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ABSTRACT

Compressing universal time-series foundation models (TSFMs) significantly re-
duces computational and storage overhead, thereby facilitating their widespread
adoption. In TSFM compression techniques, knowledge distillation stands out
by transferring knowledge from teacher models to student models. However,
existing distillation methods often overlook the inherent consensus representa-
tion spaces in TSFMs and the imbalance in hierarchical contributions, leading
to inefficient knowledge transfer. To address this, we propose a novel approach
that reformulates distillation as a consensus subspace optimization task, leverag-
ing the observation that high-level embeddings autonomously converge across
different model scales, along with the long-tail distribution of hierarchical contri-
butions. We tackle the consensus subspace problem by identifying and extracting
scale-invariant low-rank subspaces: on local data subsets, we perform singular
value decomposition on embeddings from offline-selected consensus layers to
derive consensus projection matrices, which are then used to fine-tune the student
model, ensuring representation alignment and accelerated convergence. Addi-
tionally, we introduce a scalable uncertainty injection mechanism to enhance
generalization to unseen data, modeling subset biases as frequency-domain gaps to
inflate covariances. Extensive experiments demonstrate that our framework excels
on multiple standard time-series datasets, with student models even surpassing
teacher performance in time-series forecasting tasks. Compared to state-of-the-art
methods, our approach achieves over 90% parameter reduction and 100x distilla-
tion speedup while retaining comparable performance across various time-series
tasks. Code and compressed model weights are available via an anonymous link:
anonymous . 4open.science/r/CSD-13C3/l

1 INTRODUCTION

Transformer-based time series foundation models (TSFMs) have significantly advanced the process-
ing of complex sequential data. These models enable multitask generalization and robust predictions
across various domains (Liang et al.|[2024). However, as model scales grow, the associated computa-
tional and storage overheads rise substantially. This limits their deployment in resource-constrained
environments. To address this challenge, model compression techniques have become essential. They
compress large TSFMs into efficient versions while preserving performance as much as possible (Liu
et al.| 2025} [Shi et al.| [2025)).

Among compression strategies for TSFMs, several approaches stand out for reducing model size
and inference costs. These include neural architecture search (NAS), pruning, knowledge distillation
(KD), quantization, and low-rank mapping (Fournier et al., |2023). NAS automatically designs
efficient architectures, though it often involves high search costs (Wang et al., [2024). Pruning
simplifies models by removing redundant weights, but it may impair the representational capacity
of critical hierarchical structures (Xu et al.l [2022)). Quantization reduces numerical precision for
compression, yet improper tuning can compromise generalization on long sequences (L1 et al., 2024)).
Low-rank mapping captures key information subspaces, but it often overlooks hierarchical imbalances
in Transformers (Zha et al., 2024). In contrast, knowledge distillation transfers knowledge from
teacher models to student models effectively. It maintains consensus representations and addresses
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hierarchical imbalances in TSFMs. This makes it a promising choice for efficient knowledge transfer

without training from scratch.

A core challenge in distilling TSFMs
lies in efficiently transferring hier-
archical knowledge while preserv-
ing the model’s inherent characteris-
tics. Traditional distillation methods
fall into three categories: response-
based, feature-based, and relation-
based. Response-based KD aligns
output logits or soft labels to em-
phasize probabilistic imitation
ton et all 2015). However, it of-
ten overlooks dynamic information
in intermediate layers (see Fig. ma)).
Feature-based KD matches interme-
diate activations, but this rigid bind-
ing disrupts natural convergence to
scale-invariant subspaces and am-
plifies low-level noise (Fig. [I(b))
(Romero et al,2014};Zhu & Zhang
2025). Relation-based KD focuses
on inter-sample or inter-layer simi-
larities, such as attention maps
20194). Yet it neglects the self-
organizing alignment of high-level
embeddings across model scales.
This leads to low distillation effi-

(a) Response-based KD (b) Feature-based KD

Response
Teacher T [TTTT1
[ —

Response

Teacher T

Distillation

| Distillation
Loss

—

(c) Relation-based KD R (d) Ours
esponses .
N Relation i % Consensus
SRSy bspace C
Teacher T — e S
NN 0 i o o
(—— ) + Distillation - °°
Loss P
T Distillation
Student § —% } /J Student § I
\nuuuuy
Relation

