊂ General GO, as depicted in Fig.134

2b (left). In Table 1 we classify into these tree tiers a sample of practically relevant utilities (F , blue)135

and divergences (D, orange). In Apx. B we report complete definitions and applications. Except for136

entropy [12] and KL, all non-linear functionals in Table 1 are to our knowledge explicitly used for the137

first time in the flow and diffusion model fine-tuning literature, while vastly employed in other areas.138

Moreover, the framework presented in this work for GO (Eq. 5) applies to any new choice of F or D.139

Given the generality of generative optimization (Eq.(5)), a natural question arises: how can it be solved140

algorithmically? In the next section, we answer this by leveraging recent machinery from Convex [20]141

and General-Utilities RL [61], to derive a fine-tuning scheme that handles both concave and general142

GO, thus going beyond current entropy-regularized control methods, as illustrated in Fig. 2b (right).143

1For clarity, we adopt the term linear motivated by the linear utility even though the KL is non-linear.
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Algorithm 1 Flow Density Control (FDC)
1: input: G : general utility functional, K : number of iterations, πpre : pre-trained flow generative model,
{ηk}Kk=1 regularization coefficients

2: Init: π0 := πpre

3: for k = 1, 2, . . . ,K do
4: Estimate: ∇xgk = ∇xδG(pk−1

1 )
5: Compute πk via first-order linear fine-tuning:

πk ← ENTROPYREGULARIZEDCONTROLSOLVER(∇xgk, ηk, πk−1)
6: end for
7: output: policy π := πK

4 Algorithm: Flow Density Control144

In this section, we introduce Flow Density Control (FDC), see Alg. 1, which provably solves the145

generative optimization problem in Eq. (5) via sequential fine-tuning of the pre-trained model146

πpre. To this end, we recall the notion of first variation of a functional over a space of probability147

measures [25]. A functional G ∈ F(X ), where G : P(X ) → R, has first variation at µ ∈ P(X ) if148

there exists a function δG(µ) ∈ F(X ) such that for all µ′ ∈ P(X ) it holds that:149

G(µ+ ϵµ′) = G(µ) + ϵ⟨µ′, δG(µ)⟩+ o(ϵ).

where the inner product has to be interpreted as an expectation. Intuitively, the first variation of G150

at µ, namely δG(µ), can be interpreted as an infinite-dimensional gradient in the space of probability151

measures. Given this notion, and a pair of generative models represented via policies π and π′, we152

can now state the following entropy-regularized first variation maximization fine-tuning problem.153

Entropy-Regularized First Variation Maximization

argmax
π

⟨δG
(
pπ

′

1

)
, pπ1 ⟩ − ηDKL(p

π
1 ∥ pπ

′

1 ) (8)

154

Crucially, we can introduce a function g : X → R defined for all x ∈ X such that:155

g(x) := δG
(
pπ

′

1

)
(x) and E

x∼pπ
[g(x)] = ⟨δG

(
pπ

′

1

)
, pπ1 ⟩ (9)

As a consequence, by rewriting Eq. (8) expressing the first term via an expectation as shown in156

Eq. (9), it corresponds to a common Linear GO problem (see Eq. (6)), which can be optimized by157

utilizing established entropy-regularized control methods [e.g., 57, 14, 62].158

We can finally present Flow Density Control (FDC), see Alg. 1, a mirror descent (MD) scheme [43]159

that reduces optimization of non-linear functionals G to a specific sequence of Linear GO problems.160

FDC takes three inputs: a pre-trained flow or diffusion model πpre, the number of iterations K, and161

a sequence of regularization weights {ηk}Kk=1. At each iteration, FDC first estimates the gradient of162

the functional first variation at the previous policy πk−1, i.e., ∇xδG
(
pk−1
1

)
(line 4). Then, it updates163

the flow model πk by solving the fine-tuning problem in Eq. (8) via an entropy-regularized control164

solver such as Adjoint Matching [14], using ∇xgk := ∇xδG
(
pk−1
1

)
as in Eq. (9) (line 5). Ultimately,165

it returns a final policy π := πK . We report a detailed implementation of FDC in Apx. F. An166

introduction to computation and estimation of the gradient of first variations can be found in Apx. C.167

Given the approximate gradient estimates and the generality of the objective functions, it is still unclear168

whether the proposed algorithm provably converges to the optimal flow model π∗. In the next section,169

we answer this question by developing a theoretical analysis via recent results on mirror flows [25].170

5 Guarantees for Generative Optimization via Flow Density Control171

In this section, we recast (5) as constrained optimization over stochastic processes, where the con-172

straint is given by the Continuity Equation (2). This formulation enables the application of mirror173

descent for constrained optimization and the notion of relative smoothness [3]. In our framework,174

convergence speed is governed by: 1. the structural complexity of the functional G (cf. Section 4),175

2. the accuracy of the estimator g from (9), and 3. the quality of the oracle ENTROPYREGULARIZED-176

CONTROLSOLVER in Alg. 1. To handle these cases, we will analyze two representative regimes:177

178 • Idealized. G is concave, and both g and ENTROPYREGULARIZEDCONTROLSOLVER are exact.179

In this setting, classical results yield sharp step-size prescriptions and fast convergence rates.180
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• General. G is non-concave, with g and the oracle subject to noise and bias. While fast181

convergence is generally out of reach [34, 27], convergence to a stationary point remains182

attainable under mild assumptions.183

Theoretical analysis: Idealized setting. We now present a framework leading to convergence184

guarantees for FDC (i.e., Alg. 1) for concave functionals G ∈ F(X ). We report in Apx. D, we report185

background knowledge regarding L relative smoothness and l relative strong convexity of G w.r.t. a186

given functional, and recall the notion of Bregman divergence induced by a given functional.187

In the following, we interpret line (6) of FDC as a step of mirror descent [43], and the KL188

divergence term as the Bregman divergence induced by an entropic mirror map Q = H, i.e.,189

