
Self-Supervised Bug Detection and Repair

Miltiadis Allamanis, Henry Jackson-Flux∗, Marc Brockschmidt
Microsoft Research, Cambridge, UK

{miallama, mabrocks}@microsoft.com

Abstract

Machine learning-based program analyses have recently shown the promise of
integrating formal and probabilistic reasoning towards aiding software develop-
ment. However, in the absence of large annotated corpora, training these analyses
is challenging. Towards addressing this, we present BUGLAB, an approach for self-
supervised learning of bug detection and repair. BUGLAB co-trains two models:
(1) a detector model that learns to detect and repair bugs in code, (2) a selector
model that learns to create buggy code for the detector to use as training data. A
Python implementation of BUGLAB improves by up to 30% upon baseline meth-
ods on a test dataset of 2374 real-life bugs and finds 19 previously unknown bugs
in open-source software.

1 Introduction

Detecting and repairing bugs in source code requires strong reasoning skills over formal structures
(e.g. data and control flow) and ambiguous information (e.g. identifier names, coding idioms, and
comments). Traditional program analyses are able to detect critical bugs through formal reasoning
and combinatorial search, but need to be manually coded by experts. That is a lengthy and costly
process, which misses the opportunity to use ambiguous information pervasive within code.

Towards broadening the applicability of such methods, and utilizing ambiguous information, deep
learning-based bug detection methods are being investigated [22, 3, 13]. These methods have the
potential to further improve the engineering of software we rely on every day. However, many
challenges in the area remain open, such as creating robust bug detection and repair methods that
cover a wide range of common bugs in the absence of large supervised training corpora. Existing
work focuses on randomly inserted bugs [22, 13], Cloze test proxy tasks [3], corpora of small code
edits that may contain bugs [9] or build errors [28]. All these approaches rely on datasets of very
limited size or ones known not to be representative of the characteristics of bugs found in real code.

In this work, we propose BUGLAB, a self-supervised approach that trains robust bug detectors by
co-training a bug selector that learns to create hard-to-detect bugs (Sec. 2). For example, for a
given code snippet with two well-named variables, a variable misuse bug may be easy to detect
and repair, whereas an incorrect comparison operator might be significantly harder to identify. We
propose a neural architecture for BUGLAB (Sec. 3) and implement it for Python (Sec. 4). Our
implementation considers four broad classes of seemingly simple, yet hard-to-detect bugs and shows
improved performance over training with randomly-inserted bugs on PYPIBUGS, a new, manually
curated test set of 2374 real-life bugs (Sec. 5). Furthermore, we tested our trained models on popular
open-source Python packages and identified 19 previously unreported bugs, though false positive
rates of ∼ 98% remain impractical. We hope that creating machine learning methods that can detect
these bugs early and assist developers will speed up software development and allow engineers
to deliver more robust software. We release PyPIBugs and our code at https://github.com/
microsoft/neurips21-self-supervised-bug-detection-and-repair.

∗Work done while at Microsoft Research.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

https://github.com/microsoft/neurips21-self-supervised-bug-detection-and-repair
https://github.com/microsoft/neurips21-self-supervised-bug-detection-and-repair

2 Self-Supervised Bug Detection

In this section, we first introduce the concept of code rewriting, and then use it to define BUGLAB as
a framework for self-supervised learning of bug detection and repair.

Code Rewriting Rewriting is common within compilers and their optimizations, test-driven search-
based bug repair tools, mutation testing, and refactoring tools. Rewrites can be semantics-preserving
(e.g. renamings of local variables), or semantics-altering (e.g. replacing >= by !=).

Let S denote the set of all syntax trees (not necessarily rooted in the start symbol of the language
grammar). Syntax tree locations ` ∈ {ε} ∪ N∗ in a syntax tree s ∈ S are recursively defined, where
s|ε = s and s|` for ` = `′◦i is the i-th child of s|`′ (i.e. s|(2,3) denotes the third child of the second child
of s). We define a rewrite rule ρ = (mρ, tρ) as a pair of a matching function mρ : S → {true, false}
and a transformation function tρ : S → S. The matching function mρ(s) yields true iff the rule
ρ is applicable at the root of a subtree s. The transformation function can be applied to obtain a
transformed syntax tree. For convenience, we define tρ(s) = s iff mρ(s) = false. We then write
ρ(s) to indicate the modification of a syntax tree s using ρ when possible, and otherwise the identity
function. For reversible rewrite rules ρ, we denote the inverse rule as ρ−1 such that ρ−1(ρ(s)) = s
holds. We discuss concrete rewrite rules ρ in Sec. 4.

Given a set of rewrite rules R we define the set of “potential rewrites” in a syntax tree s as RRs ={
〈`, ρ〉 | ρ ∈ R, ` location in s,mρ(s|`) = true

}
. For each tuple 〈`, ρ〉 ∈ RRs , we use s′ = s[ρ]` to

denote the new syntax tree obtained by applying ρ at location ` of s. In BUGLAB, we train models
that use rewrites from RRs to insert and repair bugs. We will discuss such neural models in Sec. 3.

Bug Selector 𝑆𝜙

Bug Detector 𝐷𝜃

L
e
a
r
n
i
n
g

Original
Code

Code w/
introduced

bugs

Detected
Bug

Figure 1: BUGLAB overview: a se-
lector model Sφ decides which (bug-
introducing) rewrite to apply to an input
code snippet. Then a bug detector Dθ

tries to locate and repair the inserted bug
(if one was inserted).

BUGLAB In BUGLAB, we are interested in self-
supervised training of a robust bug detector model Dθ

with parameters θ on an unannotated codebase C. Let R
be a set of rewrite rules2 that allows to insert and repair
bugs. We train Dθ to be able to recognize the “hardest”
possible rewrites that could be applied on our codebase C.
For this, we consider the loss LDθ of Dθ on a rewritten
code snippet s[ρ]`, for which the model needs to predict
the repairing rewrite

〈
`, ρ−1

〉
. Formally, we want to min-

imize the objective

Es∼C

[
max
〈`,ρ〉∈RR

s

LDθ
(
s[ρ]`,

〈
`, ρ−1

〉)]
.