Responses

Figure 1: Comparison of four knowledge distillation (KD)
paradigms. (a) Response-based distillation aligns only output
probabilities and ignores dynamic information in interme-
diate layers. (b) Feature-based distillation enforces activa-
tion matching but disrupts natural convergence processes. (c)
Relation-based distillation focuses on inter-sample similarity
yet overlooks cross-layer self-organizing consistency. (d) Our
proposed consensus subspace optimization method extracts
scale-invariant low-rank subspaces to guide student models
toward geometric centers. This avoids dependence on teacher-
specific pathways.

ciency and insufficient generalization, especially when layer contributions follow long-tail dis-

tributions (Fig. [T{c)).
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Figure 2: Empirical motivation validation. (a) During pre-training of time series foundation models
across varying data and model scales, representations spontaneously converge to align with those of
larger pre-trained models under unconstrained conditions. The upper panel illustrates the convergence
measurement methodology, while the lower panel shows results with error bands across scales. (b)
Projected representations reveal geometrically aligned centers across scales. The upper panel displays
a cosine similarity heatmap of geometric centers, indicating highly aligned spaces. The lower panel
depicts centroid offset trajectories in a reference frame (using the 24-layer model’s center as origin),
demonstrating tight clustering and convergence via PCA projection. Together, (a) and (b) suggest a
potential consensus subspace with an invariant geometric center. (c) Bar chart of per-layer parameter
contributions, showing a long-tail distribution.
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These limitations become evident in empir- _ 102.5
ical studies. During masked autoencoder <., 1 @
(MAE) pretraining on time series, high- © Parameter N
level embeddings from models of vary- 97.51 Sundial-Small o0 O Qi
ing scales, such as 12-layer and 24-layer, 95.01 (32M) 1 et
tend to converge to consistent consensus MOMENT-Small Nl '
. 92.51
subspaces. They show minimal uncon- (40M) Time-MoE-Small ()
strained MAE differences (see Fig. [2fa)) 90.0 OChmms_SmalﬁmM) (N
and highly aligned projection centers (Fig. g751 [E (13M) \)
[2[b)). However, existing methods fail to 160 30 50 20 Py 0
leverage this phenomenon. Instead, they Parameter Compression Rate (%)
bind student models to teacher-specific
paths and overlook the independent contri-  Figure 3: Benchmarked against MOMENT-Large, our
butions of shallow layers to context capture  method surpasses state-of-the-art approaches in zero-
(Fig. [%(c)). This results in amplified biases  shot long-horizon forecasting retention and model com-
and slower convergence. pression. Unlike conventional methods that fail to sig-
nificantly compress pre-trained models while preserving
high-quality representations, our approach achieves a
90.13% parameter reduction. Even compared to the
smallest mainstream time series foundation models, our
convergence of high-level embeddings to comprgssed model del?vers extreme compression while
scale-invariant, low-rank subspaces across approximately preserving the original large-scale model
model scales (see Fig. [I{d)). Specifically, performance.
we apply singular value decomposition on
consensus layers over local data subsets to extract low-rank subspaces and construct projection
matrices. These guide student representations to align with the teacher’s geometric centers, en-
abling efficient knowledge transfer without disrupting natural convergence structures. Unlike the
rigid matching in feature distillation or the limitations in relation distillation, our method prioritizes
subspace consensus over pointwise matching. It decouples from the teacher model, accelerating
convergence and enhancing robustness across scales.

Zero-shot Retention Rate (%

To overcome these issues, we propose a
novel KD framework that redefines distilla-
tion as a consensus space optimization task.
This approach exploits the spontaneous

Our method also incorporates a scalable uncertainty injection mechanism to bridge biases from data
selection. This models biases as frequency-domain gaps and enhances generalization to unseen data
through inflated covariances. The design draws from two key insights. First, consensus spaces form
spontaneously at varying depths, with deeper layers adding redundancy without altering geometric
centers (Fig. 2fa-b)). Second, layer contributions are uneven, with shallow layers exhibiting zero-shot
reconstruction capabilities and deeper layers showing long-tail redundancy (Fig. [T[c)). Our main
contributions include:

* A new distillation perspective that transforms KD into a consensus space optimization
problem, leveraging scale-invariant subspaces and hierarchical long-tail distributions for
efficient TSFM compression.

* A method combining decomposition-based projection with frequency-domain uncertainty in-
jection to align student representations and mitigate biases, ensuring stronger generalization.

* Extensive experiments on standard time series datasets, demonstrating the superiority of our
model, where student models often outperform teacher models in prediction tasks.