DKL(µ, ν) = DH(µ ∥ ν). We can finally state the following set of assumptions as well as the190

convergence guarantee for an arbitrary functional G(·) = F(·)− αD(· ∥ ppre) ∈ F(X ).191

Assumption 5.1 (Exact estimation and optimization). We consider the following assumptions:192

1. Exact estimation: ∇xδG(pk1) is estimated exactly ∀k ∈ [K].193

2. The optimization problem in Eq. (8) is solved exactly.194

Theorem 5.1 (Convergence guarantee of Flow Density Control with concave functionals). Given
Assumptions 5.1, fine-tuning a pre-trained model πpre via FDC (Algorithm 1) with ηk = L
∀k ∈ [K], leads to a policy π inducing a marginal distribution pπ1 such that:

G(p∗1)− G(pπ1 ) ≤
L− l

K
DKL(p

∗
1 ∥ p

pre
1 ) (10)

where p∗1 := pπ
∗

1 is the marginal distribution induced by the optimal policy π∗ ∈
argmaxπ G(pπ1 ) := F(pπ1 )− αD(pπ1 ∥ p

pre
1 ).

195

Theorem 5.1 provides a fast convergence rate under a specific step-size choice (ηk = L). However,196

it critically depends on Assumption 5.1, which typically does not hold in practice. To address this197

limitation, we now consider a more general scenario where this key assumption is relaxed.198

Theoretical analysis: General setting. Recall that pk1 := pπk
1 represents the (stochastic) density199

produced by the ENTROPYREGULARIZEDCONTROLSOLVER oracle at the k-th step of FDC, and consider200

the following mirror descent iterates, where 1/λk = ηk in Algorithm 1:201

pk♯ := argmax
p∈P(Ωpre)

⟨δG
(
p
πk−1

T

)
, p⟩ − 1

γk
DKL(p ∥ p

πk−1

T ) (MDk)

In realistic settings, where only noisy and biased approximations of (MDk) are available, it is202

essential to quantify the deviations from the idealized iterates in (MDk). To this end, denote by Tk203

the filtration up to step k, and consider the decomposition of the oracle into its noise and bias parts:204

bk := E
[
δG(pπk

T )− δG(pk♯ ) | Tk
]
, Uk := δG(pπk

T )− δG(pk♯ )− bk (11)

Conditioned on Tk, Uk has zero mean, while bk captures the systematic error. We then impose:205

Assumption 5.2 (Noise and Bias). The following events happen almost surely:206

∥bk∥∞ → 0,
∑
k

E
[
γ2k

(
∥bk∥2∞ + ∥Uk∥2∞

)]
<∞,

∑
k

γk ∥bk∥∞ <∞ (12)

The first condition is a necessary requirement for convergence since when violated, it is easy to207

construct scenarios where no practical algorithm can solve the generative optimization problem.208

The second and third inequalities manage the trade-off between accuracy of the approximate oracle209

ENTROPYREGULARIZEDCONTROLSOLVER and aggressiveness of the step sizes, γk. Intuitively, lower210

noise and bias in the oracle enable the use of larger step sizes. To this end, Assumption 5.2 provides211

a concrete criterion that guarantees the success of finding the optimal policy with probability one.212

Theorem 5.2 (Convergence guarantee of Flow Density Control for general functionals). Given the
Robbins-Monro step-size rule:

∑
k γk = ∞,

∑
k γ

2
k <∞, under Assumption 5.2 and technical

assumptions (see Appendix E), the sequence of marginal densities pk1 induced by the iterates πk of
Algorithm 1 converges weakly to a stationary point p̃1 of G almost surely, formally: pk1 ⇀ p̃1 a.s..

213
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(a) Pre-trained samples (b) FDC α = 0.5 samples (c) FDC α = 0.0 samples

H(pπ)

Pre-trained 6.78
FDC α = 0.5 7.00
FDC α = 0.0 7.14

(d) Entropy evaluation

(e) Pre-trained samples

⇒

(f) FDC samples

Vendi CLIP
Pre-trained 2.36 0.19
FDC α = 0.001 2.47 0.22

(g) Images evaluation

(h) Energy distributions (i) Top 0.2% Energies

E[r(x)] SQβ

Pre 15.4 24.2
AM 29.1 39.7
FDC-A 27.5 41.8

(j) SQ Negative Energy (k) FDC-generated design

Figure 3: (top) Illustrative manifold exploration experiment via KL-regularized entropy maximization,
(mid) High-dimensional manifold exploration via text-to-image model fine-tuning for prompt "A
creative bridge design". Left: images from pre-trained model, Right: images from model fine-tuned
via FDC, with higher diversity as indicated by a higher Vendi score. (bottom) Novelty-seeking molec-
ular design for Energy (kcal/mol) maximization by fine-tuning FlowMol [15]. FDC shows enhanced
control capabilities for optimizing such complex objectives than AM, a classic fine-tuning scheme.

6 Experimental Evaluation214

We analyze the ability of Flow Density Control (FDC) to induce policies optimizing complex215

non-linear objectives, and compare its performance with Adjoint Matching (AM) [14], a classic216

fine-tuning method. In the following, we present three experiments: (i) an illustrative and visually217

interpretable exploration task , (ii) a novelty-seeking molecular design problem for single-point218

energy minimization [18] , and (iii) manifold exploration for text-to-image creative bridge design219

generation. In Apx. G we provide further experiments for risk-averse and novelty-seeking utilities,220

as well as regularization via Wasserstein distances. Additional details are provided in Apx. H.221

Conservative manifold exploration. We tackle manifold exploration [12] by fine-tuning a222

pre-trained model πpre to maximize the entropy utility (H in Tab. 1) under a KL regularization of223

strength α, a capability not possible with prior methods [12]. As in previous work, we consider the224

common setting where the pre-trained model density ppre1 concentrates most of its mass in a specific225

region as shown in Fig. 3a, where N = 10000 samples are shown. By fine-tuning πpre via FDC, the226

density of the fine-tuned model shifts into low-coverage areas (see Fig. 3b and 3c). In particular, Fig.227

