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Abstract: The ability to grasp and manipulate transparent objects is a major chal-
lenge for robots. Existing depth cameras have difficulty detecting, localizing, and
inferring the geometry of such objects. We propose using neural radiance fields
(NeRF) to detect, localize, and infer the geometry of transparent objects with
sufficient accuracy to find and grasp them securely. We leverage NeRF’s view-
independent learned density, place lights to increase specular reflections, and per-
form a transparency-aware depth-rendering that we feed into the Dex-Net grasp
planner. We show how additional lights create specular reflections that improve
the quality of the depth map, and test a setup for a robot workcell equipped with
an array of cameras to perform transparent object manipulation. We also create
synthetic and real datasets of transparent objects in real-world settings, including
singulated objects, cluttered tables, and the top rack of a dishwasher. In each set-
ting we show that NeRF and Dex-Net are able to reliably compute robust grasps
on transparent objects, achieving 90 % and 100 % grasp-success rates in physi-
cal experiments on an ABB YuMi, on objects where baseline methods fail. See
https://sites.google.com/view/dex-nerf for code, video, and datasets.

1 Introduction
Transparent objects are common in homes, restaurants, retail packaging, labs, gift shops, hospitals,
and industrial warehouses. Effectively automating robotic manipulation of transparent objects could
have a broad impact, from helping in everyday tasks and performing tasks in hazardous environ-
ments. Existing depth cameras assume that surfaces of observed objects reflect light uniformly in
all directions, but this assumption does not hold for transparent objects as their appearance varies
significantly under different view directions and illumination conditions due to reflection and re-
fraction properties of transparent materials. In this paper, we propose and demonstrate Dex-NeRF, a
new method to sense the geometry of transparent objects and allow for robots to interact with them.

Dex-NeRF uses a Neural Radiance Fields (NeRF) as part of a pipeline (Fig. 1, right) to compute
and execute robot grasps on transparent objects. While NeRF was originally proposed as an alter-
native for explicit volumetric representations and shown to render novel views of complex scenes
realistically [1], it can also reconstruct the scene geometry. In particular, due to the view-dependent
nature of the NeRF model, it can learn to represent the geometry associated with transparency ac-
curately. The only input requirement to train a NeRF model is a set of images taken from a camera
with known intrinsics (e.g., focal length, distortion) and extrinsics (position and orientation in the
world). While the intrinsics can be determined from calibration techniques or from the camera itself,
determining the extrinsics is often a challenge [2, 3]. However, robots operating in a fixed workcell
or with a camera mounted on the manipulator arm, can readily determine camera intrinsics. This
makes NeRF a particularly good match for robot manipulators.
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Figure 1: Using NeRF to grasp transparent objects Given a scene with transparent objects (left column),
we the pipeline on the right to compute grasps (middle column). The top row shows Dex-NeRF working in a
simulated scene while the bottom row shows it working in a physical scene.

In experiments, we show qualitatively and quantitatively that Dex-NeRF can compute high accuracy
depth images from photo-realistic synthetic and real scenes, and achieve 90 % or better grasp-success
rates on real objects.

The contributions of this paper are: (1) integration of NeRF with robot grasp planning, (2) a trans-
parency-aware depth rendering method for NeRF, (3) experiments on synthetic and real images
showing NeRF with Dex-Net generates high-quality grasps, (4) synthetic and real image datasets
with transparent objects for training NeRF models.

2 Related Work
Detecting Transparent Objects For robots to interact with transparent objects, they must first
be able to detect them. The most recent approaches detecting and recognizing transparent objects
are data-driven. Lai et al. [4] and Khaing et al. [5] propose using a Convolutional Neural Network
(CNN) to detect transparent objects in RGB images. Recently, Xie et al. [6] developed a transformer-
based pipeline [7] for transparent object segmentation. Other methods rely on deep-learning models
to predict the object pose. Phillips et al. [8] trained a random forest to detect the contours of trans-
parent objects for pose estimation and shape recovery. Xu et al. [9] proposed a two-stage method
for estimating the 6-degrees-of-freedom (DOF) pose of a transparent object from a single RGBD
image by replacing the noisy depth values with estimated values and training a DenseFusion-like
network structure [10]. Sajjan et al. [11] extend this and incorporate a neural network trained for 3D
pose estimation of transparent objects in a robotic picking pipeline. Zhou et al. [12, 13] train a grasp
planner directly on raw images from a light-field camera. Zhu et al. [14] used an implicit function
to complete missing depth given noisy RGBD observation of transparent objects. However, these
data-driven methods rely on large annotated datasets that are hard to curate, whereas Dex-NeRF
does not require any prior dataset.

