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Abstract
We investigate the use of LLM-generated data001
for continual pretraining of encoder models in002
specialized domains with limited training data,003
using the scientific domain of invasion biol-004
ogy as a case study. To this end, we leverage005
domain-specific ontologies by enriching them006
with LLM-generated data and pretraining the007
encoder model as an ontology-informed embed-008
ding model for concept definitions. To evaluate009
the effectiveness of this method, we compile a010
benchmark specifically designed for assessing011
model performance in invasion biology. After012
demonstrating substantial improvements over013
standard LLM pretraining, we investigate the014
feasibility of applying the proposed approach015
to domains without comprehensive ontologies016
by substituting ontological concepts with con-017
cepts automatically extracted from a small cor-018
pus of scientific abstracts and establishing re-019
lationships between concepts through distribu-020
tional statistics. Our results demonstrate that021
this automated approach achieves comparable022
performance using only a small set of scien-023
tific abstracts, resulting in a fully automated024
pipeline for enhancing domain-specific under-025
standing of small encoder models that is es-026
pecially suited for application in low-resource027
settings and achieves performance comparable028
to masked language modeling pretraining on029
much larger datasets.030

1 Introduction031

Transformer encoder models such as BERT (De-032

vlin et al., 2019) and its successors (e.g., Liu et al.,033

2019, He et al., 2021a, Warner et al., 2024) have034

consistently achieved state-of-the-art results across035

various text-based tasks, mainly enabled by pre-036

training with masked language modeling (MLM)037

or replaced token detection (Clark et al., 2020)038

on large-scale general-domain corpora, such as039

Wikipedia and BookCorpus (Zhu et al., 2015).040

While transformer encoders offer an optimal bal-041

ance between performance and efficiency, their full042

effectiveness in specialized domains, such as scien- 043

tific text processing, is often enabled by additional 044

pretraining on domain-specific corpora (Beltagy 045

et al., 2019; Jeong and Kim, 2022), proven highly 046

effective in fields where extensive domain-specific 047

data is available (e.g., biomedical text processing 048

Gu et al., 2021). However, in more specialized dis- 049

ciplines with limited training data, the potential of 050

this approach diminishes, highlighting the need for 051

alternative methods of injecting domain knowledge 052

during pretraining. 053

To this end, we explore the use of domain- 054

specific ontologies for continual pretraining of en- 055

coder models in the scientific domain of invasion bi- 056

ology. Recognizing that ontologies may not always 057

be available, we also investigate the extent to which 058

their knowledge can be replaced by LLM-extracted 059

information derived from scientific abstracts. 060

Our focus on ontologies is grounded in the fact 061

that they exist in many fields with otherwise low 062

data availability, while at the same time containing 063

precise, domain-specific and structured knowledge 064

curated by domain experts (e.g., Walls et al., 2014; 065

Girón et al., 2023; Algergawy et al., 2025), thus 066

making them a valuable resource for pretraining. 067

Our proposed approach enriches these ontolo- 068

gies with LLM-generated data in the form of con- 069

cept definitions, followed by pretraining the en- 070

coder model as an ontology-informed definition 071

embedding model. Specifically, we employ a triplet 072

margin loss that enforces definitions of either the 073

same or similar concepts to be placed at nearby 074

positions in the embedding space, thus enabling 075

the model to develop a structured understanding of 076

domain-specific entities and their interconnections. 077

Having demonstrated the effectiveness of our 078

approach, we further explore its applicability in do- 079

mains where no ontology is available. To this end, 080

we develop a pipeline that automatically extracts 081

relevant concepts from scientific abstracts using an 082

LLM, generates domain-specific definitions, and 083
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identifies relationships between concepts based on084