* Our method achieves over 90% parameter reduction while retaining performance comparable
to the base model, demonstrating advantages in compression ratio, performance retention,
and distillation efficiency (Fig. [3).

2 RELATED WORK

2.1 EFFICIENT TIME SERIES FOUNDATION MODELING

Recent studies have emphasized Transformer-based time series foundation models (TSFMs) for han-
dling complex data and enabling multi-task generalization (Liang et al.|[2024)). Masked reconstruction
(MR), drawing inspiration from large language models, allows these models to learn robust repre-
sentations. This approach works by randomly masking and reconstructing sequences, which helps
capture contextual dependencies and long-term patterns (Liu et al.||2025). Notable examples include
MOMENT, which uses multi-dataset pre-training to enhance data diversity (Goswami et al., [2024)).
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PatchTST employs patching and channel-independent processing to enable efficient long-sequence
forecasting (Nie et al.,|2023). Time-LLM reprograms large language models with MR and prompt
engineering, thereby improving generalization (Jin et al.||2024). Additionally, Time-MoE scales up
to 2.4 billion parameters, validating scaling laws across various domains (Shi et al.| 2025). Despite
these advances, the increasing model sizes create significant computational and storage challenges.
This motivates our research on TSFM compression.

Various compression techniques exist, such as neural architecture search (NAS), pruning, knowledge
distillation (KD), quantization, and low-rank mapping (Fournier et al., 2023). For instance, NAS
methods like those proposed by Wang et al. optimize multivariate architectures but often require
high computational resources and offer limited adaptability (Wang et al.} 2024). Xu et al. introduced
contrastive pruning to preserve task-agnostic knowledge through contrastive learning, which enhances
generalization in pre-trained models (Xu et al.| 2022)). However, this approach overlooks high-level
consensus in TSFMs. Quantization techniques, such as GPTQ (Frantar et al.| | 2023), perform well on
proxy tasks but struggle with uncertainty calibration, which can impair long-context generalization
(L1 et al.} 2024). Low-rank mapping reduces dimensions for key representations. Zha et al.|(2024)
applied decoupled spatio-temporal compression to high-dimensional data, yet it ignores hierarchical
long-tail distributions, limiting its applicability to TSFMs. In comparison, KD effectively transfers
knowledge from teacher to student models. This method better preserves TSFM consensus spaces
and addresses hierarchical imbalances (Gao et al., [2024; Wu et al.,[2021).

2.2 KNOWLEDGE DISTILLATION IN TSFMs

Knowledge distillation can be categorized into response-based methods, which imitate the teacher’s
soft label outputs (Hinton et al., 2015), feature-based methods, which align intermediate representa-
tions to capture deeper knowledge (Romero et al., 2014), and relation-based methods, which mine
inter-instance or inter-layer relationships, such as similarity matrices, for robust transfer (Park et al.,
2019a). For compressing Transformer-based TSFMs, several approaches have emerged. These
include self-distillation frameworks that improve self-supervised efficiency through masked view
prediction (Pieper et al.| 2023)), task-specific distillation with adversarial augmentation for down-
stream robustness (Zhang et al., 2022), and methods inspired by neural collapse or low-rank local
feature distillation for better representation alignment (Zhang et al., [2025; [Sy et al., [2025)). Other
techniques involve SliceGPT, which removes rows or columns from weight matrices to achieve
up to 25% parameter reduction while preserving zero-shot performance (Ashkboos et al.l [2024]),
FrameQuant’s dynamic bit adjustment for balancing accuracy and efficiency (Adepu et al., [2024),
probabilistic knowledge transfer for deep representation learning (Passalis & Tefas| [2018]), relation
mining (Park et al., 2019b), and contrastive distillation for enhanced alignment (Tian et al.,[2020).

Existing methods often overlook the intrinsic low-rank consensus and uneven layer contributions in
TSFM embeddings, leading to suboptimal compression (Ni et al.l 2025} Zhao et al.| 2024; Xu et al.,
2023)). We address this by reformulating distillation as consensus space optimization, leveraging
inherent model structures to guide efficient compression.

3 METHODOLOGY

In this section, we introduce a novel consensus subspace distillation framework, as depicted in
Fig. [I(d). This framework integrates scale-invariant low-rank representations, leveraging inherent
model-agnostic structures observed across diverse time series foundation models (TSFMs), with
hierarchical contribution screening to enable efficient compression. We then describe an extensible
uncertainty injection mechanism to mitigate subset bias and enhance generalization. Finally, we
outline the training procedure and associated losses.