Neural Radiance Fields Recently, implicit neural representations have led to significant progress
in 3D object shape representation [15, 16, 17] and encoding the geometry and appearance of 3D
scenes [18, 1]. Mildenhall et al. [1] presented Neural Radiance Fields (NeRF), a neural network
whose input is a 3D coordinate with an associated view direction, and output is the volume density
and view-dependent emitted radiance. Due to its view-dependent prediction, NeRF can represent
non-Lambertian effects such as specularities and reflections, and therefore capture the geometry of
transparent objects. However, NeRF is slow to train and has low data efficiency. Yu et al. [19]
proposed Plenoctrees, mapping coordinates to spherical harmonic coefficients, shifting the view-
dependency from the input to the output. In addition, Plenoctrees pre-samples the model into a
sparse octree structure, achieving a significant speedup in training over NeRF. Deng et al. [20]
proposed JaxNeRF, an efficient JAX implementation of NeRF reduces the training time of a NeRF
model from over a day to several hours. Deng et al. [21] add depth supervision to train NeRF 2 to
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6× faster given fewer training views. Adamkiewicz et al. [22] proposed an algorithm that uses a
NeRF model for robot navigation. In this work, we propose to use NeRF to recover the geometry of
transparent objects for the purpose of robotic manipulation.

Robotic Grasping Traditional robot grasping methods analyze the object shape to identify suc-
cessful grasp poses [23, 24, 25]. Data-driven approaches learn a prior using labeled data [26, 27] or
through self-supervision over many trials in a simulated or physical environment [28, 29] and gen-
eralize to grasping novel objects with unknown geometry. These approaches rely on RGB and depth
sensors to generate an accurate observation of the target object. Additionally, different methods use
different inputs, such as depth maps [30, 31, 32], point clouds [33, 34, 35, 9], octrees [36], or a
truncated signed distance function (TSDF) [37, 38]. In contrast, in this paper we propose a method
to render a high-quality depth map from a NeRF model to then pass to Dex-Net [30] to compute a
grasp. While standard depth cameras have gaps in their depth information that needs to be processed
out with hole-filling techniques, the depth map rendering from NeRF is directly usable. It is possible
that other grasp-planning techniques may be able to plan grasps from NeRF models.

3 Problem Statement
We assume an environment with an array of cameras at known fixed locations or that the robot
can manipulate a camera (e.g., wrist-mounted) to capture multiple images of the scene. Given the
environment with rigid transparent objects, Dex-NeRF computes a frame for a robot gripper that
will result in a stable grasp of a transparent object.

4 Method
This section provides a brief background on NeRF, then describes recovering geometry of transpar-
ent objects, integrating with grasp analysis, and improving performance with additional lights.

4.1 Preliminary: Training NeRF
NeRF [1] learns a neural scene representation that maps a 5D coordinate containing a spatial location
(x, y, z) and viewing direction (θ, φ) to the volume density σ and RGB color c. Training NeRF’s
multilayer perceptron (MLP) requires multiple RGB images of a static scene with their correspond-
ing camera poses and intrinsic parameters. The expected color C(r) of the camera ray r = o + td
between near and far scene bounds tn and tf is:

C(r) =

∫ tf

tn

T (t)σ(r(t))c(r(t),d)dt, (1)

where T (t) = exp
(
−
∫ t

tn
σ(r(s))ds

)
is the probability that the camera ray travels from near bound

tn to point t without hitting any surface. NeRF approximates the expected color Ĉ(r) as:

Ĉ(r) =

N∑
i=1

Ti(1− exp(−σiδi))ci, (2)

where Ti = exp
(
−
∑i−1

j=1 σjδj

)
and δi = ti+1 − ti is the distance between consecutive samples

on the ray r. The training process minimizes the error between rendered and ground-truth colors.