distributional statistics. Our results indicate that085

these automatically generated substitutes for onto-086

logical components can achieve performance com-087

parable to ontology-based pretraining.088

By compiling a benchmark for evaluating mod-089

els in the invasion biology domain - consisting090

of four tasks from three existing studies (Brinner091

et al., 2022, 2024; Brinner and Zarrieß, 2025) - we092

demonstrate that our proposed pretraining approach093

achieves performance comparable to traditional094

masked language modeling (MLM) on scientific ab-095

stracts, thus establishing our method as a viable al-096

ternative. Furthermore, we show that our approach,097

which is applied solely to the model’s CLS token098

output, can be combined seamlessly with MLM099

pretraining, leading to significantly improved per-100

formance compared to using each method individu-101

ally, thus indicating a complementary effect on the102

model’s domain understanding.103

The resulting method requires only 5,000 scien-104

tific abstracts in combination with an ontology, or105

15,000 abstracts independently to match the perfor-106

mance of models pretrained on 14 million abstracts107

in the broader biomedical domain (Gu et al., 2021),108

underscoring its potential as an effective solution109

for low-resource settings.110

2 Related Work111

Continual Pretraining. Continual pretraining is112

an effective and efficient approach to make LLMs113

robust against new, ever-changing data that differs114

from its original pretraining (Wu et al., 2024; Zhou115

et al., 2024; Parmar et al., 2024; Shi et al., 2024),116

that can also further enhance an LLM’s domain spe-117

cific effectiveness (Gururangan et al., 2020; Gong118

et al., 2022; Xie et al., 2023; Çağatay Yıldız et al.,119

2025) and specializes in "improving knowledge120

transfer to downstream tasks" (Wang et al., 2024),121

such as scientific text processing in this study. The122

phenomenon of catastrophic forgetting poses sig-123

nificant risk in continual pretraining (Li and Lee,124

2024; Ibrahim et al., 2024; Cossu et al., 2024),125

wherein a continually learned model forgets knowl-126

edge from previous training. In this study we per-127

form continual pretraining to specialize a model in128

the narrow domain of invasion biology and discuss129

the risk of catastrophic forgetting in Section 6.130

Using Ontological Knowledge. Ontologies and131

knowledge graphs (KGs) provide a structured rep-132

resentation of domain knowledge in the form of133

unique entities and precise relations between them, 134

contrasting the distributed and often less precise 135

knowledge representation within neural networks. 136

To bridge this gap, various methods have been 137

proposed to integrate structured knowledge into 138

transformer models. While some approaches in- 139

corporate KG information during inference (Zhang 140

et al., 2019; Peters et al., 2019; He et al., 2020), 141

the majority of approaches focus on creating KG- 142

informed pretraining methods, for example by per- 143

forming MLM pretraining that incorporates knowl- 144

edge about entities (Shen et al., 2020; Zhang et al., 145

2021), performing MLM pretraining on sentences 146

derived from KG triples (Lauscher et al., 2020; 147

Moiseev et al., 2022; Liu et al., 2022; Sahil and 148

Kumar, 2023; Omeliyanenko et al., 2024), design- 149

ing auxiliary classification tasks based on ontolog- 150

ical knowledge (Wang et al., 2021a; Glauer et al., 151

2023) or by creating contrastive ontology-informed 152

sentence embedding methods (Wang et al., 2021b; 153

Ronzano and Nanavati, 2024). Our approach aligns 154

most closely with the latter but extends it into a 155

broader framework that incorporates not only rela- 156

tionships between concepts but also LLM-derived 157

knowledge about individual concepts, even in the 158

absence of explicit relations, thus creating a more 159

informative and flexible pretraining process. 160

Using LLM-Generated Data. Using LLM- 161

generated data is an appealing approach for model 162

pretraining and/or fine-tuning (Long et al., 2024), 163

especially in specialized domains with little avail- 164

able training data. Many studies explore the po- 165

tential of LLM-generated or LLM-annotated data 166

to enhance task-specific performance, both for en- 167

coder models (Kruschwitz and Schmidhuber, 2024; 168

Kuo et al., 2024; Wagner et al., 2024) and decoder 169

architectures (Ren et al., 2024; Lee et al., 2024). 170

Beyond task-specific fine-tuning, synthetic data 171

has also been investigated for task-agnostic pre- 172

training. While this approach has shown promise 173

for general-domain models (Alcoba Inciarte et al., 174

2024; Yang et al., 2024; McKinzie et al., 2025), its 175

application in domain-specific pretraining remains 176

relatively underexplored (e.g., Yuan et al., 2024). 177

Despite its advantages, synthetic data introduces 178

risks, including potential performance degrada- 179

tion compared to human-generated data - a phe- 180

nomenon known as model collapse (Shumailov 181

et al., 2024), prompting studies aimed at mitigat- 182

ing this effect, especially for autoregressive LLMs 183

(Bertrand et al., 2024; Gerstgrasser et al., 2024; 184
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Zhang et al., 2024; Zhu et al., 2024). We discuss185