3.1 CONSENSUS SUBSPACE DISTILLATION

Offline Computation For a given teacher model 7 and the full dataset D € RVXCXL e first

follow the central limit theorem to randomly sample an n% subset D, € RNXCXL for offline

statistical estimation. In the offline phase, we first screen high-contribution layers: by setting all
parameters except the [-th layer to zero, we define the teacher model variant G[Tv #1200 and compute

E(e[jyi?fl, i—0] )

the marginal contribution AL! = Lmae(01) — Lva . We select the K layer indices

with the largest AL as T,
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Next, we construct the consensus subspace: for each selected layer I € Ty, reshape the embedding
EL = reshape(EL) € RT*(NT) 'where EL. is the token embedding from the I-th layer of 7~ (with
T tok.ens), and perform mean subtraction Erfp = EZT — ﬁEépl NleT\?T. Compute the average
covariance

1 Loz i HxH
%o =1 Z ~TETET e REXH, 1)
1€Typ
Since for any non-zero v € R¥, vT¥v = v Sgv + 7y|[v[|3 > 7|v||3 > 0, to ensure positive

definiteness, we apply shrinkage to obtain X = Yo + vy (v > 0).

Then, perform S =UAUT, where A = diag(A; > --- > Ag). For rank truncation, select the rank
based on the cumulative variance threshold 6:

. PP
= : == - > = e .
r = min {m A 2 Op, Ur=lur,...,u 2)

The consensus projection matrix is Pe = U,U,’ € R¥*H_ For the token embedding E}' from
the top layer of T, project Er = PcEX, where M is the total number of layers in 7. Reshape
Z = reshape(Er) € RE*(NT) and compute

1

KT = ﬁZlﬁrTy

1 T T \T
ZT = ﬁ(Z - MT]'NT)(Z - /LT]_NT) .

3

Computation of Spectral Density S(wy) In the offline computation phase, we obtain S(wy,) for
subsequent uncertainty injection. Based on the projected teacher embedding Er € RV OXT first
reshape it to Z € R (NT)  perform FFT along the token dimension 7' to obtain the frequency-
domain embedding Et ; € CNXCOXT For each frequency point wy, = % (k=0,1,...,T - 1),
compute the frequency-domain covariance matrix of the embeddings:

1 N C

S(@) = 55 20 O [Re(r g ) Re(Brgnen)| “
n=1c=1

+ (B e) I (Er ) || € R,

The teacher cache provides the baseline spectral density S(wy) € R¥*H which serves as the
frequency-domain statistical benchmark of the teacher model on the subset D, effectively capturing
the covariance between spatial dimensions after embedding.

Student Network Initialization Copy the K layers corresponding to Z, from the teacher 7 to the
student S, and add a low-rank increment only to the MLP output weights Wy, of the copied layers:
mp = Watp + 1r,>0) AB 5)

rank r,

where A € RF*"a B € R"«*H ‘and r, < H. During training, freeze the original weights and only
update A and B (if r, = 0, it degenerates to an identity mapping).

Remark: The construction of the consensus subspace C ensures scale invariance, as dimensionality
reduction captures the low-rank structure of embeddings, which spontaneously converges across
different models, supporting efficient subspace alignment.

Next, we introduce the mean-covariance alignment loss for training consensus distillation.

Mean-Covariance Alignment Loss For the student top-layer embedding EX, project Eg =
PcE¥ , reshape Z = reshape(Es) € R?*(BT) and compute

1
s = ==2Z1pr,
BT
. (6)
Ys = gp(Z - 1slpr)(Z — pslpp)'.
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For two Gaussian distributions NV (ur, X1) and N (us, Xs), their squared 2-Wasserstein distance
satisfies:

Wi (N1, Ns) = |lpr — ps3
———
l:“

@)
+ tr(ET + 3¢ — 2(2;/22525/2)”2) :

2(Zs)

The covariance term ®(X ) has complex gradient computation, so we introduce a surrogate objective
9(Zs) = [|Zs — Xr||%, as g shares the global minimum with ® at g = Y. Thus, the objectives

are £, = ||[us — prll3 and Ly = g(Es).

Our method unifies distillation, subspace projection, and mean-covariance alignment within a single
framework, introducing a latent anchor manifold—rather than relying on a single teacher—based on
new insights into scale-invariant convergence in TSFMs.