4.2 Recovering Geometry of Transparent Objects
We observe that NeRF does not directly support transparent object effects—it casts a single ray
per source image pixel without reflection, splitting, or bouncing. NeRF recovers non-Lambertian
effects such as reflections from a specular surface by regressing on view direction and supervising
with view-dependent emitted radiance. However, while RGB color c is view-dependent, the volume
density σ is not—meaning NeRF has to learn a non-zero σ to represent any color at that spatial
location. The usual result is that the transparent object shows up as a “ghostly” or “blurry” version
of the original object in rendered RGB images.

When training, a NeRF model learns a density σ of each spatial location. This density corresponds
to the transparency of the point, and serves to help learn how much a spatial location contributes to
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Real Image RealSense Depth Depth (Dex-NeRF)
Figure 2: Comparison to RealSense Depth Camera. We compare the results of the proposed pipeline in
a real-world setting against the depth map produced by an Intel RealSense camera. In the left image is the
real-world scene, the middle shows the depth image from the RealSense, and the right shows the result of our
pipeline. The color scheme in the RealSense image is provided by the RealSense SDK, while the color scheme
in the right column is from MatPlotLib. We observe that the RealSense depth camera is unable to recover depth
from a large portion of the scene, shown in black. On the other hand, the proposed pipeline, while having a few
holes, can recover depth for most of the scene.

Real Image Depth Map
Vanilla NeRF

Depth Map
Dex-NeRF

Depth
Difference(A) (B) (C) (D) Dex-Net Grasp

Vanilla NeRF(E) Dex-Net Grasp
Dex-NeRF(F)

Figure 3: Using NeRF to render depth for grasping transparent objects. Dex-NeRF uses a transparency-
aware depth rendering to render depth maps that can be used for grasp planning. In contrast, Vanilla-NeRF’s
depth maps are filled with holes and result in poor grasp predictions.

the color of a ray cast through it. Although NeRF converts each σi to an occupancy probability αi =
1 − exp(−σiδi), where δi is the distance between integration times along the ray, thus implicitly
giving αi an upper bound of 1, it does not place a bound on the raw σ value. Dex-NeRF uses the
raw value of σ to determine if a point in space is occupied.

4.3 Rendering Depth for Grasp Analysis

To compute a grasp from a trained NeRF model, we propose to render a depth image and have
Dex-Net use it to plan the grasp. To generate a depth image, we consider two candidate recon-
structions of depth. First, we use the same depth rendering that NeRF uses. This Vanilla NeRF
reconstruction first converts σi to an occupancy probability αi. It then applies the transformation
wi = αi

∏i−1
j=1 (1− αj). To render depth at pixel coordinate [u, v], it computes the sum of sample

distances from the camera weighted by the termination probability D[u, v] =
∑N

i=1 wiδi. When
applied on transparent objects, however, this results in noisy depth maps, as shown in Fig. 3.

Instead, we consider a second, transparency-aware method that searches for the first sample along
the ray for which σi > m, where m is a fixed threshold. The depth is then set to the distance of that
sample δi. We explore different values for m, and observe that low values result in a noisy depth
map while high values create holes in the depth map. In our experiments we setm = 15 (see Fig. 8).

4.4 Improving Reconstruction with Light Placement

For NeRF to learn the geometry of a transparent object, it must be able to “see” it from multiple
camera views. If the transparent object is not visible from any views, then it will have no effect
on the loss function used in training, and thus not be learned. We thus look for a way to improve
visibility of transparent objects to NeRF.
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One property that transparent objects share (e.g., glass, clear plastic) is that they are glossy and thus
produce specular reflections when the camera view direction is opposite to the surface normal of the
incident direction of light. To the NeRF model, a specular reflection viewed from multiple angles
will appear as a bright point on a solid surface—e.g., c = [1, 1, 1]T and σ > 0, while from other
angles it will appear as σ ≤ 0. As σ is view-independent, NeRF learns a σ between fully opaque
and fully transparent for such points.

By placing additional lights in the scene, we create more angles from which cameras will see specu-
lar reflections from transparent objects—this results in NeRF learning a model that fills holes in the
scene. While the number and placement of lights for optimal training is dependent on both the ex-
pected object distribution and camera placement, in experiments (Sec. 5.5) we show that increasing
from 1 light to a 5x5 array of lights improves the quality of the learned geometry.