the differences between pretraining on scraped vs186

generated data in Section 6.187

3 Method188

We propose a method for injecting domain knowl-189

edge into transformer models through contin-190

ual pretraining. This section provides a general191

overview of our approach, while Section 4 and Sec-192

tion 5 detail and evaluate its application to datasets193

derived from ontologies and scientific abstracts.194

3.1 Similarity-Based Pretraining195

We propose a contrastive triplet margin loss for196

continual pretraining of an encoder model, refining197

it as an embedding model for concept definitions by198

teaching it to place definitions of the same concept199

or definitions of related concepts to similar posi-200

tions in the embedding space, thus enabling the201

model to capture both the meaning and distinctions202

between domain-specific concepts effectively.203

Our method operates on a dataset of domain-204

relevant concepts C = {C1, C2, ...}, each in combi-205

nation with multiple natural language concept def-206

initions D = {(d1,1, d1,2, ...), (d2,1, d2,2, ...), ...}.207

Also, we optionally incorporate a set of tuples indi-208

cating pairs of related concepts R = {(Ci, Cj), ...}209

to increase the model’s domain understanding be-210

yond knowledge of individual entities.211

The core training scheme is as follows: Given212

two concepts Ci and Cj from the dataset, we train213

the model to embed two definitions of concept Ci214

to nearby locations in the embedding space while215

positioning a definition of Cj further away, thereby216

teaching the model to understand and differentiate217

between dissimilar concepts. This is achieved by218

sampling two definitions di,1 and di,2 that define219

concept Ci, and one definition dj,1 that defines220

concept Cj . These definitions are then mapped into221

high-dimensional embeddings using our model M :222

ei,1 = M(di,1)223

ei,2 = M(di,2)224

ej,1 = M(dj,1)225

In practice, the embedding corresponds to the226

model’s output vector at the CLS token. To en-227

courage the model to map definitions of the same228

concept in the embedding space to similar loca-229

tions, we employ a triplet margin loss:230

L = relu(||ei,1 − ei,2|| − ||ei,1 − ej,1||+ 1)231

In this contrastive loss formulation, di,1 serves as 232

an anchor, with di,2 being the positive and dj,1 be- 233

ing the negative with respect to that anchor. The 234

loss function thus penalizes cases in which the dis- 235

tance between the anchor and the positive (i.e., two 236

definitions defining the same concept) is not at least 237

one unit (a margin hyperparameter) smaller than 238

the distance between the anchor and the negative. 239

Rather than explicitly sampling individual 240

triplets (anchor, positive, and negative), we opti- 241

mize the loss computation by leveraging in-batch 242

negatives. Specifically, for a batch of n concepts, 243

we sample only two definitions - an anchor and 244

a positive - for each concept. The definitions of 245

the remaining concepts in the batch then serve as 246

negative samples. This strategy significantly in- 247

creases the number of triplets contributing to the 248

loss: for each anchor-positive pair, 2·(n−1) triplets 249

are generated by pairing the anchor with all pos- 250

sible negatives, which can be further doubled to 251

4 · (n − 1) by swapping the roles of the anchor 252

and positive sample. This substantial increase in 253

triplets enhances model performance, as the loss 254

function quickly reaches zero for many triplets after 255

just a few epochs due to the model’s rapidly im- 256

proving embedding capabilities. Consequently, the 257

larger number of triplets increases the likelihood 258

of encountering more informative gradient signals, 259

ultimately leading to more effective embeddings. 260

3.2 Concept Relatedness 261

The current loss formulation encourages the model 262

to map similar definitions (i.e., those defining the 263

same concept) to nearby positions in the embed- 264

ding space. While this enhances the model’s ability 265

to differentiate between concepts, a deeper under- 266

standing of the domain also requires learning re- 267

lationships between different concepts. Therefore, 268

we extend our loss formulation by incorporating 269

additional triplets that capture concept relatedness. 270

Specifically, if two concepts Ci and Cj are in 271

the same batch and (Ci, Cj) ∈ R, we treat their 272

definitions as additional positive pairs within the 273

loss function, while definitions of all unrelated con- 274

cepts serve as negatives. This implicitly introduces 275

a ranking effect, since definitions of related con- 276

cepts still function as negatives for the definition 277

that defines the same concept, ensuring that these 278

are embedded more closely together than defini- 279

tions of related concepts. Simultaneously, related 280

concepts are encouraged to be positioned closer in 281

the embedding space than unrelated concepts. 282
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3.3 Pretraining Loss Combination283

Our proposed pretraining loss is applied to the CLS284

token representation, allowing seamless integra-285

tion with other pretraining losses that target the286

remaining token embeddings like masked language287

modeling. This is especially interesting in light of288

recent models being trained exclusively with MLM289

loss (Warner et al., 2024), since the traditional next290

sentence prediction loss from BERT did not lead291

to significant performance gains (Liu et al., 2019).292

Consequently, our method presents a more sophis-293

ticated approach for infusing knowledge into the294

CLS token representation, offering a potentially en-295

hanced downstream task performance when used.296

4 Ontology-Informed Pretraining297

This section details the application and evaluation298

of our proposed method, using domain-specific299

ontologies for dataset creation. Our experiments300

focus on the scientific domain of invasion biology,301

a specialized subfield of biodiversity research that302

investigates non-native species, their introduction303

pathways, ecological impacts, and management304

strategies to mitigate their effects on ecosystems305

(Jeschke and Heger, 2018).306

4.1 Dataset Creation307

Our approach involves constructing a domain-308

specific dataset consisting of concepts, definitions309

and concept relations in the target domain. To this310

end, we use two ontologies that address the tar-311

get domain: the INBIO ontology (Algergawy et al.,312

2025), which captures concepts relevant to invasion313

biology, and the ENVO ontology (Buttigieg et al.,314

2013, 2016), which provides a structured represen-315

tation of environmental and ecological concepts.316

From these ontologies, we extract concept-317

definition pairs for all concepts that have a corre-318

sponding definition along with relational links. Ad-319

ditionally, we use a large language model, LLaMA-320

3-8B-Instruct (Grattafiori et al., 2024), to generate321

five additional definitions per concept. The original322

ontology definition serves as context during gener-323

ation to ensure that the new definitions accurately324

reflect the domain-specific meaning.325

We compare our proposed pretraining approach326

to traditional MLM pretraining on sentences ex-327

tracted from scientific abstracts. We leverage an328

existing index of paper titles in the field of inva-329

sion biology (Mietchen et al., 2024) and employ a330

web scraper to retrieve their abstracts, resulting in a331

final collection of 37,786 paper titles and abstracts. 332

Since we explicitly aim to assess the applicabil- 333

ity of our approach in low-resource settings, most 334

experiments are conducted on a subset of 5,000 ab- 335

stracts. This results in a dataset containing 47,031 336

sentences extracted from 5,000 scientific abstracts, 337

alongside 5,197 ontology-derived concepts, each 338

supplemented with at least one extracted definition 339

and five generated definitions. 340

4.2 Model Pretraining 341

In our experiments, we perform continual pretrain- 342

ing on a DeBERTa-base model (He et al., 2021b) 343

by leveraging three different pretraining strategies: 344

1. Masked language modeling (MLM) pre- 345

training: We evaluate the effectiveness of 346

traditional MLM pretraining with a masking 347

probability of 0.25, applied to either abstract 348

sentences, generated definitions, or a com- 349

bined dataset of both. 350

2. Simmilaity (SIM) pretraining: As described 351

in Section 3, we pretrain the model using our 352

proposed similarity-based approach, leverag- 353

ing the extracted and generated definitions for 354

the ontology concepts. 355

3. Combined pretraining: To investigate po- 356

tential synergies between MLM and SIM pre- 357

training, we apply both strategies concurrently 358

by performing two backward passes - one for 359

each loss function - for each parameter update. 360

Further details about the pretraining can be 361

found in Appendix A.2. 362

4.3 Evaluation Datasets 363

Building on existing studies, we compile a bench- 364

mark comprising four distinct tasks in invasion 365

biology, each with unique evaluation requirements. 366

The Hypothesis Classification task (Brinner 367

et al., 2022) is a 10-class classification task on iden- 368

tifying which of 10 major hypotheses in invasion 369

biology is addressed in a given scientific abstract. 370

Due to class imbalance, we report both micro F1 371

and macro F1 scores. 372

The Hypothesis Span Prediction task (Brinner 373

et al., 2024) is a token-level prediction task based 374

on the same abstracts as the INAS classification 375

task. Annotators provide span-level evidence an- 376

notations for each hypothesis and we evaluate the 377
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model’s ability to predict the tokens that were anno-378