However, for any useful detector the set of rewrites RRs
is commonly very large or unbounded and computing the
maximum over all 〈`, ρ〉 ∈ RRs is practically intractable.
To address this, BUGLAB introduces a bug selector model
Sφ (with parameters φ), whose goal is to approximate the
intractable max〈`,ρ〉∈RR

s
LDθ (·). We can then sample rewrites from Sφ instead of computing the

maximum. We denote this as 〈`, ρ〉 ∼ Sφ(s) and the overall BUGLAB training objective can be
written as a min-max optimization problem:

max
φ

min
θ
Es∼C

[
E〈`,ρ〉∼Sφ(s)

[
LDθ

(
s[ρ]`,

〈
`, ρ−1

〉)]]
. (1)

The two models S and D in BUGLAB are “symmetric” in the sense that they both predict rewrites
on code snippets, and only differ in their objectives — one aiming to introduce bugs and one aiming
to repair them. In practice, we can and do use the same architecture to model both S and D, which
we will discuss in the next section. At test time, we discard S and only use the trained detector D to
locate and repair bugs.

2In this work we assume that R contains a special “identity” rewrite rule ρ∅ that does not change the code.

2

3 Neural Models

In this section, we discuss how we represent code in BUGLAB and the neural models we use to learn
how to rewrite code in the selector and detector models.

Code Representation We consider source code as a set of entities vi ∈ V which relate to each
other with a set of typed relations ek ∈ E, where a relation ek = (vi, r, vj) denotes a relationship
between entities vi and vj with type r. The entities and relations can be thought as a heterogeneous
graph G = (V,E). The choice of code entities and their relationships is a form of high-level feature
extraction. We discuss concrete entities and relationships for Python in Sec. 4. We also define a
projection function Ptok that accepts V and E and returns a sequence Vtok of the token entities
in V with the nodes appearing in relations in E deterministically mapped to elements of Vtok, i.e.
Etok = {(p(vi), r, p(vj))}, where p maps the entities in V to Vtok. Ptok will be used for relational
transformer models.

To learn a neural representation of the code entities vi, first we define an embedding function e(vi)
which maps the content of each entity to an initial D-dimensional representation. Throughout this
work — similar to Allamanis et al. [4] and other previous work — we deterministically split the
string representation of each node into subtokens (e.g., fooBar is split into foo and bar), embed
them through a learned embedding matrix, and use max pooling to get a single vector. We then
“contextualize” the entity representations within G using one of two models: a MLP-based GNN
model with max message aggregation and the GREAT relational transformer of Hellendoorn et al.
[13] over the token sequence and relations Vtok, Etok = Ptok(V,E). GREAT uses both positional
encodings and the projected relations in Etok. See Appx. A for detailed architecture descriptions.
Other models to compute entity representations can be used, but were not explored in this work.

We use r` to denote the computed vector representation of the entity at location `, independent of
the model used to produce it. We use these representations to define our code rewriting models.

Probabilistic Code Rewriting Models Both bug selection and bug detection require to model the
probability of applying a specific rewrite at a location in a code snippet s, either to introduce or repair
a bug. For this, we factorize this task into localization and rewrite-given-location models, i.e.

p
(
〈`, ρ〉 | s, RRs

)
= ploc

(
` | s, RRs

)
prew

(
ρ | `, s, RRs

)
. (2)

We model ploc as a probability distribution over the relevant locations {` | 〈`, ρ〉 ∈ RRs } ∪ {NoBug},
where NoBug is a special location used to indicate that the code is not buggy. In practice, we imple-
ment this similar to a pointer net [19] using the representations r` (see Appx. A for details).

To select rewrites, we use rewrite type-specific learnable rule score functions wρ (r`,Mρ(s, `)).
This function maps a vector representation of an entity r` and potential additional metadata onto
a scalar score. The rule-specific metadata Mρ(s, `) is defined for some rewrites, e.g. containing
representations of other entities that could be used in the location `. We will discuss three concrete
rule score functions in Sec. 4. The rewrite probability distribution prew is then modeled by a softmax
over the scores of all applicable rewrites at a target location `, i.e.

prew
(
ρ | `, s, RRs

)
= softmax
〈`,ρ′〉∈RR

s

(wρ′ (r`,Mρ′(s, `))) .

4 A Python Implementation

This section presents an implementation of BUGLAB for Python called PYBUGLAB. PYBUGLAB
currently tackles a large subset of “stupid simple bugs” [16]. Fixing these bugs requires small changes
to the code, but commonly has significant impact on code correctness. Such bugs may be thought
as a form of a typographical mistake or a copy-paste error, and are often relatively hard to locate by
humans but obvious after the fact. They are also quite common, as observed in the empirical statistics
of Karampatsis and Sutton [16] and Just et al. [14]. Future work may focus on a broader set of rewrite
rules or even learnable rewrites, but as we will observe in Sec. 5 more work is needed towards this.
Almost all ideas in PYBUGLAB transfer straightforwardly to other programming languages other
than Python, but would require some engineering effort to implement.

