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Abstract

We investigate the use of LLM-generated data
for continual pretraining of encoder models in
specialized domains with limited training data,
using the scientific domain of invasion biol-
ogy as a case study. To this end, we leverage
domain-specific ontologies by enriching them
with LLM-generated data and pretraining the
encoder model as an ontology-informed embed-
ding model for concept definitions. To evaluate
the effectiveness of this method, we compile a
benchmark specifically designed for assessing
model performance in invasion biology. After
demonstrating substantial improvements over
standard LLM pretraining, we investigate the
feasibility of applying the proposed approach
to domains without comprehensive ontologies
by substituting ontological concepts with con-
cepts automatically extracted from a small cor-
pus of scientific abstracts and establishing re-
lationships between concepts through distribu-
tional statistics. Our results demonstrate that
this automated approach achieves comparable
performance using only a small set of scien-
tific abstracts, resulting in a fully automated
pipeline for enhancing domain-specific under-
standing of small encoder models that is es-
pecially suited for application in low-resource
settings and achieves performance comparable
to masked language modeling pretraining on
much larger datasets.

1 Introduction

Transformer encoder models such as BERT (De-
vlin et al., 2019) and its successors (e.g., Liu et al.,
2019, He et al., 2021a, Warner et al., 2024) have
consistently achieved state-of-the-art results across
various text-based tasks, mainly enabled by pre-
training with masked language modeling (MLM)
or replaced token detection (Clark et al., 2020)
on large-scale general-domain corpora, such as
Wikipedia and BookCorpus (Zhu et al., 2015).
While transformer encoders offer an optimal bal-
ance between performance and efficiency, their full

effectiveness in specialized domains, such as scien-
tific text processing, is often enabled by additional
pretraining on domain-specific corpora (Beltagy
et al., 2019; Jeong and Kim, 2022), proven highly
effective in fields where extensive domain-specific
data is available (e.g., biomedical text processing
Gu et al., 2021). However, in more specialized dis-
ciplines with limited training data, the potential of
this approach diminishes, highlighting the need for
alternative methods of injecting domain knowledge
during pretraining.

To this end, we explore the use of domain-
specific ontologies for continual pretraining of en-
coder models in the scientific domain of invasion bi-
ology. Recognizing that ontologies may not always
be available, we also investigate the extent to which
their knowledge can be replaced by LLM-extracted
information derived from scientific abstracts.

Our focus on ontologies is grounded in the fact
that they exist in many fields with otherwise low
data availability, while at the same time containing
precise, domain-specific and structured knowledge
curated by domain experts (e.g., Walls et al., 2014;
Girén et al., 2023; Algergawy et al., 2025), thus
making them a valuable resource for pretraining.

Our proposed approach enriches these ontolo-
gies with LL.M-generated data in the form of con-
cept definitions, followed by pretraining the en-
coder model as an ontology-informed definition
embedding model. Specifically, we employ a triplet
margin loss that enforces definitions of either the
same or similar concepts to be placed at nearby
positions in the embedding space, thus enabling
the model to develop a structured understanding of
domain-specific entities and their interconnections.

Having demonstrated the effectiveness of our
approach, we further explore its applicability in do-
mains where no ontology is available. To this end,
we develop a pipeline that automatically extracts
relevant concepts from scientific abstracts using an
LLM, generates domain-specific definitions, and



identifies relationships between concepts based on
distributional statistics. Our results indicate that
these automatically generated substitutes for onto-
logical components can achieve performance com-
parable to ontology-based pretraining.

By compiling a benchmark for evaluating mod-
els in the invasion biology domain - consisting
of four tasks from three existing studies (Brinner
et al., 2022, 2024; Brinner and Zarrief3, 2025) - we
demonstrate that our proposed pretraining approach
achieves performance comparable to traditional
masked language modeling (MLM) on scientific ab-
stracts, thus establishing our method as a viable al-
ternative. Furthermore, we show that our approach,
which is applied solely to the model’s CLS token
output, can be combined seamlessly with MLM
pretraining, leading to significantly improved per-
formance compared to using each method individu-
ally, thus indicating a complementary effect on the
model’s domain understanding.

The resulting method requires only 5,000 scien-
tific abstracts in combination with an ontology, or
15,000 abstracts independently to match the perfor-
mance of models pretrained on 14 million abstracts
in the broader biomedical domain (Gu et al., 2021),
underscoring its potential as an effective solution
for low-resource settings.

2 Related Work

Continual Pretraining. Continual pretraining is
an effective and efficient approach to make LLMs
robust against new, ever-changing data that differs
from its original pretraining (Wu et al., 2024; Zhou
et al., 2024; Parmar et al., 2024; Shi et al., 2024),
that can also further enhance an LLM’s domain spe-
cific effectiveness (Gururangan et al., 2020; Gong
et al., 2022; Xie et al., 2023; Cagatay Yildiz et al.,
2025) and specializes in "improving knowledge
transfer to downstream tasks" (Wang et al., 2024),
such as scientific text processing in this study. The
phenomenon of catastrophic forgetting poses sig-
nificant risk in continual pretraining (Li and Lee,
2024; Ibrahim et al., 2024; Cossu et al., 2024),
wherein a continually learned model forgets knowl-
edge from previous training. In this study we per-
form continual pretraining to specialize a model in
the narrow domain of invasion biology and discuss
the risk of catastrophic forgetting in Section 6.