tated (Token F1) as well as the ability to recognize379

complete spans (Span F1).380

The EICAT Impact Classification task (Brinner381

and Zarrieß, 2025) is a classification task on assess-382

ing the impact of an invasive species as reported383

in a given scientific full text, assigning it to one384

of six predefined impact categories. We evaluate385

performance using macro F1 and micro F1 scores.386

The EICAT Impact Evidence task (Brinner and387

Zarrieß, 2025) leverages evidence annotations pro-388

vided by the EICAT classification dataset, created389

by domain experts who identified sentences in the390

full-texts indicating the species’ impact category.391

We evaluate the model’s ability to rank relevant392

sentences within a full text using the normalized393

discounted cumulative gain (NDCG) metric.394

These tasks address different aspects of the field395

of invasion biology but have in common that they396

require extensive domain knowledge for a deep in-397

terpretation of scientific texts within the broader398

context of the field. Taking the hypothesis classi-399

fication tasks as an example, this could manifest400

itself in needing to identify a hypothesis solely by401

means of a description of an experimental design402

or measurements taken within an ecosystem.403

Since we observed a high variance between re-404

sults for different training runs, we train 7 models405

for the hypothesis and impact classification tasks406

and 3 models for the remaining tasks, thus report-407

ing average performance on the test sets. For details408

on task setup, dataset sizes and training methodolo-409

gies, please refer to Appendix A.410

To obtain a single benchmark score, we compute411

task-specific scores by averaging the individual412

performance metrics for each task and averaging413

the results across all four tasks.414

4.4 Results415

The results of our evaluation of different pretraining416

methods are presented in Table 1.417

First, we observe that traditional MLM pretrain-418

ing on sentences extracted from just 5,000 scientific419

abstracts yields substantial performance improve-420

ments across all tasks compared to the standard De-421

BERTa model, raising the benchmark score from422

0.483 to 0.507.423

As a baseline, we also assess the impact of MLM424

pretraining on synthetic definitions. While this425

also resulted in increased performance, the gains426

are smaller than those achieved through pretrain-427

ing on abstract sentences. Additionally, despite428

the datasets being of similar size, optimal perfor- 429

mance with ontology definitions is reached after ap- 430

proximately 40,000 batches, in contrast to 200,000 431

batches for MLM on abstract sentences, which is 432

analyzed further in Section 6.2. 433

As a last MLM baseline, we investigate MLM 434

pretraining on a mixture of synthetic definitions 435

and abstract sentences. Since initial experiments 436

using a 1:1 ratio led to worse results compared to 437

training on abstract sentences alone, we adjusted 438

the ratio to 1:3 (ontology definitions to abstract sen- 439

tences), resulting in improved performance com- 440

pared to using abstract sentences alone, suggesting 441

that concept definitions provide useful additional 442

information to the model. 443

Turning to our proposed embedding similarity 444

(SIM) pretraining approach, we find that apply- 445

ing it to ontology definitions achieves performance 446

on par with MLM pretraining on real data (both 447

scoring 0.507), establishing our method as viable 448

alternative in the absence of such data. However, 449

since SIM pretraining only affects the CLS token 450

representation, we observe (on average) increased 451

performance on classification tasks while perfor- 452

mance decreased on the token-level prediction task, 453

indicating that our approach primarily enhances the 454

representation of the entire input sequence. 455

The most notable improvements arise when com- 456

bining SIM pretraining on synthetic ontology def- 457

initions with MLM pretraining on abstract sen- 458

tences. This approach leads to substantial perfor- 459

mance gains across most tasks compared to MLM 460

pretraining alone. Specifically, the overall bench- 461

mark score increases from 0.507 (MLM on abstract 462

sentences) to 0.538. Notably, the substantial im- 463

provement over using either pretraining method 464

individually suggests a synergistic effect, indicat- 465

ing that SIM pretraining enhances the understand- 466

ing of individual concepts, while MLM pretraining 467

strengthens the model’s grasp of relationships be- 468

tween concepts and general language understand- 469

ing. As a result, this combined approach outper- 470

forms models trained on millions of abstracts from 471

the broader biomedical domain, such as PubMed- 472

BERT (Jeong and Kim, 2022) and SciDeBERTa 473

(Kim et al., 2023), which generally are strong base- 474

lines in this field (Brinner et al., 2022). 475

Finally, we perform an ablation experiment by 476

performing SIM pretraining without leveraging 477

concept relatedness information. This leads to a 478

significant drop in performance (0.498 compared 479

to 0.507 with concept relatedness), suggesting that 480
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Hypothesis Clf Hypothesis Span Impact Clf Impact Evid. Avg.
Model Macro F1 Micro F1 Token F1 Span F1 Macro F1 Micro F1 NDCG

DeBERTa base 0.674 0.745 0.406 0.218 0.392 0.416 0.505 0.483
MLM Pretraining

Abstract Sentences 0.744 0.792 0.413 0.219 0.433 0.455 0.499 0.507
Ontology Definitions 0.685 0.759 0.409 0.222 0.448 0.446 0.501 0.496
Keyword Definitions 0.719 0.776 0.397 0.194 0.428 0.441 0.478 0.492
Abstract Sent.+Ontology Def. 0.740 0.804 0.415 0.230 0.459 0.479 0.512 0.519
Abstract Sent.+Keyword Def. 0.729 0.799 0.417 0.221 0.439 0.455 0.497 0.507