PYBUGLAB Code Entities and Relations In this work, we follow related literature (see Sec. 6
for more) and extract entities and relationships that are readily available by tokenizers, parsers,

3

def foo(a, b, c=0):

if a[1] in[2] b[3]:

c[4] +=[5] bar(b[7], c[8])[6]

c_is_neg =[9] c[10] <[11] 0[12]

if c is neg[13] or[14] a[15] is[16] int:

return True[17], c[18]

return c[19] >[20] 1[21], c[22]

ε: NoBug
l1: b, c
l2: not in

l3: a, c
l4: a, b
l5: =,-= ,*= , /=, //=, %=
l6: bar(c,d)

l7: a, c

l8: a, b
l9:+= ,-= ,*= , /=, //=, %=
l10: a, b
l11: <=, >, >=, ==, !=
l12:-2 ,-1 , 1, 2
l13: a, b, c, not c_is_neg

l14: and

l15: b, c, c_is_neg

l16: is not

l17: False

l18: a, b, c_is_neg
l19: a, b, c_is_neg
l20: >=, <, <=, ==, !=
l21:-2 ,-1 , 0, 2
l22: a, b, c_is_neg

Figure 2: Code snippet and rewrites available to PYBUGLAB.

existing simple program analyses, or other Python-specific program analysis tools. The complete
list of entities and relationships can be found in Appx. B and include syntactic entities and relations,
relations about the intraprocedural data and control flow, types, and documentation. Some notable
entities include SyntaxNodes, Tokens, and Symbols (references to variables and functions). Fig. 4
in Appx. B shows a graph of the entities and relationships of the snippet in Fig. 2.

4.1 Bug-Inducing PYBUGLAB Rewrite Rules

PYBUGLAB focuses on four common kinds of bugs. Fig. 2 shows a code snippet and the rewrites
allowed for each location, which number 63 even for this small example.

Variable Misuse Originally defined by Allamanis et al. [3] as a Cloze test for source code, Vasic et al.
[30] and Hellendoorn et al. [13] reformulated the task to localizing a variable misuse bug (if any)
within a snippet and repairing it. PYBUGLAB uses the latter representation. Variable misuse bugs are
common, with 12.8-14.8% found in the ManySStuBs4J corpus [16] and about 6% of them caught
during Java compilation in the Google build system [28]. To insert and repair variable misuse bugs,
PYBUGLAB supports variable-swapping rewrites, such as in locations l1, l3 and l4 (amongst others)
in Fig. 2. To score a variable-swapping rewrite, we use the representation of the rewrite location r`
along with the representation rσ of a variable Symbol σ that could replace the current variable, i.e.
is in-scope and has been defined before `. The rule score function wρ for replacing the variable at `
with the symbol σ is then computed as the inner product r>` rσ .

Argument Swapping (or Argument Selection) First coined by Rice et al. [26], it refers to swapping
the arguments of a function invocation, e.g. in l6 of Fig. 2. Rice et al. [26] and DeepBugs [22]
tackled this problem when all arguments are single identifiers. PYBUGLAB extends this to swapping
arbitrary argument expressions. The rule score function wρ for an argument swapping rewrite is a
two-layer MLP applied to the concatenation of the output representations of the representation of the
parameter and the to-be-swapped arguments arg1, and arg2: MLP

(
[rparams, rarg1, rarg2]

)
.

Wrong Operator Corrupting operators has a long history in mutation testing [14]. Detecting incor-
rect operators with deep learning was first tackled by DeepBugs [22] by using learnable embeddings
of operators, operands and literals for arithmetic and comparison operators. DeepBugs focused only
on binary operators. In PYBUGLAB we tackle all binary operators, including Boolean, arithmetic
and comparison operators and two unary operators: logical and arithmetic negation. Locations l11,
l14, l16, and l20 in Fig. 2 are rewrites related to wrong operators. The rule score function wρ for an
operator rewrite again uses an inner product, r>` rop, where rop is a learned embedding for operator
op. Note that we rewrite operators only to compatible operators (e.g. < to > but not +).

Wrong Literal Corrupting operands, and specifically, literals appearing in the source code, is also a
common strategy in mutation testing. As in mutation testing, PYBUGLAB handles a limited number
of commonly used literals, allowing rewrites to replace integer literals within the set of -2, -1, 0, 1, 2
and swapping the Boolean literal True with False and vice versa. The scoring function is identical
to the operator rewrite, using a learnable embedding rlit for each literal lit.

4.2 PYBUGLAB Rewrite Rules for Data Augmentation

We additionally consider more rewrite rules that are not meant to change the program semantics,
using them as a form of data augmentation. This is in spirit similar to ideas in computer vision where
images are transformed (e.g. rotated, cropped) but maintain their original content. Such rewrites

4

Algorithm 1 Sequential Training Procedure for Selector and Detector models

Require: Code dataset C, initial detector/selector model parameters θ(0), φ(0)
1: for meta-epoch i = 0 to I do
2: // Create dataset of buggy programs:
3: C

(i)
D ←

{(
s[ρ]`,

〈
`, ρ−1

〉)
| s ∈ C, k samples 〈`, ρ〉 ∼ Sφ(i)(s)

}
4: θ(i+1) ← update θ(i) by training D on C(i)

D
5: // Create dataset of hard-to-detect bugs:
6: C

(i)
S ←

{(
s, argmax〈`,ρ〉∈RR

s

(
LD

θ(i+1)

(
s[ρ]`,

〈
`, ρ−1

〉)))
| s ∈ C

}
7: φ(i+1) ← update φ(i) by training S on C(i)

S

have been shown to yield adversarially robust models of code [23]. Although our goal is not to
provide adversarial robustness, we believe that such rewrites can help generalization. PYBUGLAB
implements the following rewrites for this purpose:

• Variable Renaming renames a local variable to a random name not already in scope.

• Comment Deletion removes code comments, including docstrings and inline comments. Such
comments commonly contain natural language information that is useful for code comprehension,
but usually do not affect program semantics.

• Comparison Expression Mirroring swaps the two sides of a comparison operator and changes it
appropriately. For example, a<b is transformed to b>a. Note that in cases such as foo() < bar(),
this will change the order of execution of foo and bar, possibly altering program semantics.

• If-Else Branch Swapping negates the test condition of an if-else statement or a ternary expres-
sions using DeMorgan’s law and swaps the then body with the else body.

4.3 Implementation Details

To make the training computationally tractable we approximate Eq. 1. A simplified, sequential
version of our training procedure is shown in Alg. 1. Intuitively, we alternate between training the
two models, as the (discrete) sampling of rewrite rules in the selector models precludes direct end-
to-end training. We first use the current state of the selector model to generate “hard” samples and
train the detector model on these samples (we always include the unmodified (i.e., NoBug case) as a
sample). Then, we use the loss of the detector model to identify those generated samples that were
hardest to detect and train the selector model to produce such samples.