Using Ontological Knowledge. Ontologies and
knowledge graphs (KGs) provide a structured rep-
resentation of domain knowledge in the form of

unique entities and precise relations between them,
contrasting the distributed and often less precise
knowledge representation within neural networks.
To bridge this gap, various methods have been
proposed to integrate structured knowledge into
transformer models. While some approaches in-
corporate KG information during inference (Zhang
et al., 2019; Peters et al., 2019; He et al., 2020),
the majority of approaches focus on creating KG-
informed pretraining methods, for example by per-
forming MLM pretraining that incorporates knowl-
edge about entities (Shen et al., 2020; Zhang et al.,
2021), performing MLM pretraining on sentences
derived from KG triples (Lauscher et al., 2020;
Moiseev et al., 2022; Liu et al., 2022; Sahil and
Kumar, 2023; Omeliyanenko et al., 2024), design-
ing auxiliary classification tasks based on ontolog-
ical knowledge (Wang et al., 2021a; Glauer et al.,
2023) or by creating contrastive ontology-informed
sentence embedding methods (Wang et al., 2021b;
Ronzano and Nanavati, 2024). Our approach aligns
most closely with the latter but extends it into a
broader framework that incorporates not only rela-
tionships between concepts but also LLM-derived
knowledge about individual concepts, even in the
absence of explicit relations, thus creating a more
informative and flexible pretraining process.

Using LLM-Generated Data. Using LLM-
generated data is an appealing approach for model
pretraining and/or fine-tuning (Long et al., 2024),
especially in specialized domains with little avail-
able training data. Many studies explore the po-
tential of LLM-generated or LLM-annotated data
to enhance task-specific performance, both for en-
coder models (Kruschwitz and Schmidhuber, 2024,
Kuo et al., 2024; Wagner et al., 2024) and decoder
architectures (Ren et al., 2024; Lee et al., 2024).
Beyond task-specific fine-tuning, synthetic data
has also been investigated for task-agnostic pre-
training. While this approach has shown promise
for general-domain models (Alcoba Inciarte et al.,
2024; Yang et al., 2024; McKinzie et al., 2025), its
application in domain-specific pretraining remains
relatively underexplored (e.g., Yuan et al., 2024).
Despite its advantages, synthetic data introduces
risks, including potential performance degrada-
tion compared to human-generated data - a phe-
nomenon known as model collapse (Shumailov
et al., 2024), prompting studies aimed at mitigat-
ing this effect, especially for autoregressive LLMs
(Bertrand et al., 2024; Gerstgrasser et al., 2024;



Zhang et al., 2024; Zhu et al., 2024). We discuss
the differences between pretraining on scraped vs
generated data in Section 6.

3 Method

We propose a method for injecting domain knowl-
edge into transformer models through contin-
ual pretraining. This section provides a general
overview of our approach, while Section 4 and Sec-
tion 5 detail and evaluate its application to datasets
derived from ontologies and scientific abstracts.

3.1 Similarity-Based Pretraining

We propose a contrastive triplet margin loss for
continual pretraining of an encoder model, refining
it as an embedding model for concept definitions by
teaching it to place definitions of the same concept
or definitions of related concepts to similar posi-
tions in the embedding space, thus enabling the
model to capture both the meaning and distinctions
between domain-specific concepts effectively.

Our method operates on a dataset of domain-
relevant concepts C = {C1, Ca, ...}, each in combi-
nation with multiple natural language concept def-
initions D = {(dl,la dl’g, ), (d271, d272, ), }
Also, we optionally incorporate a set of tuples indi-
cating pairs of related concepts R = {(C;, Cj), ...}
to increase the model’s domain understanding be-
yond knowledge of individual entities.

The core training scheme is as follows: Given
two concepts C; and C; from the dataset, we train
the model to embed two definitions of concept C;
to nearby locations in the embedding space while
positioning a definition of C; further away, thereby
teaching the model to understand and differentiate
between dissimilar concepts. This is achieved by
sampling two definitions d; 1 and d; » that define
concept C;, and one definition d; that defines
concept C;. These definitions are then mapped into
high-dimensional embeddings using our model M:

ei1 = M(d;1)
eio = M(d;2)
ej1 = M(dja)

In practice, the embedding corresponds to the
model’s output vector at the CLS token. To en-
courage the model to map definitions of the same
concept in the embedding space to similar loca-
tions, we employ a triplet margin loss:

L =relu(le;1 — €i2|| — |lein — 5[ +1)

In this contrastive loss formulation, d; 1 serves as
an anchor, with d; o being the positive and d; 1 be-
ing the negative with respect to that anchor. The
loss function thus penalizes cases in which the dis-
tance between the anchor and the positive (i.e., two
definitions defining the same concept) is not at least
one unit (a margin hyperparameter) smaller than
the distance between the anchor and the negative.
Rather than explicitly sampling individual
triplets (anchor, positive, and negative), we opti-
mize the loss computation by leveraging in-batch
negatives. Specifically, for a batch of n concepts,
we sample only two definitions - an anchor and
a positive - for each concept. The definitions of
the remaining concepts in the batch then serve as
negative samples. This strategy significantly in-
creases the number of triplets contributing to the
loss: for each anchor-positive pair, 2-(n—1) triplets
are generated by pairing the anchor with all pos-
sible negatives, which can be further doubled to
4 - (n — 1) by swapping the roles of the anchor
and positive sample. This substantial increase in
triplets enhances model performance, as the loss
function quickly reaches zero for many triplets after
just a few epochs due to the model’s rapidly im-
proving embedding capabilities. Consequently, the
larger number of triplets increases the likelihood
of encountering more informative gradient signals,
ultimately leading to more effective embeddings.