Similarity Pretraining
Ontology Definitions 0.727 0.779 0.400 0.218 0.446 0.460 0.514 0.507
Keyword Definitions 0.726 0.783 0.405 0.228 0.465 0.475 0.497 0.510

MLM+Similarity Pretraining
Abstract Sent.+Ontology Def. 0.750 0.812 0.414 0.242 0.504 0.518 0.530 0.538
Abstract Sent.+Keyword Def. 0.740 0.805 0.415 0.220 0.469 0.489 0.511 0.520

Other Domain-Specific Models
PubMedBERT 0.728 0.783 0.410 0.208 0.509 0.508 0.552 0.531
SciDeBERTa 0.736 0.805 0.417 0.213 0.468 0.484 0.494 0.514

Table 1: Benchmark results for different pretraining methods leveraging either the ontology or a dataset of 5000
scientific abstracts, as well as a comparison to two pretrained models from the biomedical domain.

the relatedness encoded in ontologies is a useful481

training signal (Appendix A.5, Table 3).482

5 Using LLM-Extracted Keywords483

In the previous section, we explored the perfor-484

mance improvements achieved by combining our485

proposed contrastive loss on ontology-derived data486

with traditional MLM pretraining. While this ap-487

proach is highly valuable in domains with available488

ontologies, many fields may lack such structured489

resources. To address this limitation, we explore490

the feasibility of using an LLM for constructing491

a dataset of domain-relevant concepts, definitions,492

and relations using only a small set of scientific493

abstracts. We compare results achieved on our494

original dataset of 5,000 abstracts with those using495

ontology-derived data and also evaluate how well496

our approach scales with increasing dataset size.497

5.1 Dataset Creation498

To construct the dataset, we assume access to a499

small collection of scientific abstracts, as discussed500

in Section 4.1.The dataset (C,D,R) is obtained501

through the following three steps:502

1. Keyword Extraction: We extract domain-503

relevant concepts in the form of keywords504

from scientific abstracts using LLaMA-3-8B505

(Grattafiori et al., 2024). This is achieved by506

appending the string "Keywords:" to each ab- 507

stract and allowing the language model to gen- 508

erate a continuation, effectively identifying 509

key concepts within the text. 510

2. Definition Generation: For each extracted 511

keyword, we generate five additional defini- 512

tions using LLaMA-3-8B-Instruct. To ensure 513

that the generated definitions accurately re- 514

flect domain-specific usage, the original ab- 515

stract from which the keyword was extracted 516

serves as context during generation. 517

3. Relation Identification: We determine con- 518

cept relationships by analyzing co-occurrence 519

patterns within the abstracts. Keyword names 520

are first normalized using stemming, followed 521

by exact string matching to identify equivalent 522

keywords across different abstracts. Two key- 523

words are considered related if they co-occur 524

more than k times (a tunable hyperparameter), 525

with all other samples serving as negatives. 526

We again begin by evaluating results on a dataset 527

of 5,000 abstracts, which constrains both the num- 528

ber of abstract sentences available for pretraining as 529

well as the number of extracted keywords with cor- 530

responding definitions created within our pipeline, 531

resulting in 23,597 unique keywords. This setup al- 532

lows us to assess the effectiveness of our approach 533
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Hypothesis Clf Hypothesis Span Impact Clf Impact Evid. Avg.
Model Macro F1 Micro F1 Token F1 Span F1 Macro F1 Micro F1 NDCG

MLM Pretraining
5000 Abstracts 0.744 0.792 0.413 0.219 0.433 0.455 0.499 0.507
15000 Abstracts 0.731 0.801 0.415 0.234 0.480 0.499 0.493 0.518
25000 Abstracts 0.748 0.807 0.418 0.233 0.460 0.484 0.512 0.522
35000 Abstracts 0.735 0.811 0.419 0.244 0.483 0.484 0.494 0.521

Avg: 0.517
MLM+Similarity Pretraining

5000 Abstracts 0.740 0.805 0.415 0.220 0.469 0.489 0.511 0.520
15000 Abstracts 0.754 0.812 0.418 0.245 0.474 0.489 0.519 0.529
25000 Abstracts 0.759 0.806 0.419 0.236 0.479 0.499 0.511 0.528
35000 Abstracts 0.756 0.824 0.418 0.241 0.477 0.489 0.551 0.538

Avg: 0.529

Table 2: Comparing MLM and combined MLM+SIM pretraining with keyword definitions for varying dataset sizes.