5 Experiments

We experiment in both simulation and on a physical ABB YuMi robot. We generate multiple
datasets, where each dataset consists of images and associated camera transforms of one static scene
containing one or more transparent objects. We train NeRF models using a modified JaxNeRF [20]
implementation on 4 Nvidia V100 GPUs. We use an existing pre-trained Dex-Net model for grasp
planning without modification or fine-tuning. We can do this since NeRF models can be rendered
to depth maps from arbitrary camera intrinsics and extrinsics, thus we match our NeRF rendering to
the Dex-Net model instead of training a new one.

5.1 Datasets

As existing NeRF datasets do not include transparent objects, and existing transparent-object-
grasping datasets do not include multiple camera angles, we generate new datasets using 3 different
methods: synthetic, Cannon EOS 60D camera with a Tamron Di II lens with a locked focal length,
and an Intel RealSense.

For synthetic datasets, we use Blender 2.92’s physically-based Cycles renderer with path tracing
set to 10240 samples per pixel, and max light path bounces set to 1024. We chose theses settings
by increasing them until renderings were indistinguishable from the previous setting—finding that
lower settings lead to dark regions and smaller specular reflections. For glass materials, we set the
index of refraction to 1.45 to match physical glass. We include 8 synthetic datasets of transparent
objects: 2 scenes with clutter: light array and single light; 4 singulated objects from Dex-Net:
Pipe Connector, Pawn, Turbine Housing, Mount; and 2 household objects: Wineglass upright and
Wineglass on side. As these computationally demanding to render due to the high quality settings,
we distribute these as part of the contribution.

For the Cannon EOS and RealSense real-world datasets, we place ArUco markers in the scene to
aid in camera pose recovery and take photos around the objects using a fixed ISO, f-stop, and focal
length. We use bundle adjustment from COLMAP [2, 3] to refine the camera poses and intrinsics to
high accuracy. We include 8 physical datasets of transparent objects with a variety of camera poses:
table with clutter, Dishwasher, Tape Dispenser, Wineglass on side, Flask, Safety Glasses, Bottle
upright, Lion Figurine in clutter. The main difficulty in generating these datasets is calibration and
computing high-precision camera poses.

The datasets (at https://sites.google.com/view/dex-nerf) differ from prior work in their
focus on scenes with transparent objects in a graspable setting, with over 70 camera poses each.

5.2 Synthetic Grasping Experiments

We test the ability of Dex-NeRF to generate grasps on the synthetic singulated transparent Dex-Net
object datasets. For each dataset, we evaluate the grasp in simulation using a wrench resistance
metric measuring the ability of the grasp to resist gravity [39]. Fig. 4 shows images of the synthetic
objects, Dex-NeRF-generated depth map, and an example sampled grasp for each. To measure
the effect of training time on grasp-success rate, we simulate and record grasps over the course of
training. In Fig. 5, we observe that grasp-success rate improves with training time, but plateaus
between 80 % and 98 % success rate at around 50k to 60k iterations. This suggests that there may
be a practical fixed iteration limit to obtain high grasp success rates.
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Pipe Connector Pawn Turbine Housing Mount

Figure 4: Synthetic singulated objects used in simulation ex-
periments. Top row: image of the object in the training data.
Bottom row: computed depth map and candidate grasp.
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Figure 5: Grasp-success rate vs training
epochs. As opposed to view-synthesis, which
requires over 200k epochs, we observe high
grasp success rates after 50k to 60k epochs.

Tape Dispenser Wineglass Flask

Safety Glasses Bottle Lion Figurine

Figure 6: Physical grasps objects. In the back-
ground is the base of the YuMi robot.

Object PhoXi Vanilla NeRF Dex-NeRF

Tape Dispenser 0/10 0/10 10/10
Wineglass 0/10 0/10 9/10
Flask 0/10 1/10 9/10
Safety Glasses 0/10 0/10 10/10
Bottle 0/10 10/10 10/10
Lion Figurine 0/10 3/10 10/10

Table 1: Physical grasp success rate. For each object,
we compute a depth map using a PhoXi camera, unmodified
Vanilla NeRF, and Dex-NeRF for grasping transparent objects.
From the depth map, Dex-Net computes a 10 different grasps,
and an ABB YuMi attempts the grasp. Successful grasps lift
the object.