3.2 Concept Relatedness

The current loss formulation encourages the model
to map similar definitions (i.e., those defining the
same concept) to nearby positions in the embed-
ding space. While this enhances the model’s ability
to differentiate between concepts, a deeper under-
standing of the domain also requires learning re-
lationships between different concepts. Therefore,
we extend our loss formulation by incorporating
additional triplets that capture concept relatedness.

Specifically, if two concepts C; and C; are in
the same batch and (C;, C;) € R, we treat their
definitions as additional positive pairs within the
loss function, while definitions of all unrelated con-
cepts serve as negatives. This implicitly introduces
a ranking effect, since definitions of related con-
cepts still function as negatives for the definition
that defines the same concept, ensuring that these
are embedded more closely together than defini-
tions of related concepts. Simultaneously, related
concepts are encouraged to be positioned closer in
the embedding space than unrelated concepts.



3.3 Pretraining Loss Combination

Our proposed pretraining loss is applied to the CLS
token representation, allowing seamless integra-
tion with other pretraining losses that target the
remaining token embeddings like masked language
modeling. This is especially interesting in light of
recent models being trained exclusively with MLM
loss (Warner et al., 2024), since the traditional next
sentence prediction loss from BERT did not lead
to significant performance gains (Liu et al., 2019).
Consequently, our method presents a more sophis-
ticated approach for infusing knowledge into the
CLS token representation, offering a potentially en-
hanced downstream task performance when used.

4 Ontology-Informed Pretraining

This section details the application and evaluation
of our proposed method, using domain-specific
ontologies for dataset creation. Our experiments
focus on the scientific domain of invasion biology,
a specialized subfield of biodiversity research that
investigates non-native species, their introduction
pathways, ecological impacts, and management
strategies to mitigate their effects on ecosystems
(Jeschke and Heger, 2018).

4.1 Dataset Creation

Our approach involves constructing a domain-
specific dataset consisting of concepts, definitions
and concept relations in the target domain. To this
end, we use two ontologies that address the tar-
get domain: the INBIO ontology (Algergawy et al.,
2025), which captures concepts relevant to invasion
biology, and the ENVO ontology (Buttigieg et al.,
2013, 2016), which provides a structured represen-
tation of environmental and ecological concepts.

From these ontologies, we extract concept-
definition pairs for all concepts that have a corre-
sponding definition along with relational links. Ad-
ditionally, we use a large language model, LLaMA-
3-8B-Instruct (Grattafiori et al., 2024), to generate
five additional definitions per concept. The original
ontology definition serves as context during gener-
ation to ensure that the new definitions accurately
reflect the domain-specific meaning.

We compare our proposed pretraining approach
to traditional MLM pretraining on sentences ex-
tracted from scientific abstracts. We leverage an
existing index of paper titles in the field of inva-
sion biology (Mietchen et al., 2024) and employ a
web scraper to retrieve their abstracts, resulting in a

final collection of 37,786 paper titles and abstracts.

Since we explicitly aim to assess the applicabil-
ity of our approach in low-resource settings, most
experiments are conducted on a subset of 5,000 ab-
stracts. This results in a dataset containing 47,031
sentences extracted from 5,000 scientific abstracts,
alongside 5,197 ontology-derived concepts, each
supplemented with at least one extracted definition
and five generated definitions.

4.2 Model Pretraining

In our experiments, we perform continual pretrain-
ing on a DeBERTa-base model (He et al., 2021b)
by leveraging three different pretraining strategies:

1. Masked language modeling (MLM) pre-
training: We evaluate the effectiveness of
traditional MLM pretraining with a masking
probability of 0.25, applied to either abstract
sentences, generated definitions, or a com-
bined dataset of both.

2. Simmilaity (SIM) pretraining: As described
in Section 3, we pretrain the model using our
proposed similarity-based approach, leverag-
ing the extracted and generated definitions for
the ontology concepts.

3. Combined pretraining: To investigate po-
tential synergies between MLM and SIM pre-
training, we apply both strategies concurrently
by performing two backward passes - one for
each loss function - for each parameter update.

Further details about the pretraining can be
found in Appendix A.2.

4.3 Evaluation Datasets

Building on existing studies, we compile a bench-
mark comprising four distinct tasks in invasion
biology, each with unique evaluation requirements.