In practice, we implemented the training procedure as a system of asynchronously communi-
cating processes, and all of the described steps happen in parallel. We do not use “generations”
C

(0)
D/S , C

(1)
D/S , . . . of datasets, but instead use two constantly updated “pools” of training data, one

for the detector and one for the selector. Each training step samples a minibatch from the current
state of the corresponding data pool. We remove samples from the data pool once they have been
sampled ν times for use in training, in spirit similar to replay buffers in reinforcement learning. In
our experiments, ν was set to 4. We regularly (in separate, concurrent processes) take snapshots of
the the current state of the D and S models to generate new elements that are updated to the data
pools, matching the procedure described in Alg. 1. We approximate the argmax in line 6 by only
considering the k samples chosen in line 3 for each input program. During training of S, we then
mask out the unobserved choices before computing the loss.

5 Evaluation

We now discuss our new dataset and evaluate PYBUGLAB. Wehighlight.key.results.

Datasets To train PYBUGLAB we retrieve the 4k most downloaded packages in the Python package
index (PyPI) and take 3.4k of them as training packages, using the rest for test purposes. During
training, PYBUGLAB installs each package along with all its dependencies. Installing all the depen-
dencies is important for extracting the entities and the relations beyond local syntactic ones (e.g. type

5

https://pypi.org/

inference, method resolution). For each file, PYBUGLAB checks if it is a duplicate of a file that has
already been seen in the training following the method of Allamanis [1] and runs all the relevant
program analyses to extract the entities and relationships in each function. When we use additional
rewrites for data augmentation, these are applied at the input of the PYBUGLAB pipeline as a form
of pre-processing. Following Alg. 1, the bug selector S selects k = 5 bugs to introduce, rewrites
the source code text, and then the program analyses extract the new entities and relationships for the
rewritten code snippets. The initial and rewritten code snippets are then used to create the training
data for the detector and selector models.

We use two testsets to measure performance. First, we create RANDOMBUGS, a testset of 761 445
snippets derived from functions from the 600 PyPI test packages (not seen during training). For each
function we find within these packages we add it to the dataset along with 9 rewritten functions with
a randomly inserted bug. On average graphs have 260 nodes, 601 edges, 25 rewrite locations, and
130 possible rewrites. We also collect a testset of real bugs. Although we conjecture that, in practice,
the vast majority of bugs like those discussed in Sec. 4.1 are fixed when developers locally test their
software, a few of those slip and then are fixed across different revisions checked into a version control
systems. We have crawled the accessible repositories of all 285k packages in the Python Package
Index (PyPI), collected and manually filtered bugs captured by the rewrites from Sec. 4.1.This.new
.dataset,PYPIBUGS,.contains.2374real-world,.smallbugs. We describe the data collection process
in detail in Appx. D. In addition, we consider PYPIBUGS-PostFix: the examples from PYPIBUGS
after a bug was fixed - we believe these samples are very likely to not contain any bugs anymore.
We publish the dataset at https://www.microsoft.com/en-us/download/103554 and include
it in the supplementary material.

5.1 Quantitative Evaluation

Our first experiment aims to evaluate whether the BUGLAB training framework yields more precise
bug detectors. We consider two model architectures, using either GNNs or the GREAT transformer
to compute embeddings of code entities (architecture details and hyperparameter choices can be
found in Appx. A). We use four different training strategies: “supervised” is training only a bug
detector on a fixed dataset of 1 million functions from the 3.4k training packages with randomly
inserted bugs. “Random Selector” refers to a variant of PYBUGLAB using a bug selector model that
uniformly at random picks a rewrite to insert bugs. Finally, PYBUGLAB and PYBUGLAB +Aug use
our framework from Sec. 2, with the latter also using additional rewrites to augment our code corpus.
For the fully supervised model, we train with early stopping over a validation set; the other models
are trained for a fixed number of 300 epochs (with 200k training samples per epoch) for the bug
detector3 and the last detector model is used for evaluation.

Table 1: Accuracies (%) for different training strategies and
model architectures on RANDOMBUGS.

RANDOMBUGS
GNN GREAT

Joint Loc Repair Joint Loc Repair

Supervised 62.4 73.6 81.2 51.0 61.9 76.3
Random Selector 69.4 79.6 84.0 63.9 73.6 82.0
PYBUGLAB 69.6 80.4 84.2 64.0 74.3 82.3
PYBUGLAB +Aug 70.3 81.1 84.5 65.3 75.3 82.5

Effectiveness of BUGLAB Training
We first consider the performance
of different models on the synthetic
RANDOMBUGS dataset. Tbl. 1 shows
the accuracy of predicting a full bug
repair correctly (“Joint”) and analo-
gous to Eq. 2 break this up into a local-
ization accuracy (“Loc”) of predicting
the correct location (or NoBug for cor-
rect examples) and a repair accuracy
(“Repair”) for selecting the correct rewrite given the buggy location.

We observe that .PYBUGLAB-training.leads. . . .tomore.robust.bugdetectors.compared. . .to.other
.methods for both GNNs and GREAT. Random selector models — a form of data augmentation — im-
prove performance over supervised methods but mostly on in-distribution RANDOMBUGS samples.
As expected,augmenting.thecode.dataset.helps.generalization, but does not make a substantial
difference. Expanding the kinds of rewrites used to augment the data and learning to select them may
improve performance in the future.

3This amounts to about 1.5 weeks for the GNN models and about 1 week for the GREAT models on a single
P100 GPU.