3d demonstrates that reducing α from 0.5 to 0.0 yields progressively higher Monte Carlo entropy228

estimates (7.00 at α = 0.5, 7.14 at α = 0), thus enabling control of the trade-off between preserving229

the original distribution and exploring novel regions, a capability not supported by prior methods [12].230

Molecular design for single-point energy minimization. We fine-tune FlowMol [15], pre-trained231

on QM9 [47], to discover molecules minimizing the single-point total energy computed via extended232

tight-binding at the GFN1-xTB level of theory [18]. Concretely, we maximize the negative energy. We233

do not aim to maximize the average sample reward, but rather that of the top 0.2% samples. We employ234

FDC with novelty-seeking SQ utility (see Tab. 1) with β = 0.998, and make 2 gradient steps perK =235

10 iterations. We compare it with AM run for 240 steps. Fig. 3j shows that while AM generates better236

samples in average (namely 29.1 over 27.5 of FDC), the average quality of the top 0.2% molecules,237

indicated by SQβ is higher for FDC than for AM (namely 41.8 over 39.7 of AM). This confirms (see238

Fig. 3i and 3h) that FDC can sacrifice the average reward to generate a few truly high-reward designs.239

Text-to-image bridge designs conservative exploration. We perform manifold exploration by240

fine-tuning Stable Diffusion (SD) 1.4 [50] with prompt "A creative bridge design.". To this end,241

we maximize the KL-regularized entropy (see Tab. 1) with α = 0.001 via FDC for K = 2 steps.242

As a diversity metric, we utilize the Vendi score [19] with cosine similarity kernel on the extracted243

CLIP [21] features from a sample of 100 images and compared it to the baseline pre-trained model in244

Fig. 3g. Beyond increasing the Vendi score, FDC also increases the CLIP score of the initial model.245
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A Related Works424

Flow and diffusion models fine-tuning via optimal control. Recent works have framed425

fine-tuning of diffusion and flow models to maximize expected reward under KL regularization as426

an entropy-regularized optimal control problem [e.g., 56, 54, 57, 14]. Crucially, as shown in Sec.427

3, the problem tackled by these studies is the specific sub-case of generative optimization (Eq. (5)),428

where the utility F is linear, and D = DKL. In this work, we propose a principled method with429

guarantees for the far more general class of non-linear utilities and divergences beyond KL, including430

the ones listed in Tab. 1. The framework introduced has strictly higher expressive power and control431

capabilities for fine-tuning generative model (see Sec. 3). This renders possible to tackle relevant432

tasks e.g., scientific discovery, beyond the capabilities of the aforementioned fine-tuning schemes.433

Convex and General Utilities Reinforcement Learning. Convex and General (Utilities)434

RL [20, 59, 61] generalizes RL to the case where one wishes to maximize a concave [20, 59],435

or general [61, 4] functional of the state distribution induced by a policy over a dynamical system’s436

state space. The introduced generative optimization problem (in Eq. (5)) is related, with pπ1 represent-437

ing the state distribution induced by policy π over a subset of the state space. Recent works tackled438

the finite samples budget setting [e.g., 42, 40, 41, 45, 11]. Ultimately, to our knowledge, this is the439

first work leveraging an algorithmic scheme resembling General RL for the practically relevant task of440

generative optimization of general non-linear functionals via fine-tuning of diffusion and flow models.441

Optimization over probability measures via mirror flows. Recently, there has been a growing442

interest in building theoretical guarantees for optimization problems over spaces of probability443

measures in a variety of applications. These include GANs [25], optimal transport [3, 28, 27],444

kernelized methods [16], and manifold exploration [12]. We present the first use of this framework445

to establish guarantees for the generative optimization problem in Eq. (5). This novel link to446

probability-space optimization sheds new light on large-scale flow and diffusion models fine-tuning.447
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B Functionals and Derivation of Gradients of First-order Variations448

B.1 Overview of utilities and divergences in Table 1449

In the following, we report the missing details for the functionals presented within Table 1, and450

discuss some possible applications.451

Manifold Exploration and Generative Model De-biasing As mentioned within Sec. 3, maxi-452

mization of the entropy functional as been recently introduced as a principled objective for manifold453

exploration [12]. Moreover, we wish to point out that it can be interpreted also from the viewpoint of454

de-biasing a prior generative model to re-distribute more uniformly its density while preserving a455

certain notion of support, e.g., via sufficient KL-divergence regularization.456

Risk-averse and Novelty-seeking reward maximization A definition of qrβ can be found below,457

explanations of these utilities can be found in Sec. 1, and experimental illustrative examples are458

provided in Sec. 6.459

Optimal Experiment Design The task of Optimal Experimental Design (OED) [7] involves460

choosing a sequence of experiments so as to minimize some uncertainty metric for an unknown461

quantity of interest f : X → R, where X is the set of all possible experiments. From a probabilistic462

standpoint, an optimal design may be viewed as a probability distribution over X , prescribing how463

frequently each experiment should be performed to achieve maximal reduction in uncertainty about464

f [46]. This problem has been recently studied in the case where f is an element of a reproducing465

kernel Hilbert space (RKHS), i.e., f ∈ Hk, induced by a known kernel k(x, x′) = Φ(x)⊤Φ(x′)466

where x, x′ ∈ X [38]. Given this setting, one might aim to acquire information about f according to467

different criteria captured by the scalarization function s(·) [39]. In particular, in Table 1, we report468

three illustrative choices for s:469

• D-design: log det(·) (Information)470

• A-design: −Tr(·) (Parameter error)471

• E-design: λmax(·) (Worst projection error)472

as reported in previous work [Table 1 39].473

Diverse Mode Discovery This objective corresponds to a re-interpretation of the Diverse Skill474

Discovery objective introduced in the context of Reinforcement Learning [59]. Consider the case475

where it is given a discrete and finite set S of symbols interpretable as latent variables, which can476

be leveraged to (exactly or approximately) perform conditional generation. This objective captures477

the task of assuring maximal diversity, in terms of KL divergence between the different conditional478

components, represented as pπ,k with k ∈ S.479

Log-barrier constrained generation This formulation can be found within the General Utilities480