The Hypothesis Classification task (Brinner
et al., 2022) is a 10-class classification task on iden-
tifying which of 10 major hypotheses in invasion
biology is addressed in a given scientific abstract.
Due to class imbalance, we report both micro F1
and macro F1 scores.

The Hypothesis Span Prediction task (Brinner
et al., 2024) is a token-level prediction task based
on the same abstracts as the INAS classification
task. Annotators provide span-level evidence an-
notations for each hypothesis and we evaluate the



model’s ability to predict the tokens that were anno-
tated (Token F1) as well as the ability to recognize
complete spans (Span F1).

The EICAT Impact Classification task (Brinner
and Zarrief3, 2025) is a classification task on assess-
ing the impact of an invasive species as reported
in a given scientific full text, assigning it to one
of six predefined impact categories. We evaluate
performance using macro F1 and micro F1 scores.

The EICAT Impact Evidence task (Brinner and
ZarrieB}, 2025) leverages evidence annotations pro-
vided by the EICAT classification dataset, created
by domain experts who identified sentences in the
full-texts indicating the species’ impact category.
We evaluate the model’s ability to rank relevant
sentences within a full text using the normalized
discounted cumulative gain (NDCG) metric.

These tasks address different aspects of the field
of invasion biology but have in common that they
require extensive domain knowledge for a deep in-
terpretation of scientific texts within the broader
context of the field. Taking the hypothesis classi-
fication tasks as an example, this could manifest
itself in needing to identify a hypothesis solely by
means of a description of an experimental design
or measurements taken within an ecosystem.

Since we observed a high variance between re-
sults for different training runs, we train 7 models
for the hypothesis and impact classification tasks
and 3 models for the remaining tasks, thus report-
ing average performance on the test sets. For details
on task setup, dataset sizes and training methodolo-
gies, please refer to Appendix A.

To obtain a single benchmark score, we compute
task-specific scores by averaging the individual
performance metrics for each task and averaging
the results across all four tasks.

4.4 Results

The results of our evaluation of different pretraining
methods are presented in Table 1.

First, we observe that traditional MLM pretrain-
ing on sentences extracted from just 5,000 scientific
abstracts yields substantial performance improve-
ments across all tasks compared to the standard De-
BERTa model, raising the benchmark score from
0.483 to 0.507.

As a baseline, we also assess the impact of MLM
pretraining on synthetic definitions. While this
also resulted in increased performance, the gains
are smaller than those achieved through pretrain-
ing on abstract sentences. Additionally, despite

the datasets being of similar size, optimal perfor-
mance with ontology definitions is reached after ap-
proximately 40,000 batches, in contrast to 200,000
batches for MLM on abstract sentences, which is
analyzed further in Section 6.2.

As a last MLM baseline, we investigate MLM
pretraining on a mixture of synthetic definitions
and abstract sentences. Since initial experiments
using a 1:1 ratio led to worse results compared to
training on abstract sentences alone, we adjusted
the ratio to 1:3 (ontology definitions to abstract sen-
tences), resulting in improved performance com-
pared to using abstract sentences alone, suggesting
that concept definitions provide useful additional
information to the model.

Turning to our proposed embedding similarity
(SIM) pretraining approach, we find that apply-
ing it to ontology definitions achieves performance
on par with MLM pretraining on real data (both
scoring 0.507), establishing our method as viable
alternative in the absence of such data. However,
since SIM pretraining only affects the CLS token
representation, we observe (on average) increased
performance on classification tasks while perfor-
mance decreased on the token-level prediction task,
indicating that our approach primarily enhances the
representation of the entire input sequence.

The most notable improvements arise when com-
bining SIM pretraining on synthetic ontology def-
initions with MLM pretraining on abstract sen-
tences. This approach leads to substantial perfor-
mance gains across most tasks compared to MLM
pretraining alone. Specifically, the overall bench-
mark score increases from 0.507 (MLM on abstract
sentences) to 0.538. Notably, the substantial im-
provement over using either pretraining method
individually suggests a synergistic effect, indicat-
ing that SIM pretraining enhances the understand-
ing of individual concepts, while MLM pretraining
strengthens the model’s grasp of relationships be-
tween concepts and general language understand-
ing. As a result, this combined approach outper-
forms models trained on millions of abstracts from
the broader biomedical domain, such as PubMed-
BERT (Jeong and Kim, 2022) and SciDeBERTa
(Kim et al., 2023), which generally are strong base-
lines in this field (Brinner et al., 2022).

Finally, we perform an ablation experiment by
performing SIM pretraining without leveraging
concept relatedness information. This leads to a
significant drop in performance (0.498 compared
to 0.507 with concept relatedness), suggesting that