6

https://www.microsoft.com/en-us/download/103554

Table 2: Results for different training strategies and model architectures on PYPIBUGS.
PYPIBUGS PYPIBUGS-PostFix

GNN GREAT GNN GREAT
Joint Loc Repair Joint Loc Repair Loc Joint AUC Loc Joint AUC

Supervised 20.0 28.4 61.8 16.8 25.8 58.6 17.8 0.087 20.7 0.044
Random Selector 21.2 27.0 69.2 20.6 26.8 67.2 47.5 0.108 52.5 0.117
PYBUGLAB 24.2 31.3 70.7 24.0 32.8 67.9 32.9 0.160 28.6 0.140
PYBUGLAB +Aug 26.4 33.5 72.0 23.2 29.7 68.8 32.6 0.187 48.2 0.129

Table 3: Localization and Repair Accuracy (%) per bug kind for the PYBUGLAB +Aug model.
RANDOMBUGS PYPIBUGS

Bug Type GNN GREAT GNN GREAT
Loc Repair Loc Repair Loc Repair Loc Repair

Argument Swapping 85.0 57.3 65.5 57.2 33.2 73.9 24.3 72.7
Wrong Assign Op 96.1 99.1 94.5 98.6 20.0 68.9 14.0 58.1
Wrong Binary Op 83.0 85.2 77.3 81.4 27.2 54.3 36.6 43.7
Wrong Boolean Op 71.8 99.5 43.6 99.5 27.6 96.9 15.7 97.2
Wrong Comparison Op 83.9 79.3 80.0 76.4 33.7 66.1 31.1 53.5
Wrong Literal 71.7 74.7 66.6 71.6 21.6 78.4 17.9 79.5
Variable Misuse 84.9 88.4 78.2 86.3 35.3 70.5 34.0 69.4

NoBug 53.8 — 62.5 — — — — —

Furthermore,bug.localization . . .ismuch.harder.than.repair . . .at . .agiven.location. This is somewhat
expected: there are many more candidate locations compared to potential repairs at a given location.
However, this suggests that research should focus on the localization problem rather than repair.

We now turn to the results on PYPIBUGS, shown in Tbl. 2, which also includes the accuracy of
choosing the special NoBug location on the PYPIBUGS-PostFix dataset, as well as the area under the
precision recall curve for the results on both PYPIBUGS and PYPIBUGS-PostFix.

We find thatdetecting.and.repairingreal-life.bugs . .is.significantly.harder.than.handling.randomly
.inserted.bugs. As PYBUGLAB models trained using a learned bug selector outperform those using
a “Random Selector”, we speculate that the learned selector avoids generating easy-to-detect bugs,
focusing the detector model on recognizing deeper semantic patterns. Despite this, improvements in
RANDOMBUGS often correlate with improvements in PYPIBUGS. This is encouraging: collecting
PYPIBUGS-like datasets is costly; corpora with random bugs can help measure relative improve-
ments to some extent. Finally, we find thatrecognizingnon-buggy.samples. . .isveryhard, and in
particular, does not always profit from training in PYBUGLAB.

In our qualitative analysis (Sec. 5.2), we observed that the models raised some confident but incorrect
warnings at very “odd” locations. However, these warnings were different across models. We have
tested an ensembling strategy averaging the output probabilities of five separately trained GNN
models. This results in localization and repair accuracies of 83.0% and 85.4% on RANDOMBUGS
(vs. 81.1% and 84.5%) and 34.4% and 72.2% on PYPIBUGS (vs. 33.5% and 72.0%). As we discuss
in Sec. 5.2 finding the cause of the “spurious” warnings is important future work.

Per-Bug Evaluation To better understand which bugs are hard to detect, we break down the results
the best-performing PYBUGLAB +Aug models on RANDOMBUGS by type of bug in Tbl. 3. We
observe that incorrect literals are some of the hardest bugs to detect. Incorrect assignment operators
(e.g. = and +=) are easy to detect in RANDOMBUGS, but significantly harder in PYPIBUGS. This may
be attributed to class imbalance, with simple assignment (=) being the majority class.Detecting. . .if
.a.snippet.has . .abug . . .ornot.seems . . .to . . .be. . . .the.hardest.task:. . . .no.model.achieves.accuracy.beyond.63%.

We note that in our experiments, GNNs-based models seem to often outperform GREAT, somewhat
contradicting the results of Hellendoorn et al. [13]. We have performed substantial additional experi-
ments to investigate and verify these results, cf. Sec. A.2. This may have to do with the performance
of these models on long sequences or that the GNN has access to more fine-grained information,
instead of relations over the projected token sequences. For example, this could be attributed to
the lack of syntax and symbol nodes in the representation used in GREAT. Nevertheless, GREAT

7

Table 5: Bug distribution (%) in different datasets
Bug Kind PYPIBUGS RANDOMBUGS Selector Samples

Argument Swapping 11.9 8.4 23.8
Wrong Assignment 1.9 8.5 5.3
Wrong Binary Operator 3.4 2.4 2.3
Wrong Boolean Operator 8.1 2.2 6.4
Wrong Comparison Operator 17.1 8.2 7.4
Wrong Literal 3.7 11.6 12.4
Variable Misuse 53.8 58.6 42.5

is noticeably better (62.5% vs. 53.8%) at detecting NoBug and locating wrong binary operators in
PYPIBUGS.

Table 4: Development of Performance
on Bug Selector Samples
Training Time Joint Loc Repair

0.5 days 64.2 83.8 72.1
1.5 days 62.5 80.7 72.9
2.5 days 62.0 83.0 69.8
3.5 days 61.7 82.5 69.8
4.5 days 61.9 83.0 69.5
5.5 days 61.1 83.0 68.6
6.5 days 60.5 78.7 72.4

Bug Selector Performance To understand how training
of the bug selector proceeds, we perform two experiments.
In our first experiment, we take a snapshot of the selector
model during training of the PYBUGLAB +Aug (GNN)
model every 24 hours, after an initial burn-in phase of 12
hours. We then generate 10000 buggy samples using each
of these snapshots and then test a fixed model on each of
these snapshots. The results of this are shown in Tbl. 4, us-
ing a fully trained PYBUGLAB +Aug (GNN) model from
another training run as a fixed model. We conclude that

. .PYBUGLAB succeeds. . . .inlearning . . .togenerate.harder. . .to
. . . .find.bugs, though we can observe the selector model trading off “harder-to-localize” and “harder-to-
fix” properties. Tests on other models show similar trends, confirming the robustness of this result.