We test Dex-NeRF on a scene of a tabletop cluttered with transparent objects. In this experiment, the
goal is to grasp a transparent object placed in a stable pose in close proximity to other transparent
objects. The challenge is twofold: the depth rendering quality should be sufficient for both grasp
planning and collision avoidance. Fig. 1 shows the robot and scene in the upper left, and the overhead
image, depth, and computed grasp inline in the pipeline, and the final computed grasp with simulated
execution is in the upper middle image. The final grasp contact point was accurate to a 2 mm
tolerance, suggesting that Dex-NeRF with sufficient images taken from precisely-known camera
locations may be practical in highly cluttered environments.

5.3 Physical Grasping Experiments

To test the Dex-NeRF in a physical setup, we place transparent singulated objects in front of an
ABB YuMi robot, and have the robot perform the computed grasps. We compare to 2 baselines:
(1) PhoXi, in which a PhoXi camera provides the depth map; and (2) Vanilla NeRF, in which we
use the original depth rendering from NeRF. The PhoXi camera is normally able to generate high-
precision depth maps for non-transparent objects. All methods use the same pre-trained Dex-Net
model, and both Vanilla NeRF and Dex-NeRF use the same NeRF model—the only difference is
the depth rendering. We test with 6 objects (Fig. 6), and compute and execute 10 different grasps
for each and record the success rate. A grasp is successful if the robot lifts the object. In Table 1,
we see that Dex-NeRF gets 90 % and 100 % success rates for all objects, while the baselines get few
successful grasps. The PhoXi camera is unable to recover any meaningful geometry which causes
Dex-Net predictions to fail. The Vanilla NeRF depth maps often have unpredictable protrusions that
result in Dex-Net generating unreliable grasps.

5.4 Comparison to RealSense Depth

We qualitatively compare the rendered depth map of the proposed pipeline against a readily-available
depth sensor on scenes with transparent objects in real-world settings (Fig. 2). We select the Intel
RealSense as it is common to robotics applications, readily available, and high-performance. The

6



  (b) Depth Rendering
Single Light Source

(d) Depth Rendering
Multiple Light Sources

(a) RGB Scene
Single Light Source

(c) RGB Scene
Multiple Light Sources

Figure 7: More lights mean more specular reflections, and result in better NeRF depth estimation of transparent
surfaces. In (a) and (b), we show a scene lit by a single overhead high-intensity light. In (c) and (d) we show
the same scene lit by an overhead 5x5 array of lights. The combined light wattage is equal in both scenes.
Images (a) and (c) are views of the scene, and (b) and (d) are the corresponding depth images obtained from
the pipeline. Two glasses on their sides are missing top surfaces (outlined in dashed red) in (b), while the effect
is reduced in (d) due to the additional light sources.

σ = 1 σ = 5 σ = 15 σ = 150 σ = 500

Figure 8: depth rendering using NeRF with different thresholds Here we show the effect of the threshold
value on the depth rendering of an isolated deer figurine. Values too low result in excess noise, while values
too high cause parts of the scene to disappear.

RealSense, like most stereo depth cameras, struggles with transparent objects as they are unable
to compute a stereo disparity between pixels from different cameras when the pixels are specular
reflections or the color of the object behind the transparent object. The RealSense optionally projects
a structured light pattern on the scene to aid in computing depth from textureless surfaces; however,
in experiments, we observed no qualitative difference with and without the light pattern emitter
enabled. We use a Canon EOS for NeRF, and use a RealSense for a depth image. In this experiment,
we observe that the RealSense cannot compute the depth of most transparent objects and often
produces regions of unknown depth (shown in black) where transparent objects are. On the other
hand, the proposed pipeline produces high-quality depth maps with only a few noisy areas.