3.2 UNCERTAINTY INJECTION

We quantify the gap using frequency-domain ChF differences, converting it into spectral density
inflation noise injected solely into the consensus subspace. This leverages uneven layer contributions
to enhance conservatism without disrupting core representation centers, extending static alignment to
dynamic uncertainty augmentation for improved generalization on unseen data.

Uncertainty computation directly uses the original input sequences D € RY*C*L without requiring

teacher forward passes, avoiding additional computational overhead. Perform fast Fourier transform
(FFT) on the L axis (time dimension) of the sequences to obtain the frequency-domain representation

zp € CNXO*L (complex tensor). Similarly, batch the subset D, € RV*C*L (o obtain 7; €

CB*CExL The frequency points wy, are defined as the discrete frequencies in standard FFT: wj, = %,

where k =0,1,..., L — 1.

ChF Difference Quantification Inspired by Liang et al.|(2024)), we estimate the empirical charac-
teristic function (ChF) to quantify the statistical differences between the two distributions D and D,
in the frequency domain. The ChF is the Fourier transform of the distribution, similar to a probability
generating function, used to capture higher-order moment deviations. Computations are performed
on the raw sequences, averaging across the spatial dimension C' to integrate multivariate information:

N C
o) = 7 D03 M ;
m(wk) NC € ) ( )

n=1c=1
where ®,,(wy,) represents the empirical ChF of samples x in D at frequency wy,. Similarly, for samples
T in DC, q)i(wkr) = % Zb,c ei Re(jf,b,c,k)‘

Then, compute the ChF difference to quantify the distance between the two ChFs:

Chf(wg) = |@u(wi)|* + | Pz (wk)|?

9
= 2|P, (wi)||Pz(wk)| cos(a, — az), ©

where |®,(wy)| is the magnitude of @, (wy), and a, = arg P, (wy) is the argument. The global
uncertainty U/ aggregates differences across all frequencies:
L-1
U= Z Chf(wik)w(wk), w(wg) = exp (—w;%/202) , (10)
k=0

where w(wy,) is a Gaussian weighting function.

Spectral Density Inflation First, based on the ChF differences, construct a scaling factor (inflation
factor):

)
V() B )2 £ 2

. 0<A<L (11)
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Then, compute the inflated spectral density S, (wy) = (wg)S(wy). Further, obtain the zero-lag
covariance:

Sy (wr). (12)
IfUd — 0, then X, — Y.

Consensus Space Injection Project X¢ = U, ¥, U, € R™*". Perform eigenvalue decomposition
on X¢ to get X¢ = V,A,V,", where A, = diag(A\s1 > --- > A,,) is the diagonal matrix of
eigenvalues. Then, compute the gain coefficients:

T = di /\*,1 )\*,7- 1
= diag NV ) (13) Algorithm 1 Consensus Subspace Distillation

Framework

where )\; are from the original consensus sub- 1: Input: 7, D, n%, K, 0, \, 0, 5.
space’s A. The final uncertainty-injected consen- 2: Output: S.
sus projection matrix is P} = U,I'U,’. These 3: Offline:
formulations, though complex, precisely capture 4: Sample D, from D.
scale-invariant subspaces, supported by empirical 5: Select Ziop by A Ll

6

7

8

convergence in Fig. . Build P from 3.
: Compute (ur, X7), S(wi), U.
: Inflate to PJ.

In the offline phase, precompute Fe, (ur, X7), 9: Init: Copy top layers to S.
{S(wk)}, B4, and T'. In the online phase, the  [0: Online:

student computes E{, obtains Es = PJE via 1. while not converged do
the uncertainty-injected consensus projection, and 12:  Get EX, project to Es.
feeds it into the mean-covariance alignment loss.  13.  Compute losses: £ = Laq + 3( L, +

3.3 OVERALL PROCEDURE

The overall loss is £ = Ly + (L, + Lx), with Ls).
gradients backpropagated naturally. The algorith- ~ 14:  Update S.
mic procedure is summarized in Algorithm|[T} 15: end while

4 EXPERIMENT RESULTS

4.1 DATASET AND MODEL SETUP

Dataset Selection We evaluate the proposed consensus subspace distillation framework on the
Time Series Pile, a diverse collection of approximately 13 million time series spanning 13 distinct
real-world domains, including healthcare, electricity, economics, and transportation, with a total of
1.23 billion timestamps (Goswami et al., 2024). This dataset ensures comprehensive validation of the
model’s cross-domain generalization capabilities. Following the experimental setup of MOMENT,
we select datasets for long-term forecasting, imputation, classification, and anomaly detection tasks.
We adopt standard dataset splits and preprocessing procedures, with detailed metadata and splitting
methods available in our code repository.