In a second experiment, we compare the distribution of different bug kinds in PYPIBUGS and
RANDOMBUGS with the distribution of bugs sampled from the final snapshot of our selector model
from above. The results are shown in Tbl. 5, where we can see that a number of bugs (argument
swapping, use of wrong literals and of assignment operators) are substantially over-represented,
whereas mistakes in comparison operators and variable misuse are under-represented. This indicates
that .PYBUGLAB generates.hard. . .tofind,but. . . .not.necessarilyrealisticbugs.

Comparison to CuBERT Finally, we compare our models to CuBERT [15], which uses a masked
language modeling objective to pre-train a BERT-like model and then learns bug detectors specific
to a class of bugs (e.g., wrong binary operators) on top of this pre-trained model. Note that CuBERT
detects if a bug exists but does not localize it. For the comparison, we create two sub-datasets of PYP-
IBUGS: PYPIBUGS-WrongOp contains the 501 samples that involve the binary operators supported
by CuBERT, and PYPIBUGS-VarMisuse, which contains the 1278 bugs that involve variable misuses.
We complete both of these datasets with 501 (resp. 1278) random NoBug code samples from our
RANDOMBUGS, to match the 1:1 buggy/non-buggy distribution used in CuBERT’s training. Since
CuBERT classification models focus on a single bug type, to compare to PYBUGLAB we mask out all
code locations that do not correspond to a bug that could be detected by the corresponding CuBERT
model. We then treat the prediction of the NoBug location as a “non-buggy” prediction and all other
locations as a “buggy” prediction. For example, for the snippet in Fig. 2, only the locations l2, l11,
l14, l16, and l20 and their corresponding rewrites are considered by PYBUGLAB for the comparison
on PYPIBUGS-WrongOp.

Table 6: Comparison with CuBERT [15]
CuBERT PYBUGLAB (GNN)

Prec Recall F1 Prec Recall F1

PYPIBUGS-WrongOp 0.764 0.251 0.378 0.730 0.764 0.746
PYPIBUGS-VarMisuse 0.632 0.403 0.493 0.740 0.840 0.787

Tbl. 6 shows the results of
comparing the released Cu-
BERT snapshots with the
PYBUGLAB +Aug GNN
model. We observe that

. . . .the .PYBUGLAB models
.have.substantiallybetter.recall.than.CuBERT-basedmodels, even though they were trained to de-
tect more bug types. When calibrating the CuBERT models to have a recall equal to PYBUGLAB,
their precision drops substantially. In particular, on PYPIBUGS-WrongOp, it is reduced to 0.609, and

8

1 def make_id(name):
2 r = get_rand_string(12)
3 if len(name) <= 22:
4 name = name[:22]
5 return name + "-" + r

(a) A wrong comparison operator bug (red box)
in PYPIBUGS detected and repaired by the GNN
PYBUGLAB +Aug models.

1 def update(self, roomId,
2 title, **request_params):
3 check_type(roomId, basestring)
4 check_type(roomId, basestring)
5 [...]

(b) A variable misuse (red box) caught in an open-source
project. GNN PYBUGLAB +Aug suggests to rewrite
roomId to title. The fixing pull request is found here.

Figure 3: Bugs found by PYBUGLAB. Snippets reformatted and abbreviated to fit figure.

on PYPIBUGS-VarMisuse, it is reduced to 0.613; in both cases, PYBUGLAB outperforms CuBERT
substantially.

5.2 Qualitative Inspection of Raised Warnings

We now take a qualitative look at the raised warnings raised by PYBUGLAB. As example, Fig. 3a
shows a sample of PYPIBUGS where the developer used an incorrect comparison operator. Once
pointed to it, it is clear to a human that the truncation statement in line 4 has no effect (under the
reasonable assumption that name is a string), and that a different comparison operator (>) is necessary.

To gain an understanding of the performance of PYBUGLAB on realistic data, we performed an in-
depth analysis of the cases flagged as bugs by our best-performing model on the code found within
the 4k top PyPI packages. We observed a mixture of false positives with few previously unseen
real-life bugs, matching the quantitative results in Tbl. 3. First, we find that the majority of the false
positives are “incorrect literal” detections. This suggests that learning to detect such bugs is a hard
problem. Furthermore, many literals serve as default “configurations” (e.g. the number of retries
for a network request) and different values are not bugs. We posit that a large percentage of literal
replacements the selector learns to make fall in this category.

We also found that some repairs suggested by the model actually produce semantically equivalent
code. For example, the model lacks knowledge that two variables refer to the same object in memory
(aliasing), and so attempts to “repair” variable misuse bugs by switching between these. Other
examples includes checking the return values of standard functions such as Python’s str.find,
which returns -1 if the query string is not found. In such cases, PYBUGLAB often suggested to
rewrite an if x.find(y) <= -1 to if x.find(y) == -1, which makes no difference in practice.
These false negatives can be attributed to the fact that the bug selector model considers such changes
as introducing bugs, even though they are not actually changing behavior. This suggests that for better
results, the rewrite rules need to ensure that the rewrites are not semantics-preserving and represent
bugs.

Finally, some reported issues were sufficiently complex that it took us (the human authors) a couple of
minutes of thought to conclude that a warning is spurious. Simultaneously, there are some warnings
that are “obviously” incorrect to us, but the reasons why the neural models raise them is unclear. This
highlights the importance of research on explainability techniques along with better ways to calibrate
model confidence. The fact that selectors may introduce spurious “bugs” may also be affecting how
the detector model learns. Ideas that have appeared in reinforcement learning, such as the one of
Dennis et al. [8], may allow models to improve their performance in spite of spurious bugs.