RL literature [61]. In particular, here we show the case where constraints are enforced via a log-barrier481

function, namely log(·). Nonetheless, the functional presented in Table 1 remains meaningful for482

general penalty functions.483

Optimal transport distances OT distances within Table 1 and their relative notation are introduced484

below in the context of their first variation computation.485

Maximum Mean Discrepancy Here k denotes a positive-definite kernel, which measures similarity486

between two points in sample space. Moreover, µp denotes a kernel mean embedding of distribution487

p [37]. In terms of applications, choosing a proper kernel k could render possible to preserve specific488

structure of the initial pre-trained model that would be otherwise lost via KL regularization.489

B.2 A brief tutorial on first variation derivation490

In this work, we focus on the functionals that are Fréchet differentiable: Let V be a normed spaces.491

Consider a functional F : V → R. There exists a linear operator A : V → R such that the following492

14



limit holds493

lim
∥h∥V →0

|F (f + h)− F (f)−A[h]|
∥h∥V

= 0. (13)

We further assume that V admits certain structure such that every element in its dual space (the space494

of bounded linear operator on V ) admits some compact representation. For example, when V is the495

set of compact-supported continuous bounded functions, there exists a unique positive Borel measure496

µ with the same support, which can be identified as the linear functional. We denote this element as497

δF [f ] such that ⟨δF [f ], h⟩ = A[h]. Sometimes we also denote it as δF
δf . We will refer to δF [f ] as498

the first-order variation of F at f .499

In this section, we briefly review strategies for deriving the first-order variation of two broad classes500

of functionals: those defined in closed form with respect to the density (e.g., expectation and entropy)501

and those defined via variational formulations (e.g., CVaR, Wasserstein distance, and MMD).502

• Category 1: Functional defined in a closed form w.r.t. the density. For this class of functionals,503

the first-order variations can typically be computed using its definition and chain rule.504

With definition (13) in mind, we can try to calculate the first-order variation of the mean functional.505

Consider a continuous and bounded function r : Rd → R and a probability measure µ on Rd.506

Consider the functional F (µ) =
∫
r(x)µ(x)dx. We have507

|F (µ+ δµ)− F (µ)− ⟨r, δµ⟩| = 0. (14)

We therefore obtain δF [µ] = r for all µ. We will compute the first-order variations for other508

functionals in the next subsection.509

• Category 2: Functionals defined through a variational formulation. Another important subclass510

of functionals considered in this paper is the ones defined via a variational problem511

F [f ] = sup
g∈Ω

G[f, g], (15)

where Ω is a set of functions or vectors independent of the choice of f , and g is optimized over the512

set Ω. We will assume that the maximizer g∗(f) that reaches the optimal value for G[f, ·] is unique513

(which is the case for the functionals considered in this project). It is known that one can use the514

Danskin’s theorem (also known as the envelope theorem) to compute515

δF [f ]

δf
= ∂fG[f, g

∗(f)], (16)

under the assumption that F is differentiable [36].516

B.3 Derivation of gradients of first-order variation for functionals in Table 1517

• Risk-Averse Optimization (Category 2) Recall that qrβ(p
π) = sup{v ∈ R|FZ(v) ≤ β}, where518

the random variable Z is defined as Z = r(x) with x ∼ pπ(x). From [49], we have519

CVaRr
β(p

π) = E[r(x)|r(x) ≤ qrβ(p
π)] = β inf

ζ

{
ζ +

1

β
E [min{r(x)− ζ, 0}]

}
.

Moreover, we have ζ∗ that solves the above optimization problem is exactly ζ∗ = qrβ(p
π). By520

Danskin’s theorem, one has (in a weak sense)521

δCVaRr
β(p

π)

δpπ
= βmin{r(x)− qrβ(p

π), 0}. (17)

• Risk-Seeking Optimization (Category 2) Recall that qrβ(p
π) = sup{v ∈ R|FZ(v) ≤ β}, where522

the random variable Z is defined as Z = r(x) with x ∼ pπ(x). From [49], we have523

SQr
β(p

π) = E[r(x)|r(x) ≥ qrβ(p
π)] = (1− β) inf

ζ

{
ζ +

1

1− β
E [max{r(x)− ζ, 0}]

}
.

Moreover, we have ζ∗ that solves the above optimization problem is exactly ζ∗ = qrβ(p
π). By524

Danskin’s theorem, one has (in a weak sense)525

δSQr
β(p

π)

δpπ
= (1− β)max{r(x)− qrβ(p

π), 0}. (18)
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APPLICATION FUNCTIONAL F / D FIRST-ORDER VARIATION
DENSITY CONTROL

CONVEX GENERAL

REWARD OPTIMIZATION [14, 56] Ex∼pπ [r(x)] r ✓ ✓

MANIFOLD EXPLORATION
GEN. MODEL DE-BIASING

H(pπ) := −Ex∼pπ [log pπ(x)] −1− log pπ ✓ ✓

RISK-AVERSE OPTIMIZATION
CVaRr

β(p
π) := Ex∼pπ [r(x) | r(x) ≤ qrβ(p

π)] βmin{r(x)− qrβ(p
π), 0} ✓ ✓

Ex∼pπ [r(x)]− Var(pπ) r(x)−
(
r(x)2 − 2Ex∼pπ [r(x)]r(x)

)
✗ ✓

RISK-SEEKING OPTIMIZATION SQr
β(p

π) := Ex∼pπ [r(x) | r(x) ≥ qrβ(p
π)] (1− β)max{r(x)− qrβ(p

π), 0} ✗ ✓

OPTIMAL EXPERIMENT DESIGN
s(Ex∼pπ [Φ(x)Φ(x)⊤ − λI]) SEE EQUATION (28)