Hypothesis CIf Hypothesis Span Impact CIf Impact Evid. | Avg.
Model Macro F1 Micro F1 | Token F1 Span F1 | Macro F1  Micro F1 NDCG
DeBERTa base 0.674 0.745 | 0406 0.218 | 0392 0416 0.505 0.483
MLM Pretraining
Abstract Sentences 0.744  0.792 | 0413 0.219 | 0433 0455 0.499 0.507
Ontology Definitions 0.685 0.759 | 0409 0.222 | 0.448 0.446 0.501 0.496
Keyword Definitions 0.719 0.776 | 0.397 0.194 | 0.428  0.441 0.478 0.492
Abstract Sent.+Ontology Def. | 0.740 0.804 | 0415 0.230 | 0.459 0.479 0.512 0.519
Abstract Sent.+Keyword Def. | 0.729 0.799 | 0417 0.221 | 0.439 0.455 0.497 0.507
Similarity Pretraining
Ontology Definitions 0.727 0.779 | 0400 0.218 | 0.446 0.460 0.514 0.507
Keyword Definitions 0.726 0.783 0.405 0.228 | 0.465 0.475 0.497 0.510
MLM-+Similarity Pretraining
Abstract Sent.+Ontology Def. | 0.750  0.812 | 0.414 0.242 | 0.504 0.518 0.530 0.538
Abstract Sent.+Keyword Def. | 0.740 0.805 0.415 0.220 | 0.469 0.489 0.511 0.520
Other Domain-Specific Models
PubMedBERT 0.728 0.783 0.410 0.208 | 0.509 0.508 0.552 0.531
SciDeBERTa 0.736  0.805 | 0417 0.213 | 0468 0.484 0.494 0.514

Table 1: Benchmark results for different pretraining methods leveraging either the ontology or a dataset of 5000
scientific abstracts, as well as a comparison to two pretrained models from the biomedical domain.

the relatedness encoded in ontologies is a useful
training signal (Appendix A.5, Table 3).

5 Using LLM-Extracted Keywords

In the previous section, we explored the perfor-
mance improvements achieved by combining our
proposed contrastive loss on ontology-derived data
with traditional MLM pretraining. While this ap-
proach is highly valuable in domains with available
ontologies, many fields may lack such structured
resources. To address this limitation, we explore
the feasibility of using an LLM for constructing
a dataset of domain-relevant concepts, definitions,
and relations using only a small set of scientific
abstracts. We compare results achieved on our
original dataset of 5,000 abstracts with those using
ontology-derived data and also evaluate how well
our approach scales with increasing dataset size.

5.1 Dataset Creation

To construct the dataset, we assume access to a
small collection of scientific abstracts, as discussed
in Section 4.1.The dataset (C,D,R) is obtained
through the following three steps:

1. Keyword Extraction: We extract domain-
relevant concepts in the form of keywords
from scientific abstracts using LLaMA-3-8B
(Grattafiori et al., 2024). This is achieved by

appending the string "Keywords:" to each ab-
stract and allowing the language model to gen-
erate a continuation, effectively identifying
key concepts within the text.

2. Definition Generation: For each extracted
keyword, we generate five additional defini-
tions using LLaMA-3-8B-Instruct. To ensure
that the generated definitions accurately re-
flect domain-specific usage, the original ab-
stract from which the keyword was extracted
serves as context during generation.

3. Relation Identification: We determine con-
cept relationships by analyzing co-occurrence
patterns within the abstracts. Keyword names
are first normalized using stemming, followed
by exact string matching to identify equivalent
keywords across different abstracts. Two key-
words are considered related if they co-occur
more than k times (a tunable hyperparameter),
with all other samples serving as negatives.

We again begin by evaluating results on a dataset
of 5,000 abstracts, which constrains both the num-
ber of abstract sentences available for pretraining as
well as the number of extracted keywords with cor-
responding definitions created within our pipeline,
resulting in 23,597 unique keywords. This setup al-
lows us to assess the effectiveness of our approach



Hypothesis CIf Hypothesis Span Impact CIf Impact Evid. Avg.

Model Macro F1 ~ Micro F1 | Token F1 = Span F1 | Macro F1 =~ Micro F1 NDCG

MLM Pretraining
5000 Abstracts 0.744 0.792 0.413 0.219 0.433 0.455 0.499 0.507
15000 Abstracts | 0.731 0.801 0.415 0.234 0.480 0.499 0.493 0.518
25000 Abstracts | 0.748 0.807 0.418 0.233 0.460 0.484 0.512 0.522
35000 Abstracts | 0.735 0.811 0.419 0.244 0.483 0.484 0.494 0.521
Avg: 0.517
MLM-+Similarity Pretraining

5000 Abstracts 0.740 0.805 0.415 0.220 0.469 0.489 0.511 0.520
15000 Abstracts | 0.754 0.812 0.418 0.245 0.474 0.489 0.519 0.529
25000 Abstracts | 0.759 0.806 0.419 0.236 0.479 0.499 0.511 0.528
35000 Abstracts | 0.756 0.824 0.418 0.241 0.477 0.489 0.551 0.538

Avg: 0.529

Table 2: Comparing MLM and combined MLM+SIM pretraining with keyword definitions for varying dataset sizes.

in a low-resource setting. We then examine the im-
pact of dataset size by progressively increasing the
number of abstracts to 15,000, 25,000, and 35,000.

5.2 Results

Results for the first set of experiments operating on
5000 scientific abstracts are displayed in Table 1.

We first evaluate traditional MLM pretrain-
ing on keyword definitions derived from LLM-
extracted keywords, which leads to slight perfor-
mance improvements over the standard DeBERTa
base model (score: 0.483) by achieving scores
of 0.492 when trained solely on keyword defini-
tions and 0.507 when combined with abstract sen-
tences. However, these gains are less pronounced
than those using LLM-generated definitions for
ontological concepts, indicating that ontological
concepts offer more valuable information to the
encoder model (compare Section 6).