Overall,only. . . .19. . .of.the1000.reportedwarningswere.found . . .to . . .be.real-life.bugs. Of these 19, we
reported 11 on GitHub (6 already merged, 5 pending approval). See Appx. G for details. 3 other bugs
had already been fixed between the version PYBUGLAB processed and the current version or the
project was deprecated, whereas another 5 bugs are minor and we decided not to report them. One
of the detected bugs is shown in Fig. 3b. Overall, most of the detected bugs appear within unit tests,
logging, or exception handling, possibly because bugs there do not impact the core functionality of a
project. However, given the number of such bugs we collected in PYPIBUGS, we believe that such
bugs arise equally often in other code, but that they are detected and fixed more quickly.

9

https://github.com/CiscoDevNet/webexteamssdk/pull/150

Although our analysis only forms a lower bound on the precision of PYBUGLAB and related methods,
it suggests that there is still ample room for future improvements towards making machine learning-
based bug detection and repair practically useful.

6 Related Work

Detecting bugs in source code has been researched since the early days of computing. Traditionally,
bug detection is tackled as a formal task, where any code that cannot be proved to satisfy some
correctness property may contain a bug. This is essential for security- and safety-critical bugs, but
not for other — equally common — bugs. In the last decade, software engineering and programming
language research have increasingly realized ambiguous information within code (e.g. variable names,
comments) contains valuable information and using this information can yield valuable results [2].
The main premise is that patterns in source code, such as patterns in names, control, and data flow
can be informative. This information can also be exploited to detect some bugs. For example, Ray
et al. [24] noted that even simple language models tend to assign lower probability to buggy code.

Multiple static analysis methods have been researched that combine some form of data-oriented
bug detection. This ranges from language model-based tools, such as the early work of Wang et al.
[32] to specification-mining tools such as the work of Eberhardt et al. [10]. BUGLAB is related to
DeepBugs [22] which uses an MLP over a limited window of code tokens and train separate models
to detect wrong operators, operands, and argument swappings. BUGLAB opts for a more structured
representation of code and a single model. Allamanis et al. [3], Vasic et al. [30], Hellendoorn et al.
[13] tackle variable misuse bugs (one of the kinds of bugs included in PYBUGLAB) but either by
randomly introducing the bugs in code or using a Cloze-like test. Instead, BUGLAB opts for a self-
supervised approach and tackles a broader range of bugs. Concurrently to this work, Patra and Pradel
[21] showed an alternative method for learning to generate realistic bugs. Dinella et al. [9] learn a
supervised sequential model that performs graph transformations that replicate small edits in code
(refactoring, introducing functionality, bug fixing, etc.). Their model — Hoppity — could serve as a
learnable rewrite operation in BUGLAB in future work. Dynamic analysis methods have also been
researched with promising results [31], but collecting representative dynamic traces over a diverse set
of programs at scale (e.g. from the top Python packages used in this work) is practically impossible.

BUGLAB is related to ideas around self-supervised learning recently explored in deep learning,
computer vision, and NLP. In our case, we aim to train a bug detection model without using training
data from real-life bugs. BUGLAB resembles ELECTRA [6], with the important difference that the
rewrites to the input code go beyond single token replacement that need to respect strict constraints
of programming languages (syntax, variable scopes) and the model is directly used for bug detection,
rather than for pre-training. The main BUGLAB objective Eq. 1 also resembles GANs [12] with
the exception that the objective is non-differentiable (introducing a bug alters the discrete data
representation), the selector is a structured probabilistic code rewriting model, and that we are mainly
interested in the bug detector (analogous to the discriminator) rather than the selector.

7 Discussion and Conclusions

Learned program analyses offer the promise to improve how we develop software. They also offer a
great opportunity to study machine learning models that combine formal and probabilistic reasoning.
Towards achieving these we presented BUGLAB, a self-supervised approach for learning program
analyses, that improves upon baseline methods and detects bugs in real-life code. We also empirically
show the limitations of existing bug-detecting machine learning methods, which suffer from imprac-
tical false-positive rates. Importantly, we show the large gap of performance of existing methods on
corpora of randomly inserted bugs — commonly used in prior work — and real-life bugs.

Acknowledgements

We want to thank Sebastian Nowozin and Marwin Segler for helpful discussions, Marwin Segler for
comments on a draft of this work, and the anonymous reviewers for useful questions and suggestions.
Finally, we would like to thank the contributors to the following open-source tools used: PyTorch [20],
PyDriller [27], MessagePack, LibCST, Jedi, Kubernetes, Helm.

10

https://msgpack.org/
https://libcst.readthedocs.io/
https://jedi.readthedocs.io/
https://kubernetes.io/
https://helm.sh/

References
[1] M. Allamanis. The adverse effects of code duplication in machine learning models of code.

In Proceedings of the 2019 ACM SIGPLAN International Symposium on New Ideas, New
Paradigms, and Reflections on Programming and Software, pages 143–153, 2019.

[2] M. Allamanis, E. T. Barr, P. Devanbu, and C. Sutton. A survey of machine learning for big code
and naturalness. ACM Computing Surveys (CSUR), 51(4):1–37, 2018.

[3] M. Allamanis, M. Brockschmidt, and M. Khademi. Learning to represent programs with graphs.
In International Conference on Learning Representations (ICLR), 2018.

[4] M. Allamanis, E. Barr, S. Ducousso, and Z. Gao. Typilus: Neural type hints. In Proceedings
of the ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI), pages 91–105. Association for Computing Machinery (ACM), 2020.

[5] T. Bachlechner, B. P. Majumder, H. H. Mao, G. W. Cottrell, and J. McAuley. Rezero is all you
need: Fast convergence at large depth. arXiv preprint arXiv:2003.04887, 2020.

[6] K. Clark, M.-T. Luong, Q. V. Le, and C. D. Manning. ELECTRA: Pre-training text encoders
as discriminators rather than generators. arXiv preprint arXiv:2003.10555, 2020.