Baselines and Teacher Model. We use MOMENT-Large as the teacher model (Goswami et al.}
2024]), pretrained on the Time Series Pile through masked reconstruction. The baselines include state-
of-the-art knowledge distillation methods: Probabilistic Knowledge Transfer (PKT) (Passalis & Tefas|
2018)), Relational Knowledge Distillation (RKD) (Park et al., 2019b)), Contrastive Representation
Distillation (CRD) (Tian et al.,2020), Adversarial Data Augmentation for KD (ADA-KD) (Zhang
et al.| 2022)), Low-Rank Local Feature Distillation (LRLFD) (Sy et al.| 2025])), and Neural Collapse
Inspired KD (NCKD) (Zhang et al., [2025). We also include SliceGPT (Ashkboos et al., 2024), which
supports low-rank mapping and pruning, along with the quantization method FrameQuant (Adepu
et al.l [2024).

4.2 IMPLEMENTATION DETAILS

All experiments use 8 NVIDIA RTX 4090 GPUs, with distillation on one 4090 GPU for 3 epochs. We
copy the top K = 3 layers from the teacher model, selected via marginal contribution screening, and
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add a low-rank increment to MLP output weights with rank r, = 64. In the offline phase, an = 10%
dataset subset is sampled to compute the consensus subspace projection matrix Fe, using a truncation
threshold of & = 0.99 and spectral density inflation (A = 0.1, o = 1.0). In the online phase, we use
the AdamW optimizer (learning rate 1 x 10~%, batch size B = 2048) and loss weighting 3 = 0.5.
Full implementation details, including random seeds, training configurations, ablation study protocols,
and model weights, are available in our public code repository.

4.3 COMPARE WITH SOTA METHODS

Table 1: Comparison of different model compression methods. Results are averaged over multiple
datasets for each task. Long-Horizon Forecasting uses average MAE over 8 datasets with fore-
cast horizons {96, 192, 336, 720}; Imputation uses average MAE over 6 datasets with mask ratios
{0.125,0.25,0.375,0.5}; Anomaly Detection uses average Adj. Best F1 and VUS-ROC over 248
datasets; Classification uses average accuracy over 91 datasets.

Long-Horizon Forecasting 1 p|| Imputation p Anomaly Detection p ST Comp. Model
Method MAE (Avg.) | MAE (Avg,) | | Adj. BestF1 1 VUS-ROC T | Classification o\ o) Parameters Ref.
Teacher 0.476 0.159 0.721 0.728 0.764 N/A 385M ICML24
g Ours 0.471 (+1.05%) 0.157 (+1.26%) || 0.713 (-1.11%) 0.721 (-0.96%) ||0.633 (-17.01%)| ~28 h || 38M (-90.13%) -
é SliceGPT 0.528 (-10.92%) 0.176 (-10.69%)||0.630 (-12.62%) 0.647 (-11.13%) || 0.685 (-10.34%) || ~10s || 274M (-28.83%) | ICLR’24
& FrameQuant 0.585 (-22.90%) 0.218 (-37.11%)|0.541 (-25.00%) 0.572 (-21.43%) || 0.580 (-24.08%) || ~3h ||385M (15x Mem. |) ||[ICML24

Table 2: Comparison of different distillation methods under 9.87% parameter retention (student
model). We can achieve promising results using only 10% of the data for distribution distillation.
Results are averaged over multiple datasets for each task. Long-Horizon Forecasting uses MAE
averaged over 8 datasets with forecast horizons 96, 720. Imputation uses MAE averaged over 6
datasets with mask ratios 0.125, 0.500. Anomaly Detection uses Adj. Best F1 and VUS-ROC
averaged over 248 datasets. Classification uses accuracy averaged over 91 datasets. Distillation Time
indicates the time taken for the distillation process.