in a low-resource setting. We then examine the im-534

pact of dataset size by progressively increasing the535

number of abstracts to 15,000, 25,000, and 35,000.536

5.2 Results537

Results for the first set of experiments operating on538

5000 scientific abstracts are displayed in Table 1.539

We first evaluate traditional MLM pretrain-540

ing on keyword definitions derived from LLM-541

extracted keywords, which leads to slight perfor-542

mance improvements over the standard DeBERTa543

base model (score: 0.483) by achieving scores544

of 0.492 when trained solely on keyword defini-545

tions and 0.507 when combined with abstract sen-546

tences. However, these gains are less pronounced547

than those using LLM-generated definitions for548

ontological concepts, indicating that ontological549

concepts offer more valuable information to the550

encoder model (compare Section 6).551

In contrast, SIM pretraining on keyword defi-552

nitions yields slightly better performance than us-553

ing ontology definitions. This advantage may be554

attributed to dataset size, as the LLM extracted555

23,597 unique keywords from the abstracts, com-556

pared to 5,179 concepts from the ontologies. No-557

tably, this enhanced performance lets SIM pretrain-558

ing on data extracted from 5,000 abstracts surpass559

MLM pretraining on the same abstracts. This find-560

ing not only validates our proposed pretraining ap-561

proach but also suggests that the LLM has enriched562

our base dataset with valuable information.563

However, we observe a reverse trend when ex-564

amining the combination of MLM pre-training on565

abstract sentences and SIM pretraining on synthetic566

definitions. Here, leveraging ontology data results567

in a significantly greater performance boost than us- 568

ing keywords definitions, which we analyze further 569

in Section 6. Still, the resulting model using just 570

5,000 abstracts outperforms SciDeBERTa, which 571

was trained on millions of scientific abstracts. 572

Lastly, we assess the effect of varying dataset 573

sizes on our pretraining pipeline. While an increase 574

in data availability leads to more detected keywords 575

for SIM pretraining, it also leads to more abstract 576

sentences for MLM pretraining. This may diminish 577

the relative value added by the LLM. However, as 578

shown in Table 2, even with larger datasets, our 579

fully automated knowledge injection strategy con- 580

sistently outperforms traditional MLM pretraining, 581

even though both are based on the same dataset. 582

Despite efforts to mitigate variance by training 583

multiple models per task, we also note that individ- 584

ual results remain subject to fluctuation. Therefore, 585

we consider the average scores across all dataset 586

sizes - 0.517 for MLM pretraining and 0.529 for 587

combined pretraining - as the most reliable indica- 588

tors of the substantial performance improvements 589

achievable with our pipeline. 590

6 Discussion 591

6.1 Are Ontologies Replacable? 592

Our experiments demonstrate that injecting 593

domain-specific knowledge from ontologies into 594

encoder models can substantially enhance down- 595

stream performance. Interestingly, we also found 596

that ontological knowledge can - to some extent 597

- be replaced by a combination of automatically 598

extracted keywords, definitions, and co-occurrence 599

statistics. While this might suggest that ontologies 600
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add little value beyond these extracted elements,601

we argue that this conclusion is premature:602

First, despite our automated pipeline extracting603

a significantly larger number of keywords from604

5,000 abstracts than were present in the ontologies605

(23,597 vs. 5,179), MLM pretraining performance606

was better using ontology-based data. This sug-607

gests that ontology-derived data is of higher qual-608

ity, likely due to the careful selection of domain-609

relevant concepts, making even small ontologies610

highly valuable. In contrast, many automatically611

extracted keywords, such as species names, may612

be less informative for analyzing species invasions613

than more targeted ontology concepts.614

Also, we point out that a combination of syn-615

thetic data and abstract sentences leads to superior616

results when ontology-based definitions are used617

instead of keyword definitions (both for MLM and618

SIM). This disparity may stem from the fact that619

information extracted from the abstracts is inher-620

ently tied to the same dataset, thus offering less621

additional insight compared to the disconnected622

and therefore more informative ontology.623

Finally, ontological relations encode different624

knowledge compared to statistical co-occurrence625

patterns. Most relations within the investigated626

ontologies were subclass relations, that contribute627

to a refined hierarchical understanding of domain-628

specific concepts. In contrast, co-occurrence statis-629

tics primarily capture broader associations between630

concepts within the domain and the contexts they631

appear in. Our results indicate that both types of632

information benefit model pretraining, but we do633

not believe that they should be equated.634

6.2 Investigating Model Collapse635

Previous studies have identified a risk of model col-636

lapse when training on generated data (see Section637

2). Similarly, in our experiments, we observed638

that both MLM and SIM training on synthetic639

data reached peak performance after approximately640

40,000 batches, after which performance began to641

decline. In contrast, training on the dataset consist-642

ing of abstract sentences peaked at around 200,000643

batches, with performance remaining stable even644

when training for twice as long. This suggests that645

while the generated data provides valuable informa-646

tion, excessive use can still lead to model collapse.647

It is important to note that we cannot conclu-648

sively attribute this behavior solely to the synthetic649

nature of the data. Since the generated dataset650

consists exclusively of concept definitions, its in-651

herently lower variance compared to abstract sen- 652

tences may contribute to catastrophic forgetting of 653

broader language understanding, rather than model 654

collapse in the strict sense. 655

Interestingly, we found that performance degra- 656

dation was much less pronounced for SIM training 657

than for MLM training on synthetic definitions. 658

This is likely due to much weaker gradient signals 659

after the peak has been reached, as most training 660

triples eventually reach zero loss. This has the pos- 661

itive effect that, when SIM pretraining on synthetic 662

data is combined with MLM training on abstract 663

sentences, the risk of model collapse is effectively 664

mitigated because the gradients from SIM training 665

are not strong enough to induce this effect. 666

This is in contrast to MLM training on a com- 667

bination of abstract sentences and synthetic defini- 668

tions, for which performance declined compared 669

to training on abstract sentences alone when both 670

sources of data were used in equal proportion. This 671

suggests that in this setting, the signal leading to 672

model collapse is too strong, leading us to adopt 673

a 1:3 ration in our experiments. These findings 674

highlight the advantage of our proposed pretrain- 675

ing scheme over traditional MLM, as it enables 676

effective utilization of synthetic data while avoid- 677

ing detrimental effects on model stability. 678

7 Conclusion 679

In this study, we investigated the use of LLM- 680

generated, synthetic data for continual pretrain- 681

ing of domain-specific encoder models. The ap- 682

proach demonstrates how to utilize domain specific 683

ontologies or derive domain information through 684

LLM-extraction from scientific abstracts for do- 685

mains where ontologies may not be available. 686

Our results demonstrate that the proposed pre- 687

training approach produces strong synergistic ef- 688

fects when combined with masked language model- 689

ing training. This leads to significant performance 690

improvements in low-resource settings and results 691

in a model surpassing other specialized models 692

from the broader biomedical domain, despite being 693

trained on orders of magnitude less data. 694

Given the minimal data requirements, our ap- 695

proach has the potential to be widely applicable 696

beyond the domain explored in this study. Further- 697

more, its robustness against model collapse despite 698

using synthetic data represents a meaningful ad- 699

vancement in leveraging LLM-generated data for 700

training specialized models. 701
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8 Limitations702