✓ ✓

s(·) ∈ {log det(·),−Tr(·)−1,−λmax(·)}

DIVERSE MODES DISCOVERY −Ez[DKL(p
π,z∥Ek p

π,k)] SEE EQUATION (30) ✗ ✓

LOG-BARRIER CONSTRAINED GENERATION Ex∼pπ [r(x)]− β log (⟨pπ, c⟩ − C) SEE EQUATION (29) ✓ ✓

KULLBACK–LEIBLER DIVERGENCE DKL(p
π ∥ ppre) =

∫
pπ(x) log pπ(x)

ppre(x) dx 1 + log pπ − log ppre ✓ ✓

RÉNYI DIVERGENCES Dβ(p
π ∥ ppre) := 1

β−1 log
∫
(pπ(x))β(ppre(x))1−β dx β

β−1

(∫ (
p
q

)β
dq(x)

)−1 (
p
q

)β−1

✓ ✓

OPTIMAL TRANSPORT DISTANCES Wp(p
π ∥ ppre) := infγ∈Γ(pπ,ppre) E(x,y)∼γ [d(x, y)

p]
1
p SEE EQUATION (27) ✓ ✓

MAXIMUM MEAN DISCREPANCY MMDk(p
π, ppre) := ∥µpπ − µppre∥, µp := Ex∼p[k(x, ·)] argmaxϕ∈H⟨ϕ, pπ − ppre⟩ ✓ ✓

Table 2: Examples of practically relevant utilities F (blue) and divergences D (orange), and their
first-order variations.

• Rényi Divergence (Category 1) Recall the definition of Rényi Divergence526

Dβ(p∥q) =
1

β − 1
log

∫ (
p

q

)β

dq(x). (19)

We ignore higher-order terms like O((δp)2).527

Dβ(p+ δp∥q)−Dβ(p∥q) =
1

β − 1
log

∫ (
p+δp

q

)β
dq(x)∫ (

p
q

)β
dq(x)

(20)

=
1

β − 1
log

∫ (
p
q

)β
+ β

(
p
q

)β−1
δp
q dq(x)∫ (

p
q

)β
dq(x)

(21)

=
1

β − 1
log 1 +

∫
β
(

p
q

)β−1
δp
q dq(x)∫ (

p
q

)β
dq(x)

(22)

=
1

β − 1

∫
β
(

p
q

)β−1
δp
q dq(x)∫ (

p
q

)β
dq(x)

(23)

528

δ

δp
Rβ(p, q) =

β

β − 1

(∫ (
p

q

)β

dq(x)

)−1(
p

q

)β−1

(24)

• Optimal transport and Wasserstein-p distance (Category 2) Consider the optimal transport529

problem530

OTc(u, v) = inf
γ

{∫ ∫
c(x, y)dγ(x, y) :

∫
γ(x, y)dx = u(y),

∫
γ(x, y)dy = v(x)

}
(25)
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where531

Γ =

{
γ :

∫
γ(x, y)dx = u(y),

∫
γ(x, y)dy = v(x)

}
It admits the following equivalent dual formulation532

OTc(u, v) = sup
f,g

{∫
fdu+

∫
gdv : f(x) + g(y) ≤ c(x, y)

}
(26)

By taking c(x, y) = ∥x− y∥p, we recover OTc(u, v) =Wp(u, v)
p. Let f∗ and g∗ be the solution533

to the above dual optimization problem. From the Danskin’s theorem, we have534

δ

δu
Wp(u, v)

p = f∗. (27)

In the special case of p = 1, we know that g∗ = −f∗ (note that the constraint can be equivalently535

written as ∥∇f∥ ≤ 1), in which case f∗ is typically known as the critic in the WGAN framework.536

• Optimal Experiment Design. (Category 1) We take s(M) = log det(M) as example. By chain537

rule, we have538

δF [pπ] = Tr

[(
E

x∼pπ
[Φ(x)Φ(x)⊤ − λI]

)−1 (
Φ(x)Φ(x)⊤ − λI

)]
. (28)

• Log-Barrier Constrained Generation. (Category 1) By chain rule, we obtain539

δF [pπ] = r − βc

⟨pπ, c⟩ − C
. (29)

• Diverse modes discovery. (Category 1) By chain rule, we obtain540

δF

δpπ,z
= − δ

δpπ,z
Ez

[∫
pπ,z log pπ,zdx−

∫
pπ,z log

(
Ek[p

π,k]
)
dx

]
= − Ez

[
δ

δpπ,z

(∫
pπ,z log pπ,zdx

)
− δ

δpπ,z

(∫
pπ,z log

(
Ek[p

π,k]
)
dx

)]
= − Ez

[
log pπ,z + 1− log

(
Ek[p

π,k]
)
− pπ,z

Ek[pπ,k]

]
(30)

• Entropy. (Category 1) As a first example, consider the entropy functional F(p) = −
∫
p log p, dx.541

By the definition of the first-order variation, we have δF
δp (p) = −1−log p, and therefore ∇ δF

δp (p) =542

−∇ log p. This gradient term can be effectively estimated using standard score approximations;543

see [12].544
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C Gradient of first variation: computation and estimation545

Surprisingly, estimating ∇xgk in Alg. 1 (line 4) rarely requires density estimation. Among the546

functionals in Table 1, only the Rényi divergence does, for which one can leverage the recent547

Itô density estimator [51]. All other functionals admit straightforward plug-in or sample-based548

approximations detailed in Apx. B. As an illustrative example, in the following we showcase three549

examples from Table 1:550

∇xδQ(pπ)(x) =


−∇x log p

π(x) Entropy (H)
∇xr(x) · 1{r(x) ≤ qrβ(p

π)} CVaR
∇xϕ

∗(x) where ϕ∗ = argmaxϕ:∥∇xϕ∥≤1⟨ϕ, pπ − ppre⟩ Wasserstein-1 (W1)

Here Q denotes either a utility F or a divergence D, and qrβ(p
π) is the β-quantile of Z = r(X) with551