Long-Horizon Forecasting p Imputation p Anomaly Detection ¢ . Distillation N

Method | A E06) | MAE (720) | | MAE (0.125) ] MAE (0.500) | || Adj. BestF1 1 VOS-ROCT || Cassification ot |pu & GPU by Ref.
Teacher 0.299 0.381 0.159 0.158 0.569 0.660 0.764 N/A ICML24
PKT 0418 (-39.80%) 0.514 (-34.91%) [[0.203 (-27.67%) 0.229 (-44.94%)|[0.478 (-16.00%) 0.561 (-15.00%)]| 0.550 (-28.01%) 204.73 ECCV'18
RKD 0368 (-23.08%) 0.457 (-19.95%) |0.183 (-15.09%) 0.198 (-25.32%)||0.512 (-10.02%) 0.594 (~10.00%) | 0.588 (-23.04%) 180.19 CVPR’19
ECRD 0344 (-15.05%) 0434 (-13.91%) | 0.171 (-7.55%) 0.187 (-18.35%) 0.535 (-5.98%) 0.620 (-6.06%) | 0.610 (-20.16%) 220.46 ICLR*20
S ADA-KD [[0.359 (-20.07%) 0.465 (-22.05%) |0.190 (-19.50%) 0.205 (-29.75%)|| 0.524 (-7.91%) 0.607 (-8.03%) | 0.595 (-22.12%) 190.82 AAAT'22
% LRLFD (0353 (-18.06%) 0.449 (-17.85%) [[0.175 (-10.06%) 0.193 (-22.15%) || 0.518 (-8.96%) 0.600 (-9.09%) || 0.602 (-21.20%) 21037  |[NAACL25
NCKD  [0.347 (-16.05%) 0.442 (-16.01%) |0.179 (-12.58%) 0.200 (-26.58%)|| 0.529 (-7.03%) 0.613 (-7.12%) | 0.605 (-20.81%) 195.64 AAAI'25

Ours  [0.287 (+4.01%) 0.366 (+3.94%) |0.152 (+4.40%) 0.151 (+4.43%) || 0.557 (-2.11%) 0.647 (-1.97%) || 0.633 (-17.15%) 3.86 -

Table 3: Zero-shot long-horizon forecasting comparison between our compressed model and main-
stream time series foundation models. Corresponding prediction lengths include {96, 192, 336, 720}.
Averaged results of four prediction lengths are reported here. 1% Count refers to the number of
datasets where the current model attains the top-ranked average performance over all forecasting hori-
zons. Results of baseline models are officially reported by [Liu et al.| (2025). Datasets in pre-training
are not evaluated on corresponding models, which are denoted by the dash (—).

Models Ours MOMENT;,..u MOMENT_.,,. Time-MoE Time-MoE,.,. Time-MoEy, Sundial Sundialgg,e S liage Chronospee Chronosia.
- ICML'24 ICML 24 ICLR’25 ICLR’25 ICLR’25 ICML’25 ICML’25 ICML’25 TMLR’24 TMLR’24
Metric, MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
ETTml ||0.356 0.381{/0.354 0.391 {[0.345 0.380 ||0.394 0.415 ||0.376 0.405 ||0.356 0.391 |/0.354 0.3880.336 0.377(|0.331 0.369|/0.645 0.500(/0.555 0.465
ETTm2 (|0.262 0.318{[0.269 0.325 {[0.260 0.319 ||0.317 0.365 ||0.316 0.361 ||0.288 0.344 |/0.265 0.324|/0.258 0.320{{0.254 0.315|/0.310 0.350(/0.295 0.338
ETThl (|0.403 0.436(/0.427 0.442 [|0.419 0.435 |/0.400 0.424 (|0.394 0.419 |0.412 0.426 {[0.390 0.418({0.411 0.434/0.395 0.420{/0.591 0.468 ||0.588 0.466
ETTh2 (]0.351 0.397([0.358 0.411 [[0.353 0.395 |0.366 0.404 (|0.405 0.415 |0.371 0.399 |/0.340 0.387/0.333 0.387/0.334 0.387(|0.405 0.410/0.455 0.427
ECL {[0.169 0.270||0.171  0.264 |/0.166 0.261 - - - - - - 0.169 0.265/0.169 0.2650.166 0.262|/0.214 0.278 ||0.204 0.273
Weather [10.226 0.269(/0.237 0.277 |]0.227 0.268 |/0.265 0.297 (|0.270 0.300 |/0.256 0.288 {|0.233 0.271]0.234 0.270{/0.238 0.275{/0.292 0.315{/0.279 0.306
1% Count|| 37 36 26 23 40 44 16 16 16 16 19 22 41 40 4340 48 48 3 5 7 8