We note several limitations of our approach: First,703

while we demonstrate strong performance in the do-704

main of invasion biology, its applicability to other705

domains remains uncertain and requires further706

evaluation.707

Second, although we compare the effectiveness708

of leveraging information from an ontology versus709

extracting it from scientific abstracts, our compari-710

son is constrained by the specific ontology elements711

considered - namely, the selection of concepts, their712

definitions, and the presence of links. We believe713

that significant untapped potential remains in ad-714

ditional ontology features, such as relation types,715

domains and ranges of relations, and higher-order716

relationships. A more comprehensive assessment717

of the ontology’s value can only be made once its718

full informational capacity is utilized.719

Third, assessing the correctness and quality of720

LLM-generated data and extracted concepts from721

scientific abstracts is beyond the scope of this study.722

While our results indicate performance improve-723

ments on the invasion biology benchmark, there724

remains a risk of introducing bias or inaccuracies725

into the encoder model due to biased concept selec-726

tion or potential misinterpretations by the LLM.727
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A Experimental Details1075

A.1 Data Generation1076

We used LLMs, specifically LLaMA-3-8B and1077

LLaMA-3-8B-Instruct, to generate synthetic data1078

for pretraining the encoder model. For generat-1079

ing alternative definitions of ontology concepts, we1080

employed the instruction-tuned version of LLaMA,1081

using the prompt shown in Figure 1.1082

Concepts were extracted from scientific abstracts1083

following the procedure detailed in Section 5.1.1084

Definition generation was then performed using1085

a similar prompting approach, incorporating the1086

scientific abstract as context.1087

Concept relations are identified using co- 1088

occurrence counts as described in Section 5.1. For 1089

the dataset consisting of 5000 abstracts, we treat 1090

concepts as related if they co-occur in at least 5 ab- 1091

stracts, with this number being increased by one for 1092

each increase in dataset size. Since many concepts 1093

do not occur that often, this lead to each concept 1094

being related to about 0.5 other concepts. 1095

A.2 Model Training 1096

We evaluate various pretraining strategies. Initially, 1097

we selected the optimal model checkpoint based 1098

on validation loss; however, we found that train- 1099

ing for significantly longer improved downstream 1100

performance, even when the validation loss did not 1101

decrease. For this reason, we adopted a strategy of 1102

saving model checkpoints at different epochs and 1103

evaluating them on the INAS classification task, 1104

thus identifying the number of batches that are 1105

optimal for a given pretraining method. Once es- 1106

tablished, we retrained the final models used in our 1107

evaluation from scratch using the predetermined 1108

number of epochs. 1109

For similarity-based pretraining, we adopt a sam- 1110

pling strategy that increases the likelihood of sam- 1111

ples that are related to each other being included 1112

within the same batch. 1113

In the case of combined SIM and MLM pretrain- 1114

ing, we independently sample a batch for each pre- 1115

training method and perform two backward passes 1116

- one for each loss - before applying a single param- 1117

eter update. 1118

For MLM pretraining, we found that a high 1119

weight decay value of 1e-2 was beneficial, likely 1120

mitigating overfitting to the small dataset. In con- 1121

trast, for SIM pretraining we did not use weight 1122

decay, since applying it led to reduced downstream 1123

performance, potentially due to accelerated catas- 1124

trophic forgetting of the model’s general language 1125

modeling capabilities if no MLM loss is used. 1126

For combined pretraining, we again applied a 1127

weight decay of 1e-2. 1128

A.3 Evaluation Dataset 1129

A.3.1 INAS Classification 1130

The INAS classification task (Brinner et al., 2022) 1131

is a 10-class classification problem, where the goal 1132

is to determine which of 10 prominent hypotheses 1133

are addressed in a given scientific abstract. We 1134

use the updated labels provided by (Brinner et al., 1135

2024). The task is a multi-label classification task, 1136
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Task: Create a single sentence that defines the concept listed below. You also receive an existing definition of the concept.

If you feel like the definition does not contain enough information, please create a more extensive one. If you feel like all
necessary information is already contained, you do not need to add additional information. Please do not simply repeat the
definition given to you. Please do not use the term itself in the definition.

Concept: [CONCEPT NAME]
Definition: [CONCEPT DEFINITION]

Format your response as:
Definition: [New Definition]
END.