In contrast, SIM pretraining on keyword defi-
nitions yields slightly better performance than us-
ing ontology definitions. This advantage may be
attributed to dataset size, as the LLM extracted
23,597 unique keywords from the abstracts, com-
pared to 5,179 concepts from the ontologies. No-
tably, this enhanced performance lets SIM pretrain-
ing on data extracted from 5,000 abstracts surpass
MLM pretraining on the same abstracts. This find-
ing not only validates our proposed pretraining ap-
proach but also suggests that the LLM has enriched
our base dataset with valuable information.

However, we observe a reverse trend when ex-
amining the combination of MLM pre-training on
abstract sentences and SIM pretraining on synthetic
definitions. Here, leveraging ontology data results

in a significantly greater performance boost than us-
ing keywords definitions, which we analyze further
in Section 6. Still, the resulting model using just
5,000 abstracts outperforms SciDeBERTa, which
was trained on millions of scientific abstracts.

Lastly, we assess the effect of varying dataset
sizes on our pretraining pipeline. While an increase
in data availability leads to more detected keywords
for SIM pretraining, it also leads to more abstract
sentences for MLM pretraining. This may diminish
the relative value added by the LLM. However, as
shown in Table 2, even with larger datasets, our
fully automated knowledge injection strategy con-
sistently outperforms traditional MLM pretraining,
even though both are based on the same dataset.

Despite efforts to mitigate variance by training
multiple models per task, we also note that individ-
ual results remain subject to fluctuation. Therefore,
we consider the average scores across all dataset
sizes - 0.517 for MLM pretraining and 0.529 for
combined pretraining - as the most reliable indica-
tors of the substantial performance improvements
achievable with our pipeline.

6 Discussion

6.1 Are Ontologies Replacable?

Our experiments demonstrate that injecting
domain-specific knowledge from ontologies into
encoder models can substantially enhance down-
stream performance. Interestingly, we also found
that ontological knowledge can - to some extent
- be replaced by a combination of automatically
extracted keywords, definitions, and co-occurrence
statistics. While this might suggest that ontologies



add little value beyond these extracted elements,
we argue that this conclusion is premature:

First, despite our automated pipeline extracting
a significantly larger number of keywords from
5,000 abstracts than were present in the ontologies
(23,597 vs. 5,179), MLLM pretraining performance
was better using ontology-based data. This sug-
gests that ontology-derived data is of higher qual-
ity, likely due to the careful selection of domain-
relevant concepts, making even small ontologies
highly valuable. In contrast, many automatically
extracted keywords, such as species names, may
be less informative for analyzing species invasions
than more targeted ontology concepts.

Also, we point out that a combination of syn-
thetic data and abstract sentences leads to superior
results when ontology-based definitions are used
instead of keyword definitions (both for MLM and
SIM). This disparity may stem from the fact that
information extracted from the abstracts is inher-
ently tied to the same dataset, thus offering less
additional insight compared to the disconnected
and therefore more informative ontology.

Finally, ontological relations encode different
knowledge compared to statistical co-occurrence
patterns. Most relations within the investigated
ontologies were subclass relations, that contribute
to a refined hierarchical understanding of domain-
specific concepts. In contrast, co-occurrence statis-
tics primarily capture broader associations between
concepts within the domain and the contexts they
appear in. Our results indicate that both types of
information benefit model pretraining, but we do
not believe that they should be equated.

6.2 Investigating Model Collapse

Previous studies have identified a risk of model col-
lapse when training on generated data (see Section
2). Similarly, in our experiments, we observed
that both MLM and SIM training on synthetic
data reached peak performance after approximately
40,000 batches, after which performance began to
decline. In contrast, training on the dataset consist-
ing of abstract sentences peaked at around 200,000
batches, with performance remaining stable even
when training for twice as long. This suggests that
while the generated data provides valuable informa-
tion, excessive use can still lead to model collapse.

It is important to note that we cannot conclu-
sively attribute this behavior solely to the synthetic
nature of the data. Since the generated dataset
consists exclusively of concept definitions, its in-

herently lower variance compared to abstract sen-
tences may contribute to catastrophic forgetting of
broader language understanding, rather than model
collapse in the strict sense.

Interestingly, we found that performance degra-
dation was much less pronounced for SIM training
than for MLM training on synthetic definitions.
This is likely due to much weaker gradient signals
after the peak has been reached, as most training
triples eventually reach zero loss. This has the pos-
itive effect that, when SIM pretraining on synthetic
data is combined with MLM training on abstract
sentences, the risk of model collapse is effectively
mitigated because the gradients from SIM training
are not strong enough to induce this effect.

This is in contrast to MLM training on a com-
bination of abstract sentences and synthetic defini-
tions, for which performance declined compared
to training on abstract sentences alone when both
sources of data were used in equal proportion. This
suggests that in this setting, the signal leading to
model collapse is too strong, leading us to adopt
a 1:3 ration in our experiments. These findings
highlight the advantage of our proposed pretrain-
ing scheme over traditional MLM, as it enables
effective utilization of synthetic data while avoid-
ing detrimental effects on model stability.