X ∼ pπ [48]. These gradients can be easily implemented. For entropy, the score term can be approx-552

imated via the score network in the case of diffusion models [12], and obtained via a known linear553

transformation of the learned velocity field in the case of flows [14, Eq.(8)]. For CVaR, any standard554

sample-based estimator of qrβ(p
π) [48] can be used. For Wasserstein-1, ϕ∗ actually corresponds to the555

discriminator in Wasserstein-GAN, which can be learned with established methods [2]. In Apx. B, we556

report the gradient of the first variation for all functionals in Table 1, explain their practical estimation,557

and present a tutorial to derive the first variation of any new functionals not mentioned within Table 1.558

18



D Proof for Theorem 5.1559

D.1 Optimization background560

We start by recalling the notion of Bregman divergence induced by a functional Q ∈ F(X ) between561

densities µ, ν ∈ P(X ), namely:562

DQ(µ ∥ ν) := Q(µ)−Q(ν)− ⟨δQ(ν), µ− ν⟩

Next, we introduce two structural properties for our analysis.563

Definition 1 (Relative smoothness and relative strong concavity [33]). Let G : P(X ) → R a concave564

functional. We say that G is L-smooth relative to Q ∈ F(X ) over P(X ) if ∃ L scalar s.t. for all565

µ, ν ∈ P(X ):566 G(ν) ≥ G(µ) + ⟨δG(µ), ν − µ⟩ − LDQ(ν ∥µ) (31)
and we say that G is l-strongly concave relative to Q ∈ F(X ) over P(X ) if ∃ l ≥ 0 scalar s.t. for all567

µ, ν ∈ P(X ):568
G(ν) ≤ G(µ) + ⟨δG(µ), ν − µ⟩ − lDQ(ν ∥µ) (32)

D.2 Convergence Proof569

Theorem 5.1 (Convergence guarantee of Flow Density Control with concave functionals). Given570

Assumptions 5.1, fine-tuning a pre-trained model πpre via FDC (Algorithm 1) with ηk = L ∀k ∈ [K],571

leads to a policy π inducing a marginal distribution pπ1 such that:572

G(p∗1)− G(pπ1 ) ≤
L− l

K
DKL(p

∗
1 ∥ p

pre
1 ) (10)

where p∗1 := pπ
∗

1 is the marginal distribution induced by the optimal policy π∗ ∈ argmaxπ G(pπ1 ) :=573

F(pπ1 )− αD(pπ1 ∥ p
pre
1 ).574

Proof. We prove this result using the framework of relative smoothness and relative strong convexity575

introduced in Section 5.576

The analysis is based on the classical mirror descent framework under relative properties [33]. For577

notational simplicity, we let µk := pπk

T , and fix an arbitrary reference density µ ∈ P(Ωpre). To better578

align the notation of our theory with existing literature, we will proceed with the convex functional579

G̃ := −G below.580

We begin by showing the following inequality:581

G̃(µk) ≤ G̃(µk−1) + ⟨δG̃(µk−1), µk − µk−1⟩+ LDQ(µk, µk−1) (33)

≤ G̃(µk−1) + ⟨δG̃(µk−1), µ− µk−1⟩+ LDQ(µ, µk−1)− LDQ(µ, µk). (34)

The first inequality follows from the L-smoothness of G relative to Q as defined in Definition 1. The582

second inequality uses the three-point inequality of the Bregman divergence [33, Lemma 3.1] with583

ϕ(µ) = 1
L ⟨δG(µk−1), µ− µk−1⟩, z = µk−1, and z+ = µk.584

Next, using the l-strong concavity of G relative to Q, again from Definition 1, we obtain:585

G̃(µk) ≤ G̃(µ) + (L− l)DQ(µ, µk−1)− LDQ(µ, µk). (35)

By recursively applying the above inequality and using the monotonicity of G(µk) along with the586

non-negativity of the Bregman divergence, we obtain [33]:587

K∑
k=1

(
L

L− l

)k (
G̃(µk)− G̃(µ)

)
≤ LDQ(µ, µ0)− L

(
L

L− l

)K

DQ(µ, µK) ≤ LDQ(µ, µ0).

(36)

Letting588

1

CK
:=

K∑
k=1

(
L

L− l

)k

, (37)
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and rearranging terms, we arrive at the convergence rate:589

G̃(µK)− G̃(µ) ≤ CKLDQ(µ, µ0) =
lDQ(µ, µ0)(

1 + l
L−l

)K
− 1

. (38)

Finally, the convergence rate stated in the theorem follows by observing that
(
1 + l

L−l

)K
≥ 1+ Kl

L−l .590

591
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E Proof for Theorem 5.2592

To establish our main convergence result, we introduce two additional technical assumptions that are593

satisfied in virtually all practical settings:594

Assumption E.1 (Support Compatibility). We assume that the support of pπk

T is contained in a fixed595

compact domain Ω̃ for all k, and that for some j, we have supp(pπk
j ) = Ω̃.596

Assumption E.2 (Precompactness). The sequence {δH(pπk

T )}k is precompact in the topology induced597

by the L∞ norm.598

We are now ready to present the full proof. For the reader’s convenience, we restate the theorem:599

Theorem 5.2 (Convergence guarantee of Flow Density Control for general functionals). Given600

the Robbins-Monro step-size rule:
∑

k γk = ∞,
∑

k γ
2
k <∞, under Assumption 5.2 and technical601

assumptions (see Appendix E), the sequence of marginal densities pk1 induced by the iterates πk of602

Algorithm 1 converges weakly to a stationary point p̃1 of G almost surely, formally: pk1 ⇀ p̃1 a.s..603

Proof. To facilitate readability, we begin with an outline of the key steps.604

Proof Outline The main idea is to relate the discrete iterates {pkT }k∈N produced by Algorithm 1 to
a continuous-time dynamical system. Let us define the initial dual variable as:

h0 = δH(ppre) = − log ppre,

and consider the following gradient flow:605 {
ḣt = δG(pt),
pt = δ(−H)⋆(ht),

(MF)

where (−H)⋆(h) = log
∫
Ω
eh is the Fenchel dual of the negative entropy functional [25, 22].606