Figure 1: The Llama-3-8B-Instruct prompt for generating alternative definitions for concepts from the ontology.

meaning that multiple hypotheses can be addressed1137

within a single abstract.1138

The dataset consists of 954 samples, with 7211139

used for training, 92 for validation, and 141 for1140

testing. Models are trained as standard classifiers1141

with a sigmoid activation function and a weighted1142

binary cross-entropy loss. Given the highly imbal-1143

anced nature of the dataset, we report both micro1144

and macro F1 scores to assess overall predictive1145

performance as well as the ability to recognize un-1146

derrepresented classes. Further details are available1147

in our code repository.1148

A.3.2 INAS Span Prediction1149

The INAS Span Prediction task (Brinner et al.,1150

2024) is closely related to the INAS classification1151

task and is based on the same dataset. However,1152

instead of classifying abstracts, it involves identi-1153

fying spans of text indicative of the 10 hypotheses,1154

as annotated by human experts.1155

Only 750 samples contain token-level annota-1156

tions. Models are trained using a weighted binary1157

cross-entropy loss applied to 10 logits that were1158

predicted for each input token, with each logit cor-1159

responding to one of the hypotheses. Additionally,1160

we trained models as normal classifier as in the1161

INAS classification task, where we also included1162

all samples without token-level annotations.1163

We evaluate performance using two metrics:1164

• Token-F1 Score: This score measures the1165

ability to identify individual tokens as being1166

indicative of a specific hypothesis (i.e., be-1167

longing to a ground-truth annotation).1168

• Span-F1 Score: This score evaluates how1169

well models detect complete spans by assess-1170

ing the intersection-over-union (IoU) between1171

predicted and ground-truth spans at different1172

thresholds.1173

For further details on these metrics, see (Brinner 1174

et al., 2024). 1175

A.3.3 EICAT Classification 1176

The EICAT classification task (Brinner and Zarrieß, 1177

2025) is concerned with classifying the ecological 1178

impact of an invasive species as reported in a sci- 1179

entific full-text paper. The categories include five 1180

different impact levels plus a “Data Deficient” cate- 1181

gory, resulting in a six-class classification problem. 1182

The dataset consists of 436 full-text scientific pa- 1183

pers covering 120 species, with training, validation, 1184

and test splits of 82%, 8%, and 10%, respectively. 1185

Since most encoder models cannot process en- 1186

tire full-texts at once, Brinner and Zarrieß (2025) 1187

explored strategies for selecting relevant sentence 1188

subsets for training and evaluation. One effective 1189

and unbiased approach is the selection of random 1190

sentences, which we adopt. During testing, each 1191

model receives 20 different random sentence selec- 1192

tions per paper, with the final classification deter- 1193

mined via majority voting. 1194

Models are trained as standard classifiers with 1195

a weighted categorical cross-entropy loss. Given 1196

the dataset’s class imbalance, we report both micro 1197

and macro F1 scores, following the approach used 1198

in the INAS classification task. 1199

A.3.4 EICAT Evidence Selection 1200

The EICAT evidence selection task (Brinner and 1201

Zarrieß, 2025) is a binary sentence classification 1202

problem. While annotating scientific full-texts for 1203

the EICAT classification task, human experts iden- 1204

tified key sentences that served as evidence for 1205

impact assessments. The goal of this task is to pre- 1206

dict whether a given sentence is evidence for an 1207

EICAT impact assessment. 1208

To provide context, the model receives three 1209

sentences before and three sentences after the tar- 1210

get sentence, with the target sentence enclosed 1211

by [SEP] tokens. Training is performed using a 1212
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Hypothesis Clf Hypothesis Span Impact Clf Impact Evid. Avg.
Similarity Pretraining

Ontology Definitions 0.727 0.779 0.400 0.218 0.446 0.460 0.514 0.507
Keyword Definitions 0.726 0.783 0.405 0.228 0.465 0.475 0.497 0.510

Similarity Pretraining Ablation: No Concept Relatedness
Ontology Definitions 0.715 0.777 0.395 0.210 0.436 0.450 0.499 0.498
Keyword Definitions 0.725 0.781 0.402 0.209 0.466 0.484 0.484 0.504

Table 3: Results for an ablation study, evaluating the effect of not using the relatedness between different concepts
in the pretraining loss.

weighted binary cross-entropy loss.1213

The dataset splits are the same as those used1214

in the EICAT classification task. Performance is1215

reported using the normalized discounted cumu-1216

lative gain (NDCG) score, which evaluates the1217

model’s ability to rank ground-truth evidence sen-1218

tences higher than non-evidence sentences. This1219

metic is used since the task was proposed in the1220

context of extracting a fixed number of sentences1221

for further prediction, thus making the ranking be-1222

tween sentences more important than the specific1223

predicted scores. Also, the original annotations1224

are not guaranteed to include every sentence in-1225

dicative of the correct classification, thus making a1226

softer metric a better fit compared to a strict binary1227

evaluation.1228

A.4 Evaluation Details1229

Due to the high variance in the model’s predictions,1230

we train 7 models for the INAS classification and1231

EICAT classification tasks, as well as 3 models1232

for the other tasks that take significantly longer1233

for each training run. Final results are reported1234

as the average performance across all runs. To1235

compute a final benchmark score, we first average1236

the performance metrics for each task separately1237

and then compute an overall average across all1238

tasks.1239

For both EICAT-related tasks, we observed oc-1240

casional training runs (across all pretraining types)1241

where models exhibited drastically lower perfor-1242

mance, often predicting only a single class for all1243

samples. We attribute this to the dataset’s extreme1244

class imbalance, that, for some random seeds, leads1245

to degenerate states that the model is unable to es-1246

cape. In such cases, training runs were repeated to1247

avoid reporting results that reflect random failures1248

rather than actual model performance.1249

A.5 Ablation 1250

We perform an ablation study evaluating the effect 1251

of not incorporating the relations between different 1252

concepts (as determined by ontology relations or 1253

keyword co-occurrence statistics) into the pretrain- 1254

ing loss. Results are displayed in Table 3. We see 1255

that not incorporating concept relatedness leads to 1256

reduced scores on our benchmark, thus indicating 1257

the usefulness of leveraging this information within 1258

pretraining. 1259
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