[7] M. Cvitkovic, B. Singh, and A. Anandkumar. Deep learning on code with an unbounded
vocabulary. In Machine Learning 4 Programming, 2018.

[8] M. Dennis, N. Jaques, E. Vinitsky, A. Bayen, S. Russell, A. Critch, and S. Levine. Emer-
gent complexity and zero-shot transfer via unsupervised environment design. arXiv preprint
arXiv:2012.02096, 2020.

[9] E. Dinella, H. Dai, Z. Li, M. Naik, L. Song, and K. Wang. Hoppity: Learning graph transfor-
mations to detect and fix bugs in programs. In International Conference on Learning Represen-
tations, 2019.

[10] J. Eberhardt, S. Steffen, V. Raychev, and M. Vechev. Unsupervised learning of API aliasing
specifications. In Proceedings of the 40th ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, pages 745–759, 2019.

[11] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl. Neural message passing
for quantum chemistry. In International Conference on Machine Learning, pages 1263–1272,
2017.

[12] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville,
and Y. Bengio. Generative adversarial networks. arXiv preprint arXiv:1406.2661, 2014.

[13] V. J. Hellendoorn, C. Sutton, R. Singh, P. Maniatis, and D. Bieber. Global relational models of
source code. In International Conference on Learning Representations, 2020.

[14] R. Just, D. Jalali, L. Inozemtseva, M. D. Ernst, R. Holmes, and G. Fraser. Are mutants a
valid substitute for real faults in software testing? In Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering, pages 654–665, 2014.

[15] A. Kanade, P. Maniatis, G. Balakrishnan, and K. Shi. Learning and evaluating contextual
embedding of source code. In International Conference on Machine Learning (ICML), 2020.

[16] R.-M. Karampatsis and C. Sutton. How often do single-statement bugs occur? the
ManySStuBs4J dataset. In Proceedings of the 17th International Conference on Mining Soft-
ware Repositories, pages 573–577, 2020.

[17] J. Katz. Libraries.io Open Source Repository and Dependency Metadata, Jan. 2020. URL
https://doi.org/10.5281/zenodo.3626071.

[18] Y. Li, D. Tarlow, M. Brockschmidt, and R. Zemel. Gated graph sequence neural networks. In
International Conference on Learning Representations (ICLR), 2016.

11

https://doi.org/10.5281/zenodo.3626071

[19] S. Merity, C. Xiong, J. Bradbury, and R. Socher. Pointer sentinel mixture models. In Interna-
tional Conference on Learning Representations (ICLR), 2017.

[20] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison,
L. Antiga, and A. Lerer. Automatic differentiation in PyTorch. 2017.

[21] J. Patra and M. Pradel. Semantic bug seeding: a learning-based approach for creating realistic
bugs. In Proceedings of the 29th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, pages 906–918, 2021.

[22] M. Pradel and K. Sen. DeepBugs: A learning approach to name-based bug detection. Proceed-
ings of the ACM on Programming Languages, 2(OOPSLA):1–25, 2018.

[23] G. Ramakrishnan, J. Henkel, Z. Wang, A. Albarghouthi, S. Jha, and T. Reps. Semantic robust-
ness of models of source code. arXiv preprint arXiv:2002.03043, 2020.

[24] B. Ray, V. Hellendoorn, S. Godhane, Z. Tu, A. Bacchelli, and P. Devanbu. On the ”naturalness”
of buggy code. In 2016 IEEE/ACM 38th International Conference on Software Engineering
(ICSE), pages 428–439. IEEE, 2016.

[25] V. Raychev, M. Vechev, and A. Krause. Predicting program properties from Big Code. In
Principles of Programming Languages (POPL), 2015.

[26] A. Rice, E. Aftandilian, C. Jaspan, E. Johnston, M. Pradel, and Y. Arroyo-Paredes. Detecting
argument selection defects. Proceedings of the ACM on Programming Languages, 1(OOPSLA):
1–22, 2017.

[27] D. Spadini, M. Aniche, and A. Bacchelli. PyDriller: Python framework for mining soft-
ware repositories. In Proceedings of the 2018 26th ACM Joint Meeting on European Soft-
ware Engineering Conference and Symposium on the Foundations of Software Engineering
- ESEC/FSE 2018, pages 908–911, New York, New York, USA, 2018. ACM Press. ISBN
9781450355735. doi: 10.1145/3236024.3264598. URL http://dl.acm.org/citation.
cfm?doid=3236024.3264598.

[28] D. Tarlow, S. Moitra, A. Rice, Z. Chen, P.-A. Manzagol, C. Sutton, and E. Aftandilian. Learning
to fix build errors with Graph2Diff neural networks. In Proceedings of the IEEE/ACM 42nd
International Conference on Software Engineering Workshops, pages 19–20, 2020.

[29] H. Touvron, M. Cord, A. Sablayrolles, G. Synnaeve, and H. Jégou. Going deeper with image
transformers. arXiv preprint arXiv:2103.17239, 2021.

[30] M. Vasic, A. Kanade, P. Maniatis, D. Bieber, and R. Singh. Neural program repair by jointly
learning to localize and repair. arXiv preprint arXiv:1904.01720, 2019.

[31] K. Wang and Z. Su. Blended, precise semantic program embeddings. In Proceedings of the
41st ACM SIGPLAN Conference on Programming Language Design and Implementation, pages
121–134, 2020.

[32] S. Wang, D. Chollak, D. Movshovitz-Attias, and L. Tan. Bugram: bug detection with n-gram lan-
guage models. In Proceedings of the 31st IEEE/ACM International Conference on Automated
Software Engineering, pages 708–719, 2016.

[33] J. Wei, M. Goyal, G. Durrett, and I. Dillig. LambdaNet: Probabilistic type inference using
graph neural networks. arXiv preprint arXiv:2005.02161, 2020.

12

http://dl.acm.org/citation.cfm?doid=3236024.3264598
http://dl.acm.org/citation.cfm?doid=3236024.3264598