To connect this with our algorithm, we construct a continuous-time interpolation of the dual iterates607

hk = δH(pπk

T ). Define the effective time τk =
∑k

r=0 αr, and let the interpolated process h(t) be608

given by:609

h(t) = hk +
t− τk

τ + 1k − τk
(τ + 1k − hk). (Int)

Intuitively, our convergence result follows if two conditions hold:610

Informal Assumption 1 (Closeness to Continuous-Time Flow). The interpolated process h(t)611

asymptotically follows the dynamics of (MF) as k → ∞.612

Informal Assumption 2 (Convergence of the Flow). The trajectories of (MF) converge to a station-613

ary point of G.614

To formalize this, we invoke the stochastic approximation framework of [5]. Let Z be the space of615

integrable functions on Ω, and let Θ denote the flow of (MF). We define:616

Definition 2 (Asymptotic Pseudotrajectory (APT)). We say h(t) is an asymptotic pseudotrajectory
(APT) of (MF) if for all T > 0,

lim
t→∞

sup
0≤h≤T

∥h(t+ h)−Θh(h(t))∥∞ = 0.

If h(t) is a precompact APT, then [5] show:617

Theorem E.1 (APT Limit Set Theorem). Let h(t) be a precompact APT for the flow (MF). Then,618

almost surely, the limit set of h(t) is contained in the set of internally chain-transitive (ICT) points of619

(MF).620

The proof of our result follows from two claims:621

1. The iterates {hk} generate a precompact APT under Assumptions E.1 and5.2.622
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2. The ICT set of (MF) consists only of stationary points of G.623

The second claim holds because (MF) is a gradient flow—specifically, the spherical624

Hellinger–Kantorovich flow [35]. By Sard’s theorem and standard results in dynamical systems [5],625

the ICT set must consist of stationary points.626

For the first claim, Assumptions E.1 and E.2 ensure that the interpolated process is well-defined and627

precompact, while Assumption 5.2 allows us to apply standard stochastic approximation arguments628

[27]. We conclude the proof by applying Theorem E.1.629
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F Detailed Example of Algorithm Implementation630

F.1 Implementation of ENTROPYREGULARIZEDCONTROLSOLVER631

To ensure completeness, below we provide pseudocode for one concrete realization of a ENTROPYREG-632

ULARIZEDCONTROLSOLVER as in Eq. (8) using a first-order optimization routine. In particular, we de-633

scribe exactly the version employed in Sec. 6, which builds on the Adjoint Matching framework [14],634

casting linear fine-tuning as a stochastic optimal control problem and tackling it via regression.635

Let upre be the initial, pre-trained vector field, and ufinetuned its fine-tuned counterpart. We also use636

ᾱ to refer to the accumulated noise schedule from [23] effectively following the flow models notation637

introduced by Adjoint Mathing [14, Sec. 5.2]. The full procedure is in Algorithm 2.638

Algorithm 2 ENTROPYREGULARIZEDCONTROLSOLVER (Adjoint Matching [14]) based implementation

1: Input: N : number of iterations, upre : pre-trained flow vector field, η regularization coefficient
as in Eq. (8), h : step size, ∇f : reward function gradient, m batch size

2: Init: ufinetuned := upre with parameter θ
3: for n = 0, 1, 2, . . . , N − 1 do
4: Sample m trajectories {Xt}Tt=1 via memoryless noise schedule [14], e.g.,

sample ϵt ∼ N (0, I), X0 ∼ N (0, I), then:

Xt+h = Xt + h

(
2vfinetunedθ (Xt, t)−

ᾱt

αt
Xt

)
+
√
hσ(t)ϵt

Use reward gradient:

ãT = −1

η
∇f(X1)

For each trajectory, solve the lean adjoint ODE, see [14, Eq. 38-39], from t = 1 to 0, e.g.,:

ãt−h = ãt + hã⊤t ∇Xt

(
2upre(Xt, t)−

ᾱt

αt
Xt

)
Where Xt and ãt are computed without gradients, i.e., Xt = stopgrad(Xt), ãt =
stopgrad(ãt). For each trajectory compute the Adjoint Matching objective [14, Eq. 37]:

Lθ =

1−h∑
t=0

∥ 2

σ(t)

(
ufinetunedθ (X − t, t)− upre(Xt, t)

)
+ σ(t)ãt∥

Compute the gradient ∇θL(θ) and update θ.
5: end for
6: output: Fine-tuned noise predictor ufinetunedθ

F.2 Discussion: computational complexity and cost of FDC639

Flow Density Control (see Algorithm 1) is a sequential fine-tuning scheme, which performs K640

iterations of a base fine-tuning oracle, as shown in Algorithm 1. Typically, as for the case of Adjoint641

Matching [14], which is contextualized in Algorithm 2, the inner oracle also performs N iterations to642

solve the classic fine-tuning problem. As a consequence, at first glance, this lead to FDC having a643

computational complexity scaling linearly in K the one of classic fine-tuning. Nonetheless, this does644

not seem to capture well the practical computational cost. In particular, we wish to point out the two645

following observations:646

• As discussed for the molecular design experiment in Sec. 6 and further in Appendix647

H, the FDC scheme might work well even with a very approximate oracle to solve the648

entropy-regularized control problem at each iteration.649

• For many real-world problems a very small number of iterations K might be sufficient to650

approximate the non-linear functional sufficiently well and hence obtain useful fine-tuned651
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models. This is shown in text-to-image bridge design experiment in Sec. 6 and in Appendix652

H. In this case, merely K = 2 iterations of FDC lead to promising results.653
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G Further Experiments654
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Figure 4: Illustrative settings with visually interpretable results. (top) Risk-averse reward maximiza-
tion for valid or safe generation, (mid) Novelty-seeking reward maximization for discovery, (bottom)
Expected rewards maximization under optimal transport distance regularization. Crucially, FDC can
optimize well these complex objectives, while AM [14], a classic fine-tuning scheme, fails at this.