7 Conclusion

In this study, we investigated the use of LLM-
generated, synthetic data for continual pretrain-
ing of domain-specific encoder models. The ap-
proach demonstrates how to utilize domain specific
ontologies or derive domain information through
LLM-extraction from scientific abstracts for do-
mains where ontologies may not be available.

Our results demonstrate that the proposed pre-
training approach produces strong synergistic ef-
fects when combined with masked language model-
ing training. This leads to significant performance
improvements in low-resource settings and results
in a model surpassing other specialized models
from the broader biomedical domain, despite being
trained on orders of magnitude less data.

Given the minimal data requirements, our ap-
proach has the potential to be widely applicable
beyond the domain explored in this study. Further-
more, its robustness against model collapse despite
using synthetic data represents a meaningful ad-
vancement in leveraging LL.M-generated data for
training specialized models.



8 Limitations

We note several limitations of our approach: First,
while we demonstrate strong performance in the do-
main of invasion biology, its applicability to other
domains remains uncertain and requires further
evaluation.

Second, although we compare the effectiveness
of leveraging information from an ontology versus
extracting it from scientific abstracts, our compari-
son is constrained by the specific ontology elements
considered - namely, the selection of concepts, their
definitions, and the presence of links. We believe
that significant untapped potential remains in ad-
ditional ontology features, such as relation types,
domains and ranges of relations, and higher-order
relationships. A more comprehensive assessment
of the ontology’s value can only be made once its
full informational capacity is utilized.

Third, assessing the correctness and quality of
LLM-generated data and extracted concepts from
scientific abstracts is beyond the scope of this study.
While our results indicate performance improve-
ments on the invasion biology benchmark, there
remains a risk of introducing bias or inaccuracies
into the encoder model due to biased concept selec-
tion or potential misinterpretations by the LLM.
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A Experimental Details

A.1 Data Generation

We used LLMs, specifically LLaMA-3-8B and
LLaMA-3-8B-Instruct, to generate synthetic data
for pretraining the encoder model. For generat-
ing alternative definitions of ontology concepts, we
employed the instruction-tuned version of LLaMA,
using the prompt shown in Figure 1.

Concepts were extracted from scientific abstracts
following the procedure detailed in Section 5.1.
Definition generation was then performed using
a similar prompting approach, incorporating the
scientific abstract as context.
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Concept relations are identified using co-
occurrence counts as described in Section 5.1. For
the dataset consisting of 5000 abstracts, we treat
concepts as related if they co-occur in at least 5 ab-
stracts, with this number being increased by one for
each increase in dataset size. Since many concepts
do not occur that often, this lead to each concept
being related to about 0.5 other concepts.

A.2 Model Training

We evaluate various pretraining strategies. Initially,
we selected the optimal model checkpoint based
on validation loss; however, we found that train-
ing for significantly longer improved downstream
performance, even when the validation loss did not
decrease. For this reason, we adopted a strategy of
saving model checkpoints at different epochs and
evaluating them on the INAS classification task,
thus identifying the number of batches that are
optimal for a given pretraining method. Once es-
tablished, we retrained the final models used in our
evaluation from scratch using the predetermined
number of epochs.

For similarity-based pretraining, we adopt a sam-
pling strategy that increases the likelihood of sam-
ples that are related to each other being included
within the same batch.

In the case of combined SIM and MLM pretrain-
ing, we independently sample a batch for each pre-
training method and perform two backward passes
- one for each loss - before applying a single param-
eter update.

For MLM pretraining, we found that a high
weight decay value of le-2 was beneficial, likely
mitigating overfitting to the small dataset. In con-
trast, for SIM pretraining we did not use weight
decay, since applying it led to reduced downstream
performance, potentially due to accelerated catas-
trophic forgetting of the model’s general language
modeling capabilities if no MLM loss is used.

For combined pretraining, we again applied a
weight decay of le-2.

A.3 Evaluation Dataset

A.3.1 INAS Classification

The INAS classification task (Brinner et al., 2022)
is a 10-class classification problem, where the goal
is to determine which of 10 prominent hypotheses
are addressed in a given scientific abstract. We
use the updated labels provided by (Brinner et al.,
2024). The task is a multi-label classification task,
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Task: Create a single sentence that defines the concept listed below. You also receive an existing definition of the concept.

If you feel like the definition does not contain enough information, please create a more extensive one. If you feel like all
necessary information is already contained, you do not need to add additional information. Please do not simply repeat the
definition given to you. Please do not use the term itself in the definition.

Concept: [CONCEPT NAME]
Definition: [CONCEPT DEFINITION]

Format your response as:
Definition: [New Definition]
END.

Figure 1: The Llama-3-8B-Instruct prompt for generating alternative definitions for concepts from the ontology.

meaning that multiple hypotheses can be addressed For further details on these metrics, see (Brinner
within a single abstract. et al., 2024).