5.5 One vs Many Lights
We experiment with different light setups to test the effect of specular reflections on the ability of
NeRF to recover the geometry of transparent objects. We create two scenes (Fig. 7), one with a
single bright light source directly above the work surface, and another with an array of 5x5 (25)
lights above the work surface. We set the total wattage of the lights in each scene to be the same.
Since most lights in the multiple light scene are further away from the work surface than the single
light source, the scene appears darker, though more evenly illuminated. The effect of the specular
reflections is prominent on the lightbulb in the lower part of the image. In the single light source,
there is a single specular reflection, while in the multiple light scene, the reflection of the array of
lights is visible.

With the same camera setup for both scenes, we train NeRF models with the same number of itera-
tions. We show the depth rendering in Fig. 7 and circle a glass and a wineglass on their side. In the
single-light source image, the closer surfaces of the glasses are missing, while in the multiple-light
source depth image, the glasses are nearly fully recovered. This suggests that additional lights in the
scene can help NeRF recover the geometry of transparent objects better.

5.6 Workcell Setup
We experiment with a potential setup for a robot workcell in which a grid of overhead cameras
captures views of the cluttered scene so that a robot manipulator arm can then perform tasks with

7



9 Cameras 16 Cameras 25 Cameras 36 Cameras 49 Cameras
Figure 9: Depth rendering using a grid of overhead cameras. Using increasing amounts of overhead cameras
improves the quality of the depth map and its utility in grasping, however, beyond a certain number of cameras
there is a diminishing return.

transparent objects in the workcell. We propose that a grid of overhead cameras would be practical
to setup and would not obstruct manipulator tasks nor operator interventions. The objective is to de-
termine how many overhead cameras would be needed to recover a depth map of sufficient accuracy
to perform manipulation tasks.

We place a 2 m by 2 m grid of cameras 1 m above the work surface, and have them all point at the
center of the work surface. Each camera has the same intrinsics, and are evenly spaced along the
grid. We experiment with grids having 4, 9, 16, 25, 36, and 49 cameras. The environment has the
same 5x5 grid of lights as before. For each camera grid, we train JaxNeRF for 50k iterations and
compare performance.

After training, we observe increasing peak signal to noise ratios (PSNR) and structural similarity
(SSIM) scores with increasing number of cameras. The 2x2 grid of cameras produces a high train-to-
test ratio for PSNR, likely indicating overfitting to training data, and results in a depth map without
apparent geometry. This ratio decreases with additional cameras. The minimum number of cameras
for this proposed setup appears to be around 9 (3x3) as its depth map is usable for grasp planning,
while the 5x5 grid shows better PSNR and SSIM and ratio between train and test PSNR, and the 7x7
grid is the best. See Fig. 9 for a visual comparison. Additionally, we trained 9x9, 11x11, and 13x13
grids, observing no statistically significant improvement beyond the 7x7 grid.

6 Conclusion

In this work, we showed that NeRF can recover the geometry of transparent objects with sufficient
accuracy to compute grasps for robot manipulation tasks. NeRF learns the density of all points in
space, which corresponds to how much the view-dependent color of each point contributes to rays
passing through it. With the key observation that specular reflections on transparent objects cause
NeRF to learn a non-zero density, we have Dex-NeRF recover the geometry of transparent objects
through a combination of additional lights to create specular reflections and thresholding to find
transparent points that are visible from some view directions. With the geometry recovered, we
pass it to a grasp planner, and show that the recovered geometry is sufficient to compute a grasp,
and accurate enough to achieve 90 % and 100 % grasp success rates in physical experiments on an
ABB YuMi robot. We created synthetic and real datasets for experiments in transparent geometry
recovery, but we believe these datasets may be of interest to researchers interested in extending
NeRF capabilities in other ways and thus contribute them as well. Finally, to test if NeRF could
be used in a robot workcell, we experimented with grids of cameras facing a worksurface and their
ability to recover geometry in potential setup, and showed the increased capabilities and point of
diminishing return for additional cameras.

In future work, we hope to address one of the main drawbacks of NeRF—the long training time re-
quired to obtain a NeRF model. Many research groups have sped up training time through improved
implementations, new algorithms, new network architectures, pre-conditioned network weights, fo-
cused sampling, and more. While these approaches apply to general NeRF training, we plan to
exploit features specific to robot scenerios to speed up training, including using depth camera data
as additional training data, manipulator-arm-mounted cameras to inspect regions of interest, and
visio-spatial foresight to adapt to changes in the environment.
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