Risk-averse reward maximization for better worst-case validity or safety. We fine-tune a pre-655

trained policy πpre (see Fig. 4a) by optimizing the CVaRβ utility i.e., expected outcome in the β-worst-656

case (see Tab. 1) with KL regularization, and costs interpreted as negative rewards. The cost has three657

regions: a high-cost plateau (dark orange), where the initial density lies; a moderate-cost left area (light658

orange); and a predominantly low-cost right zone (yellow) punctuated by narrow, but catastrophic659

red-stripes. As shown in Fig. 4b, AM moves the model density into the yellow region, lowering660

average cost but exposing it to rare extreme costs. In contrast, FDC, run with K = 2 iterations and661

β = 0.01, successfully steers density into the safer, moderate-cost area, cutting the 1%-worst-case662

cost from 217.0 achieved by AM to 75.0, well below the initial 190.9, as shown in Fig. 4c and 4d.663

Novelty-seeking reward maximization for discovery. We fine-tune a pre-trained policy πpre to max-664

imize the SQβ utility, i.e., expected outcome in the β-best-case (see Tab. 1). The reward shown in Fig.665

4e has a moderately high-reward left area (light gray), a medium-reward central plateau (darker gray)666

where the initial density lies, and a low-reward right region (black) with sparse, extreme-reward spikes667

depicted by thin white lines. As shown in Fig. 4f, AM drifts the density into the safer left basin — im-668

proving the average reward but only reaching a best-1% expected reward of 55.5, as shown in Fig. 4g669

and Fig. 4h. In contrast, FDC, run for K = 2 iterations and β = 0.99, pushes the density rightwards,670

elevating the top-1% reward to 497.7 (see Fig. 4h) — far above both AM and the initial 52.1.671

Reward maximization regularized via optimal transport distance. We fine-tune the pre-trained672

model with density in Fig. 4i to maximize a reward function that increases moving top right.673

We consider two W1 distances induced by two ground metrics: dA, which makes vertical moves674

more costly than horizontal ones, and dB , which does the opposite. Under dA, both AM and the675

OT-regularized model reach an expected reward of 35.0, but FDC-A incurs onlyWA
1 = 2.1 versus 4.7676

for AM, and achieves a mean shift that is 277% larger in the horizontal than in the vertical direction677

(Fig. 4j and Tab. 4l). By contrast, FDC-B under dB preferentially shifts the density upward (Fig. 4k).678
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H Experimental Details679

H.1 Used computational resources680

We run all experiments on a single Nvidia H100 GPU.681

H.2 Experiments in Illustrative Settings682

Shared experimental setup. For all illustrative experiments we utilize Adjoint Matching (AM) [14]683

for the entropy-regularized fine-tuning solver in Algorithm 1. Moreover, the stochastic gradient steps684

within the AM scheme are performed via an Adam optimizer.685

Risk-averse reward maximization for better worst-case validity or safety. In this experiment,686

we execute FDC for K = 2 iterations with a total of 1000 gradient steps within each iteration, AM687

solver (within the FDC scheme) with learning rate of 2e−2, α = 109, and η = 10. Meanwhile,688

the AM baseline, is run for 1000 gradient steps with α = 0.2857, and learning rate of 1e−5. The689

resulting CVaR is computed via the standard torch quantile method. The values of β reported in the690

main paper effectively refers to the value of 1− β.691

Novelty-seeking reward maximization for discovery. We run FDC for K = 2 iterations with a692

total of 1000 gradient steps within each iteration, AM solver (within the FDC scheme) with learning693

rate of 3e−6, α = 105, and η = 0.625, and 8000 samples are used to estimate the first variation694

gradient as explained in Appendix B. Meanwhile, the AM baseline, is run for 1000 gradient steps695

with α = 0.333, and learning rate of 1e−5. The resulting SQ is computed via the standard torch696

quantile method.697

Reward maximization regularized via optimal transport distance. Within this experiment,698

we present two runs of FDC, namely FDC-A and FDC-B, compared against AM. Both FDC-A and699

FDC-B have been run for K = 6 iterations of FDC, with α = 0.1, AM oracle learning rate of 1e−6,700

η = 6.666. Both their discriminators to solve the dual OT problem as presented in Appendix B and701

mentioned within Sec. 4, have been learned via a simple MLP architecture with 800 gradient steps,702

by enforcing the 1-Lip. condition via the standard gradient penalty technique with regularization703

strength of λGP = 10.0 and learning rate of 1e−4. In particular, FDC-A is based on the distance704

defined, for two 2-dimensional points x = (x1, x2) and y = (y1, y2) by:705

dA(x, y) =
√
(x1 − y1)2 + (K(x2 − y2))2

Analogously, FDC-B leverages dB defined as:706

dA(x, y) =
√
(K(x1 − y1))2 + (x2 − y2)2)

Where K = 7 in both cases. On the other hand, the AM baseline is run for 1000 gradient steps with707

learning rate of 1e−3 and α = 1.538.708

Conservative manifold exploration. We ran FDC for K = 50 iterations and 2500 gradient steps709

in total with η = 10 and α = 0.0, 0.01, 0.1, 0.5, 1.0. We set the AM learning rate to 2e−4 and sample710

trajectories of length 400 for computing the AM loss.711

H.3 Real-World Experiments712

Molecular design for single-point energy minimization. In this experiment FDC is run for713

K = 10 iterations, with merely 2 gradient steps at each iteration (i.e., the AM oracle is very714

approximate), AM learning rate of 1e−4, η = 0.01 and α = 0. Meanwhile, the AM baseline is run715

for 240 gradient steps with α = 0.0045.716

Text-to-image bridge designs conservative exploration. For this experiment we ran FDC on717

a single Nvidia H100 GPU, with K = 2, η = 200, α = 0.001 and a 100 gradient steps in total.718

Similarly to previous work, we tuned the vector field resulting from applying classifier-free guidance719

with guidance scale w = 8 in SD-1.5.720
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