The dataset consists of 954 samples, with 721 . .
used for training, 92 for validation, and 141 for A.3.3 EICAT Classification
testing. Models are trained as standard classifiers The EICAT classification task (Brinner and ZarrieB,
with a sigmoid activation function and a weighted 2025) is concerned with classifying the ecological
binary cross-entropy loss. Given the highly imbal- impact of an invasive species as reported in a sci-
anced nature of the dataset, we report both micro entific full-text paper. The categories include five
and macro F1 scores to assess overall predictive different impact levels plus a “Data Deficient” cate-
performance as well as the ability to recognize un-  £01Y> resulting in a six-class classification problem.

derrepresented classes. Further details are available The dataset consists of 436 full-text scientific pa-
in our code repository. pers covering 120 species, with training, validation,

and test splits of 82%, 8%, and 10%, respectively.
A.3.2 INAS Span Prediction Since most encoder models cannot process en-

tire full-texts at once, Brinner and Zarrief3 (2025)
explored strategies for selecting relevant sentence
subsets for training and evaluation. One effective
and unbiased approach is the selection of random
sentences, which we adopt. During testing, each
model receives 20 different random sentence selec-
tions per paper, with the final classification deter-
mined via majority voting.

Models are trained as standard classifiers with
a weighted categorical cross-entropy loss. Given
the dataset’s class imbalance, we report both micro
and macro F1 scores, following the approach used
in the INAS classification task.

The INAS Span Prediction task (Brinner et al.,
2024) is closely related to the INAS classification
task and is based on the same dataset. However,
instead of classifying abstracts, it involves identi-
fying spans of text indicative of the 10 hypotheses,
as annotated by human experts.

Only 750 samples contain token-level annota-
tions. Models are trained using a weighted binary
cross-entropy loss applied to 10 logits that were
predicted for each input token, with each logit cor-
responding to one of the hypotheses. Additionally,
we trained models as normal classifier as in the
INAS classification task, where we also included
all samples without token-level annotations. A.3.4 EICAT Evidence Selection

We evaluate performance using two metrics: The EICAT evidence selection task (Brinner and
ZarrieB3, 2025) is a binary sentence classification
* Token-F1 Score: This score measures the  problem. While annotating scientific full-texts for
ability to identify individual tokens as being  the EICAT classification task, human experts iden-
indicative of a specific hypothesis (i.e., be- tified key sentences that served as evidence for
longing to a ground-truth annotation). impact assessments. The goal of this task is to pre-
dict whether a given sentence is evidence for an

* Span-F1 Score: This score evaluates how  EICAT impact assessment.
well models detect complete spans by assess- To provide context, the model receives three
ing the intersection-over-union (IoU) between  sentences before and three sentences after the tar-
predicted and ground-truth spans at different ~ get sentence, with the target sentence enclosed
thresholds. by [SEP] tokens. Training is performed using a
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Hypothesis CIf | Hypothesis Span Impact CIf | Impact Evid. | Avg.
Similarity Pretraining
Ontology Definitions | 0.727 0.779 | 0.400 0.218 |0.446 0.460 0.514 0.507
Keyword Definitions | 0.726 0.783 | 0.405 0.228 | 0.465 0.475 0.497 0.510
Similarity Pretraining Ablation: No Concept Relatedness
Ontology Definitions | 0.715 0.777 1 0.395 0.210 | 0.436 0.450 0.499 0.498
Keyword Definitions | 0.725 0.781]0.402 0.209 |0.466 0.484 0.484 0.504

Table 3: Results for an ablation study, evaluating the effect of not using the relatedness between different concepts

in the pretraining loss.

weighted binary cross-entropy loss.

The dataset splits are the same as those used
in the EICAT classification task. Performance is
reported using the normalized discounted cumu-
lative gain (NDCG) score, which evaluates the
model’s ability to rank ground-truth evidence sen-
tences higher than non-evidence sentences. This
metic is used since the task was proposed in the
context of extracting a fixed number of sentences
for further prediction, thus making the ranking be-
tween sentences more important than the specific
predicted scores. Also, the original annotations
are not guaranteed to include every sentence in-
dicative of the correct classification, thus making a
softer metric a better fit compared to a strict binary
evaluation.

A.4 Evaluation Details

Due to the high variance in the model’s predictions,
we train 7 models for the INAS classification and
EICAT classification tasks, as well as 3 models
for the other tasks that take significantly longer
for each training run. Final results are reported
as the average performance across all runs. To
compute a final benchmark score, we first average
the performance metrics for each task separately
and then compute an overall average across all
tasks.

For both EICAT-related tasks, we observed oc-
casional training runs (across all pretraining types)
where models exhibited drastically lower perfor-
mance, often predicting only a single class for all
samples. We attribute this to the dataset’s extreme
class imbalance, that, for some random seeds, leads
to degenerate states that the model is unable to es-
cape. In such cases, training runs were repeated to
avoid reporting results that reflect random failures
rather than actual model performance.
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A.5 Ablation

We perform an ablation study evaluating the effect
of not incorporating the relations between different
concepts (as determined by ontology relations or
keyword co-occurrence statistics) into the pretrain-
ing loss. Results are displayed in Table 3. We see
that not incorporating concept relatedness leads to
reduced scores on our benchmark, thus indicating
the usefulness of leveraging this information within
pretraining.
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