Compression Performance Comparison We benchmark our consensus subspace optimization
method against MOMENT-Large (385M parameters) and other state-of-the-art techniques, such as
SliceGPT and FrameQuant (Tab. [I). Our approach delivers comparable performance in forecasting
and imputation, while retaining over 90% accuracy in anomaly detection and classification tasks. Our
method compresses the model to 38M parameters, achieving a 90.13% reduction that significantly
surpasses the 28.83% from SliceGPT. By extracting scale-invariant low-rank subspaces, our technique
overcomes rigid matching challenges and validates that consensus spaces serve as effective manifolds
for efficient knowledge transfer.
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Distillation Method Comparison Tab. Method Anomaly Detectiono[[, oo
. . . . 53 0
shows our method outperforms prior distil- — AdJ'OB:;Fl T VU(S)';‘;C T o
. . . cacher . A N .
lation techniques using only 9.87% of the Ours (K=4) 0.651 (:9.89%) 0.662 (-9.38%) || 0.704 (-8.36%)
parameters and 3.86 GPU hours of training. Ours (K=4, w/o UI) |/0.645 (-10.79%) 0.656 (-10.19%) || 0.698 (-9.00%)
. . 2 Ours (K=8) 0.717 (-1.54%) 0.721 (-1.16%) || 0.752 (-1.87%)
itér;ltly)ri/\fzs}zup?in t?e tgac?er mO(gel Wltg a 2 Ours (K=8. wio UD) | 0.712 (-1.94%) 0.716 (-1.93%) | 0.747 (2.48%)
.01% reduction in forecasting and a £ Ours (K=12) 0.728 (:0.12%) 0.729 (-0.43%) || 0.761 (-0.54%)
4.40% reduction in imputation, while main- Z Ours (K=12, wlo UD)| 0.724 (-0.69%) 0.725 (0.96%) || 0.757 (-1.17%)
L. . Ours (K=16) 0716 (-0.89%) 0.727 (:0.81%) | 0.758 (-1.12%)
taining robust performance in anomaly de- Ours (K=16, w/o UD) || 0.711 (-1.66%) 0.722 (-1.52%) || 0.753 (-1.83%)

tection and classification. These results
demonstrate that our low-rank alignment Table 4: Ablation study on the number of layers (K) in
to geometric centers enables efficient and our method, including cases without uncertainty injec-
bias-resistant knowledge transfer. tion (UI).

Foundation Model Comparison The

analysis in Tab. [3] demonstrates that our compressed model sustains competitive perfor-
mance against larger time series foundation models. It excels in datasets like ETTml and
ETTh2 with lower average MSE and MAE. These results emphasize balanced retention of
temporal dynamics through subspace alignment, even after significant parameter reduction.

4.4 ABLATION STUDY

Tab. [] presents our ablation on the number of Second-Best Distillation Method  Our Distillation Method
layers (K). Higher values, such as K = 12,
produce student models that nearly match the
teacher’s performance in anomaly detection and
classification. This indicates that deeper hierar-
chical integration better captures essential con-
sensus subspaces. Variants with uncertainty in-
jection (UI) consistently outperform those with-
out, particularly at lower K, by compensating
for representational biases and enabling robust
knowledge transfer. The trend suggests an opti- Figure 4: PCA and t-SNE visualizations of the
mal K around 12, where further increases add re- representations learned by our method and other
dundancy without proportional benefits in align- baselines on the Crop datasets, with distinct col-
ment to scale-invariant geometric centers. ors indicating different classes. Without dataset-

specific fine-tuning, our method produces separa-
4.5 DOES CONSENSUS-SPACE ble, clustered representations, indicating potential
DISTILLATION PRESERVE for effective feature extraction in downstream clas-

DISCRIMINATIVE REPRESENTATIONS? sification.

Fig. ] visualizes the learned representations on the large-scale Crop classification dataset, comparing
our method with CRD, the second-best approach. Our method yields more distinct and well-separated
class representations, even in a zero-shot setting without ground-truth labels. The representation is
from the distilled model’s final layer output.

5 CONCLUSION

We reformulate knowledge distillation for Transformer-based time series foundation models as a
consensus subspace optimization problem, exploiting the convergence of high-level embeddings
to scale-invariant, low-rank subspaces. Our framework achieves 90.13% parameter reduction and
100x distillation speedup while maintaining performance across zero-shot tasks including forecasting,
imputation, anomaly detection, and classification. Experiments demonstrate superiority over state-of-
the-art methods, enabling efficient deployment in resource-limited settings.

LLM USAGE STATEMENT

Large language models (LLMs) were used only for grammar and style editing. All research and
content were created by the authors. The authors take full responsibility for the paper’s content.
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